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MINKOWSKI CONTENT AND NATURAL PARAMETERIZATION
FOR THE SCHRAMM–LOEWNER EVOLUTION

BY GREGORY F. LAWLER1 AND MOHAMMAD A. REZAEI

University of Chicago

We prove the existence and nontriviality of the d-dimensional 4 Min-
kowski content for the Schramm–Loewner evolution (SLEκ ) with κ < 8 and
d = 1 + κ

8 . We show that this is a multiple of the natural parameterization.

1. Introduction. A number of measures on paths or clusters on two-dimen-
sional lattices arising from critical statistical mechanical models are believed to
exhibit some kind of conformal invariance in the scaling limit. Schramm [13]
introduced a one-parameter family of such processes, now called the (chordal)
Schramm–Loewner evolution with parameter κ (SLEκ ) and showed that these give
the only possible limits for conformally invariant processes in simply connected
domains satisfying a certain “domain Markov property.” He defined the process
as a probability measure on curves from 0 to ∞ in H and then used conformal
invariance to define the process in other simply connected domains.

The definition of the process in H uses the half-plane Loewner equation. Sup-
pose γ : (0, t] → H is a curve with γ (0) = 0, and let γt = γ (0, t]. Let Ht denote
the unbounded component of H \ γt . We assume that γ is noncrossing in the sense
that for all s < t , γ [s,∞) ⊂ Hs , and γ [s, t] ∩Hs is nonempty. Let gt :Ht →H be
the unique conformal transformation with gt (z) − z = o(1) as z → ∞. Then for
every a > 0, there exists a reparameterization of the curve such that the following
holds:

• For z ∈ H, the map t �→ gt (z) is a smooth flow and satisfies the Loewner differ-
ential equation

∂tgt (z) = a

gt (z) − Ut

, g0(z) = z,

where Ut is a continuous function on R. This equation is valid up to a time
Tz ∈ (0,∞].

Under the reparameterization, the transformation gt satisfies

gt (z) = z + at

z
+ O

(|z|−2)
, z → ∞.
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We say that the curve is parameterized by (half-plane) capacity. Schramm-defined
chordal SLEκ to be the solution to the Loewner equation with a = 2 and Ut a
Brownian motion with variance parameter κ . An equivalent definition (up to a
linear time change) is to choose Ut to be a standard Brownian motion and a =
2/κ . It has been shown that a number of discrete random models have SLE as the
scaling limit provided that the discrete models are parameterized using (half-plane)
capacity. Examples are loop-erased random walk for κ = 2 [7], Ising interfaces
for κ = 3 [16], harmonic explorer for κ = 4 [14], percolation interfaces on the
triangular lattice for κ = 6 [15] and uniform spanning trees for κ = 8 [7].

If D is a simply connected domain with distinct boundary points w1,w2 where
∂D is nice in neighborhoods of w1,w2, then chordal SLEκ from w1 to w2 in D

is defined by taking the conformal image of SLEκ in the upper half plane un-
der a transformation F :H → D with F(0) = w1,F (∞) = w2. The map F is not
unique, but scale invariance of SLE in H shows that the distribution on paths is in-
dependent of the choice. This can be considered as a measure on the curves F ◦ γ

with the induced parameterization or as a measure on curves modulo reparameter-
ization.

While the capacity parameterization is useful for analyzing the curve, it is not
the scaling limit of the “natural” parameterization of the discrete models. For ex-
ample, for loop-erased walks, it is natural to parameterize by the length of the
random walk. One can ask whether the curves parameterized by a normalized ver-
sion of this “natural length” converge to SLE with a different parameterization.
The Hausdorff dimension of the SLE paths [2] is d = 1 + min{κ

8 ,1}. It was con-
jectured in [8] that the “natural length” of an SLE path might be given by the
d-dimensional Minkowski content defined as follows. Let

Contd(γt ; r) = er(2−d)Area
{
z : dist(z, γt ) ≤ e−r}.

Then the d-dimensional content is

Contd(γt ) = lim
r→∞ Contd(γt ; r),

provided that the limit exists. If κ ≥ 8, then d = 2, and the two-dimensional
Minkowski content is the same as the area and the limit clearly exists. If κ < 8, it
is not at all obvious that the limit exists and is positive for t > 0. The main goal of
this paper is to prove this.

Before stating the theorem, we will set some notational conventions for this
paper. Let 0 < κ < 8 and let

a = 2

κ
∈ (1/4,∞), d = 1 + κ

8
= 1 + 1

4a
∈ (1,2).

Recall that γt = γ (0, t] and we write γ = γ∞ = γ (0,∞) for the entire path of the
curve. The Green’s function for κ < 8 is defined by

G(z) = lim
r→∞ er(2−d)

P
{
dist(z, γ ) ≤ e−r}.
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This limit exists (see Section 2.3) and there exists c = cκ such that

G(z) = c[�z]d−2[sin arg z]4a−1.

Our definition of the Green’s function differs by a multiplicative constant from
that in other papers. If F :D → H is a conformal transformation with F(w1) = 0,
F(w2) = ∞, we define

GD(z;w1,w2) = ∣∣F ′(z)
∣∣2−d

G
(
F(z)

)
.

There is also a two-point Green’s function (see Section 2.4)

G(z,w) = lim
r→∞ e2r(2−d)

P
{
dist(z, γ ) ≤ e−r ,dist(w,γ ) ≤ e−r}.

If D ⊂ H, let

G(D) =
∫
D

G(z)dA(z), G2(D) =
∫
D

∫
D

G(z,w)dA(z) dA(w),

where dA denotes integration with respect to area. We call γ (t) a double point for
the SLEκ path if there exists s < t such that γ (t) ∈ ∂Hs . If 0 < κ ≤ 4, the SLE
path has no double points while they exist for 4 < κ < 8.

THEOREM 1.1. If 0 < κ < 8 there exists β > 0, such that if γ (t) is an SLEκ

curve from 0 to ∞ in H parameterized by capacity, then with probability one, the
following holds:

• For every t > 0, the Minkowski content

�t = Contd(γt ) = lim
r→∞ Contd(γt ; r),

exists.
• The function t �→ �t is strictly increasing and if s < t ,

�t − �s = Contd
(
γ [s, t]) = Contd

(
γ (s, t] ∩ Hs

)
.

• On every bounded interval [0, t0], �t is Hölder continuous of order β .

Moreover, if D ⊂ H is a bounded domain with piecewise smooth boundary, then

E
[
Contd(γ ∩ D)

] = G(D),

E
[
Contd(γ ∩ D)2] = G2(D),

and if t > 0,

E
[
Contd(γ ∩ D)|γt

] = Contd(γt ∩ D) +
∫
D

GHt

(
z;γ (t),∞)

dA(z).
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The proof will show that we can choose any β < α0d/2 where

β <
d

2
min

{
1 − κ

24 + 2κ − 8
√

8 + κ
,

1

2

}
> 0.

The theorem allows us to define SLEκ with the natural parameterization by
letting

γ̃ (t) = γ (σt ), σt = inf{s :�s = t}.
Under this parameterization with probability one for all t ,

Contd(γ̃t ) = t.

If F :H→ D with F(0) = w1,F (∞) = w2 is a conformal transformation, then
as in [4] the natural parameterization in D can be defined by saying that the time
to traverse F(γ̃ [s, t]) is ∫ t

s

∣∣F ′(γ̃ (r)
)∣∣d dr.(1)

If γ̃ [s, t] ⊂ H, we can see that this is the same as Contd [F ◦ γ̃ [s, t]]. We expect
this to be true for all nice D. The only question is the intersection of the curve
with the boundary for 4 < κ < 8 with D having a nonsmooth boundary, perhaps
of large dimension.

As an example, let D be the unit disk D and let w1 = 1,w2 = −1. In this case,
the map F :H→D extends analytically to R and there is no problem establishing
that (1) equals Contd [F ◦ γ̃ [s, t]]. Let γ (t) be the SLEκ path in H with the capacity
parameterization, and let η(t) = F(γ̃ (t)) which is an SLEκ curve from 1 to −1
in D. Let �t = Contd [ηt ]. In this case, �∞ is an integrable random variable with

E[�∞] =
∫
D

GD(z;1,−1) dA(z) < ∞.

Moreover,

E[�∞|ηt ] = �t + 
t,

where


t =
∫
Dt

GDt

(
z;η(t),−1

)
dA(z).

Since Mt := E[�∞|ηt ] is a martingale, we can see that �t is the unique increasing
process such that 
t + �t is a martingale. This is a Doob–Meyer decomposition.

In [8], the natural parameterization was defined to be the unique process �t

which makes 
t + �t a martingale. While this is a simple definition, it requires
moment bounds in order to make sure that the process exists (uniqueness is easy).
Indeed, it is not hard to see that Mt(z) := GDt (z;η(t),−1) is a local martingale,
and hence 
t is an integral of positive local martingales. If 
t were also a local
martingale, then no nontrivial �t could exist.
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• In [8], it was shown that for κ < 5.0, . . . , the process �t exists in H (the defini-
tion has to be modified slightly in H because 
0 as we have defined it above is
infinite—this is not very difficult). The necessary second moment bounds were
obtained using the reverse Loewner flow. It was shown that for this range of κ ,
there exists α0 = α0(κ) > 0 such that the function t �→ �t is Hölder continuous
of order α for α < α0.

• In [10], the natural parameterization was shown to exist for all κ < 8. There
the necessary two-point estimates were obtained from estimates on the two-
point Green’s function [2, 9]. However, the estimates were not strong enough to
determine Hölder continuity of the function �t .

• In [4], a new proof was given for all κ < 8 combining ideas in [8, 10] with
known results about the Hölder continuity of the Schramm–Loewner evolution
(with respect to the capacity parameterization). This established continuity and
Hölder continuity of the natural parameterization for all κ .

Let us discuss some conclusions that we can derive. If �t = Contd(γt ), then
clearly �t is increasing and measurable with respect to γt . The conditional distri-
bution of Contd [γ (t,∞)] given γt is the same as the distribution of the Minkowski
content for SLE from γ (t) to −1 in Dt . In particular, using the fact that �t −�s =
Contd(γ (s, t] ∩ Ds), we have

E[�∞ − �t |γt ] =
∫
Dt

Ĝt (z) dA(z),

where Ĝt (z) = GDt (z;γ (t),−1). Therefore,

�t +
∫
Dt

Ĝt (z) dA(z)

is a martingale. Uniqueness of the Doob–Meyer decomposition shows that our
�t must be the same as the natural parameterization as discussed in [4, 8, 10].
Using the Minkowski content as the definition, we immediately get independence
of domain as well as reversibility of the natural parameterization, that is, the time to
traverse γ [s, t] is the same as the time to traverse the path in the reverse direction.
By independence of domain, we mean that if γ is an SLEκ curve in H and D ⊂H

with γ (0,∞) ⊂ D, then the natural parameterization for γ considered as an SLE
curve in D is the same as that for the SLE curve in H. While this is clearly a
property that we would expect from a “natural” parameterization, it is not at all
obvious using the definition in [8].

Another possible candidate for the “natural length” of an SLE curve might be
the d-dimensional Hausdorff measure. However, it has been proved [12] that this is
zero with probability one. It is unknown whether one can find a Hausdorff measure
with a different gauge function which would give a nontrivial quantity.
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1.1. Outline of the paper. Section 2 sets notation for the paper and reviews
previous work. We define the Minkowski content in Section 2.2 and derive some
simple properties. The Green’s function for chordal SLEκ is reviewed in Sec-
tion 2.3. This is a normalized limit of the probability of getting near a point z.
We also discuss estimates in [9] concerning the probability that an SLEκ path gets
close to two points. In the following subsection, we discuss some of the ideas used
to prove two-point estimates; in particular, some precise formulations are made of
the rough statement “after an SLE curve gets close to z it is unlikely to get close
again.” This section uses ideas from [6, 9].

