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CRITICAL TWO-POINT FUNCTIONS FOR LONG-RANGE
STATISTICAL-MECHANICAL MODELS IN HIGH DIMENSIONS

BY LUNG-CHI CHEN1 AND AKIRA SAKAI2

Fu-Jen Catholic University and Hokkaido University

We consider long-range self-avoiding walk, percolation and the Ising
model on Z

d that are defined by power-law decaying pair potentials of
the form D(x) � |x|−d−α with α > 0. The upper-critical dimension dc is
2(α ∧ 2) for self-avoiding walk and the Ising model, and 3(α ∧ 2) for perco-
lation. Let α �= 2 and assume certain heat-kernel bounds on the n-step dis-
tribution of the underlying random walk. We prove that, for d > dc (and
the spread-out parameter sufficiently large), the critical two-point function
Gpc(x) for each model is asymptotically C|x|α∧2−d , where the constant
C ∈ (0,∞) is expressed in terms of the model-dependent lace-expansion co-
efficients and exhibits crossover between α < 2 and α > 2. We also provide
a class of random walks that satisfy those heat-kernel bounds.

1. Introduction. The two-point function is one of the key observables to un-
derstand phase transitions and critical behavior. For example, the two-point func-
tion for the Ising model indicates how likely the spins located at those two sites
point in the same direction. If it decays fast enough to be summable, then there is
no macroscopic order. The summability of the two-point function is lost as soon as
the model parameter (e.g., temperature) is above the critical point and, therefore,
it is naturally hard to investigate critical behavior.

The lace expansion is a powerful tool to rigorously prove mean-field behavior
above the model-dependent critical dimension. The mean-field behavior here is
for the two-point function at the critical point to exhibit similar behavior to the
underlying random walk. It has been successful to prove such behavior for vari-
ous statistical-mechanical models, such as self-avoiding walk, percolation, lattice
trees/animals and the Ising model. The best lace-expansion result obtained so far
is to identify an asymptotic expression (= the Newtonian potential times a model-
dependent constant) of the critical two-point function for finite-range models, such
as the nearest-neighbor model. However, this ultimate goal has not been achieved
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before this paper for long-range models, especially when the 1-step distribution
for the underlying random walk decays in powers of distance; only the infrared
bound on the Fourier transform of the two-point function was available. This was
partly because of our poor understanding of the long-range models in the x-space,
not in the Fourier space. For example, the random-walk Green’s function is known
to be asymptotically Newtonian/Riesz depending on the power of the aforemen-
tioned power-law decaying 1-step distribution, but we were unable to find optimal
error estimates in the literature. Also, the subcritical two-point function is known
to decay exponentially for the finite-range models, but this is not the case for the
power-law decaying long-range models; as is shown in this paper, the decay rate
of the subcritical two-point function is the same as the 1-step distribution of the
underlying random walk.

Therefore, the goal of this paper is to overcome those difficulties and derive
an asymptotic expression of the critical two-point function for the power-law de-
caying long-range models above the critical dimension, using the lace expansion.
We would also like to investigate crossover in the asymptotic expression when the
power of the 1-step distribution of the underlying random walk changes.

1.1. Models and known results. Self-avoiding walk (SAW) is a model for lin-
ear polymers. We define the two-point function for SAW on Z

d as

GSAW
p (x)= ∑

ω : o→x

p|ω|
|ω|∏
j=1

D(ωj −ωj−1)
∏
s<t

(1− δωs,ωt ),(1.1)

where p ≥ 0 is the fugacity, |ω| is the length of a path ω= (ω0,ω1, . . . ,ω|ω|) and
D :Zd → [0,1] is the Z

d -symmetric nondegenerate [i.e., D(o) �= 1] 1-step distri-
bution for the underlying random walk (RW); the contribution from the 0-step walk
is considered to be δo,x by convention. If the indicator function

∏
s<t (1− δωs,ωt ) is

replaced by 1, then GSAW
p (x) turns into the RW Green’s function GRW

p (x), whose
radius of convergence pRW

c is 1, as χRW
p ≡∑

x∈Zd GRW
p (x)= (1−p)−1 for p < 1

and χRW
p =∞ for p ≥ 1. Therefore, the radius of convergence pSAW

c for GSAW
p (x)

is not less than 1. It is known that χSAW
p ≡∑

x∈Zd GSAW
p (x) <∞ if and only if

p < pSAW
c and diverges as p ↑ pSAW

c . Here, and in the remainder of the paper, we
often use “≡” for definition.

Percolation is a model for random media. Each bond {u, v}, which is a pair of
vertices in Z

d , is either occupied or vacant independently of the other bonds. The
probability that {u, v} is occupied is defined to be pD(v − u), where p ≥ 0 is the
percolation parameter. Since D is a probability distribution, the expected number
of occupied bonds per vertex equals p

∑
x �=o D(x)= p(1−D(o)). The percolation

two-point function G
perc
p (x) is defined to be the probability that there is a self-

avoiding path of occupied bonds from o to x; again by convention, G
perc
p (o)= 1.
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The Ising model is a model for magnets. For �⊂ Z
d and ϕ = {ϕv}v∈� ∈ {±1}�,

we define the Hamiltonian (under the free-boundary condition) as

H�(ϕ)=− ∑
{u,v}⊂�

Ju,vϕuϕv,(1.2)

where Ju,v = Jo,v−u ≥ 0 is the ferromagnetic pair potential and inherits the prop-
erties of the given D, as explained below. The finite-volume two-point function at
the inverse temperature β ≥ 0 is defined as

〈ϕoϕx〉β,� =
∑

ϕ∈{±1}�
ϕoϕxe

−βH�(ϕ)

/ ∑
ϕ∈{±1}�

e−βH�(ϕ).(1.3)

It is known that 〈ϕoϕx〉β,� is increasing in � ↑ Z
d . Let p =∑

x∈Zd tanh(βJo,x).

The Ising two-point function G
Ising
p (x) is defined to be the increasing-volume limit

of 〈ϕoϕx〉β,�:

GIsing
p (x)= lim

�↑Zd
〈ϕoϕx〉β,�.(1.4)

Let D(x)= p−1 tanh(βJo,x).
For percolation and the Ising model, there is a model-dependent critical point

pc ≥ 1 (from now on, we omit the superscript, unless it causes any confusion) such
that

χp ≡
∑

x∈Zd

Gp(x)

{
<∞, [p < pc],
=∞, [p ≥ pc],

(1.5)

θp ≡
√

lim|x|→∞Gp(x)

{= 0, [p < pc],
> 0, [p > pc].

The order parameter θ
perc
p is the probability that the occupied cluster of the origin is

unbounded, while θ
Ising
p is the spontaneous magnetization, which is the infinite-

volume limit of the finite-volume single-spin expectation 〈ϕo〉+β,� under the plus-
boundary condition. The continuity of θp at p = pc in a general setting is still
a remaining issue.

We are interested in asymptotic behavior of Gpc(x) as |x| →∞. For the “uni-
formly spread-out” finite-range models, for example, D(x) = 1{|x|=1}/(2d) or
D(x)= 1{‖x‖∞≤L}/(2L+1)d for some L ∈ [1,∞), it has been proved [15, 18, 24]
that, if d > 4 for SAW and the Ising model and d > 6 for percolation, and if d or
L is sufficiently large (depending on the models), then there is a model-dependent
constant A (= 1 for RW) such that

Gpc(x) ∼|x|→∞
ad/σ 2

A|x|d−2 ,(1.6)
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where “∼” means that the asymptotic ratio of the left-hand side to the right-hand
side is 1, and

ad = d�((d − 2)/2)

2πd/2 , σ 2 ≡ ∑
x∈Zd

|x|2D(x)=O
(
L2).(1.7)

This is a sufficient condition for the following mean-field behavior [1–3, 5, 22]:

χp �
p↑pc

(pc − p)−1, θp �
p↓pc

{√
p− pc, [Ising],

p− pc, [percolation],
(1.8)

where “�” means that the asymptotic ratio of the left-hand side to the right-hand
side is bounded away from zero and infinity.

The proof of the above result is based on the lace expansion (e.g., [17, 22, 24,
25]). The core concept of the lace expansion is to systematically isolate interaction
among individuals (e.g., mutual avoidance between distinct vertices for SAW or
between distinct occupied pivotal bonds for percolation) and derive macroscopic
recursive structure that yields the random-walk like behavior (1.6). When d > dc

and d ∨ L � 1 (i.e., d or L sufficiently large depending on the models), there
is enough room for those individuals to be away from each other, and the lace
expansion converges [17, 22, 24, 25]. The resultant recursion equation for Gp is
the following:

Gp(x)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δo,x +
∑
v∈Zd

pD(v)Gp(x − v), [RW],

δo,x +
∑
v∈Zd

(
pD(v)+ πp(v)

)
Gp(x − v),

[SAW],

πp(x)+ ∑
u,v∈Zd

(u�=v)

πp(u)pD(v − u)Gp(x − v),

[Ising and percolation],

(1.9)

where πp is the lace-expansion coefficient. To treat all models simultaneously, we
introduce the notation f ∗ g to denote the convolution of functions f and g in Z

d :

(f ∗ g)(x)= ∑
v∈Zd

f (v)g(x − v).(1.10)

Then the above identities can be simplified as (the spatial variables are omitted)

Gp =
⎧⎪⎨
⎪⎩

δ+ pD ∗Gp, [RW],
δ+ (pD + πp) ∗Gp, [SAW],
πp + πp ∗ p

(
D −D(o)δ

) ∗Gp, [Ising and percolation].
(1.11)
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Repeated use of these identities yields3

Gp = 1p +Πp ∗ pD ∗Gp,(1.12)

where

Πp(x)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δo,x, [RW],
∞∑

n=0

π∗np (x)≡
∞∑

n=0

(πp ∗ · · · ∗ πp︸ ︷︷ ︸
n-fold

)(x),

[SAW],∞∑
n=1

(−pD(o)
)n−1

π∗np (x),

[Ising and percolation]

(1.13)

with the convention f ∗0(x) ≡ δo,x for general f . When d > dc and d ∨ L� 1,
there is a ρ > 0 such that |Πpc(x)| is summable and decays as |x|−d−2−ρ

[15, 18, 24]. The multiplicative constant A in (1.6) and pc can be represented in
terms of Πpc(x) as

pc =
( ∑

x∈Zd

Πpc(x)

)−1

, A= pc

(
1+ pc

σ 2

∑
x∈Zd

|x|2Πpc(x)

)
.(1.14)

In this paper, we investigate long-range SAW, percolation and the Ising model
on Z

d defined by power-law decaying pair potentials of the form D(x)� |x|−d−α

3For SAW, since ‖πp‖1 = o(1) as d ∨L→∞ and ‖Gp‖∞ <∞ for every p ≤ pc [15, 18],

Gp = δ + pD ∗Gp + πp ∗ Gp︸︷︷︸
replace

= δ + pD ∗Gp + πp ∗ (δ + pD ∗Gp + πp ∗Gp)

= (δ + πp)+ (δ + πp) ∗ pD ∗Gp + π∗2
p ∗ Gp︸︷︷︸

replace

= · · ·→ (1.12).

For percolation and the Ising model, since D(o)= o(1) and p‖πp‖1 = 1+ o(1) as d ∨L→∞ and
‖Gp‖∞ ≤ 1 for every p ≤ pc [15, 18, 24],

Gp = πp + πp ∗ pD ∗Gp − pD(o)πp ∗ Gp︸︷︷︸
replace

= πp + πp ∗ pD ∗Gp − pD(o)πp ∗ (πp + πp ∗ pD ∗Gp − pD(o)πp ∗Gp
)

= (
πp − pD(o)π∗2

p

)+ (
πp − pD(o)π∗2

p

) ∗ pD ∗Gp + (−pD(o)
)2

π∗2
p ∗ Gp︸︷︷︸

replace

= · · ·→ (1.12).
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with α > 0. For example, as in [9, 10], we can consider the following uniformly
spread-out long-range D with parameter L ∈ [1,∞):

D(x)= |||x/L|||−d−α
1∑

y∈Zd |||y/L|||−d−α
1

,(1.15)

where |||x|||� = |x| ∨ �. As a result,

D(x)=O
(
Lα)|||x|||−d−α

L ,(1.16)

which we require throughout the paper (cf., Assumption 1.1 below). The goal is to
see how the asymptotic expression (1.6) of Gpc(x) changes depending on the value
of α. We note that (1.6) and (1.14) are invalid for α ≤ 2 because then σ 2 =∞.