The proof of the main result is in the remainder of the paper. Before going into
specifics, let us outline the basic idea of the proof. For ease, let us fix a square,
say � = [0,1) + i[1,2) and consider γ ∩ �. For each z ∈ � and r > 0, let τr(z) =
inf{t : |γ (t) − z| ≤ e−r} and let Jr(z) be er(2−d) times the indicator function of the
event {τr(z) < ∞}. Let Tr(z) be the first time that the conformal radius of z in
H\γ (0, t] equals e−r+2. The Koebe (1/4)-theorem implies that Tr(z) < τr(z). By
comparison with “two-sided radial” (SLE conditioned to go through z), one can
show that there exists c1 such that P{Tr(z) < ∞} ∼ c1G(z)er(d−2). If r is large,
and we view the path γ [0, Tr(z)] near z, then locally it appears like a path with the
distribution of two-sided radial SLE. Using this, one can see that

P
{
Jr(z) > 0|Tr(z) < ∞} = ρ + o(1), r → ∞,

where ρ is independent of z, and using this in turn, we get a one-point estimate

E
[
Jr(z)

] = c1ρG(z) + o(1).(2)

If we fix δ > 0, we can see similarly that there exists ρ ′ such that

P
{
Jr+δ(z) > 0|Tr(z) < ∞} = ρ′ + o(1), r → ∞,

and by using (2), we see that ρ ′ = eδ(d−2)ρ. In other words, E[Jr+δ(z) − Jr(z)] =
o(1). The conditional distribution of Jr+δ(z) − Jr(z) given γ [0, Tr(z)] is deter-
mined (up to a small error) by the way the curve γ looks near γ (Tr(z)), and this
latter distribution is understood through two-sided radial SLEκ . If z,w are not very
close together and the SLE curve gets close to both z and w, we might hope (and,
indeed, this is what we show) that the local behavior of γ near γ (Tr(z)) and near
γ (Tr(w)) are almost independent. The upshot of this is that if we consider the
random variable

Yr =
∫
�

[
Jr+δ(z) − Jr(z)

]
dA(z),

then E[Y 2
r ] is small. We show that E[Y 2

r ] ≤ ce−βr , from which we conclude that

lim
r→∞

∫
�

Jr(z) dA(z)

exists as a limit in L2 and with probability one.
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This outline is carried out in Section 3.1 assuming a moment bound, The-
orem 3.2 which is proved later. This establishes that with probability one
Contd [γ ∩ �] exists for every dyadic square �. Section 3.2 uses this to prove
the statements in Theorem 1.1, again leaving one fact for the last section.

The main estimates are proved in the final section. Section 4.2 analyzes the
one-point estimate, that is, the estimate for getting close to a single point z. See
Theorem 4.2. A key to the two-point estimate is to understand the one-point esti-
mate very well. For ease, we consider SLE in the disk between boundary points
and choose the origin to be the target point. Two-sided radial, which is an ex-
ample of what are sometimes called SLE(κ, ρ) processes, describes chordal SLE
“conditioned to go through z.” It can be analyzed by a one-dimensional SDE. We
use this to study SLE conditioned to get near z. To do the two-point estimate, we
start in Section 2.4 by reviewing the basic idea that after one gets close to a point,
one tends not to return to it. This statement requires care to make precise. See
Lemmas 2.5 and 2.6. In the final section, we complete the proof giving a rigorous
version of the rough outline above.

2. Preliminaries.

2.1. Notations and distortion. We fix κ < 8 and allow all constants to depend
implicitly on κ . Recall that a = 2/κ and d = 1 + κ

8 . If γ is an SLEκ curve from w1
to w2 in a simply connected domain D, we write γt = γ (0, t] = {γ (s) : 0 < s ≤ t}.

If n, j, k are integers, we write �n(j, k) for the dyadic square

�n(j, k) = [
j2−n, (j + 1)2−n) × i

[
k2−n, (k + 1)2−n)

.

Let

Qn = {
�n(j, k) : j ∈ Z, k ≥ 0

}
, Q+

n = {
�n(j, k) ∈Qn :k > 0

}
,

Q = ⋃
n∈Z

Qn, Q+ = ⋃
n∈Z

Q+
n .

We will need the following simple distortion estimate.

LEMMA 2.1. There exists δ > 0 such that if f :D → f (D) is a conformal
transformation with f (0) = 0, |f ′(0)| = λ and |z| ≤ δ

|z| exp
{−4|z|} ≤ ∣∣f −1(λz)

∣∣ ≤ |z| exp
{
4|z|}.

PROOF. By scaling, we may assume that f ′(0) = 1. The growth theorem (see,
e.g., [5], Theorem 3.23), states that for all |z| < 1,

|z|
(1 + |z|)2 ≤ ∣∣f (z)

∣∣ ≤ |z|
(1 − |z|)2 .

Since (1 ± |z|)−2 = 1 ∓ 2|z| + O(|z|2) and exp{±4|z|} = 1 ± 4|z| + O(|z|2), we
get the lemma. �
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2.2. Minkowski content. The d-dimensional Minkowski content is one way
to “measure” the size of a d-dimensional fractal. We use the quotes because the
content is not technically a measure. Its definition is in some ways more natural
than d-dimensional Hausdorff measure; however, it has the disadvantage that it is
defined in terms of a limit that does not always exist. We will restrict our consid-
eration to 1 < d < 2 and V ⊂ C.

Let

Contd(V ; r) = er(2−d) Area
{
z : dist(z,V ) ≤ e−r}

= er(2−d)
∫
C

1
{
dist(z,V ) ≤ e−r}dA(z).

Here, and throughout this paper, dA denotes integration with respect to two-
dimensional Lebesgue measure. The upper and lower d-dimensional Minkowski
contents are defined by

Cont+d (V ; r) = sup
s≥r

Contd(V ; s), Cont+d (V ) = lim
r→∞ Cont+d (V ; r),

Cont−d (V ; r) = inf
s≥r

Contd(V ; s), Cont−d (V ) = lim
r→∞ Cont−d (V ; r).

The d-dimensional Minkowski content is defined if Cont+d (V ) = Cont−d (V ) in
which case

Contd(V ) = lim
r→∞ Contd(V ; r).

The following simple lemma lists the basic properties of Minkowski content
that we will use.

LEMMA 2.2.

• If Contd(V ),Contd(V ′) exist and dist(V ,V ′) > 0, then Contd(V ∪ V ′) exists
and

Contd
(
V ∪ V ′) = Contd(V ) + Contd

(
V ′).

• If Contd(V ) exists, then

Contd(V ) ≤ Cont+d
(
V ∪ V ′) ≤ Contd(V ) + Cont+d

(
V ′).

• If d > 1 and D is a bounded domain whose boundary is a piecewise analytic
curve, then Contd(D) = 0. If V ⊂ D, then

Contd(V ) = lim
r→∞ er(2−d)

∫
D

1
{
dist(z,V ) ≤ e−r}dA(z),(3)

provided that either side exists.
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• Suppose V1,V2, . . . are bounded sets for which Contd(Vn) is well defined. Let
V be a bounded set such that

lim
n→∞

[
Cont+d (V \ Vn) + Cont+d (Vn \ V )

] = 0.

Then Contd(V ) exists and

Contd(V ) = lim
n→∞ Contd(Vn).(4)

PROOF. We leave this to the reader. The last conclusion uses

Contd(Vn; r) − Contd(Vn \ V ; r) ≤ Contd(V ; r)
≤ Contd(Vn; r) + Contd(V \ Vn; r). �

2.3. Green’s function. The Green’s function for chordal SLEκ is the normal-
ized probability that the path gets near a point z. By nature, it is defined up to a
multiplicative constant and we choose the constant in a way that will be conve-
nient for us. The precise definition uses the following theorem. If D is a simply
connected domain and z ∈ D we let cradD(z) denote the conformal radius of z

in D, that is, if f :D → D is a conformal transformation with f (0) = z, then
cradD(z) = |f ′(0)|.

THEOREM 2.3. For every κ < 8, there exists c′ = c′(κ), ĉ = ĉ(κ), α < ∞
such that if w = e2iθ ∈ ∂D and γ is a chordal SLEκ path from 1 to w in D, then

P
{
cradA(0) ≤ e−r} = c′[sin θ ]4a−1er(d−2)[1 + O

(
e−αr)],

(5)
P

{
dist(0, ∂A) ≤ e−r} = ĉ[sin θ ]4a−1er(d−2)[1 + O

(
e−αr)].

Here, A denotes the connected component of D \ γ containing the origin.

PROOF. For the first expression see, for example, [9]. The proof gives an ex-
plicit form for c′ but we will not need it. The second was proved in [4], but we
reprove it here in Theorem 4.2. This proof does not give an explicit expression for
the constant ĉ. �

To be precise, let Pθ denote the probability distribution on paths γ = γ [0,∞)

given by chordal SLEκ from 1 to e2iθ in D. Then there exist c′, ĉ, α, c, depending
only on κ , such that for all θ and all r ≥ 1/2,∣∣er(2−d)[sin θ ]1−4a

Pθ

{
cradA(0) ≤ e−r} − c′∣∣ ≤ ce−αr ,∣∣er(2−d)[sin θ ]1−4a

Pθ

{
dist(0, γ ) ≤ e−r} − ĉ

∣∣ ≤ ce−αr .

From the previously proven (5) and the Koebe (1/4)-theorem, we can easily de-
duce the following estimate which we will use before deriving Theorem 4.2.
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• If γ is an SLEκ path from 0 to ∞ in H, �(z) ≥ 1 and r ≥ 0,

P
{
dist(z, γ ) ≤ e−r} � [�(z)

]d−2[sin arg z]4a−1er(d−2).(6)

We also use the following estimate, see [1].

• If x > 0,

P
{
dist(x, γ ) ≤ e−r} ≤ c

[
e−r/x

]4a−1
.(7)

If w1,w2 are distinct boundary points of a simply connected domain D, let
SD(z;w1,w2) denote the sine of the argument of z with respect to w1,w2, that is,
if F :D → H is a conformal transformation with F(w1) = 0,F (w2) = ∞, then
SD(z;w1,w2) = sin[argF(z)]. Note that SD(z;w1,w2) is a conformal invariant
and cradD(z) is conformally covariant, cradf (D)(f (z)) = |f ′(z)| cradD(z). The
chordal Green’s function is defined by

GD(z;w1,w2) = ĉ cradD(z)d−2SD(z;w1,w2)
4a−1.(8)

Here, we choose the constant ĉ from Theorem 3.1; our definition differs from
the definition elsewhere (e.g., in [9]) by a multiplicative constant. Previously it
was defined so that GH(z;0,∞) = �(z)d−2[sin arg z]4a−1 = [cradH(z)/2]d−2 ×
SH(z;0,∞)4a−1. The Green’s function satisfies the conformal covariance rule

GD(z;w1,w2) = ∣∣f ′(z)
∣∣2−d

Gf (D)

(
f (z);f (w1), f (w2)

)
.

We choose the definition (8) so that we do not need to keep writing the constant ĉ.
Theorem 2.3 extends immediately to other simply connected domains by confor-
mal invariance of SLE.

THEOREM 2.4. If κ < 8, γ is a chordal SLEκ path from w1 to w2 in a simply
connected domain D, then for z ∈ D with dist(z, ∂D) ≥ 2e−r ,

P
{
dist(z, γ ) ≤ e−r} = GD(z;w1,w2)e

r(d−2)[1 + O
(
e−αr)],

for some α > 0 which depends only on κ .

Most of our computations will be in the upper half plane or in the disk. For
notational ease, we will write

G(z) = GH(z;0,∞), G(z; θ) = GD

(
z;1, e2θi).

If V ⊂ H, we define

G(V ) =
∫
V

G(z) dA(z).

Note that if � ∈ Qn and z is the center point of �, then

G(�) � 2−2nG(z).

[If � = �n(j,0), this requires a simple estimate of an integral.]
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2.4. Two-point estimates. A basic principle in proving two-point estimates for
SLE is the idea that if a path gets very close to a point z and then gets away from z,
then it is unlikely to get even closer to z. While this is the heuristic, as just stated
the principle is not always valid. Since this idea is important in several of our
proofs, we will spend some time to formulate and prove a precise version. We are
expanding on ideas in [4, 6]. Let γ be an SLEκ curve from 0 to ∞ in H. As before,
if z ∈ H, let

τr(z) = inf
{
t :

∣∣γ (t) − z
∣∣ = e−r}.

If τr = τr(z) < ∞, let H = Hτr denote the unbounded component of H\γτr , let
Bu = Bu(r, z) denote the disk of radius e−ur containing z, and let B = B1 denote
the disk of radius e−r about z. Let Vu = Vu(r, z) denote the connected component
of Bu ∩H containing z. If u ≤ 1, the intersection of ∂Vu with H is a disjoint union
of open arcs in ∂Bu each of whose endpoints is in ∂H . There is a unique such arc l,
that we denote by lu = lu(r, z), such that z is contained in the bounded component
of H \ l. Simple connectedness of H is used to see that this arc is unique. However,
one may note the following facts:

• The bounded component of H \ lu does not need to be contained in Bu. Indeed,
we have no universal bound on the diameter of the bounded component.

• There may be other subarcs l of ∂Bu ∩ H such that z is in the bounded compo-
nent of H \ l. However, these arcs are not on ∂Vu.

For 0 < u ≤ 1, let

σ = σu(r, z) = inf
{
t ≥ τr :γ (t) ∈ lu

}
.

Then a correct, although still imprecise, version of our heuristic principle is: if
τr < ∞, then after time σ the path is unlikely to get closer to z. We will now be
more precise. Note that for fixed z,u, r , with probability one γ (σ ) ∈ lu. In this
case (which we now assume), lu \ {γ (σ )} consists of two crosscuts of Hσ that we
denote by l∗u and l∗∗

u . If z ∈ Hσ , which is always true if κ ≤ 4, we let l∗u be the
crosscut such that z lies in the bounded component of Hσ \ l∗u . If τr < ∞, define
λ = λ(r, z, u) ≥ 1 by

dist[z, γσ ] = e−λr .

Let l∗λ denote the connected subarc of ∂Bλ ∩ Hσ that separates z from infinity. (If
the intersection of γσ with Bλ is a single point, which we expect to be the case
with probability one, then l∗λ is a circle with a single point deleted.) See Figure 1
for a figure showing illustrating these quantities.

Since we will use it in several proofs, we recall that if D is a domain and η1, η2

are disjoint subarcs of ∂D, then the (Brownian) excursion measure between η1, η2

is given by

ED

(
η1, η2) =

∫
η1

∂nφ(z)|dz|,
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FIG. 1. Quantities in Section 2.4.

where ∂n denotes the inward normal derivative and φ = φD,η2 is the harmonic
function on D with boundary value 1η2 . The above expression assumes that η1

is smooth, but one can check that ED(η1, η2) is a conformal invariant and hence
can be defined for all domains. Also, ED(η1, η2) = ED(η2, η1). See [5], Chapter 5,
for more details. When estimating excursion measures, we will use the following
estimate that follows from the strong Markov property. Suppose η is a crosscut
of D that separates η1 from η2. Then

ED

(
η1, η2) ≤ ED\η

(
η1, η

)
sup
z∈η

φ(z).(9)

If D is simply connected, so that (D,η1, η2) is a conformal rectangle, and
ED(η1, η2) ≤ 1, then

ED

(
η1, η2) � max

z∈D
φ1(z)φ2(z),(10)

where φj = φD,ηj . One can check this by verifying it for a rectangle [0,L] +
i[0, π] by direct computation and using conformal invariance.

LEMMA 2.5. There exists c such that for all 0 < u ≤ 1,

P
{
dist[z, γ∞] < dist[z, γσ ]|γσ

} ≤ ceα(u−λ)r ,

where α = (4a − 1)/2 > 0. In particular,

P
{
dist[z, γ∞] < dist[z, γσ ]|γσ

} ≤ ceα(u−1)r .(11)
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PROOF. Let g :Hσ → H be a conformal transformation with g(γ (σ )) = 0,
g(∞) = ∞. The image η = g◦ l∗u is a crosscut of H with one endpoint on the origin
and one on the real line which without loss of generality we will assume is on the
positive real line. The curve η′ = g ◦ l∗λ is a crosscut of H contained in the bounded
component of H\η with positive endpoints x1 ≤ x2. Let us consider the conformal
rectangle given by the component of H \ (η ∪ η′) that contains both η and η′ on its
boundary and with η,η′ as two of the boundary arcs of the rectangle. The excursion
measure between η and η′ in this rectangle is the same as the excursion measure
between l∗u and l∗λ for the corresponding rectangle in Hσ \ (l∗u ∪ l∗λ). The Beurling
estimate (see, e.g., [5], Theorem 3.76) implies that the latter is bounded above
by ce−(λ−u)r/2. Since η separates η′ from the negative real line, we see that the
excursion measure between η′ and (−∞,0] in the unbounded component of H\η′
is bounded above by ce−(λ−u)r/2. By standard estimates of the Poisson kernel in H,
this shows that diam(η′) ≤ ce−(λ−u)r/2x1, and hence by (7), the probability that an
SLE path hits it is O(e−(λ−u)(4a−1)r/2). �

The next lemma strengthens (11) for κ ≤ 4. We do not know if it is true for
4 < κ < 8. Let B = B1 denote the disk of radius e−r about z.

LEMMA 2.6. If κ ≤ 4, there exists c such that if 0 < u ≤ 1,

P
{
γ [σ,∞) ∩B �=∅|γσ

} ≤ ceα(u−1)r ,(12)

where α = (4a − 1)/2 > 0.

PROOF. Let V denote the unbounded component of Hσ \ B and note that
l∗u, l∗∗

u ⊂ V . Let L = ∂V ∩ Hσ ∩ ∂B which is a disjoint (finite or countable) union
of open subarcs of ∂B, which we denote by L1,L2, . . . . For each arc Lj , either l∗u
or l∗∗

u disconnects Lj from infinity in Hσ , that is, Lj is in the bounded component
of Hσ \ l∗u or the bounded component of Hσ \ l∗∗

u . Write L = L1 ∪L2 where L1,L2

are the unions of Lj over the subarcs of the first and second type, respectively. The
probability on the left-hand side of (12) is the probability that γ [σ,∞) ∩ L �= ∅.
Hence, it suffices to show that

∞∑
j=1

P
{
γ [σ,∞) ∩ Lj �=∅|γσ

} ≤ ceα(u−1)r .

We will give this bound for the sum over Lj of the first type; the sum over the
second type is done similarly.

Let R denote the bounded component of Hσ \ l∗u which includes the Lj of
the first type. Using the Beurling estimate, we can see that the excursion measure
between l∗u and L1 in R \ L1, ER\L1(l∗u,L1), is O(e(u−1)r/2). We claim that a
stronger fact is true, ∑

j

ER\Lj

(
l∗u,Lj

) ≤ ce(u−1)r/2,(13)
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where we are summing over Lj of the first type. Indeed, ER\L1(l∗u,L1) is the (in-
tegral over l∗u of the normal derivative of the) probability that a Brownian motion
starting at z hits L1 before leaving R. The sum on the left-hand side of (13) is
the (integral over . . . of the) expected number of crosscuts Lj visited before leav-
ing R. However, using the strong Markov property and simple connectedness, we
can see that the probability starting on one of the crosscuts Lj of reaching another
before leaving R is at most 1/2, and hence the expected number of crosscuts hit
given one is hit is at most 2.

As in the previous proof, we use (7) to see that∑
l

P
{
γ [σ,∞) ∩ Lj �=∅|γσ

} ≤ c
∑

l

ER\Lj

(
l∗u,Lj

)4a−1
.

The argument up to this point has not used the fact that κ ≤ 4. However, if κ ≤ 4,
we know that 4a − 1 ≥ 1, and hence (13) gives

∑
l

ER\Lj

(
l∗u,Lj

)4a−1 ≤
[∑

l

ER\Lj

(
l∗u,Lj

)]4a−1

≤ ceα(u−1)r .
�

While we do not know if the last lemma holds for κ > 4, the next lemma will
suffice for our needs.

LEMMA 2.7. If 4 < κ < 8, there exist c < ∞, β > 0 such that if τr < ∞ and
0 < u ≤ 1, then

P{B ∩ Hσ �= ∅|γτr } ≤ ceβ(u−1)r .

PROOF. Let ζ = γ (τr). Let g be a conformal transformation of Hτr onto H

with g(ζ ) = 0, g(∞) = ∞. Let η = g ◦ lu, η
′ = g ◦ [∂B \ {ζ }]. Then η is a crosscut

of H with one endpoint positive and one endpoint negative, and η′ is a simple
loop rooted at the origin lying in the bounded component of H \ η. By choosing a
multiple of g if necessary, we may assume that max{|w| :w ∈ η′} = 1.

We claim that there exists c′ such that dist(0, η) ≥ c′e(1−u)r/2. To see this, let
R denote the component of Hσ \ (∂B ∪ lu) whose boundary contains both ∂B
and lu. Then using the Beurling estimate as in the previous lemma, we see that
ER(∂B, lu) ≤ ce−(u−1)/2. Therefore,

Eg(R)

(
η,η′) = O

(
e−(u−1)r/2)

.

But η′ is a connected set containing the origin of radius 1. If v = dist(0, η), then
by setting z = i

√
v in (10) we get the bound

Eg(R)

(
η,η′) ≥ cv2.

By conformal invariance, P{B ∩ Hσ �= ∅|γτr } is bounded above by the proba-
bility that an SLEκ path starting at the origin has not separated the unit circle from
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infinity before it reaches the circle of radius c′e(1−u)r/2. Using scaling and the fact
that SLEκ has double points, it is not hard to show that this is O(eβ(u−1)r ) for
some β . �

COROLLARY 2.8. If κ < 8, there exists c < ∞ and β > 0 such that if |z| >

e−r/2 and 0 < u ≤ 1, then if τr < ∞,

P
{
γ [σ,∞) ∩B �= ∅|γτr

} ≤ ceβ(u−1)r ,

P
{
τr < ∞, γ [σ,∞) ∩B �= ∅

} ≤ cG(z)e(d−2)reβ(u−1)r .

The other estimates we need will deal with upper bounds for the probabilities
that the SLE curves gets close to two different points z,w. For the remainder of
this section, we assume that γ is an SLE curve from 0 to ∞ in H. If z ∈ H, we let

τr(z) = inf
{
t :

∣∣γ (t) − z
∣∣ ≤ e−r}.

LEMMA 2.9. There exists c < ∞ such that if |z|, |w| ≥ e−u and |z−w| ≥ e−u,
then for 0 < s < r ,

P
{
τs+u(w) < ∞, τr+u(z) < ∞} ≤ ce(s+r)(d−2),(14)

P
{
τs+u(w) < τr+u(z) < τr+u(w) < ∞} ≤ ce2r(d−2)e−αs,(15)

where α = (4a − 1)/2.

PROOF. By scaling, it suffices to prove the lemma for u = 0. The first es-
timate is Theorem 2 in [9]. The second estimate follows from the ideas in [9],
Lemma 4.10, but we will redo the proof using some ideas from this section.
Throughout this proof, we let r, s, n be integers.

Let γ = γτr (z) and let A = As,r denote the γ -measurable event

A = {
τs(w) ≤ τr(z) < τs+1(w)

}
.

Let n ≥ s + 1 and let E = Es,r,n be the event

E = {
τs(w) ≤ τr(z) ≤ τn(w) < τr+1(z) < ∞}

.