Let

dc =
{

2(α ∧ 2), [SAW and Ising],
3(α ∧ 2), [percolation].

(1.17)

It has been proved [20] that, for d > dc and L� 1, the Fourier transform Ĝp(k)≡∑
x∈Zd eik·xGp(x) for the long-range models is bounded above and below by

a multiple of ĜRW
p̂

(k) ≡ (1 − p̂D̂(k))−1 with p̂ = p/pc, uniformly in p < pc.

Although this gives an impression of the similarity between Gpc(x) and GRW
1 (x),

it is still too weak to identify the asymptotic expression of Gpc(x). The proof of
the above Fourier-space result makes use of the following properties of D that we
make use of here as well: there are vα =O(Lα∧2) and ε > 0 such that

D̂(k)≡ ∑
x∈Zd

eik·xD(x)

(1.18)

= 1− vα|k|α∧2 ×
⎧⎪⎨
⎪⎩

1+O
(
(L|k|)ε), [α �= 2],

log
1

L|k| +O(1), [α = 2].

If α > 2, then vα = σ 2/(2d). Moreover, if L � 1, then there is a constant � ∈
(0,1) such that4 ∥∥D∗n∥∥∞ ≤O

(
L−d

)
n−d/(α∧2) [n≥ 1],

(1.20)

1− D̂(k)

{
< 2−�,

[
k ∈ [−π,π ]d],

> �,
[‖k‖∞ ≥ L−1].

All those properties hold for D in (1.15) (cf., [9–11]).

4In the proof of the bound on ‖D∗n‖∞, we simply bounded the factor log π
2r

in [9], (A.4), by
a positive constant. If we make the most of that factor instead, we can readily improve the bound for
α = 2 as ∥∥D∗n∥∥∞ ≤O

(
L−d )(n logn)−d/2.(1.19)
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1.2. Main result. In addition to the above properties, the n-step transition
probability obeys the following bound:

D∗n(x)≤ O(Lα∧2)

|||x|||d+α∧2
L

n×
{

1, [α �= 2],
log |||x|||L, [α = 2].(1.21)

This is due to the following two facts: (i) the contribution from the walks that
have at least one step which is longer than c|||x|||L for a given c > 0 is bounded
by O(Lα)n/|||x|||d+α

L ; (ii) the contribution from the walks whose n steps are all

shorter than c|||x|||L is bounded, due to the local CLT, by O(ṽn)−d/2e−|x|2/O(ṽn) ≤
O(ṽn)/|||x|||d+2

L (times an exponentially small normalization constant), where ṽ is
the variance of the truncated 1-step distribution D̃(y)≡D(y)1{|y|≤c|x|} and equals

ṽ = ∑
y∈Zd

|y|2D̃(y)≤O
(
Lα∧2)×

⎧⎪⎨
⎪⎩
|||x|||2−α

L , [α < 2],
log |||x|||L, [α = 2],
1, [α > 2].

(1.22)

For α �= 2, inequality (1.21) is a discrete space–time version of the heat-kernel
bound on the transition density ps(x) of an α-stable/Gaussian process:

ps(x)≡
∫
Rd

ddk

(2π)d
e−ik·x−s|k|α∧2 ≤ O(s)

|x|d+α∧2 .(1.23)

In Section 2.1, we will show that the properties (1.16), (1.18) and (1.21) are
sufficient to obtain an asymptotic expression of GRW

1 (x). However, these proper-
ties are not good enough to fully control error terms arising from convolutions of
D∗n(x) and Πp(x) in (1.13). To overcome this difficulty, we assume the following
bound on the discrete derivative of the n-step transition probability:∣∣∣∣D∗n(x)− D∗n(x + y)+D∗n(x − y)

2

∣∣∣∣≤ O(Lα∧2)|||y|||2L
|||x|||d+α∧2+2

L

n

(1.24) [
|y| ≤ 1

3
|x|

]
.

Here is the summary of the properties of D that we use throughout the paper.

ASSUMPTION 1.1. The Z
d -symmetric 1-step distribution D satisfies the

properties (1.16), (1.18), (1.20), (1.21) and (1.24).

In Appendix, we will show that the following D satisfies all properties in the
above assumption:

D(x)=∑
t∈N

U∗t
L (x)Tα(t),(1.25)

where UL is in a class of Zd -symmetric distributions on Z
d ∩ [−L,L]d , and Tα is

the stable distribution on N with parameter α/2 �= 1.
Under the above assumption on D, we can prove the following theorem.
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THEOREM 1.2. Let α > 0, α �= 2 and

γα = �((d − α ∧ 2)/2)

2α∧2πd/2�((α ∧ 2)/2)
(1.26)

and assume all properties of D in Assumption 1.1. Then, for RW with d > α ∧ 2
and any L ≥ 1, and for SAW, percolation and the Ising model with d > dc and
L� 1, there are μ ∈ (0, α ∧ 2) and A= A(α,d,L) ∈ (0,∞) (A≡ 1 for random
walk) such that, as |x| →∞,

Gpc(x)= γα/vα

A|x|d−α∧2 +
O(L−α∧2+μ)

|x|d−α∧2+μ
.(1.27)

As a result, by [20], χp and θp exhibit the mean-field behavior (1.8). Moreover,
pc and A can be expressed in term of Πp in (1.13) as

pc = Π̂pc(0)−1, A= pc +
⎧⎪⎨
⎪⎩

0, [α < 2],
p2

c

σ 2

∑
x

|x|2Πpc(x), [α > 2].(1.28)

REMARK 1.3. (a) The finite-range models are formally considered as the
α =∞ model. Indeed, the leading term in (1.27) for α > 2 is identical to (1.6).

(b) Following the argument in [15, 24], we can “almost” prove Theorem 1.2 for
α > 2 without assuming the bounds on D∗n(x). The shortcoming is the restric-
tion d > 10, not d > 6, for percolation. This is due to the peculiar diagrammatic
estimate in [15], which we do not use in this paper.

(c) The asymptotic behavior of Gpc(x) in (1.6) or (1.27) is a key element for the
so-called 1-arm exponent to take on its mean-field value [16, 19, 21, 23]. For finite-
range critical percolation, for example, the probability that o ∈ Z

d is connected to
the surface of the d-dimensional ball of radius r centered at o is bounded above
and below by a multiple of r−2 in high dimensions [21]. The value of the exponent
may change in a peculiar way depending on the value of α [19].

(d) As described in (1.28), the constant A exhibits crossover between α < 2
and α > 2; in particular, A = pc for α < 2 [cf., (3.6) below]. According to some
rough computations, it seems that the asymptotic expression of Gpc(x) for α = 2
is a mixture of those for α < 2 and α > 2, with a logarithmic correction:

Gpc(x) ∼|x|→∞
γ2/v2

pc|x|d−2 log |x| .(1.29)

One of the obstacles to prove this conjecture is a lack of good control on convo-
lutions of the RW Green’s function and the lace-expansion coefficients for α = 2.
As hinted in the above expression, we may have to deal with logarithmic factors
more actively than ever. We are currently working in this direction.
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1.3. Notation and the organization. From now on, we distinguish GRW
p

from Gp for the other three models, and define

Sp =GRW
p .(1.30)

Here, and in the remainder of the paper, the spatial variables are sometimes omit-
ted. For example,

Sp = δ+ pD ∗ Sp(1.31)

is the abbreviated version of the convolution equation

Sp(x)= δo,x + (pD ∗ Sp)(x)= δo,x +
∑

y∈Zd

pD(y)Sp(x − y).(1.32)

We also recall the notation

|||x|||� = |x| ∨ �.(1.33)

The remainder of the paper is organized as follows. In Section 2, we prove the
asymptotic expression (1.27) for S1, as well as bounds on Sp for p ≤ 1 and some
basic properties of Gp for p ≤ pc. Then, by using these facts and the diagrammatic
bounds on the lace-expansion coefficients in [18, 24], we prove (1.27) for Gpc in
Section 3.

2. Preliminaries. In this section, we derive the asymptotic expression (1.27)
for S1, which will be restated as Proposition 2.1, and prove some properties of Gp

that will be used to prove Theorem 1.2 in Section 3.

2.1. Asymptotics of Sp .

PROPOSITION 2.1. Let α > 0, α �= 2 and d > α∧2, and assume all properties
but (1.24) in Assumption 1.1. Then there is a μ ∈ (0, α ∧ 2) such that, for any
L≥ 1, p ≤ 1 and κ > 0,

δo,x ≤ Sp(x)≤ δo,x + O(L−α∧2)

|||x|||d−α∧2
L

[∀x ∈ Z
d],(2.1)

S1(x)= γα/vα

|x|d−α∧2 +
O(L−α∧2+μ)

|x|d−α∧2+μ

[|x|> L1+κ ],(2.2)

where a constant in the O(L−α∧2+μ) term depends on κ .
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PROOF. Inequality (2.1) is an immediate result of (1.31), p ≤ 1 and (1.20)–
(1.21) as5

0 ≤ Sp(x)− δo,x

≤
∞∑

n=1

D∗n(x)

(2.3)

≤ O(Lα∧2)

|||x|||d+α∧2
L

(|||x|||L/L)α∧2∑
n=1

n+O
(
L−d) ∞∑

n=(|||x|||L/L)α∧2

n−d/(α∧2)

= O(L−α∧2)

|||x|||d−α∧2
L

.

To prove the asymptotic expression (2.2), we first rewrite S1(x) for d > α∧2 as

S1(x)=
∫
[−π,π ]d

ddk

(2π)d

e−ik·x

1− D̂(k)

=
∫ ∞

0
dt

∫
[−π,π ]d

ddk

(2π)d
e−ik·x−t (1−D̂(k))(2.4)

=
∫ ∞
T

dt

∫
[−π,π ]d

ddk

(2π)d
e−ik·x−t (1−D̂(k)) + I1

for any T ∈ (0,∞), where

I1 =
∫ T

0
dt

∫
[−π,π ]d

ddk

(2π)d
e−ik·x−t (1−D̂(k))

(2.5)

=
∫ T

0
dt e−t

∞∑
n=0

tn

n!D
∗n(x).

Next, we rewrite the large-t integral as

∫ ∞
T

dt

∫
[−π,π ]d

ddk

(2π)d
e−ik·x−t (1−D̂(k)) =

∫ ∞
0

dt pvαt (x)+
5∑

j=2

Ij ,(2.6)

5For α = 2, we can readily bound Sp(x)−δo,x by using (1.19) for n≥Nx ≡ |||x|||2L/(L2 log |||x|||L)

and (1.21) for n < Nx as

Sp(x)− δo,x ≤
Nx−1∑
n=1

D∗n(x)+
∞∑

n=Nx

D∗n(x)≤ O(L−2)

|||x|||d−2
L log |||x|||L

.
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where ps(x) is the transition density of an α-stable/Gaussian process [cf., (1.23)],
and for any R ∈ (0, π),

I2 =−
∫ T

0
dt pvαt (x)≡−

∫ T

0
dt

∫
Rd

ddk

(2π)d
e−ik·x−vαt |k|α∧2

,(2.7)

I3 =
∫ ∞
T

dt

∫
|k|≤R

ddk

(2π)d
e−ik·x(e−t (1−D̂(k)) − e−vαt |k|α∧2)

,(2.8)

I4 =
∫ ∞
T

dt

∫
[−π,π ]d

ddk

(2π)d
e−ik·x−t (1−D̂(k))1{|k|>R},(2.9)

I5 =−
∫ ∞
T

dt

∫
|k|>R

ddk

(2π)d
e−ik·x−vαt |k|α∧2

.(2.10)

By using the identity∫ ∞
0

dt e−vαt |k|α∧2

(2.11)

= 1

vα|k|α∧2 =
1

vα�((α ∧ 2)/2)

∫ ∞
0

dt t ((α∧2)/2)−1e−|k|2t ,

we obtain∫ ∞
0

dt pvαt (x)

= 1

vα�((α ∧ 2)/2)

∫ ∞
0

dt t ((α∧2)/2)−1
∫
Rd

ddk

(2π)d
e−|k|2t−ik·x(2.12)

= γα/vα

|x|d−α∧2 .