The hard work is to show that on the event A,

P(E|γ ) ≤ ce−α(r+s)e(d−2)(n−s).(16)

The estimate (14) shows that P(As,r ) ≤ O(e(d−2)(r+s)) and the one-point esti-
mate (6) shows that P{τn(z) < ∞|A ∩ E} ≤ O(e(d−2)(n−r)). Hence, once we es-
tablish (16) we have

P
{
τs(w) ≤ τr(z) ≤ τn(w) < τr+1(z) ≤ τn(z) < ∞} ≤ ce−α(r+s)e2(d−2)n.
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If we sum over s, we get

P
{
τr ′(z) ≤ τn(w) < τr ′+1(z) ≤ τn(z) < ∞} ≤ ce−αr ′

e2(d−2)n,

and if we sum this over r ′ ≥ r we get (15). We will prove (16). If r + s ≤ 4, we
can estimate

P(E|γ ) ≤ P
{
τn(w) < ∞|γ }

,

and use the one-point estimate; hence we may assume that r + s ≥ 4. We let s, r

with s + r ≥ 4 and let τ = τr(w).
Let Uz (resp., Uw) denote the disk of radius e−r/2 [e−s/2] centered at z [w].

Note that Uz ∩ Uw = ∅. For each t ≥ τ , and ζ ∈ {z,w}, let V
ζ
t denote the con-

nected component of Ht ∩ Uζ that contains ζ . Let η
ζ
t denote the unique crosscut

of Ht that is contained in ∂V
ζ
t ∩ ∂Uζ and separates z from w in Ht . Let l

ζ
t denote

the unique crosscut of Ht contained in the circle of radius dist(ζ, ∂Ht) about ζ

that separates z from w in Ht . If there is a unique point in ∂Ht at minimal distance
from ζ , then l

ζ
t is a circle with one point removed. We will consider four cases.

Let H = Hτ ,η = ηz
τ . Let σ be the fist time t greater than or equal to τ such that z

lies in the unbounded component of Ht \ ηz
t .

Case 1: Let F1 = A ∩ {σ = τ }. In this case, η separates w from γ (τ). Using
the Beurling estimate, we can see that the excursion measure between η and lwτ
is O(e−(r+s)/4); the latter is a bound for the probability that a Brownian motion
starting on lwτ reaches η without leaving H . The boundary estimate (7) states that
the probability an SLE in H starting at γ (τ) hits lwτ is O(e−α(r+s)). Therefore, on
the event F1,

P
{
τs+1(w) < ∞|γ } ≤ ce−α(r+s),

and using the strong Markov property and the one point estimate (6), we see that

P[E ∩ F1|γ ] ≤ P
{
τn(w) < ∞|γ } ≤ ce−α(r+s)e(d−2)(n−s).

Case 2: Let F2 = A ∩ {τ < σ < τn(w)}. We write

F2 =
n−1⋃
j=s

Fs,j ,

where

F2,j = F2 ∩ {
σj (w) ≤ σ < σj+1(w)

}
.

Since the domain Ht is decreasing, in order for z to change from being in the
bounded component of Ht ′ \ ηz

s , s
′ < t to being in the unbounded component of

Ht \ ηz
t , the crosscut ηz

t must be different from ηs
z for s < t . There are two ways

that the crosscut ηz
t can change at time t ; either γ (t) ∈ ηz

t−, or γ (t) /∈ ηz
t− but ηz

t−
is not part of the boundary of V z

t . In the latter case, the crosscut ηz
t− still separates
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z from infinity and b in Ht . Also the crosscut ηz
t separates z from ηz

t−. Hence, in
the latter case z is in the bounded component of Ht \ ηz

t .
Therefore, we see that γ (σ ) ∈ ηz

σ−. One endpoint of the crosscut ηz
σ is γ (σ )

and it separates w from infinity. On the event F2,j , the excursion measure between
lwσ and ηz

σ in Hσ is bounded above by O(e−(r+j)/2). Therefore, on the event F2,j ,

P
{
τn(w) < ∞|γσ

} ≤ ce−α(r+j)e−(2−d)(n−j).

The one-point estimate shows that

P[F2,j |γ ] ≤ P
{
τj (w) < ∞|γ } ≤ ce−(2−d)(j−s).

Therefore,

P[E ∩ F2,j |γ ] ≤ ce−α(r+j)e−(2−d)(n−s),

and by summing over j = s, s + 1, . . . , n − 1, we see that

P[E ∩ F2|γ ] ≤ ce−α(r+s)e−(2−d)(n−s).

Before proceeding with the next cases, let τ ′ = τn(w),H ′ = Hτ ′ , and note that
on E \ (F1 ∪ F2), we know that z is in the bounded component of H ′ \ ηz

τ ′ .
Case 3: Let F3 be the intersection of A ∩ {τ ′ < τs+1(z)} with the event that w

is contained in the unbounded component of H ′ \ ηw
τ ′ . (Note that this is a stronger

condition than saying that z is contained in the bounded component of H ′ \ ηz
τ ′ .)

On the event F3, the crosscut ηw
τ ′ separates lzτ ′ from γ (τ ′) in H ′. The excursion

measure between lzτ ′ and ηw
τ ′ in H ′ is bounded by O(e−(r+s)/2), and using the

boundary exponent, we see that on the event F3,

P
{
τr+1(z) < ∞|τ ′} ≤ ce−(r+s)α.

The one-point estimate implies that on A, P{τ ′ < ∞|γ } = O(e−(2−d)(n−s)), and
hence

P[E ∩ F3|γ ] ≤ ce−α(r+s)e−(2−d)(n−s).

Case 4: Let F4 be the intersection of [A \ (F1 ∪ F2)] ∩ {τ ′ < τs+1(z)} with
the event that w is contained in the bounded component of H ′ \ ηw

τ ′ . As noted
above, on the event F4, z is in the bounded component of H ′ \ ηz

τ ′ . The excursion
measure between lzτ ′ and ηz

τ ′ in H ′ is O(e−r/2), and as before this implies that on
the event F4,

P
{
τr+1(z) < ∞|γ ′} ≤ ce−αr ,

and hence on the event A,

P[E ∩ F4|γ ] ≤ ce−αr
P[F4|γ ].(17)
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Similar to case 2, let ρ be the first time t ≥ τr(z) such that w is contained in the
bounded component of Ht \ ηw

t , and let

F4,j = F4 ∩ {
τj (w) ≤ ρ < τj+1(w)

}
.

Note that

P
[
τj (w) ≤ ρ < τj+1(w)|γ ] ≤ P

{
τj (w) < ∞|γ } ≤ ce(j−s)(d−2).(18)

As before, we can see that the crosscut ηw
ρ separates lwρ from γ (ρ) in Hρ . [Either

ρ = τr(z) or γ (ρ) is an endpoint of ηw
ρ .] Since the excursion measure between ηw

ρ

and lwρ in Hρ is O(e−(j−(s/2))/2),

P
[
τj+1(w) < ∞|γρ

] ≤ ce−(j−s)α,

and using the one point estimate,

P
[
τ ′ < ∞|γρ

] ≤ ce−(s+j)αe(n−j)(d−2).

Combining this with (18) and summing over s ≤ j ≤ n, we see that

P[F4|γ ] ≤ ce−sαe−(n−s)(2−d).

Finally, combining this with (17), we see that

P[E ∩ F4|γ ] ≤ ce−αr
P[F4|γ ] ≤ ce−(r+s)αe(n−s)(d−2). �

Given this estimate one also shows that if �(z),�(w) ≥ 1 with |z−w| ≤ 1, then

P
{
τr(z) < ∞, τr(w) < ∞} ≤ ce2r(d−2)|z − w|d−2.(19)

Indeed, if ρ = inf{t : |γ (t) − z| ≤ 2|z − w|}, then

P{ρ < ∞} ≤ c|z − w|2−d,

and by conformal invariance,

P
{
τr(z) < ∞, τr(w) < ∞|ρ < ∞} ≤ [

e−r/|z − w|]2(2−d)
.

In [9], it was shown that the limit,

lim
ε.δ↓0

εd−2δd−2
P

{
cradH\γ (z1) ≤ ε, cradH\γ (z2) ≤ δ

}
,

exists and defines a two-point Green’s function. In Section 4.2, we show how to
adapt this argument to show existence of

G(z1, z2) = lim
ε.δ↓0

εd−2δd−2
P

{
dist(z1, γ ) ≤ ε,dist(z2, γ ) ≤ δ

}
.(20)

In fact, we can write G(z1, z2) = Ĝ(z1, z2) + Ĝ(z2, z1) where

Ĝ(z,w) = G(z)E∗[
GHT

(w; z,∞)
]
,

and E
∗ denotes expectation with respect to two-sided radial SLEκ from 0 to z

stopped at

T = inf
{
t :γ (t) = z

}
.

See Section 4.2 for a review of two-sided radial SLE.
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3. Existence of Minkowski content.

3.1. Main theorem. If � ∈ Qn as defined in Section 2.1, and γ is an SLEκ

curve from 0 to ∞ in H, let

Z(�) = Cont+d (γ ∩ �;n log 2),

Jr(z) = e(2−d)r1
{
τr(z) < ∞}

, Jr(V ) =
∫
V

Jr(z) dA(z).

Note that if s > 0, then Jr+s(z) ≤ es(2−d)Jr(z).

THEOREM 3.1. Suppose κ < 8 and γ is an SLEκ curve from 0 to ∞ in H.
Then the following holds for all � ∈ Q+.

• The limit

μ(�) := lim
r→∞Jr(�)

exists with probability one and in L2.
• With probability one,

Contd(γ ∩ �) = μ(�).(21)

• Let ∂n� = {z ∈ H : dist(z, ∂�) ≤ 2−n}. Then with probability one,

lim
n→∞ Contd(γ ∩ ∂n�;n log 2) = 0.(22)

• The following moment relations holds:

E
[
μ(�)

] =
∫
�

G(z) dA(z),(23)

E
[
μ(�)2] =

∫
�

∫
�

G(z,w)dA(z) dA(w),(24)

E
[
Z(�)2]

< ∞.(25)

Since Q+ is countable, all the with probability one statements can be restated
as “with probability one, for all � ∈ Q+, . . . .” The bulk of the work in proving the
theorem is to prove Theorem 3.2 below. Let 0 < δ < 1/10. Since we want to take
a limit of Jr as r → ∞, we will look at

Qδ
r(z) = Jr(z) − Jr+δ(z)

= er(2−d)[1{
τr(z) < ∞} − eδ(2−d)1

{
τr+δ(z) < ∞}]

.

The random variable Qδ
r(z) is normalized so that |Qδ

r(z)| is of order 1 but E[Qδ
r(z)]

is nearly zero. The main estimate shows that if r is large and z,w are not too close,
then Qr(z) and Qr(w) are almost independent.
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THEOREM 3.2. Suppose κ < 8 and γ is SLEκ from 0 to ∞ in H. There exists
c < ∞, β > 0 such that if 0 < δ < 1/10, �(z),�(w) ≥ 1 and r ≥ 0, then

E
[
Qδ

r(z)Q
δ
r(w)

] ≤ ce−βr |z − w|β−2.(26)

We will not try to find the optimal c,β in our proof.

PROOF OF THEOREM 3.1 GIVEN THEOREM 3.2. By scaling, we may assume
that � = [j, j + 1) × i[k, k + 1) ∈ Q+

0 with k ≥ 1. Suppose that 0 < δ < 1/10. Let
Jr = Jr(�) and

Qr = Qδ
r = Qδ

r(�) = Jr − Jr+δ =
∫
�

Qδ
r(z) dA(z).

By integrating (26), we see that if r ≥ 0, then E[Q2
r ] ≤ ce−βr . Let

Xn = Xδ
n = J0 +

n∑
j=1

|Qjδ|.

Then Xn converges in L2 to a random variable X∞. For each positive integer n,
|Jnδ| ≤ X∞, and hence

sup
r≥0

Jr ≤ eδ(2−d) sup
n

Jnδ ≤ e1/10X∞.(27)

Also, if n ≤ m,

|Jnδ − Jmδ| ≤ X∞ − Xn.

Therefore, {Jnδ} is a Cauchy sequence in L2 and has an L2-limit which we call J∞.
If rδ ≤ s < (r + 1)δ, we similarly have

E
[
(Js − Jrδ)

2] = E
[(

Qs−rδ
rδ

)2] ≤ ce−βrδ,(28)

so we see that

lim
s→∞E

[
(Js − J∞)2] ≤ lim

s→∞E
[
(Js − Jrδ)

2] + lim
s→∞E

[
(Jrδ − J∞)2] = 0.

Hence, Js → J∞ in L2; in particular, J∞ does not depend on δ.
Chebyshev’s inequality shows that

∞∑
n=1

P
{|Qnδ| ≥ e−βnδ/4} ≤

∞∑
n=1

E[Q2
nδ]

e−βnδ/2 < ∞.

Hence, for each δ, by the Borel–Cantelli lemma, with probability one for all n

sufficiently large,

|Jnδ − J(n+1)δ| ≤ 2e−βnδ/4.
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This shows that with probability one, the sequence {Jnδ} is a Cauchy sequence,
and hence with probability one, for all δ = 2−m,

lim
n→∞Jnδ = J∞.

If nδ ≤ r ≤ (n + 1)δ, then

eδ(d−2)J(n+1)δ ≤ Jr ≤ eδ(2−d)Jnδ,(29)

from which we conclude that with probability one, for all δ = 2−m,

eδ(d−2)J∞ ≤ lim inf
r→∞ Jr ≤ lim sup

r→∞
Jr ≤ eδ(2−d)J∞.

Since this holds for all δ, Jr → J∞.
Note that for r > 0,

E[Jr ] =
∫
�

e(2−d)r
P

{
τr(z) < ∞}

dA(z),

E
[
J 2

r

] =
∫
�

∫
�

e2(2−d)r
P

{
τr(z), τr(w) < ∞}

dA(z) dA(w).

Since Jr → J∞ in L2, we know that

E[J∞] = lim
r→∞E[Jr ], E

[
J 2∞

] = lim
r→∞E

[
J 2

r

]
.

Hence, (23) and (24) follow from Theorem 2.3 and (20). Indeed, the definition of
the Green’s function (including the choice of multiplicative constant) was made in
order for these equalities to hold.

Note that if n log 2 ≤ r ≤ (n + 1) log 2,∣∣Contd [γ ∩ �; r] − Jr(�)
∣∣ ≤ cJn log 2(∂n�).

Using (6), we see that E[Contd(γ ∩ ∂n�;n log 2)] ≤ c Area(∂n�) ≤ c2−n. Hence,
using the Markov inequality and the Borel–Cantelli lemma, we see that with
probability one for all n sufficiently large Contd(γ ∩ ∂n�;n log 2) ≤ 2−n/2. This
gives (22). Also,

Contd [γ ∩ �;n log 2] ≤ Jn log 2

≤ Contd [γ ∩ �;n log 2] + Contd(γ ∩ ∂n�;n log 2).

This gives (21).
Given � ∈ Q0, let �1, . . . ,�12 denote the twelve squares in Q1 whose interior

does not intersect � but whose boundary does. Note that these squares are in Q+
1 .

Any point within distance 1/2 of γ ∩ � is contained in � ∪ �1 ∪ · · · ∪ �12, and
hence for r ≥ 1,

Contd(γ ∩ �; r) ≤ Jr(�) + Jr(�1) + · · · + Jr(�12).
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This implies that

Cont+d (γ ∩ �;0) ≤ c + sup
r≥1

[
Jr(�) + Jr(�1) + · · · + Jr(�12)

]
.

Since �j ∈ Q+
1 , the argument as in (27), we see that for each j ,

sup
r≥1

Jr(�j )

is square integrable. Hence, Cont+d (γ ∩�;0) is square integrable which gives (25).
�

3.2. Natural length. By Theorem 3.1, with probability one we can define a
function on Q by

μ(�) = Contd(γ ∩ �) = Contd
(
γ ∩ int(�)

) = Contd(γ ∩ �).

PROPOSITION 3.3. On this event, μ extends to be a Borel measure.

PROOF. For each � ∈ Q+ and positive integer r , we can define a Borel mea-
sure μr by stating that the Radon–Nikodym derivative with respect to Lebesgue
measure is Jr(z). Since μr(�) → μ(�) and � is compact, for each subse-
quence {rj }, there is a sub-subsequence {rjk

} that converges to a measure μ′ with
total mass μ(�). By using a diagonalization argument, we can find a single sub-
subsequence such that the convergence holds for all � ∈ Q+. By (22), we see
that μ′(∂�) = 0. Any open set U can be written as a countable union of squares
� ∈ Q+ such that the interiors of the squares are disjoint. Hence, we can determine
μ′(U) for any open set, and hence we can see that m′ = μ is unique. �

We call μ the (natural) occupation measure for the SLE curve γ . If D is an
open set, then we can find Dn ∈ SH increasing to D, and hence

E
[
μ(D)

] =
∫
D

G(z)dA(z), E
[
μ(D)2] =

∫
D×D

G(z,w)dA(z) dA(w).

It is not immediately obvious, but we will now show that, with probability one, for
all 0 ≤ s < t < ∞,

μ
(
γ [s, t]) = μ(γt \ γs) = Contd

(
γ [s, t]).(30)

The bulk of the work is in the following lemma. Recall that Hs is the unbounded
component of H \ γs , and let

∂nHs = {
z ∈ Hs : dist(z, ∂Hs) ≤ 2−n}

.

LEMMA 3.4. There exists α > 0 such that the following holds with probability
one.
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• For each t0, there exists n0 < ∞ such that if 0 ≤ s ≤ t0 and n ≥ n0, then

Cont+d
(
γ

[
s, s + 2−n]) ≤ 2−nα.(31)

• Suppose that 0 ≤ s < t , and u > 0. Then

lim
n→∞ Cont+d

[
γ [s + u, t] ∩ ∂nHs

] = 0.(32)

The limit (32) is immediate for κ ≤ 4 since γ [s + u, t] ∩ ∂nHs is empty if n

is large. Before proving the lemma, we will show how to deduce (30) from the
lemma. We approximate γ [s, t] by intersections of γ with finite unions of dyadic
squares. If s < t and n is a positive integer, let Vn(s, t) denote the union of all
� ∈ Qn satisfying � ⊂ Hs \∂nHs and γ [s, t]∩� �= ∅. Let On(s, t) = γ ∩Vn(s, t).
Note that On(s, t) ⊂ γ \γs , but it is possible for γ (t,∞)∩On(s, t) to be nonempty.
Note that if u > 0, then

On(s, t) \ γ [s, t] ⊂ γ [t, t + u] ∪ (
γ [t + u,∞) ∩ ∂n−1Ht

)
,

γ [s, t] \ On(s, t) ⊂ γ [s, s + u] ∪ [
γ (s + u,∞) ∩ ∂n−2Hs

]
.

Here, we use the simple geometric facts that On(s, t) ∩ Ht ⊂ ∂n−1Ht , and that if
� ∈ Qn, then either � ⊂ Hs \ ∂nHs or � ⊂ ∂n−2Hs . The lemma implies that

lim
n→∞ Cont+d

[
γ [s, t] \ On(s, t)

] + lim
n→∞ Cont+d

[
On(s, t) \ γ [s, t]] = 0.

Then (30) follows from (4). The remainder of this subsection will be devoted to
proving the lemma. There is some technical work involved here and are the basic
reasons why the lemma holds.

• For (31), we use the Hölder continuity of an SLE path to say that that the diam-
eter of γ [s, s + 2−n] is not very big. We also use moment estimates to show that
the Minkowski content is not very big on any set of small diameter.

• For (32), we use the fact that γ [s + u, t] ∩ ∂nHs consists of points of the curve
that are either near the real line or are nearly double points of the curve. We
estimate moments for the content of such paths.

We start by using the following lemma.

LEMMA 3.5. Let Z(�) be defined as before Theorem 3.1. There exists c < ∞
such that if � ∈Q+

n , then

E
[
Z(�)

] ≤ cG(�), E
[
Z(�)2] ≤ c2−dnG(�).

PROOF. If �̃ ∈ Q+
n , then � = 2n�̃ ∈ Q+

0 with G(�) = 2dnG(�̃). Also, the
distribution of Z(�) is the same as that of 2dnZ(�̃). Hence, we may assume that
� ∈ Q+

0 .
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If dist(0,�) ≤ 10, then G(�) � 1 and we can use (25). Otherwise, let τ be
the first time that dist(�, γ (t)) = 8. By (6), P{τ < ∞} � G(�), and by distortion
estimates we can see that

E
[
Z(�)|τ < ∞] ≤ c, E

[
Z(�)2|τ < ∞] ≤ c. �

COROLLARY 3.6. With probability one, if R < ∞, then for n sufficiently
large, � ∈Qn with dist(0,�) ≤ R,

Z(�) ≤ n2−dn/2.

PROOF. By Chebyshev’s inequality, if � ∈ Qn,

P
{
Z(�) ≥ n2−nd/2} ≤ n−22nd

E
[
Z(�)2] ≤ cn−2G(�).

Hence, if V is any bounded set,

∞∑
n=0

∑
�∈Qn,�⊂V

P
{
Z(�) ≥ n2−nd/2} ≤ c

∫
V

G(z) dA(z) < ∞.

The result follows from the Borel–Cantelli lemma. �

Note that

∂nH= {
z ∈H :�(z) ≤ 2−n}

.

LEMMA 3.7. With probability one, if R < ∞ and u > 0, then for all n suffi-
ciently large

Cont+d
(
γ ∩ ∂nH∩ {|z| ≤ R

}) ≤ u2−n.

In particular, for each t0, for all n sufficiently large,

Cont+d
(
γ [0, t0] ∩ ∂nH

) ≤ u2−n.

PROOF. The argument is the same for all R; for ease, we let R = 1 and write
Vn = ∂nH∩ {|z| ≤ 1}. We will first show that

∞∑
n=1

P
{
Contd(γ ∩ Vn;n log 2) ≥ 2−n}

< ∞.(33)

Since Vn ⊂ ⋃
|j |≤2n �n(j,0),

Contd(γ ∩ Vn;n log 2) ≤ ∑
|j |≤2n

Contd
(
γ ∩ �n(j,0);n log 2

)

≤ 6 · 2−2n2(2−d)n
∑

|j |≤2n

1
{
γ ∩ �n(j,0) �= ∅

}
.
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The estimate (7) implies that P{γ ∩ �n(j,0) �= ∅} ≤ cj1−4a . If we choose β with
1 < β < d − (2 − 4a)+, we can see that

E
[
Contd(γ ∩ Vn;n log 2)

] ≤ c2−nβ,

P
{
Contd(γ ∩ Vn;n log 2) ≥ 2−n} ≤ c2−n(β−1).

This gives (33), and by the Borel–Cantelli lemma with probability one for all n

sufficiently large,

Contd(γ ∩ Vn;n log 2) ≤ 2−n.

It follows that for n sufficiently large, if m ≥ n,

Contd(γ ∩ Vn;m log 2) ≤ 2−m + Contd
(
γ ∩ (Vn \ Vm);m log 2

)
,

and hence

Cont+d (γ ∩ Vn) ≤ 22−d sup
m≥n

Contd
(
γ ∩ (Vn \ Vm);m log 2

)
,

where the supremum on the right is restricted to integers m. Let An denote the set
of all squares of the form �l(j,1), l, j ∈ Z, that intersect Vn. These squares are
disjoint and

Contd
(
γ ∩ (Vn \ Vm);m log 2

) ≤ ∑
�∈An

Z(�).