As a result, we arrive at

S1(x)= γα/vα

|x|d−α∧2 +
5∑

j=1

Ij .(2.13)

It remains to estimate
∑5

j=1 Ij . First, by (1.21) and (1.23), we can estimate
I1 + I2 for |x|> L as

|I1 + I2| ≤ O(Lα∧2)

|x|d+α∧2

∫ T

0
dt t ≤ O(Lα∧2)T 2

|x|d+α∧2 .(2.14)

Let

μ= 2(α ∧ 2)ε

d + α ∧ 2+ ε
, T =

( |x|
L

)α∧2−μ/2

.(2.15)
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Then we obtain

|I1 + I2| ≤ O(L−α∧2+μ)

|x|d−α∧2+μ
.(2.16)

Next, we estimate I3. For small R, whose value will be determined shortly, we
use (1.18) to obtain∣∣e−t (1−D̂(k)) − e−vαt

∣∣k|α∧2 | ≤O
(
Lα∧2+ε)t |k|α∧2+εe−vαt |k|α∧2

.(2.17)

Therefore, by (2.15),

|I3| ≤O
(
Lα∧2+ε) ∫ ∞

T
dt t

∫
|k|≤R

ddk|k|α∧2+εe−vαt |k|α∧2

=O
(
Lα∧2+ε) ∫ ∞

T
dt t

∫ vαtRα∧2

0

dr

r

(
r

vαt

)(d+α∧2+ε)/(α∧2)

e−r

(2.18)
≤O

(
Lα∧2+ε) ∫ ∞

T
dt t (vαt)−(d+α∧2+ε)/(α∧2)

≤O
(
L−d)T 1−((d+ε)/(α∧2)) = O(L−α∧2+μ)

|x|d−α∧2+μ
.

Finally we estimate I4 + I5 and determine the value of R during the course.
First, by (1.18)–(1.20), we have

|I4| ≤
∫ ∞
T

dt

∫
[−π,π ]d

ddk

(2π)d
e−t (1−D̂(k))1{|k|>R}

× (1{‖k‖∞<L−1} + 1{‖k‖∞≥L−1})
(2.19)

≤
∫ ∞
T

dt

(∫
|k|>R

ddk

(2π)d
e−tc(L|k|)α∧2 +O(1)e−t�

)

≤O
(
L−d) ∫ ∞

T
dt t−d/(α∧2)�

(
d

α ∧ 2
; tc(LR)α∧2

)
+O(1)e−T �,

where �(a;x) ≡ ∫∞
x dt ta−1e−t is the incomplete gamma function, which is

bounded by O(xa−1)e−x for large x. Here, we choose R to satisfy

tc(LR)α∧2 = 2ε

α ∧ 2
log t.(2.20)

Then, for large t ,

�

(
d

α ∧ 2
; tc(LR)α∧2

)

≤O
((

tc(LR)α∧2)(d/(α∧2))−1)
e−tc(LR)α∧2

(2.21)

=O
(
(log t)(d/(α∧2))−1)t−(2ε)/(α∧2) ≤O

(
t−ε/(α∧2)).
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Therefore, again by (2.15) [cf., (2.18)],

O
(
L−d) ∫ ∞

T
dt t−d/(α∧2)�

(
d

α ∧ 2
; tc(LR)α∧2

)
(2.22)

≤O
(
L−d)T 1−((d+ε)/(α∧2)) = O(L−α∧2+μ)

|x|d−α∧2+μ
.

We can estimate I5 in exactly the same way. The exponentially decaying term
in (2.19) obeys the same bound, since, for sufficiently large N (depending on κ),

e−T � ≤
∃cN

T N
= cNL−dT 1−((d+ε)/(α∧2))LdT −(N+1−((d+ε)/(α∧2)))

≤ cNL−dT 1−((d+ε)/(α∧2))Ld−(N+1−((d+ε)/(α∧2)))(α∧2−μ/2)κ

(2.23) [
∵ |x|> L1+κ ⇒ T > L(α∧2−μ/2)κ ]

≤ cNL−dT 1−((d+ε)/(α∧2)) = O(L−α∧2+μ)

|x|d−α∧2+μ
.

Summarizing the above, we obtain that, for |x|> L1+κ ,∣∣∣∣∣
5∑

j=1

Ij

∣∣∣∣∣≤ O(L−α∧2+μ)

|x|d−α∧2+μ
.(2.24)

This together with (2.13) completes the proof of Proposition 2.1. �

2.2. Basic properties of Gp . In this subsection, we summarize some basic
properties of Gp . Roughly speaking, those properties are the continuity up to
p = pc (Lemma 2.2), the RW bound that is optimal for p ≤ 1 (Lemma 2.3) and
the a priori bound that is not sharp but finite as long as p < pc (Lemma 2.4). We
will use them in the next section (especially in Section 3.2) to prove Theorem 1.2.

LEMMA 2.2. For every x ∈ Z
d , Gp(x) is nondecreasing and continuous in

p < pc for SAW, and in p ≤ pc for percolation and the Ising model. The conti-
nuity up to p = pSAW

c for SAW is also valid if GSAW
p (x) is uniformly bounded in

p < pSAW
c .

PROOF. For SAW, since GSAW
p (x) is a power series of p ≥ 0 with nonnegative

coefficients, it is nondecreasing and continuous in p < pSAW
c . The continuity up to

p = pSAW
c under the hypothesis is due to monotone convergence.

For the Ising model, we first note that, by Griffiths’ inequality [12], 〈ϕoϕx〉β,� is
nondecreasing and continuous in β ≥ 0 and nondecreasing in �⊂ Z

d . Therefore,
the infinite-volume limit G

Ising
p (x) is nondecreasing and left-continuous in p ≥ 0.

The continuity in p ≤ p
Ising
c follows from the fact that, for p < p

Ising
c , G

Ising
p (x)
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coincides with the decreasing limit of the finite-volume two-point function under
the “plus-boundary” condition, which is right-continuous in p ≥ 0.

For percolation, G
perc
p (x) is nondecreasing in p ≥ 0 because the event that there

is a path of occupied bonds from o to x is an increasing event. The continuity in
p ≥ 0 is obtained by following the same strategy as explained above for the Ising
model and using the fact that there is at most one infinite occupied cluster for all
p ≥ 0. This completes the proof of Lemma 2.2. �

LEMMA 2.3. For every p < pc and x ∈ Z
d ,

Gp(x)≤ Sp(x), pD(x)(1− δo,x)≤Gp(x)− δo,x ≤ (pD ∗Gp)(x).(2.25)

PROOF. The first inequality for p > 1 ≡ pRW
c is trivial since Sp(x) =∞ for

every x ∈ Z
d . On the other hand, the first inequality for p ≤ 1 is obtained by using

the second inequality N times and then using (1.20), as

Gp(x)≤
N−1∑
n=0

pnD∗n(x)+ pN (
D∗N ∗Gp

)
(x)

(2.26)
≤ Sp(x)+ ∥∥D∗N∥∥∞χp →

N↑∞Sp(x).

It remains to prove the second inequality in (2.25). In fact, it suffices to prove the
inequality only for x �= o, since Gp(o)= 1 for all three models and therefore the
inequality is trivial for x = o. For SAW and percolation, the inequality is obtained
by specifying the first step pD and then using subadditivity for SAW or the BK
inequality for percolation [26]. For the Ising model, we use the following random-
current representation [1, 13] (see also [24], Section 2.1):

〈ϕoϕx〉β,� =
∑

∂n={o}�{x}w�(n)∑
∂n=∅ w�(n)

, w�(n)= ∏
{u,v}⊂�

(βJu,v)
nu,v

nu,v! ,(2.27)

where n ≡ {nu,v} is a collection of Z+-valued undirected bond variables (i.e.,
nu,v = nv,u ∈ Z+ ≡ {0} ∪ N for each bond {u, v} ⊂ �), ∂n is the set of vertices
y such that

∑
z∈� ny,z is an odd number, and “�” represents symmetric difference

(i.e., {o}�{x} = ∅ if x = o, otherwise {o}�{x} = {o, x}). Using this representa-
tion, we prove below that, for x �= o,

pD(x)≤ 〈ϕoϕx〉β,� ≤
∑
y∈�

pD(y)〈ϕyϕx〉β,�,(2.28)

where pD(x)= tanh(βJo,x). The second inequality in (2.25) for the Ising model
is the infinite-volume limit of the above inequality.

To prove the lower bound of (2.28), we first specify the parity of no,x to obtain
that, for x �= o (so that {o}�{x} = {o, x}),

〈ϕoϕx〉β,� =
∑

∂n={o,x},(no,x odd) w�(n)+∑
∂n={o,x},(no,x even) w�(n)∑

∂n=∅,(no,x odd) w�(n)+∑
∂n=∅,(no,x even) w�(n)

.(2.29)
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Let

Ỹy(z, x)≡ ∑
∂n={z}�{x}
(no,y even)

w�(n), Z̃y ≡
∑

∂n=∅
(no,y even)

w�(n).(2.30)

Then, by changing the parity of no,x (and the constraint on ∂n accordingly) and
recalling tanh(βJo,x)= pD(x), we obtain∑

∂n={o,x}
(no,x odd)

w�(n)= pD(x)
∑

∂n=∅
(no,x even)

w�(n)= pD(x)Z̃x,(2.31)

∑
∂n=∅

(no,x odd)

w�(n)= pD(x)
∑

∂n={o,x}
(no,x even)

w�(n)= pD(x)Ỹx(o, x),(2.32)

hence

〈ϕoϕx〉β,� = pD(x)Z̃x + Ỹx(o, x)

pD(x)Ỹx(o, x)+ Z̃x
(2.33)

= pD(x)+ (1− p2D(x)2)Ỹx(o, x)

pD(x)Ỹx(o, x)+ Z̃x

≥ pD(x).

To prove the upper bound in (2.28), we first note that, if ∂n= {o, x}, then there
must be at least one y ∈� such that no,y is an odd number. By similar computation
to (2.31), we obtain that, for x �= o,∑

∂n={o,x}
w�(n) ≤ ∑

y∈�

∑
∂n={o,x}
(no,y odd)

w�(n)

(2.34)
= ∑

y∈�

pD(y)
∑

∂n={y}�{x}
(no,y even)

w�(n)

︸ ︷︷ ︸
Ỹy (y,x)

.

Moreover, Ỹy(y, x)≤∑
∂n={y}�{x}w�(n) for any y ∈�. Therefore, for x �= o,

〈ϕoϕx〉β,� ≡
∑

∂n={o,x}w�(n)∑
∂n=∅ w�(n)

≤ ∑
y∈�

pD(y)Ỹy(y, x)∑
∂n=∅ w�(n)

(2.35)

≤ ∑
y∈�

pD(y)〈ϕyϕx〉β,�.

This completes the proof of (2.28), hence the proof of Lemma 2.3. �
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LEMMA 2.4. Assume the property (1.16) in Assumption 1.1. Then, for every
α > 0 and p < pc, there is a Kp =Kp(α, d,L) <∞ such that, for any x ∈ Z

d ,

Gp(x)≤Kp|||x|||−d−α
L .(2.36)

REMARK 2.5. This together with the lower bound in (2.25) implies that, for
every p < pc, Gp(x) is bounded above and below by a p-dependent multiple
of |||x|||−d−α

L . This shows sharp contrast to the exponential decay of Gp(x) for the
finite-range models.