Hence,

Cont+d (γ ∩ Vn) ≤ 22−d
∑

�∈An

Z(�).

By Lemma 3.5, ∑
�∈An

E
[
Z(�)

] ≤ c
∑

�∈An

G(�) ≤ cG(Vn).

As above, we find β > 1 such that G(Vn) ≤ c2−nβ , and hence

P

{
22−d

∑
�∈An

Z(�) ≥ u2−n

}
≤ u−12n

E

[
22−d

∑
�∈An

Z(�)

]

≤ cu−12n(1−β).

Hence, by the Borel–Cantelli lemma, with probability one, for all n sufficiently
large and all m ≥ n,

22−d
∑

�∈An

Z(�) ≤ u2−n.
�

The next proposition establishes the Hölder continuity of the function t �→
Contd(γ (0, t]) and completes the proof of (31).
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PROPOSITION 3.8. There exists α > 0 such that with probability one for every
t < ∞ for all n sufficiently large and all s ≤ t ,

Cont+d
(
γ

[
s, s + 2−n]) ≤ 2−nα.

PROOF. It is known [3, 11] that for κ �= 8, the SLEκ curve is Hölder con-
tinuous with respect to the capacity parameterization. That is to say, there exists
β = βκ > 0 such that with probability one, if t < ∞, then for n sufficiently large,
and all 0 ≤ s ≤ t ,

diam
(
γ

[
s, s + 2−n]) ≤ 2−nβ.

Let m be the largest integer less than βn. Then γ [s, s + 2−n] is contained in the
union of four rectangles �1, . . . ,�4 ∈ Qm. For n sufficiently large, if �j ∈ Q+

m,
then Corollary 3.6 implies that Cont+d (�j ∩ γ ) ≤ m2−dm/2. If �j ∈ Qn \Q+

n , then
Lemma 3.7 implies that Cont+d (�j ) ≤ c2−m. The result follows for α < βd/2. �

In the remainder of this section, we prove (32) which is

lim
n→∞ Cont+d

[
γ [s + u, t] ∩ ∂nHs

] = 0.

Let U = Uj,k = {x + iy :−2k ≤ x < 2k, y ≥ 2−j }. Using Lemma 3.7 and com-
pactness of γ [t, u], we see that it suffices to prove that with probability one for
every s < u and all positive integers j, k,

lim
n→∞ Cont+d

[
γ [u,∞) ∩ ∂nHs ∩ Uj,k

] = 0.(34)

It suffices to consider rational s, u, and hence we need to show that for fixed
s, u, j, k, (34) holds with probability one. By scaling, it suffices to prove this for
j = 0 which we now assume. So we have

U = U0,k = {
x + iy :−2k ≤ x < 2k, y ≥ 1

}
.

We fix integer k > 0 and allow constants to depend on k. We only consider n ≥
k + 4. Let U = U0,k , and let Qn(U) denote the set of � ∈ Qn with � ⊂ U . Note
that G(�) ≤ c2−2n if � ∈ Qn(U).

We will now define a quantity Ẑ(�) for � ∈ Q that is an upper bound for the
Minkowski content of the intersection of the path with � “after it has gotten close
to the square and then gotten away from the square.” To be precise, suppose that
� ∈ Qn with center point z, and define the following quantities:

• ξ1 = ξ1(�) is the first time t such that |z−γ (t)| = 2−n+3. If ξ1 < ∞, let l = l(�)

denote a subarc of the circle of radius 2−n/2 about z such that z is in the bounded
component of Hξ1 \ l. See Section 2.4 where a particular such arc l was selected.
To be specific, we will make that choice here.

• ξ2 = ξ2(�) is the first time t > ξ1 such that γ (t) ∈ l̄.
• ξ3 = ξ3(�) is the first time t > ξ1 such that |z − γ (t)| = 2−n+1.
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FIG. 2. The quantities in Proposition 3.8 in the case ξ3 < ξ2.

• ξ4 = ξ4(�) is the first time t > ξ2 such that |z − γ (t)| = 2−n+1.

We think of time ξ4 as the time of the “second return” to the (neighborhood of the)
square, see Figure 2.

LEMMA 3.9. There exists n0 such that if n ≥ n0, � ∈ Qn, � ∩ U �= ∅, and
ξ1 ≤ s, then ξ2 < u.

PROOF. The curve γ is parameterized so that hcap(γ [s1, s2]) = a(s2 − s1)

where hcap is the half-plane capacity which can be defined by

hcap(V ) = lim
y→∞yEiy[�(Bτ )

]
,

where Bt is a standard Brownian motion and τ = τV = inf{t :Bt ∈ R ∪ V }. In
particular, if V1 ⊂ V2,

hcap(V2) − hcap(V1) ≤ lim
y→∞yEiy[�(Bτ2); τ2 < τ1

]
, τj = τVj

.

Since the half-plane capacity is monotone,

hcap
(
γ [0, ξ2]) ≤ hcap

(
γ [0, ξ1] ∪ l

)
.

Using the Beurling estimate and the fact that � ∩ U �= ∅, we can see that if V1 =
γ (0, ξ1],V2 = γ (0, ξ1] ∩ l, then

lim
y→∞yEiy[�(Bτ2); τ2 < τ1

] ≤ lim
y→∞yPiy{τ2 < τ1} ≤ c diam[l]1/2 ≤ c2−n/4.
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If n0 is chosen sufficiently large, then the right-hand side is less than u − s and
hence ξ2 − ξ1 < u − s. �

We let E1(�) be the event {ξ1 < ξ3 < ξ2 < ξ4 < ∞}, E2(�) the event {ξ1 <

ξ2 < ξ3 = ξ4 < ∞}, and E(�) = E1(�) ∪ E2(�) = {ξ4 < ∞}. We define Ẑ(�) as
follows:

Ẑ(�) = 0 on the complement of E(�),

Ẑ(�) = 2(n+1)(2−d) on the event E1(�),

Ẑ(�) = Cont+d (� ∩ γ ;n log 2) on the event E2(�).

Take n0 as in the previous lemma and recall that U = U0,k = {x + iy :−2k ≤ x <

2k, y ≥ 1}. The definition is such that the following holds:

• If m > n0 and � ∈Qm with � ∩ U �= ∅, then on the event E(�),

Contd
[
γ [u,∞) ∩ �;m log 2

] ≤ Ẑ(�).

• If m ≥ n > n0 and � ∈ Qn with � ∩ U �= ∅, then on the event E2(�),

Contd
[
γ [u,∞) ∩ �;m log 2

] ≤ Ẑ(�).

We will use the following fact which states that once one gets close to z and
then leaves, one is unlikely to return. It is a quantitative expression of the fact that
the double points of SLEκ curve have strictly smaller fractal dimension than the
curve itself. It is an immediate corollary of Corollary 2.8.

LEMMA 3.10. There exist c,β such that if � ∈ Qn with � ⊂ {�(z) ≥ 1}, then
P[E(�)] ≤ c2n(d−2)2−nβ .

Arguing as in the proof of Lemma 3.5, we have on the event E2(�),

E
[
Ẑ(�)|γξ4

] ≤ c2n(2−d).

Then we see that

E
[
Ẑ(�)|ξ1(�) < ∞] ≤ c2n(d−2),

E
[
Ẑ(�)

] ≤ P
{
ξ1(�) < ∞}

E
[
Ẑ(�)|ξ1(�) < ∞] ≤ cG(�)2−nβ.

Let

Ẑn = Ẑn(U) =
∞∑

m=n

∑
�∈Qm,�⊂U

Ẑ(�).

Then E[Ẑn] ≤ c2−βn, and hence using the Borel–Cantelli lemma, with probability
one for all n sufficiently large, Ẑn ≤ 2−βn/2. To establish (34), it therefore suffices
to show that there exists c such that for n > n0,

Cont+d
[(

γ \ [γu ∪ ∂nHs]) ∩ U
] ≤ cẐn.
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To show this it suffices to show for all integers m ≥ n

Contd
[(

γ \ [γu ∪ ∂nHs]) ∩ U ;m log 2
] ≤ cẐn.

For each m ≥ n > n0, will cover γ \ [γu ∪ ∂nHs] by squares � ∈ Qj with
n ≤ j ≤ m. We will choose all squares � ∈ Qm that intersect Hs and are within
distance 2−m+2 of ∂Hs . This includes squares that intersect ∂Hs . However, for
n ≤ j < m, we only choose squares whose distance from ∂Hs is comparable
to 2−j . In particular, these squares do not intersect ∂Hs .

To be precise, let s < u and assume that n > n0. For fixed n < m, let A= As,m,n

denote the set of � ∈ Qj (U), j = n, . . . ,m, that satisfy 2−j+1 ≤ dist(�, ∂Hs) ≤
2−j+3. Let C = Cs,m denote the set of � ∈ Qm(U) that satisfy dist(�, ∂Hs) ≤
2−m+2. We claim that for each m, the squares in A∪C cover U ∩∂nHs . To see this,
suppose that z ∈ U ∩ ∂nHs . Then dist(z, ∂Hs) ≤ 2−n. If dist(z, ∂Hs) ≤ 2−m+2,
then the unique � ∈ Qm(U) containing z is in C. If dist(z, ∂Hs) > 2−m+2 find j

such that 2−j+2 < dist(z, ∂Hs) ≤ 2−j+3. Let � be the unique square in Qj (U)

that contains z and note that 2−j+1 ≤ dist(�, ∂nHs) ≤ 2−j+3.
If � ∈ A ∪ C, then ξ1 ≤ s. Since n > n0, by Lemma 3.9 ξ2 < u. Hence,

γ [u,∞) ∩ � ⊂ γ [ξ4,∞). If � ∈ A with γ [u,∞) ∩ � �= ∅, then ξ2 < ξ3 which
means that the event E2(�) has occurred. If � ∈ C and γ [u,∞) ∩ � �= ∅, we
know that E(�) has occurred. Either way, we see that

Contd
[
γ [u,∞) ∩ �;m log 2

] ≤ Ẑn(�).

4. Proof of Theorem 3.2. Throughout this section, 0 < δ ≤ 1/10, but con-
stants are independent of δ.

4.1. Some reductions. Suppose �(z),�(w) ≥ 1, and let Jr(z),Qr(z) = Qδ
r(z)

as in Section 3.1. Since Qr(z)Qr(w) = 0 if τr(z) = ∞ or τr(w) = ∞, in order to
prove (26) it suffices by symmetry to prove that

E
[
Qr(z)Qr(w); τr(z) < τr(w) < ∞] ≤ ce−βr |z − w|β−2.(35)

By (19), we know that if |z − w| ≤ e−ur ,

E
[
Qr(z)Qr(w)

] ≤ ce2r(2−d)
P

{
τr(z) < ∞, τr(w) < ∞}

≤ c|z − w|d−2

≤ c|z − w|(d−1)−2e−ur .

Hence, it suffices to find u > 0 and c,β such that (35) holds for |z−w| ≥ e−ur . Let
α be as in (15), and suppose that s > 0. Choose u > 0 with u[2(2−d)+α] ≤ αs/2.

Then if |z − w| ≥ e−ur ,

E
[
Qr(z)Qr(w); τsr (w) ≤ τr(z) ≤ τr(w) < ∞]

≤ ce2r(2−d)
P

{
τsr(w) ≤ τr(z) ≤ τr(w) < ∞}
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≤ ce2r(2−d)
P

{
τsr−ur+ur(w) ≤ τr−ur+ur(z) ≤ τr−ur+ur(w) < ∞}

≤ ce2r(2−d)e2(r−ur)(d−2)e−α(sr−ur)

≤ ceru[2(2−d)+α]e−αsr ≤ ce−αsr/2.