PROOF OF LEMMA 2.4. Since Gp(o) ≤ χp < ∞ for p < pc, it suffices to
prove (2.36) for x �= o. We follow the idea of the proof of [4], Lemma 5.2, for
one-dimensional long-range percolation and extend it to those three models in gen-
eral dimensions. The key ingredient is the following Simon–Lieb type inequality:
for 0 < � < |x|,

Gp(x)≤ ∑
{u,v}⊂Zd

(|u|≤�<|v|)

Gp(u)pD(v − u)Gp(x − v).(2.37)

For SAW and percolation, this is a result of subadditivity or the BK inequality (cf.,
e.g., [14, 22]). For the Ising model, this is obtained by using the random-current
representation (2.27) and a restricted version of the source-switching lemma [24],
Lemma 2.3, as follows. Let Z� =∑

∂n=∅ w�(n) such that, for x �= o,

〈ϕoϕx〉β,� =
∑

∂n={o,x}

w�(n)

Z�

.(2.38)

We note that, if ∂n = {o, x}, then there is a path ω = (ω0,ω1, . . . ,ωt ) ⊂ � from
ω0 = o to ωt = x such that nωs−1,ωs is odd for every s ∈ {1, . . . , t}; moreover, there
is a unique τ ∈ {1, . . . , t} such that |ωτ−1| ≤ � < |ωτ | (i.e., τ is the first time when
ω crosses the surface of the ball B� of radius � centered at the origin). This can be
restated as follows: if ∂n= {o, x}, then there is a bond {u, v} ⊂� such that nu,v is
odd and that u is connected from o with a path of bonds ⊂ B� with odd numbers.
Therefore,

〈ϕoϕx〉β,� ≤
∑

{u,v}⊂�

(|u|≤�<|v|)

∑
∂n={o,x}

w�(n)

Z�

1{nu,v odd}1{o←→
n

u in B�},(2.39)

where {o←→
n

u in B�} is the event that o is connected to u with a path of bonds

b ⊂ B� satisfying nb > 0. Multiplying ZB�
/ZB�

≡ 1 to both sides of (2.39) and
using the identity ZB�

=∑
∂m=∅ wB�

(m), we obtain

〈ϕoϕx〉β,� ≤
∑

{u,v}⊂�

(|u|≤�<|v|)

∑
∂m=∅

∂n={o,x}

wB�
(m)

ZB�

w�(n)

Z�

1{nu,v odd}1{o←→
m+n

u in B�},(2.40)
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where we have used the trivial inequality 1{o←→
n

u in B�} ≤ 1{o←→
m+n

u in B�}. Then,

by using the source-switching lemma [24], Lemma 2.3, we obtain

〈ϕoϕx〉β,� ≤
∑

{u,v}⊂�

(|u|≤�<|v|)

∑
∂m={o}�{u}

∂n={u,x}

wB�
(m)

ZB�

w�(n)

Z�

1{nu,v odd}1{o←→
m+n

u in B�}

(2.41)

= ∑
{u,v}⊂�

(|u|≤�<|v|)

〈ϕoϕu〉β,B�

∑
∂n={u,x}
(nu,v odd)

w�(n)

Z�

,

where we have used the identity 1{o←→
m+n

u in B�} = 1 given ∂m= {o}�{u} and then

used (2.27). Finally, by following the same argument as in (2.34)–(2.35) and then
taking the infinite-volume limit, we obtain (2.37) for the Ising model.

Now we prove (2.36) by using (2.37) with �= 1
3 |x| (the factor 1

3 is unimportant
as long as it is less than 1

2 ). Let

cx =
∑

{u,v}⊂Zd

(|u|≤(1/3)|x|<|v|)

Gp(u)D(v − u).(2.42)

We note that cx → 0 as |x| →∞, because

cx =
∑

{u,v}⊂Zd

(|u|≤(1/4)|x|,(1/3)|x|<|v|)

Gp(u)pD(v − u)

+ ∑
{u,v}⊂Zd

((1/4)|x|<|u|≤(1/3)|x|<|v|)

Gp(u)pD(v − u)(2.43)

≤ χpp sup
u : |u|≤(1/4)|x|

∑
v : |v|>(1/3)|x|

D(v − u)

︸ ︷︷ ︸
O(|x|−α)

+p
∑

u : |u|>(1/4)|x|
Gp(u)

︸ ︷︷ ︸
Tail of χp<∞

.

Therefore, for any ε ∈ (0,1), there is an �̃ ∈ [L,∞) such that 2d+αcxp ≤ ε for all
|x| ≥ �̃. Then, for |x| ≥ �̃, (2.37) implies

Gp(x)≤ ∑
{u,v}⊂Zd

(|u|≤(1/3)|x|<|v|≤(1/2)|x|)

Gp(u)pD(v − u)Gp(x − v)

+ ∑
{u,v}⊂Zd

(|u|≤(1/3)|x|,|v|>(1/2)|x|)

Gp(u)pD(v − u)Gp(x − v)(2.44)
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≤ cxp sup
v : |v|≤(1/2)|x|

Gp(x − v)+ χ2
pp sup

{u,v}⊂Zd

(|u|≤(1/3)|x|,|v|>(1/2)|x|)

D(v − u)

≤ 2−d−αε sup
v : |v|>(1/2)|x|

Gp(v)+ Cp

|||x|||d+α
L

for some Cp =O(χ2
p). If 2�̃≤ |x|< 4�̃, then we use (2.44) twice to obtain

Gp(x) ≤ (
2−d−αε

)2 sup
v : |v|>(1/4)|x|

Gp(v)

+ 2−d−αε
Cp

|||x/2|||d+α
L

+ Cp

|||x|||d+α
L

(2.45)

= (
2−d−αε

)2 sup
v : |v|>(1/4)|x|

Gp(v)+ (1+ ε)
Cp

|||x|||d+α
L

.

In general, if 2n−1�̃≤ |x|< 2n�̃ for some n ∈ N, then we repeatedly use (2.44) to
obtain

Gp(x)≤ (
2−d−αε

)n sup
v : |v|>(1/2n)|x|

Gp(v)

+ (
1+ ε+ · · · + εn−1) Cp

|||x|||d+α
L

(2.46)

≤ �̃d+α

|||x|||d+α
L

χp + Cp

(1− ε)|||x|||d+α
L

.

For |x| < �̃, we use the trivial inequality Gp(x) ≤ χp ≤ �̃d+αχp/|||x|||d+α
L . This

completes the proof of (2.36), where Kp = �̃d+αχp +Cp/(1− ε). �

3. Proof of the main result. In this section, we prove the asymptotic behav-
ior (1.27) of Gpc in high dimensions. To do so, we show in Section 3.2 that, if
d > dc and L� 1, then Gp for p ≤ pc obeys the same bound as in (2.1) on Sp for
p ≤ 1. Then, in Section 3.3, we show that the obtained infrared bound on Gpc im-
plies its asymptotic expression (1.27). The proofs rely on the lace expansion (1.12)
for Gp .

3.1. Bounds on Πp assuming the infrared bound on Gp . In this subsection,
we assume the infrared bound on Gp and prove bounds on Πp and related quan-
tities, such as its sum Π̂p(0)≡∑

x Πp(x), in high dimensions. Before stating this
more precisely, we need introduce the following parameter for α > 0, α �= 2 and
d > α ∧ 2 [cf., (2.1)]:

λ= sup
x �=o

S1(x)

|||x|||α∧2−d
L

=O
(
L−α∧2).(3.1)
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PROPOSITION 3.1. Let α > 0, α �= 2 and d > dc, and assume the properties
(1.16) and (1.18) in Assumption 1.1. Suppose that

p ≤ 3, Gp(x)≤ 3λ|||x|||α∧2−d
L [x �= o].(3.2)

If λ� 1 (i.e., L� 1), then, for any x ∈ Z
d ,

(pD ∗Gp)(x)≤O(λ)|||x|||α∧2−d
L ,(3.3) ∣∣Πp(x)− δo,x

∣∣≤O
(
L−d)δo,x +O

(
λ�)|||x|||(α∧2−d)�

L ,(3.4)

where �= 2 for percolation and �= 3 for SAW and the Ising model. As a result,

Π̂p(0)= 1+O
(
L−d),(3.5)

∇̄α∧2Π̂p(0)≡ lim|k|→0

Π̂p(0)− Π̂p(k)

1− D̂(k)
(3.6)

=
⎧⎪⎨
⎪⎩

0, [α < 2],
1

σ 2

∑
x

|x|2Πp(x)=O
(
L−d(�−1)), [α > 2].

We prove this proposition by using the following lemma, which is an improved
version of [18], Proposition 1.7.

LEMMA 3.2. (i) For any a ≥ b > 0 with a+ b > d , there is an L-independent
constant C =C(a, b, d) <∞ such that

∑
y∈Zd

|||x − y|||−a
L |||y|||−b

L ≤
{

CLd−a|||x|||−b
L , [a > d],

C|||x|||d−a−b
L , [a < d].(3.7)

(ii) Let f and g be functions on Z
d , with g being Z

d -symmetric. Suppose that
there are C1,C2,C3 > 0 and ρ > 0 such that

f (x)=C1|||x|||α∧2−d
L ,

∣∣g(x)
∣∣≤ C2δo,x +C3|||x|||−d−ρ

L .(3.8)

Then there is a ρ′ ∈ (0, ρ ∧ 2) such that, for d > α ∧ 2,

(f ∗ g)(x)= C1‖g‖1

|||x|||d−α∧2
L

+ O(C1C3)

|||x|||d−α∧2+ρ′
L

.(3.9)

PROOF OF PROPOSITION 3.1. First, we note that

D(x)= O(Lα)

|||x|||d+α
L

= O(Lα)|||x|||−α−α∧2
L

|||x|||d−α∧2
L

≤ O(λ)

|||x|||d−α∧2
L

.(3.10)

We also note that the identity Gp(y) = δo,y + Gp(y)1{y �=o} holds for all three
models. Therefore, by using the assumed bound (3.2) and Lemma 3.2(i), we ob-
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FIG. 1. The left figure is an example of the lace-expansion diagrams for percolation, and the right
one is for SAW and the Ising model. The number � of disjoint paths from o to x using different sets of
line segments is 2 in the left figure and 3 in the right figure.

tain (3.3) as

(D ∗Gp)(x)=D(x)+∑
y �=o

D(x − y)Gp(y)

≤ O(λ)

|||x|||d−α∧2
L

+ ∑
y∈Zd

O(Lα)

|||x − y|||d+α
L

3λ

|||y|||d−α∧2
L

(3.11)

≤ O(λ)

|||x|||d−α∧2
L

.

Inequality (3.4) is obtained by repeatedly applying (3.2)–(3.3) and
Lemma 3.2(i) to the diagrammatic bounds on Πp(x) in [18, 24] (Πp(x) in this
paper equals δo,x +�z(x) in [18], Proposition 1.8), where � is the number of dis-
joint paths in the diagrams from o to x (cf., Figure 1). The proof is quite similar
to [18], Proposition 1.8 and [24], Proposition 3.1; the only difference is the use
of ||| · |||L instead of ||| · |||1 and Lemma 3.2(i). Because of this, we gain the factor
O(L−d)(=O(λ)|||o|||α∧2−d

L ) in (3.4), which is much smaller than O(λ) as claimed
in [18, 24].

It remains to prove (3.5)–(3.6). By (3.4), we readily obtain (3.5) as

Π̂p(0)≡ ∑
x∈Zd

Πp(x)= 1+O
(
L−d)+O

(
L−d(�−1))= 1+O

(
L−d).(3.12)

Moreover,∣∣Π̂p(0)− Π̂p(k)
∣∣

(3.13)
≡

∣∣∣∣ ∑
x∈Zd

(
1− cos(k · x)

)
Πp(x)

∣∣∣∣≤O
(
λ�) ∑

x∈Zd

1− cos(k · x)

|||x|||(d−α∧2)�
L

.

If α < 2, then there is a δ ∈ (0, (2−α)∧((�−1)(d−dc))) such that 1−cos(k ·x)≤
O(|k · x|α+δ), hence∣∣Π̂p(0)− Π̂p(k)

∣∣
≤O

(|k|α+δ)(L−d�
∑

x : |x|≤L

|x|α+δ +L−α�
∑

x : |x|>L

|x|α+δ

|x|(d−α)�

)
(3.14)

=O
(
L−d(�−1)+α+δ)|k|α+δ.
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If α > 2, then there is a δ ∈ (0,2 ∧ ((�− 1)(d − dc))) such that 1− cos(k · x)=
1
2 |k · x|2 +O(|k · x|2+δ) and, therefore,

Π̂p(0)− Π̂p(k)

= 1

2

∑
x∈Zd

|k · x|2Πp(x)+O
(
L−2�)|k|2+δ

∑
x∈Zd

|x|2+δ

|||x|||(d−2)�
L

(3.15)

= |k|2
2d

∑
x∈Zd

|x|2Πp(x)+O
(
L−d(�−1)+2+δ)|k|2+δ.

Then, by the above estimates and (1.18), we obtain

Π̂p(0)− Π̂p(k)

1− D̂(k)

(3.16)

=

⎧⎪⎪⎨
⎪⎪⎩

O
(
L−d(�−1)+δ

)|k|δ, [α < 2],
1

σ 2

∑
x

|x|2Πp(x)+O
(
L−d(�−1)+δ)|k|δ, [α > 2],

hence (3.6) by taking |k| → 0. This completes the proof of Proposition 3.1. �

PROOF OF LEMMA 3.2. The proof of (3.7) is almost identical to that of [18],
Proposition 1.7(i). However, since we are using ||| · |||L rather than ||| · |||1 as in [18],
we can gain the extra factor Ld−a for a > d in (3.7). To clarify this, we include the
proof here. First of all, since a ≥ b, we have∑

y∈Zd

|||x − y|||−a
L |||y|||−b

L

≤ ∑
y : |x−y|≤|y|

|||x − y|||−a
L |||y|||−b

L + ∑
y : |x−y|>|y|

|||x − y|||−a
L |||y|||−b

L(3.17)

≤ 2
∑

y : |x−y|≤|y|
|||x − y|||−a

L |||y|||−b
L .

Since |x − y| ≤ |y| implies |y| ≥ 1
2 |x|, we obtain that, for a > d ,∑

y : |x−y|≤|y|
|||x − y|||−a

L |||y|||−b
L

≤ 2b|||x|||−b
L

∑
y∈Zd

|||x − y|||−a
L(3.18)

= C

2
Ld−a|||x|||−b

L .
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For a < d , on the other hand, we use the identity 1= 1{|y|≤(3/2)|x|} + 1{|y|>(3/2)|x|}
and the fact that |y|> 3

2 |x| implies |x − y| ≥ 1
3 |y|. Then we obtain∑

y : |x−y|≤|y|
|||x − y|||−a

L |||y|||−b
L

≤ 2b|||x|||−b
L

∑
y : |x−y|≤|y|

|||x − y|||−a
L 1{|y|≤(3/2)|x|}

+ 3a
∑

y : |x−y|≤|y|
|||y|||−a−b

L 1{|y|>(3/2)|x|}

(3.19)
≤ 2b|||x|||−b

L

∑
y : |x−y|≤(3/2)|x|

|||x − y|||−a
L

+ 3a
∑

y : |y|>(3/2)|x|
|||y|||−a−b

L

≤ C

2
|||x|||d−a−b

L .

This completes the proof of (3.7).
The proof of (3.9) is also quite similar to that of [18], Proposition 1.7(ii), where

[18], (5.8), is used. However, [18], (5.8), is valid only for d > 4, not d > 2 as
claimed in [18], Proposition 1.7(ii). In fact, it is not difficult to avoid this problem,
and we include the proof here to clarify this. First, we note that

(f ∗ g)(x)= ‖g‖1f (x)+ ∑
y∈Zd

g(y)
(
f (x − y)− f (x)

)
.(3.20)

To prove (3.9), it suffices to show that the sum in the right-hand side is the error
term in (3.9). For that, we split the sum into the following three sums:∑

y∈Zd

= ∑
y : |y|≤(1/3)|x|

+ ∑
y : |x−y|≤(1/3)|x|

+ ∑
y : |y|∧|x−y|>(1/3)|x|

(3.21)
≡∑

y

′ +∑
y

′′ +∑
y

′′′
.

It is not difficult to estimate the last two sums, as∣∣∣∣∑
y

′′
g(y)

(
f (x − y)− f (x)

)∣∣∣∣
≤ O(C3)

|||x|||d+ρ
L

∑
y : |x−y|≤(1/3)|x|

(
f (x − y)+ f (x)

)
(3.22)

≤ O(C1C3)

|||x|||d−α∧2+ρ
L
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and ∣∣∣∣∑
y

′′′
g(y)

(
f (x − y)− f (x)

)∣∣∣∣
≤ O(C1)

|||x|||d−α∧2
L

∑
y : |y|>(1/3)|x|

C3

|||y|||d+ρ
L

(3.23)

≤ O(C1C3)

|||x|||d−α∧2+ρ
L

.

To estimate the sum
∑′

y , we use the Z
d -symmetry of g to obtain∑

y

′
g(y)

(
f (x − y)− f (x)

)
(3.24)

= ∑
y : 0<|y|≤(1/3)|x|

g(y)

(
f (x + y)+ f (x − y)

2
− f (x)

)
.

Notice that ∣∣∣∣f (x + y)+ f (x − y)

2
− f (x)

∣∣∣∣
(3.25)

≤ O(C1)

|||x|||d−α∧2
L

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1,

[
|x| ≤ 3

2
L

]
,

|y|2/|x|2,
[
|x| ≥ 3

2
L

]
.

To verify this for |x| ≤ 3
2L, we simply bound each f by O(C1)|||x|||α∧2−d

L . For
|x| ≥ 3

2L, since |x ± y| ≥ |x| − |y| ≥ 2
3 |x| ≥ L, we have f (x ± y) = C1|x ±

y|α∧2−d . Then, by Taylor’s theorem, since |±2 x·y
|x|2 + |y|4

|x|4 | ≤ 7
9 < 1, we have

|x ± y|α∧2−d = |x|α∧2−d

(
1± 2

x · y
|x|2 +

|y|4
|x|4

)(α∧2−d)/2

(3.26)

= |x|α∧2−d

(
1∓ (d − α ∧ 2)

x · y
|x|2 +O

( |y|2
|x|2

))

and (3.25) follows. Therefore, if |x| ≤ 3
2L, then |y| ≤ 1

2L and we obtain∣∣∣∣∑
y

′
g(y)

(
f (x − y)− f (x)

)∣∣∣∣≤ O(C1)

|||x|||d−α∧2
L

∑
y : 0<|y|≤(1/2)L

C3

Ld+ρ

(3.27)

≤ O(C1C3)

|||x|||d−α∧2+ρ
L

.
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If |x| ≥ 3
2L, then |||x|||L = |x| and we obtain∣∣∣∣∑

y

′
g(y)

(
f (x − y)− f (x)

)∣∣∣∣
≤ O(C1)

|||x|||d−α∧2+2
L

∑
y : 0<|y|≤(1/3)|x|

|y|2
(

C31{|y|≤L}
Ld+ρ

+ C31{|y|>L}
|y|d+ρ

)
(3.28)

≤ O(C1C3)

|||x|||d−α∧2+2
L

×
⎧⎪⎨
⎪⎩

L−ρ+2, [ρ > 2],
log |x|, [ρ = 2],
|x|2−ρ, [ρ < 2].

Summarizing the above yields (3.9). This completes the proof of Lemma 3.2. �

3.2. Proof of the infrared bound on Gp . In this subsection, we prove that the
hypothesis of Proposition 3.1 indeed holds for p ≤ pc in high dimensions. The
precise statement is the following.

THEOREM 3.3. Let α > 0, α �= 2 and d > dc, and assume the proper-
ties (1.16), (1.18) and (1.24) in Assumption 1.1. Then, for L� 1 and p ≤ pc,

Gp(x)≤O
(
L−α∧2)|||x|||α∧2−d

L [x �= o].(3.29)

PROOF. Let

gp = p ∨ sup
x �=o

Gp(x)

λ|||x|||α∧2−d
L

,(3.30)

where we recall the definition (3.1) of λ. Suppose that the following properties
hold:

(i) gp is continuous (and nondecreasing) in p ∈ [1,pc).
(ii) g1 ≤ 1.

(iii) If λ� 1 (i.e., L� 1), then gp ≤ 3 implies gp ≤ 2 for every p ∈ (1,pc).

If the above properties hold, then in fact gp ≤ 2 for all p < pc, as long as d > dc

and λ� 1. In particular, Gp(x)≤ 2λ|||x|||α∧2−d
L for all x �= o and p < pc (≤ 2). By

Lemma 2.2, we can extend this bound up to p = pc, hence the proof completed.
Now we verify those properties (i)–(iii).

Verification of (i). It suffices to show that, for every p0 ∈ (1,pc),
supx �=o Gp(x)/|||x|||α∧2−d

L is continuous in p ∈ [1,p0]. By the monotonicity
of Gp(x) in p ≤ p0 and using Lemma 2.4, we have

Gp(x)

|||x|||α∧2−d
L

≤ Gp0(x)

|||x|||α∧2−d
L

≤ Kp0 |||x|||−d−α
L

|||x|||α∧2−d
L

= Kp0

|||x|||α+α∧2
L

.(3.31)



CRITICAL TWO-POINT FUNCTIONS FOR LONG-RANGE MODELS 663

On the other hand, for any x0 �= o with D(x0) > 0, there exists an R =R(p0, x0) <

∞ such that, for all |x| ≥R,

Kp0

|||x|||α+α∧2
L

≤ D(x0)

|||x0|||α∧2−d
L

.(3.32)

Moreover, by using p ≥ 1 and the lower bound of the second inequality in (2.25),
we have

D(x0)

|||x0|||α∧2−d
L

≤ pD(x0)

|||x0|||α∧2−d
L

≤ Gp(x0)

|||x0|||α∧2−d
L

.(3.33)

As a result, for any p ∈ [1,p0], we obtain

sup
x �=o

Gp(x)

|||x|||α∧2−d
L

= Gp(x0)

|||x0|||α∧2−d
L

∨ max
x : 0<|x|<R

Gp(x)

|||x|||α∧2−d
L

.(3.34)

Since Gp(x) is continuous in p (cf., Lemma 2.2) and the maximum of finitely
many continuous functions is continuous, we can conclude that gp is continuous
in p ∈ [1,p0], as required.

Verification of (ii). By the first inequality in (2.25) and the definition (3.1) of λ,
we readily obtain

g1 = 1∨ sup
x �=o

G1(x)

λ|||x|||α∧2−d
L

≤ 1∨ sup
x �=o

S1(x)

λ|||x|||α∧2−d
L

= 1(3.35)

as required.

Verification of (iii). If d > dc, λ � 1 and gp ≤ 3, then, by Proposition 3.1,
Πp satisfies (3.4)–(3.6) as well as (3.16). We use these estimates and the lace
expansion to prove gp ≤ 2 as follows.

First, we recall (1.12) and (1.31):

Gp =Πp +Πp ∗ pD ∗Gp, Sp = δ + pD ∗ Sp,(3.36)

or equivalently

Πp =Gp ∗ (δ−Πp ∗ pD), δ = (δ − pD) ∗ Sp.(3.37)

Inspired by the similarity of the above identities, we approximate Gp to rΠp ∗ Sq

with some constant r ∈ (0,∞) and the parameter change q ∈ [0,1]. Rewrite Gp

as follows:

Gp = rΠp ∗ Sq +Gp ∗ δ − rΠp ∗ Sq

= rΠp ∗ Sq +Gp ∗ (δ − qD) ∗ Sq − rGp ∗ (δ−Πp ∗ pD) ∗ Sq(3.38)

= rΠp ∗ Sq +Gp ∗Ep,q,r ∗ Sq,
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where

Ep,q,r = δ − qD − r(δ−Πp ∗ pD).(3.39)

We choose q, r to satisfy

Êp,q,r (0)= ∇̄α∧2Êp,q,r (0)= 0,(3.40)

or equivalently {
1− q − r

(
1− Π̂p(0)p

)= 0,

−q + r
(
Π̂p(0)+ ∇̄α∧2Π̂p(0)

)
p = 0.

(3.41)

Solving these simultaneous equations for r and using (3.6), we obtain

r = (
1+ p∇̄α∧2Π̂p(0)

)−1 = 1+
{0, [α < 2],

O
(
L−d(�−1)

)
, [α > 2].(3.42)

On the other hand, by taking the Fourier transform of (3.36) and setting k = 0, we
obtain

χp = Π̂p(0)+ Π̂p(0)pχp,(3.43)

or equivalently Π̂p(0)= χp/(1+ pχp) and, therefore,

q = 1− r
(
1− Π̂p(0)p

)= 1− r

1+ pχp

∈ (0,1],(3.44)

where we have used p ≥ 1, χp ≥ 1 and (3.42) to guarantee the positivity (by taking
L� 1 if α > 2).

In addition, by solving (3.43) for χp and using (3.5), we have

χp = Π̂p(0)

1− Π̂p(0)p
= 1+O(L−d)

1− Π̂p(0)p
,(3.45)

hence 1 − Π̂p(0)p ≥ 0. In particular, p ≤ Π̂p(0)−1 = 1 + O(L−d) ≤ 2, as re-
quired.