From this, we see that in order to prove (35) it suffices to prove the following. There
exist u > 0, s > 0, β > 0, c < ∞ such that if �(z),�(w) ≥ 1 and |z − w| ≥ e−ur ,
then

E
[
Qr(z)Qr(w); τr(z) < τsr(w) < τr(w) < ∞] ≤ ce−βr |z − w|β−2.(36)

This is what we will establish in this section.

4.2. One-point estimate. As is often the case, an important step in getting a
two-point estimate is to get a sharp one-point estimate with good control on the
error terms. Much of the necessary analysis has been done for SLE, and we review
some of the methods here.

We will consider chordal SLEκ from 1 to w = e2iθ in the unit disk D, and we
will study how close the path gets to the origin. We parameterize the SLEκ path γ

using the radial parameterization. To be specific, we let Dt denote the component
of D \ γt containing the origin and gt :Dt → D the unique conformal transforma-
tion with gt (0) = 0, gt (γ (t)) = 1. The radial parameterization is defined so that
|g′

t (0)| = et . The total lifetime of the curve in this parameterization, T , is finite
with probability one. (If κ > 4, T is not the time that the curve reaches w, but
rather the time at which the curve disconnects the origin from w. Although the
SLE curves continues after this time, the domain Dt does not change so we do not
need to consider the path after time T .) We write wt = e2iθt = gt (w). The path γt ,
and hence the transformations gt , are determined by θs,0 ≤ s ≤ t . If t > T , then
gt = gT . We let Pθ ,Eθ denote probabilities and expectations given by chordal
SLEκ from 1 to e2iθ . The angle θt satisfies a simple one-dimensional SDE. Its
form is a little nicer if we consider a linear time change. If θ̂t = θ2at , then θ̂t satis-
fies the “radial Bessel equation”

dθ̂t = (1 − 2a) cot θ̂t dt + dBt ,

where Bt is a standard Brownian motion. This equation is valid until the time
T̂ = T/2a at which θ̂T̂ = θT ∈ {0, π}.

The Koebe (1/4)-theorem and Schwarz lemma implies that for 0 ≤ t ≤ T ,

e−t−log 4 ≤ dist[0, γt ] ≤ e−t .(37)

Let St = SDt (0;w,γ (t)) = SD(0;wt,1) = sin θt . Itô’s formula shows that

Mt = 1{T > t}et(2−d)S4a−1
t

is a local martingale; more precisely, M̂t = M2at satisfies

dM̂t = (4a − 1)[cot θ̂t ]M̂t dBt , t < T̂ .
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In fact, Mt is a continuous martingale with P{MT = 0} = 1.
Let Dr denote the open disk of radius e−r about the origin with closure Dr , and

τr = inf
{
t : dist[0, γt ] = e−r} = inf

{
t :γ (t) ∈ Dr

}
.

Note that (37) implies that

r − 2 < r − log 4 ≤ τr ≤ r.

The measure obtained by tilting by the martingale Mt is called two-sided radial
SLEκ (from 0 to e2iθ in D going through the origin stopped when it reaches the
origin). We will write P∗,E∗ for probabilities and expectations with respect to this
measure. These measures depend on the initial angle θ and we will write P

∗
θ ,E

∗
θ if

we wish to make this explicit. The quantity E
∗
θ is defined by saying that if X is a

random variable that depends only on γt , then

E
∗
θ (X) = M−1

0 Eθ [XMt ] = [sin θ ]1−4aet (2−d)
Eθ

[
XS4a−1

t 1{T > t}],
or equivalently,

Eθ

[
X1{T > t}] = e(d−2)t [sin θ ]4a−1

E
∗
θ

[
XS1−4a

t

]
.(38)

The Girsanov theorem shows that under the measure E
∗
θ ,

dθ̂t = 2a cot θ̂t dt + dWt,(39)

where, as before, θ̂t = θ2at and Wt is a standard Brownian motion with respect to
the tilted measure. This equation has an invariant probability density

φ(θ) = C−1
4a [sin θ ]4a, C4a =

∫ π

0
sin4a θ dθ.

Moreover, the rate of convergence to equilibrium is exponential (see, e.g., [10],
Section 2.1.1). To be more explicit, there exists α > 0 such that if φt (θ; θ0) is the
density at time t given initial condition θ0, then

φt(θ; θ0) = φ(θ)
[
1 + O

(
e−αt )].(40)

Implicit in this formulation is the fact that for every t0 > 0 there exists C = C(t0) <

∞ such that if t ≥ t0, C−1φ(θ) ≤ φt (θ; θ0) ≤ Cφ(θ).
If we apply this to (38) with X ≡ 1, we get

Pθ {T > t} = c∗e(d−2)t [sin θ ]4a−1[
1 + O

(
e−αt )],

where

c∗ =
∫ π

0
[sin θ ]1−4aφ(θ) dθ = 2C−1

4a .

In particular, we see that for r ≥ 1/10,

Pθ {T > τr} � [sin θ ]4a−1e(d−2)r ,
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and if r ≥ 3,0 ≤ s ≤ 1/10, and T > r − 2, conformal invariance implies that

Pθ {T > τr+s �= ∅|γr−2} = Pθr−2

{
γ ∩ gr−2(Dr+s) �=∅

}
� [sin θr−2]4a−1.

We can also phrase this in terms of the quasi-stationary distribution for θt . Let
ψ(θ) = 1

2 sin θ . Under the measure P, the random variable θt1{T > t} has an atom
at 0 and has a density ψt(θ) for 0 < θ < π satisfying

P{T > t} =
∫ π

0
ψt(θ) dθ.

The results of the previous paragraph show that ψ is a quasi-stationary density in
the sense that if φ0 ≡ ψ , then

ψt(θ) = et(d−2)ψ(θ).

Moreover, if ψt(θ; θ0) denotes the density assuming initial condition θ0,

ψt(θ; θ0) = Pθ0{T > t}ψ(θ)
[
1 + O

(
e−tα)]

(41)
= c∗et(d−2)ψ(θ)

[
1 + O

(
e−tα)]

.

We write Pψ for probabilities assuming the initial density ψ . We can see

Pψ {T > r} = er(d−2).

PROPOSITION 4.1. There exists 0 < c1 < ∞ such that

Pψ {τr < ∞} = c1e
r(d−2)[1 + O

(
e−r)].

PROOF. If r > 0, u > 2, then since τr > r − 2,

Pψ {τr+u < ∞} = Pψ {T > r}Pψ {τr+u < ∞|T > r}.
The conformal Markov property implies that if T > r , then

Pψ {τr+u < ∞|γr} = Pθr

{
γ [0,∞) ∩ gr(Dr+u) �= ∅

}
,

where θr started according to ψ . By Lemma 2.1, there exists u0 such that if u > u0,
then on the event T > r , if |z| = e−r−u,

e−u exp
{−4e−u} ≤ ∣∣gr(z)

∣∣ ≤ e−u exp
{
4e−u}

.

Combining the last two expressions, we see that if r > 0 and u > u0, then if T > r ,

Pθr {τu+4e−u < ∞} ≤ Pθr

{
γ [0,∞) ∩ gr(Dr+u) �= ∅

}
(42)

≤ Pθr {τu−4e−u < ∞}.
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Since ψ is the quasi-stationary density, the conditional density on θr given T > r

is ψ . Therefore,

er(d−2)
Pψ {τu+4e−u < ∞} ≤ Pψ {τr+u < ∞} ≤ er(d−2)

Pψ {τu−4e−u < ∞}.
If we replace r with s = r −5e−u and u with v = u+5e−u, we get for u sufficiently
large so that e−v ≥ (4/5)e−u,

Pψ {τr+u < ∞} = Pψ {τs+v < ∞}
≤ es(d−2)

Pψ {τv−4e−v < ∞}
≤ es(d−2)

Pψ {τu < ∞}
= er(d−2)

Pψ {τu < ∞}[1 + O
(
e−u)]

.

We get a bound in the other direction by choosing s = r + 5e−u and v = r = e−5u.
Hence,

Pψ {τr+u < ∞} = er(d−2)
Pψ {τu < ∞}[1 + O

(
e−u)]

,

where the error term is bounded uniformly independent of r . If we define Lr =
log[er(2−d)

Pψ {τr < ∞}], then the above expression can be written as

sup
r≥u

|Lr − Lu| = O
(
e−u)

,

which implies that the limit L∞ = limu→∞ Lu ∈ (−∞,∞) exists, and |Lu −
L∞| = O(e−u). The proposition follows with c1 = eL∞ . �

THEOREM 4.2. There exists 0 < ĉ < ∞ and β > 0, such that

Pθ {τr < ∞} = ĉ[sin θ ]4a−1er(d−2)[1 + O
(
e−rβ)]

.(43)

PROOF. As in (42),

Pθr {τr+4e−r < ∞} ≤ Pθr

{
γ [0,∞) ∩ gr(D2r ) �= ∅

} ≤ Pθr {τr−4e−r < ∞}.
By Proposition 4.1, if ψ is the invariant distribution,

Pψ {τr±4e−r < ∞} = c1e
r(d−2)[1 + O

(
e−r)].

Combining this with (41), we see that

Pθ {τ2r < ∞} = Pθ {T > r}Pθ {τ2r < ∞|T > r}
= c1c∗e2r(d−2)[1 + O

(
e−αr)]. �

With this theorem we could define the chordal Green’s function on D by

GD

(
0;1, e2iθ ) = ĉ[sin θ ]4a−1,
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and define it for other simply connected domains by

GD(z;w1,w2) = ∣∣f ′(z)
∣∣2−d

GD

(
0;1, e2iθ )

,

where f :D → D is a conformal transformation with f (z) = 0, f (w1) = 1,
f (w2) = e2iθ . In fact,

GD(z;w1,w2) = ĉ cradD(z)d−2SD(z;w1,w2)
4a−1.

PROPOSITION 4.3. Let 0 < κ < 8. There exists c < ∞, α > 0 such that the
following is true. Suppose that D is a simply connected domain and γ is a chordal
SLEκ path from w1 to w2 in D. Suppose that z ∈ D, R = dist(z, ∂D) and G =
GD(z;w1,w2). Then if e−r ≤ R/2,∣∣G−1er(2−d)

P
{
dist(γ, z) ≤ e−r} − 1

∣∣ ≤ c
[
e−r/R

]α
.

In particular, there exists c < ∞ such that if 0 < r < s, then∣∣P{
dist(γ, z) ≤ e−r} − e(s−r)(2−d)

P
{
dist(γ, z) ≤ e−s}∣∣

(44)
≤ c

[
e−r/R

]2−d+α
.

PROOF. Without loss of generality, we assume z = 0, and by scaling we
may assume that R = 1. Let F :D → D be the conformal transformation with
F(0) = 0,F (w1) = 1,F (w2) = e2iθ where sin θ = SD(z;w1,w2). The Schwarz
lemma and Koebe (1/4)-theorem imply that 1/4 ≤ |F ′(0)| ≤ 1. Note that G =
ĉ|F ′(0)|2−d [sin θ ]4a−1. Proposition 2.1 implies that there exists universal r0 such
that if r > r0, ∣∣F ′(0)

∣∣|z| exp
{−4|z|} ≤ ∣∣F(z)

∣∣ ≤ ∣∣F ′(0)
∣∣|z| exp

{
4|z|}.

Therefore, by conformal invariance, if q = − log |F ′(0)|
Pθ {τr+4e−r+q < ∞} ≤ P

{
dist(γ, z) ≤ e−r} ≤ Pθ {τr−4e−r+q < ∞}.

But (43) tells us that

Pθ {τr±4e−r+q < ∞} = ĉ[sin θ ]4a−1e(r+q)(d−2)[1 + O
(
e−αr)]

= Ge(r+q)(d−2)[1 + O
(
e−αr)]. �

With these results, we can follow the proof in [9], Section 3, which proves the
corresponding result with distance replaced by conformal radius, to conclude (20).
We need to replace Lemma 2.16 of [9], with the corresponding result for the dis-
tance. The necessary lemma, written in the notation of this paper, is the following.