It remains to prove Gp(x)≤ 2λ|||x|||α∧2−d
L . To do so, we use the following prop-

erty of Ep,q,r .

PROPOSITION 3.4. Let q, r be defined as in (3.42)–(3.44). Under the hypoth-
esis of Proposition 3.1, there is a ρ ∈ (0, α ∧ 2) such that

∣∣(Ep,q,r ∗ Sq)(x)
∣∣≤O

(
L−d(�−1))(1{α>2}δo,x + Lρ

|||x|||d+ρ
L

)
.(3.46)
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For now, we assume this proposition and complete verifying the property (iii).
First, by rearranging (3.38) and using Sq ≤ S1 as well as (3.5) and (3.42) for
L� 1, we obtain

Gp = rΠp ∗ Sq +Gp ∗Ep,q,r ∗ Sq

= rΠ̂p(0)Sq − r
(
Π̂p(0)δ −Πp

) ∗ Sq +Gp ∗Ep,q,r ∗ Sq(3.47)

≤ (
1+O

(
L−d))S1 − r

(
Π̂p(0)δ −Πp

) ∗ Sq +Gp ∗Ep,q,r ∗ Sq.

Then, by Proposition 3.4 and Lemma 3.2(i), the third term is bounded as∣∣(Gp ∗Ep,q,r ∗ Sq)(x)
∣∣

≤O
(
L−d(�−1)) ∑

y∈Zd

3λ

|||y|||d−α∧2
L

(
δy,x + Lρ

|||x − y|||d+ρ
L

)
(3.48)

≤ O(L−d(�−1))λ

|||x|||d−α∧2
L

.

Also, by (3.4) and Lemma 3.2(i), the second term in (3.47) is bounded as∣∣((Π̂p(0)δ −Πp

) ∗ Sq

)
(x)

∣∣
=

∣∣∣∣∑
y �=o

Πp(y)
(
Sq(x)− Sq(x − y)

)∣∣∣∣
(3.49)

≤∑
y �=o

∣∣Πp(y)
∣∣Sq(x)+∑

y �=o

∣∣Πp(y)
∣∣Sq(x − y)

≤ O(L−d(�−1))λ

|||x|||d−α∧2
L

.

Putting these estimates back into (3.47), we obtain that, for L� 1,

Gp(x)≤ (
1+O

(
L−d)) λ

|||x|||d−α∧2
L

+ O(L−d(�−1))λ

|||x|||d−α∧2
L

≤ 2λ

|||x|||d−α∧2
L

(3.50)

as required. This completes the proof of Theorem 3.3 assuming Proposition 3.4.
�

PROOF OF PROPOSITION 3.4. First, by substituting q = 1− r(1− Π̂p(0)p)

[cf., (3.44)] into (3.39) and using 1− r = pr∇̄α∧2Π̂p(0) [cf., (3.42)], we obtain

Ep,q,r = pr
(∇̄α∧2Π̂p(0)(δ −D)− (

Π̂p(0)δ −Πp

) ∗D
)
.(3.51)

Using this representation, we prove (3.46) for |x| ≤ 2L and |x|> 2L, separately.
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For |x| ≤ 2L, we simply use (2.1) to bound |(Ep,q,r ∗ Sq)(x)| by∣∣(Ep,q,r ∗ Sq)(x)
∣∣≤ ∣∣Ep,q,r (x)

∣∣+O
(
L−d) ∑

y∈Zd

∣∣Ep,q,r (y)
∣∣.(3.52)

By (3.51), we have

|Ep,q,r (x)|
pr

≤ ∣∣∇̄α∧2Π̂p(0)
∣∣(δo,x +D(x)

)+ ∣∣((Π̂p(0)δ −Πp

) ∗D
)
(x)

∣∣
(3.53)

= ∣∣∇̄α∧2Π̂p(0)
∣∣(δo,x +D(x)

)+ ∣∣∣∣∑
z �=o

Πp(z)
(
D(x)−D(x − z)

)∣∣∣∣
≤ ∣∣∇̄α∧2Π̂p(0)

∣∣(δo,x +D(x)
)+∑

z �=o

∣∣Πp(z)
∣∣(D(x)+D(x − z)

)
.

Using (3.4)–(3.6) and (3.42), we obtain that∣∣Ep,q,r (x)
∣∣

≤O
(
L−d(�−1))1{α>2}

(
δo,x +O

(
L−d))+O

(
L−d)∑

z �=o

∣∣Πp(z)
∣∣(3.54)

≤O
(
L−d(�−1))1{α>2}δo,x +O

(
L−d�)

and that, by summing (3.53) over x ∈ Z
d ,

O
(
L−d) ∑

x∈Zd

∣∣Ep,q,r (x)
∣∣

≤O
(
L−d)(2

∣∣∇̄α∧2Π̂p(0)
∣∣+ 2

∑
z �=o

∣∣Πp(z)
∣∣)(3.55)

≤O
(
L−d�).

Therefore, for |x| ≤ 2L,∣∣(Ep,q,r ∗ Sq)(x)
∣∣≤O

(
L−d(�−1))1{α>2}δo,x +O

(
L−d�)

(3.56)

≤O
(
L−d(�−1))1{α>2}δo,x + O(L−d(�−1)+ρ)

|||x|||d+ρ
L

.

It remains to prove (3.46) for |x| > 2L. To do so, we first rewrite (Ep,q,r ∗
Sq)(x) as

(Ep,q,r ∗ Sq)(x)=
∫
[−π,π ]d

ddk

(2π)d
Êp,q,r (k)

e−ik·x

1− qD̂(k)
(3.57)

=
∫ ∞

0
dt

∫
[−π,π ]d

ddk

(2π)d
Êp,q,r (k)e−t (1−qD̂(k))−ik·x.
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Then we split the integral with respect to t into
∫ T

0 and
∫∞
T , where T is arbitrary

for now, but it will be determined shortly. For the latter integral, we use the Fourier
transform of (3.51), which is

Êp,q,r (k)= pr
(
1− D̂(k)

)(∇̄α∧2Π̂p(0)− Π̂p(0)− Π̂p(k)

1− D̂(k)
D̂(k)

)
.(3.58)

Because of (1.18), (3.6) and (3.16), there is a δ > 0 such that

Êp,q,r (k)=O
(
L−d(�−1)+α∧2+δ)|k|α∧2+δ [α �= 2].(3.59)

Since 1−qD̂(k)≥ q(1−D̂(k)), the contribution to (3.57) from the large-t integral
is bounded as∣∣∣∣

∫ ∞
T

dt

∫
[−π,π ]d

ddk

(2π)d
Êp,q,r (k)e−t (1−qD̂(k))−ik·x

∣∣∣∣
(3.60)

≤O
(
L−d(�−1)+α∧2+δ) ∫ ∞

T
dt

∫
[−π,π ]d

ddk

(2π)d
|k|α∧2+δe−tq(1−D̂(k)).

Since p ≥ 1, we have q ≥ 1− r/(1+χ1)≥ 1− r/2 [cf., (3.44)], which is bounded
away from zero when L� 1. Therefore, by using (1.18), we obtain∫

[−π,π ]d
ddk

(2π)d
|k|α∧2+δe−tq(1−D̂(k)) =O

(
Lα∧2t

)−1−((d+δ)/(α∧2))
,(3.61)

hence ∣∣∣∣
∫ ∞
T

dt

∫
[−π,π ]d

ddk

(2π)d
Êp,q,r (k)e−t (1−qD̂(k))−ik·x

∣∣∣∣
(3.62)

≤O
(
L−d�)T −(d+δ)/(α∧2).

Let

ρ = (α ∧ 2)δ

d + α ∧ 2+ δ
, T =

( |x|
L

)α∧2−ρ

.(3.63)

Then, since |x|> 2L,

O
(
L−d�)T −(d+δ)/(α∧2) = O(L−d(�−1)+ρ)

|||x|||d+ρ
L

.(3.64)

To estimate the contribution to (3.57) from the small-t integral, we use the iden-
tity ∫ T

0
dt

∫
[−π,π ]d

ddk

(2π)d
Êp,q,r (k)e−t (1−qD̂(k))−ik·x

(3.65)

=
∫ T

0
dt e−t

∞∑
n=0

(tq)n

n!
(
Ep,q,r ∗D∗n)(x),
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where, by (3.51) and (3.6),(
Ep,q,r ∗D∗n)(x)= pr∇̄α∧2Π̂p(0)︸ ︷︷ ︸

O(L−d(�−1))1{α>2}

∑
y∈Zd

D(y)
(
D∗n(x)−D∗n(x − y)

)
(3.66)

− pr
∑

y∈Zd

Πp(y)
(
D∗(n+1)(x)−D∗(n+1)(x − y)

)
.

In the following, we use the decomposition (3.21) of
∑

y and estimate the contri-
bution to (3.65) from

∑′
y ,

∑′′
y and

∑′′′
y , separately.

First, we estimate the contribution from
∑′′

y ≡
∑

y : |x−y|≤(1/3)|x|. Since |y| ≥
|x| − |x − y| ≥ 2

3 |x| in this domain of summation, we bound |Πp(y)| by

O(λ�)|||x|||(α∧2−d)�
L [cf., (3.4)] and then use (1.21),

∑′′
y 1 ≤ O(|||x|||dL) and∑′′

y D∗(n+1)(x − y)≤ 1. As a result,∣∣∣∣∑
y

′′
Πp(y)

(
D∗(n+1)(x)−D∗(n+1)(x − y)

)∣∣∣∣
≤ O(λ�)

|||x|||(d−α∧2)�
L

(
O(Lα∧2)n

|||x|||α∧2
L

+ 1
)

(3.67)

≤ O(L−d(�−1)+α∧2)

|||x|||d+α∧2
L

(
O(Lα∧2)n

|||x|||α∧2
L

+ 1
)
.

Similarly, for α > 2,

O
(
L−d(�−1))∣∣∣∣∑

y

′′
D(y)

(
D∗n(x)−D∗n(x − y)

)∣∣∣∣
≤ O(L−d(�−1)+α)

|||x|||d+α
L

(
O(L2)n

|||x|||2L
+ 1

)
(3.68)

≤ O(L−d(�−1)+2)

|||x|||d+2
L

(
O(L2)n

|||x|||2L
+ 1

)
.

To estimate the contribution to (3.65) from
∑′′′

y ≡ ∑
y : |y|∧|x−y|>(1/3)|x|

in (3.66), we bound D∗(n+1)(x) and D∗(n+1)(x − y) by O(Lα∧2)n/|||x|||d+α∧2
L

and then use (3.4) to bound |Πp(y)|. The result is∣∣∣∣∑
y

′′′
Πp(y)

(
D∗(n+1)(x)−D∗(n+1)(x − y)

)∣∣∣∣
≤ O(Lα∧2)n

|||x|||d+α∧2
L

∑
y : |y|>(1/3)|x|

∣∣Πp(y)
∣∣(3.69)

≤ O(L−(�−1)(α∧2))n

|||x|||d+2(α∧2)+(�−1)(d−dc)
L

≤ O(L−d(�−1)+2(α∧2))n

|||x|||d+2(α∧2)
L

.
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Similarly, for α > 2,

O
(
L−d(�−1))∣∣∣∣∑

y

′′′
D(y)

(
D∗n(x)−D∗n(x − y)

)∣∣∣∣
≤ O(L−d(�−1)+2)n

|||x|||d+2
L

∑
y : |y|>(1/3)|x|

D(y)(3.70)

≤ O(L−d(�−1)+4)n

|||x|||d+4
L

.

Finally, we estimate the contribution to (3.65) from
∑′

y ≡
∑

y : |y|≤(1/3)|x| in
(3.66). By the Z

d -symmetry of Πp and using (3.4) and the assumption (1.24), we
obtain ∣∣∣∣∑

y

′
Πp(y)

(
D∗(n+1)(x)−D∗(n+1)(x − y)

)∣∣∣∣
=

∣∣∣∣∑
y

′
Πp(y)

(
D∗(n+1)(x)− D∗(n+1)(x + y)+D∗(n+1)(x − y)

2

)∣∣∣∣
≤ O(Lα∧2)n

|||x|||d+α∧2+2
L

∑
y : |y|≤(1/3)|x|

O(λ�)|||y|||2L
|||y|||(d−α∧2)�

L
(3.71)

≤ O(L−(�−1)(α∧2))n

|||x|||d+α∧2+2
L

×

⎧⎪⎪⎨
⎪⎪⎩
|||x|||d+2−(d−α∧2)�

L ,
[
d + 2 > (d − α ∧ 2)�

]
,

1+ log
(|||x|||L/L

)
,

[
d + 2= (d − α ∧ 2)�

]
,

Ld+2−(d−α∧2)�,
[
d + 2 < (d − α ∧ 2)�

]
,

≤ O(L−d(�−1)+2(α∧2))n

|||x|||d+2(α∧2)
L

,

where, to obtain the last inequality for d + 2= (d −α∧ 2)�, which implies α < 2,
we have used fact that (|||x|||L/L)α−2(1+ log(|||x|||L/L)) is bounded. Similarly, for
α > 2,

O
(
L−d(�−1))∣∣∣∣∑

y

′
D(y)

(
D∗n(x)−D∗n(x − y)

)∣∣∣∣
=O

(
L−d(�−1))∣∣∣∣∑

y

′
D(y)

(
D∗n(x)− D∗n(x + y)+D∗n(x − y)

2

)∣∣∣∣(3.72)
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≤ O(L−d(�−1)+2)n

|||x|||d+4
L

∑
y : |y|≤(1/3)|x|

O(Lα)|||y|||2L
|||y|||d+α

L︸ ︷︷ ︸
O(L2)

= O(L−d(�−1)+4)n

|||x|||d+4
L

.

Now, by putting these estimates back into (3.66), we obtain

∣∣(Ep,q,r ∗D∗n)(x)
∣∣≤ O(L−d(�−1)+α∧2)

|||x|||d+α∧2
L

(
O(Lα∧2)

|||x|||α∧2
L

n+ 1
)
,(3.73)

hence, by (3.63), ∣∣∣∣∣
∫ T

0
dt e−t

∞∑
n=0

(tq)n

n!
(
Ep,q,r ∗D∗n)(x)

∣∣∣∣∣
≤ O(L−d(�−1)+α∧2)

|||x|||d+α∧2
L

(
O(Lα∧2)

|||x|||α∧2
L

T 2 + T

)
(3.74)

≤ O(L−d(�−1)+α∧2)

|||x|||d+α∧2
L

T = O(L−d(�−1)+ρ)

|||x|||d+ρ
L

.

This completes the proof of Proposition 3.4. �

3.3. Derivation of the asymptotics of Gpc . Finally, we derive the asymptotic
expression (1.27) for Gpc . First, by repeatedly applying (3.38), we obtain

Gp = rΠp ∗ Sq +Gp ∗Ep,q,r ∗ Sq

= rΠp ∗ Sq + (rΠp ∗ Sq +Gp ∗Ep,q,r ∗ Sq) ∗Ep,q,r ∗ Sq

= rΠp ∗ Sq ∗ (δ +Ep,q,r ∗ Sq)+Gp ∗ (Ep,q,r ∗ Sq)∗2(3.75)

...

= rΠp ∗ Sq ∗
N−1∑
n=0

(Ep,q,r ∗ Sq)∗n +Gp ∗ (Ep,q,r ∗ Sq)∗N.

By Proposition 3.4 and Lemma 3.2(i), we have that, for p ≤ pc,∣∣(Ep,q,r ∗ Sq)∗n(x)
∣∣≤O

(
L−d(�−1)n)(1{α>2}δo,x + Lρ

|||x|||d+ρ
L

)
,(3.76)

hence, for any N ∈N,

N−1∑
n=0

∣∣(Ep,q,r ∗ Sq)∗n(x)
∣∣≤ (

1+O
(
L−d(�−1)))δo,x + O(L−d(�−1)+ρ)

|||x|||d+ρ
L

.(3.77)
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Therefore, we can take N →∞ to obtain that, for p ≤ pc,

Gp = rΠp ∗ Sq ∗
∞∑

n=0

(Ep,q,r ∗ Sq)∗n ≡Hp ∗ Sq,(3.78)

where, by (3.4) and (3.77),

Hp(x)= r

(
Πp ∗

∞∑
n=0

(Ep,q,r ∗ Sq)∗n
)
(x)

= r
∑

y∈Zd

((
1+O

(
L−d))δo,y + O(L−(α∧2)�)

|||y|||(d−α∧2)�
L

)
(3.79)

×
((

1+O
(
L−d(�−1)))δy,x + O(L−d(�−1)+ρ)

|||x − y|||d+ρ
L

)
.

Notice that, by Lemma 3.2(i) and using (3.42) and d + ρ < (d − α ∧ 2)�,

Hp(x)= (
r +O

(
L−d))δo,x + O(L−d(�−1)+ρ)

|||x|||d+ρ
L

.(3.80)

Now we set p = pc, so, by (3.44), q = 1. By Proposition 2.1 and Lemma 3.2(ii),
we obtain the asymptotic expression

Gpc(x)= Ĥpc(0)
γα/vα

|||x|||d−α∧2
L

+ O(L−α∧2+μ)

|x|d−α∧2+μ
+ O(L−d(�−1)−α∧2+ρ)

|||x|||d−α∧2+ρ′
L

.(3.81)

Since Hpc is absolutely summable, we can change the order of the limit and the
sum as

Ĥpc(0)= lim|k|→0
Ĥpc(k)

= lim|k|→0
rΠ̂pc(k)

∞∑
n=0

(
Êpc,1,r (k)Ŝ1(k)

)n(3.82)

= rΠ̂pc(0)+ rΠ̂pc(0)

∞∑
n=1

(
lim|k|→0

Êpc,1,r (k)Ŝ1(k)
)n

.

By (3.45) and the fact that χp diverges as p ↑ pc, we have Π̂pc(0)= p−1
c . More-

over, by (3.58) and (3.16),

Êpc,1,r (k)Ŝ1(k)= Êpc,1,r (k)
(
1− D̂(k)

)−1 →|k|→0
0.(3.83)

Therefore,

A= Ĥpc(0)−1 = pc

r
≡ pc

(
1+ pc∇̄α∧2Π̂pc(0)

)
.(3.84)

This completes the proof of Theorem 1.2.
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APPENDIX: VERIFICATION OF ASSUMPTION 1.1

In this appendix, we show that the Zd -symmetric 1-step distribution D in (1.25),
defined more precisely below, satisfies the properties (1.16), (1.18), (1.20), (1.21)
and (1.24) in Assumption 1.1.

First, for α > 0 and α �= 2, we define

Tα(t)= t−1−α/2∑
s∈N s−1−α/2 [t ∈N].(A.1)

Next, let h be a nonnegative bounded function on R
d that is piecewise continuous,

Z
d -symmetric, supported in [−1,1]d and normalized [i.e.,

∫
[−1,1]d h(x)ddx = 1];

for example, h(x) = 2−d1{‖x‖∞≤1}. Then, for large L (to ensure positivity of the
denominator), we define

UL(x)= h(x/L)∑
y∈Zd h(y/L)

[
x ∈ Z

d],(A.2)

where (cf., [11, 27])

σ 2
L ≡

∑
x∈Zd

|x|2UL(x)=O
(
L2),(A.3)

ÛL(k)

⎧⎪⎨
⎪⎩= 1− σ 2

L

2d
|k|2 +O

((
L|k|)2+ζ )

,
[|k| → 0

]
,

∈ (−1+�,1−�),
[|k| ≥ σ−1

L

](A.4)

for some ζ ∈ (0,2) and � ∈ (0,1). (The assumption |ÛL(k)|< 1−� is used only
to get exponential decay of I2 in (A.28) below.) Combining these distributions, we
define D as

D(x)=∑
t∈N

U∗t
L (x)Tα(t).(A.5)

We note that the above definition is a discrete version of the transition kernel for
the so-called subordinate process (e.g., [7]). Just like (A.5), the transition kernel for
the subordinate process is given by an integral of the Gaussian density with respect
to the 1-dimensional α/2-stable distribution. Bogdan and Jakubowski [8] make
the most of this integral representation to estimate derivatives of the transition
kernel. This is close to what we want: to prove (1.24). However, in the current
discrete space–time setting, we cannot simply adopt their proof to show (1.24). To
overcome this difficulty, we will approximate the lattice distribution U∗t

L in (A.5)
by a Gaussian density (multiplied by a polynomial) by using a discrete version of
the Cramér–Edgeworth expansion [6], Corollary 22.3.

Before doing so, we first show that the above D satisfies (1.18) and (1.20).

VERIFICATION OF (1.18) AND (1.20). Due to the above definition of UL, we
can follow the same argument as in [27], Appendix A, to verify the bound on
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1− D̂ in (1.20). Moreover, if (1.18) is also verified, then we can follow the same
argument as in [9], Appendix A, to confirm the bound on ‖D∗n‖∞ in (1.20) as
well.

It remains to verify (1.18) for small k. First, we note that

1− D̂(k)=∑
t∈N

(
1− Û t )Tα(t)= (1− Û )

∑
t∈N

Tα(t)

t∑
s=1

Û s−1,(A.6)

where Û is an abbreviation for ÛL(k). If α > 2, we can take any ξ ∈ (0, α/2− 1)

to obtain

1− D̂(k)

= (1− Û )
∑
t∈N

Tα(t)

t∑
s=1

1− (1− Û )
∑
t∈N

Tα(t)

t∑
s=1

(
1− Û s−1)(A.7)

= (1− Û )
∑
t∈N

tTα(t)+O
(
(1− Û )1+ξ ),

where we have used the inequality

∑
t∈N

Tα(t)

t∑
s=1

(
1− Û s−1)

= (1− Û )ξ
∑
t∈N

Tα(t)

t∑
s=1

(
1− Û s−1

1− Û

)ξ (
1− Û s−1)1−ξ(A.8)

≤ 21−ξ (1− Û )ξ
∑
t∈N

t1+ξ Tα(t)=O
(
(1− Û )ξ

)
.

This together with (A.3)–(A.4) implies (1.18) for α > 2, with ε = ζ ∧ (2ξ) and

vα = σ 2
L

2d

∑
t∈N

tTα(t)=O
(
L2).(A.9)

If α ∈ (0,2), on the other hand, we first rewrite (A.6) for small k by setting
û≡ log 1/Û and changing the order of summations as

1− D̂(k)= 1− Û

Û

∑
t∈N

Tα(t)

t∑
s=1

e−ûs

(A.10)

= 1− Û

Û

∑
s∈N e−ûs ∑∞

t=s t−1−α/2∑
s∈N s−1−α/2 .

We note that, for small k,

1− Û

Û
= 1− Û +O

(
(1− Û )2), û= 1− Û +O

(
(1− Û )2).(A.11)
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Therefore, by a Riemann-sum approximation, we can estimate the numerator
in (A.10) as

∑
s∈N

e−ûs
∞∑
t=s

t−1−α/2

= ∑
s∈ûN

e−s
∑
t∈ûN
(t≥s)

(
t

û

)−1−α/2

(A.12)
= ûα/2−1(1+O(û)

) ∫ ∞
0

ds e−s
∫ ∞
s

dt t−1−α/2

= 2

α
�(1− α/2)ûα/2−1(1+O(û)

)
.

This together with (A.3)–(A.4) and (A.9)–(A.12) implies (1.18) for α ∈ (0,2), with
ε = ζ and

vα = 2

α

�(1− α/2)∑
s∈N s−1−α/2

(
σ 2

L

2d

)α/2

=O
(
Lα).(A.13)

This verifies that D in (A.5) satisfies both (1.18) and (1.20).