LEMMA 4.4. There exist α > 0, c < ∞ such that if 0 < s < u < 1 and r ≥ 3,

Pθ

{
τr < ∞, γ (τur , τr) �⊂ Dsr

} ≤ c[sin θ ]4a−1er(d−2)e−αtr ,

where t = min{1 − u,u − s}.
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PROOF. A corresponding result was proved for two-sided radial SLEκ in [6].
In particular, there exist c,α such that

P
∗
θ

{
γ (τur , τr) �⊂ Dsr

} ≤ ceα(s−u)r .

In particular, since τr > r − 2,

P
∗
θ

{
γ (τur , r − 2) �⊂ Dsr

} ≤ ceα(s−u)r .

Using the definition of the measure P
∗
θ we see that this implies that

Eθ

[[sin θr−2]1−4a;T > r − 2, γ (τur , r − 2) �⊂Dsr

]
≤ c[sin θ ]4a−1er(d−2)eα(s−u)r .

However, if T > r − 2, P{τr < ∞|γr−2} � [sin θr−2]4a−1. Hence,

Pθ

{
τr < ∞, γ (τur , r − 2) �⊂Dsr

} ≤ c[sin θ ]4a−1er(d−2)eα(s−u)r .(45)

On the event E := {T > r − 2, γ (τur , r − 2) ⊂ Dsr}, topological considerations
(see [6], Lemma 2.3) imply that there is a unique subarc l of ∂Dur ∩ Dr−2 such
that removal of l disconnects 0 from ∂Dsr in Dr−2. The point γ (r − 2) may be in l

or in either of the connected components of Dr−2 \ l. In any of these cases, if σ =
inf{t ≥ r −2 :γ (t) ∈ l̄}, then the event E∩{τr < ∞, γ (τur , τr) �⊂Dsr} is contained
in the event E ∩ {σ < τr < ∞}. As in (11), on the event E ∩ {σ < ∞, σ < τr},

P{τr < ∞|γσ } ≤ ceα(u−1)r .

Hence,

Pθ

{
τr < ∞, γ (τur , τr) �⊂ Dsr , γ (τur , r − 2) ⊂ Dsr

}
≤ Pθ (E)Pθ

{
τr < ∞, γ (τur , τr) �⊂ Dsr |E}

(46)
≤ Pθ {T > r − 2}Pθ

{
τr < ∞, γ (τur , τr) �⊂ Dsr |E}

≤ c[sin θ ]4a−1er(d−2)eαr(u−1).

The lemma follows from (45) and (46). �

The proof of (20) follows that in [9], Section 3. We will not give all the details,
but we sketch the argument using the notation of this paper. We need to prove the
existence of the limit

G(z,w) = lim
r,s→∞ er(2−d)es(2−d)

P
{
τr(z), τs(w) < ∞}

.

PROPOSITION 4.5. For every z,w ∈ H,

lim
r,s→∞ er(2−d)es(2−d)

P
{
τr(z) < τs(w) < ∞} = G(z)E∗[

GHT
(w; z,∞)

]
,

where E
∗ denotes expectation with respect to two-sided radial SLE to z.
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PROOF (SKETCH). Let τr = τr(z). Arguing as in (15), we see that

lim
r,s→∞ er(2−d)es(2−d)

P
{
τs/2(w) < τr < τs(w) < ∞} = 0.

Also, by (15) and Proposition 4.3,

lim
r,s→∞ er(2−d)

P
{
τr < τs/2(w)

} = lim
r→∞ er(2−d)

P{τr < ∞} = G(z).

By Proposition 4.3, there exists α such that if τ < τs/2(w),

P
{
τs(w) < ∞|γτr

} = es(d−2)GHτr

(
w;γ (τr),∞)[

1 + O
(
e−αs)].

Therefore,

lim
r,s→∞ er(2−d)es(2−d)G(z)−1

P
{
τr < τs(w) < ∞}

= lim
r,s→∞E

[
GHτr

(
w;γ (τr),∞)

1
{
τr < τs/2(w)

}|τr < ∞]
.

Hence, we need to show that the right-hand side equals E∗[GHT
(w; z,∞)].

We assume that the curve has the radial parameterization heading to z. We use
Lemma 4.4 to see that as r, s → ∞,

E
[
GHτr

(
w;γ (τr),∞)

1
{
τr < τs/2(w)

}|τr < ∞]
∼ E

[
GHr/2

(
w;γ (r/2),∞)

1
{
τr < τs/2(w)

}|τr < ∞]
∼ E

[
GHr/2

(
w;γ (r/2),∞)

P
{
τr < τs/2(w)|γr/2

}|τr < ∞]
.

We now use Proposition 4.3 to see that the weighting by P{τr < τs/2(w)|γr/2}
is the same up to small error as weighting by GHs/2(z;γ (s/2),∞) which is the
weighting which defines two-sided SLE going to z. The arguments for justifying
this are the same whether one uses conformal radius or τr as the stopping time, so
the proof in [9], Section 3, works here. �

REMARK. The same method shows that we can define n-point Green’s func-
tion and we expect that

E
[
�(D)n

] =
∫
Dn

G(z1, . . . , zn) dA(z1) · · ·dA(zn).

At the moment, we cannot prove it because we have no upper bound for
G(z1, . . . , zn).

4.3. Proof of (36). We will now prove (36) for an appropriate 0 < u ≤ 1/4
that we will define below. We assume that �(z),�(w) ≥ 1 and |z − w| > e−r/4. It
suffices to prove the result for r > 4, and hence |z − w| > e−(r−2)/2.

Let 0 < q < 1/8 be a parameter that we will choose later. Let τr = τr(z),H =
Hτr (z), l3/4 = l3/4(r, z), λ = λ(r, z,3/4),Bu = Bu(r, z),Vu = Vu(r, z) be as in
Section 2.4. Recall that we are assuming that |z −w| > e−r/2 and hence w /∈ B1/2.
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Let Ir (z,w) be the indicator function of the event that τr < τqr(w) and w is in the
unbounded component of H \ l3/4 and let Jr (z,w) be the indicator function of the
event that w is in the bounded component of H \ l3/4.

We consider two cases. First, suppose that Jr (z,w) = 1. Then w,z are both in
the bounded component of H \ l3/4. Since w /∈ B1/2, there is a unique subarc l′
of ∂V3/4 ∩ H such that z,w are in different components of H \ l′. Since w is in
the bounded component of H \ l3/4, l′ �= l3/4. In particular, z is in the unbounded
component of H \ l′. The Beurling estimate implies that the probability that a
Brownian motion starting at w reaches l′ without leaving H is bounded above by
ce−r/8. Hence, Sτr (w) ≤ ce−r/8 and, therefore,

P
{
τr(w) < ∞|γτr

} ≤ cGH

(
w;γ (τr),∞)

er(d−2)

≤ cSτr (w)4a−1 dist(w,γτr )
d−2er(d−2)

≤ ce−pr dist(w,γτr )
d−2er(d−2),

where p = (4a − 1)/8 > 0. We know from (15) that

P
{
dist(w,γτr ) ≤ es, τr < ∞} ≤ c|w − z|d−2er(d−2)es(d−2).

By summing over positive integers s ≤ r , we get

P
{
τr < τr(w) < ∞,Jr (z,w) = 1

} ≤ cr|w − z|d−2e2r(d−2)e−pr .

In particular, if |z − w| ≥ e−ur , where u = p/[3(2 − d)],
P

{
τr(z) < τr(w) < ∞,Jr (z,w) = 1

} ≤ ce2r(d−2)e−pr/2,

which implies that if |z − w| ≥ e−ur ,

E
[
Qr(z)Qr(w)Jr (z,w)

] ≤ ce−pr/2.

For the remainder, we will assume that Ir (z,w) = 1. Let σ = σ3/4(r − 2, z) as
in Section 2.4. Let Q̃r(z) be the analogue of Qr(z) for the curve stopped at time σ ,

Q̃r(z) = er(2−d)[1{
τr(z) < σ

} − eδ(2−d)1
{
τr+δ(z) < σ

}]
.

To establish our estimate, we will show that∣∣E[
Q̃r(z)Qr(w)Ir (z,w)

]∣∣ ≤ ce−βr ,(47)

and

E
[∣∣Qr(z) − Q̃r(z)

∣∣∣∣Qr(w)
∣∣Ir (z,w)

] ≤ ce−βr ,(48)

which together imply that∣∣E[
Qr(z)Qr(w)Ir (z,w)

]∣∣ ≤ ce−βr .

To prove (47), note that since Q̃r(z)Ir (z,w) is γσ measurable,

E
[
Q̃r(z)Qr(w)Ir (z,w)

] = E
[
Q̃r(z)Ir (z,w)E

(
Qr(w)|γσ

)]
,
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and hence,∣∣E[
Q̃r(z)Qr(w)Ir (z,w)

]∣∣ ≤ E
[∣∣Q̃r(z)

∣∣Ir (z,w)
∣∣E(

Qr(w)|γσ

)∣∣].
We appeal to (44) to see that∣∣E(

Qr(w)|γσ

)∣∣ ≤ ce(2−d)r [e−r/dist(w, ∂Hσ )
]2−d+α

≤ c exp
{[

(2 − d) + (q − 1)(2 − d + α)
]
r
}
.

In particular, if q is chosen sufficiently small so that q(2 − d) ≤ α(1 − q)/2,∣∣E(
Qr(w)|γσ

)∣∣ ≤ ce−αr/2,

and hence∣∣E[
Q̃r(z)Qr(w)Ir (z,w)

]∣∣ ≤ ce−rα/2
E

[∣∣Q̃r(z)
∣∣Ir (z,w)

]
≤ ce−rα/2er(2−d)

P
[
Ir (z,w)

] ≤ ce−rα/2.

For (48), we observe that if Qr(z) �= Q̃r(z), then dist(z, γ ) < dist(z, γσ ). In
other words,

E
[∣∣Qr(z) − Q̃r(z)

∣∣∣∣Qr(w)
∣∣Ir (z,w)

]
≤ ce2r(2−d)

P
{
Ir (z,w) = 1,dist(z, γ ) < dist(z, γσ ), τr(w) < ∞}

.

We know that P{Ir (z,w) = 1} ≤ cer(d−2). Hence, it suffices to show that we can
find q,β > 0 and c < ∞ such that that on the event {Ir (z,w) = 1},

P
{
ρ < ∞, τr(w) < ∞|γσ

} ≤ cer(2−d)e−rβ,

where ρ = inf{t ≥ σ : |γ (t) − z| = dist(z, γσ )}. For every integer k with qr + 1 <

k < r − 1, we consider the event

Ek = {
τk(w) < ρ < τk+1(w) < τr(w) < ∞}

.

We claim that there exists c,α such that on the event {Ir (z,w) = 1}
P(Ek|γσ ) ≤ ce(2−d)(q−1)re−αr .(49)

Indeed, recall that on the event on the event {Ir (z,w) = 1}, dist(w, ∂Hσ ) ≥ e−qr .
If we use P̃ to denote conditional probabilities given γσ , then

P̃
{
τk(w) < ∞} ≤ ce(d−2)(k−qr),

P̃
{
ρ < ∞|τk(w) < ∞} ≤ ce−αr ,

P̃
{
τr(w) < ∞|τk(w) < ρ < τk+1(w) < ∞} ≤ ce(d−2)(r−k).

By summing (49) over k, and then choosing q sufficiently small, we see that

P̃
{
ρ < ∞, τr(w) < ∞} ≤ cre(2−d)(q−1)re−αr ≤ cer(d−2)e−αr/2.

At the end, we want to thank the referees for very careful reading of the earlier
draft of the paper and making many useful comments on that.
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