VERIFICATION OF (1.16), (1.21) AND (1.24). To verify these x-space bounds
on the transition probability D∗n and its discrete derivative, we use the Cramér–
Edgeworth expansion to approximate the lattice distribution U∗t

L (x) in (A.5) to the

Gaussian density νσ 2
Lt (x) (multiplied by a polynomial of x/

√
σ 2

Lt), where

νc(x)=
(

d

2πc

)d/2

exp
(
−d|x|2

2c

)
.(A.14)

Before showing a precise statement (cf., Theorem A.1 below), we explain the
formal expansion (A.21) of U∗t

L (x). First, we note that ÛL(k) is a generating func-
tion of cumulants Q$n for $n ∈ Z

d+:

log ÛL(k)= ∑
$n∈Zd+

(‖$n‖1≥1)

Q$n
d∏

s=1

(iks)
ns

ns ! .(A.15)

Since UL is Zd -symmetric, we have Q$n = 0 if ‖$n‖1 is odd, and Q(2,0,...,0) = · · · =
Q(0,...,0,2) = σ 2

L/d . Therefore,

log ÛL(k)=−σ 2
L

2d
|k|2 +

∞∑
l=4

∑
$n∈Zd+

(‖$n‖1=l)

Q$n
d∏

s=1

(iks)
ns

ns ! .(A.16)
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By the Fourier inversion theorem, we may rewrite U∗t
L (x) as

U∗t
L (x)=

∫
[−π,π ]d

ddk

(2π)d
ÛL(k)t e−ik·x

=
∫
[−π,π ]d

ddk

(2π)d
e−(σ 2

L/(2d))t |k|2−ik·x

× exp

(
t

∞∑
l=4

∑
$n∈Zd+

(‖$n‖1=l)

Q$n
d∏

s=1

(iks)
ns

ns !
)

(A.17)

= (
σ 2

Lt
)−d/2

∫
√

σ 2
Lt[−π,π ]d

ddk

(2π)d
e−(1/(2d))|k|2−ik·x̃

× exp

( ∞∑
l=4

t1−l/2Q̃l(ik)

)
,

where, in the third equality, we have replaced k by k/
√

σ 2
Lt and used the abbrevi-

ations

x̃ = x√
σ 2

Lt
, Q̃l(ik)= ∑

$n∈Zd+
(‖$n‖1=l)

Q$n
σ l

L

d∏
s=1

(iks)
ns

ns ! .(A.18)

Notice that, since UL is supported in [−L,L]d , the coefficients Q$n/σ l
L for

‖$n‖1 = l are uniformly bounded in L. Then the exponential factor involving
higher-order cumulants in (A.17) may be expanded as

exp

( ∞∑
l=2

t−l/2Q̃l+2(ik)

)

= 1+
∞∑

m=1

1

m!
∑

l1,...,lm≥2

m∏
r=1

(
t−lr /2Q̃lr+2(ik)

)
(A.19)

= 1+
∞∑

j=2

t−j/2
%j/2&∑
m=1

1

m!
∑

l1,...,lm≥2
(l1+···+lm=j)

m∏
r=1

Q̃lr+2(ik).

Let

P0(ik)= 1, P1(ik)= 0,

(A.20)
Pj (ik)=

%j/2&∑
m=1

1

m!
∑

l1,...,lm≥2
(l1+···+lm=j)

m∏
r=1

Q̃lr+2(ik) [j ≥ 2].
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Then, by (A.17) and (A.19), we arrive at the formal Cramér–Edgeworth expansion

U∗t
L (x)= (

σ 2
Lt
)−d/2

(A.21)
×
∫
√

σ 2
Lt[−π,π ]d

ddk

(2π)d
e−(1/(2d))|k|2−ik·x̃

∞∑
j=0

t−j/2Pj (ik).

Now we note that, if
√

σ 2
Lt[−π,π ]d is replaced by R

d , if
∑∞

j=0 is replaced by∑�
j=0 for some � <∞, and if x is considered to be an element of Rd instead of Zd ,

then we obtain

(
σ 2

Lt
)−d/2

∫
Rd

ddk

(2π)d
e−(1/((2d))|k|2−ik·x̃

�∑
j=0

t−j/2Pj (ik)

= (
σ 2

Lt
)−d/2

�∑
j=0

t−j/2P̃j

∫
Rd

ddk

(2π)d
e−(1/(2d))|k|2−ik·x̃(A.22)

= (
σ 2

Lt
)−d/2

�∑
j=0

t−j/2P̃j ν1(x̃),

where P̃j is the differential operator defined by replacing each iks of Pj (ik)

in (A.20) by −∂/∂x̃s :

P̃0 = 1, P̃1 = 0, P̃j = Pj

(−∂

∂x̃1
, . . . ,

−∂

∂x̃d

)
[j ≥ 2].(A.23)

Notice that, by (A.18) and (A.20),(
σ 2

Lt
)−d/2

P̃j ν1(x̃)=H
2j
j+2

(
x√
σ 2

Lt

)
νσ 2

Lt (x),(A.24)

where H
2j
j+2 is a polynomial of degree at least j + 2 and at most 2j (due to the

symmetry of UL). The coefficients of the polynomial are uniformly bounded in L,
as explained below (A.18).

The following theorem is a version of [6], Corollary 22.3, for symmetric distri-
butions, which gives a bound on the difference between U∗t

L (x) and (A.22).

THEOREM A.1. For any x ∈ Z
d , t ∈N and � ∈ Z+,

(
1+ |x̃|�+2)∣∣∣∣∣U∗t

L (x)− (
σ 2

Lt
)−d/2

�∑
j=0

t−j/2P̃j ν1(x̃)

∣∣∣∣∣≤ O(L−d)

t(d+�)/2 ,(A.25)

where x̃ and P̃j are defined in (A.18) and (A.23), respectively.

Before using this theorem to verify (1.16), (1.21) and (1.24), we briefly ex-
plain how to prove that the contribution which comes from 1 on the left-hand side
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of (A.25) is bounded by O(L−d)t−(d+�)/2, as in (A.25). (To investigate the contri-
bution that comes from |x̃|�+2 on the left-hand side of (A.25), we also use identities
such as

x̃�+2
1 U∗t

L (x)

(A.26) = (
σ 2

Lt
)−d/2

∫
√

σ 2
Lt[−π,π ]d

ddk

(2π)d
e−ik·x̃ ∂�+2

∂(ik1)�+2 ÛL

(
k√
σ 2

Lt

)t

,

which is a result of integration by parts.) First, we split the domain of integration in

Fourier space into E1 = {k ∈ R
d : |k| ≤ √t}, E2 =

√
σ 2

Lt[−π,π ]d \E1 and E3 =
R

d \E1. Then the difference between U∗t
L (x) and (A.22) is equal to I1 + I2 − I3,

where

I1 = (
σ 2

Lt
)−d/2

∫
E1

ddk

(2π)d
e−ik·x̃

(A.27)

×
(
ÛL

(
k√
σ 2

Lt

)t

− e−(1/(2d))|k|2
�∑

j=0

t−j/2Pj (ik)

)
,

I2 = (
σ 2

Lt
)−d/2

∫
E2

ddk

(2π)d
e−ik·x̃ ÛL

(
k√
σ 2

Lt

)t

,(A.28)

I3 = (
σ 2

Lt
)−d/2

∫
E3

ddk

(2π)d
e−(1/(2d))|k|2−ik·x̃

�∑
j=0

t−j/2Pj (ik).(A.29)

Since (A.25) for t = 1 is trivial, we can assume t ≥ 2 with no loss of gen-
erality. Then it is not difficult to prove that I2 and I3 are both bounded by
O(L−d)t−(d+�)/2, due to direct computation for I3, and due to (A.4) and sim-
ilar computation to [9], (A.2), for I2. For I1, we can bound the integrand by
Ct−�/2(|k|�+2 + |k|2�)e−c|k|2 for some L-independent constants C,c ∈ (0,∞),
due to a version of [6], Theorem 9.12, for symmetric distributions. Then, by di-
rect computation, we can prove that I1 is also bounded by O(L−d)t−(d+�)/2.

Now we apply (A.25) to verify the x-space bounds (1.16), (1.21) and (1.24). In
particular, by (A.5) and (A.23)–(A.25),

D(x)=
∞∑
t=1

νσ 2
Lt (x)Tα(t)

+
∞∑
t=1

�∑
j=2

t−j/2H
2j
j+2

(
x√
σ 2

Lt

)
νσ 2

Lt (x)Tα(t)(A.30)

+
∞∑
t=1

O(L−d)

t(d+�)/2

(
1∧

(√σ 2
Lt

|x|
)�+2)

Tα(t).
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The leading term is bounded as

∞∑
t=1

νσ 2
Lt (x)Tα(t) ≤O

(
L−d) ∑

1≤t<|||x/σL|||21

exp(−(d|x|2)/(2σ 2
Lt))

t1+(d+α)/2

+O
(
L−d) ∑

t≥|||x/σL|||21
t−1−(d+α)/2

≤O
(
L−d) ∑

1≤t<|||x/σL|||21

O((|x|2/(σ 2
Lt))−1−(d+α)/2)

t1+(d+α)/2(A.31)

+O
(
L−d)|||x/σL|||−(d+α)

1

=O
(
Lα)|||x|||−d−α

L .

The second term on the right-hand side of (A.30) is bounded, due to (A.24), as
follows: for any j ∈ {2, . . . , �} and h ∈ {j + 2, . . . ,2j},

∞∑
t=1

t−j/2
( |x|√

σ 2
Lt

)h

νσ 2
Lt (x)Tα(t)

≤O
(
L−d−h)|x|h ∑

1≤t<|||x/σL|||21

exp(−(d|x|2)/(2σ 2
Lt))

t1+(d+h+j+α)/2

(A.32)
+O

(
L−d−h)|x|h ∑

t≥|||x/σL|||21
t−1−(d+h+j+α)/2

≤O
(
L−d−h)|x|h O(Ld+h+j+α)

|||x|||d+h+j+α
L

= O(Lj+α)

|||x|||d+j+α
L

≤ O(L2+α)

|||x|||d+2+α
L

.

Therefore,

∞∑
t=1

�∑
j=2

t−j/2H
2j
j+2

(
x√
σ 2

Lt

)
νσ 2

Lt (x)Tα(t)≤ O(Lα+2)

|||x|||d+α+2
L

.(A.33)

Similarly, the third term on the right-hand side of (A.30) is bounded as

∞∑
t=1

O(L−d)

t(d+�)/2

(
1∧

(√σ 2
Lt

|x|
)�+2)

Tα(t)

≤O
(
L−d+�+2)|x|−�−2

∑
1≤t<|||x/σL|||21

t−(d+α)/2

+O
(
L−d) ∑

t≥|||x/σL|||21
t−1−(d+�+α)/2(A.34)
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=

⎧⎪⎪⎨
⎪⎪⎩

O
(
L−d+�+2)|||x|||−�−2

L , [d + α > 2],
O
(
L−d+�+2)|||x|||−�−2

L log |||x/σL|||1, [d + α = 2],
O
(
Lα+�)|||x|||−d−α−�

L , [d + α < 2],
which is further bounded by O(Lα+2)|||x|||−d−α−2

L for sufficiently large �. Sum-
marizing the above estimates, we can conclude (1.16):

D(x)=
∞∑
t=1

νσ 2
Lt (x)Tα(t)+ O(Lα+2)

|||x|||d+α+2
L

≤ O(Lα)

|||x|||d+α
L

.(A.35)

The bound (1.21) on the n-step transition probability is then automatically ver-
ified, due to the argument below (1.21). Heuristically, since

D∗n(x)=
∞∑

t=n

U∗t
L (x)T ∗nα (t),(A.36)

this suggests that

T ∗nα (t)≤O(n)Tα∧2(t).(A.37)

In fact, we can verify this (or a stronger version) by following the same argument
as given below (1.21), but we omit the details here.

Finally, we verify (1.24) by using (A.25) with sufficiently large � and
(A.35)–(A.37). For |y| ≤ 1

3 |x| (so that |x ± y| ≥ 2
3 |x|), we obtain

D∗n(x)− D∗n(x + y)+D∗n(x − y)

2

=
∞∑
t=1

(
η

πt

)d/2(
e−η|x|2/t − e−η|x+y|2/t + e−η|x−y|2/t

2

)
T ∗nα (t)(A.38)

+ O(Lα∧2+2)

|||x|||d+α∧2+2
L

n,

where we have set η = d/(2σ 2
L) = O(L−2) for convenience. By a Taylor expan-

sion,

e−η|x|2/t − e−η|x+y|2/t + e−η|x−y|2/t

2
= O(η|y|2)

t
e−η|x|2/t .(A.39)

Using this and (A.37) and following the same analysis as in (A.31)–(A.32), we can
bound the sum in (A.38) by

O
(
η1+d/2)|y|2n ∞∑

t=1

e−η|x|2/t

t2+(d+α∧2)/2 =
O(η−(α∧2)/2)|y|2
|||x|||d+α∧2+2

1/
√

η

n.(A.40)

This together with (A.38) and |||y|||L = |y| ∨L yields (1.24).
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