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A STOCHASTIC BURGERS EQUATION FROM A CLASS OF
MICROSCOPIC INTERACTIONS
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PUC-RIO and Universidade do Minho, IMPA and University of Arizona

We consider a class of nearest-neighbor weakly asymmetric mass conser-
vative particle systems evolving on Z, which includes zero-range and types of
exclusion processes, starting from a perturbation of a stationary state. When
the weak asymmetry is of order O(n−γ ) for 1/2 < γ ≤ 1, we show that the
scaling limit of the fluctuation field, as seen across process characteristics,
is a generalized Ornstein–Uhlenbeck process. However, at the critical weak
asymmetry when γ = 1/2, we show that all limit points satisfy a martin-
gale formulation which may be interpreted in terms of a stochastic Burgers
equation derived from taking the gradient of the KPZ equation. The proofs
make use of a sharp “Boltzmann–Gibbs” estimate which improves on earlier
bounds.

1. Introduction. There has been much recent work on the classification of
fluctuations of certain interfaces and currents, corresponding to mass conservative
particle dynamics in one-dimensional nearest-neighbor interacting particle sys-
tems such as simple exclusion and its variants, with respect to so-called Edwards–
Wilkinson (EW) and Kardar–Parisi–Zhang (KPZ) classes (cf. [19] for a review
and references). Following recent sensibilities, a d = 1 particle system is in the
EW class if the standard deviation of the associated “height” function ht (x) of the
interface at time t and space point x, or the integrated current at time t ≥ 0 across
the space point x ∈ R, is of order t1/4, and also spatial correlations are nontrivial
at range t1/2. Examples in this class are independent random walk systems, ran-
dom averaging and reversible simple exclusion processes starting from a stationary
state or even in nonstationary states [9, 22, 32, 37, 54].

On the other hand, a system is in the KPZ class if its “height” function and
integrated current have standard deviation of order t1/3, and nontrivial spatial cor-
relations at range t2/3. A well-studied particle system model in this class is the
asymmetric simple exclusion process starting from deterministic initial configura-
tions such as step profile and alternating conditions, or from a stationary state (cf.
[6, 7, 10, 11, 16, 17, 24, 39, 46, 49, 58] and references therein).
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These two classes can be seen in the study of the famous KPZ stochastic partial
differential equation first mentioned in [33]:

∂tht (x) = D�ht(x) + a
(∇ht(x)

)2 + σẆt (x),(1.1)

where Ẇt (x) is a space–time white noise with unit variance. When a = 0 and
D,σ > 0, then ht (x) is a generalized Ornstein–Uhlenbeck process in EW class.
However, when a �= 0 and D,σ > 0, a physical argument indicates that ht (x) is
in the KPZ class (cf. [33, 59]). Also, in another sense, it has been shown that the
“Cole–Hopf” solution of the KPZ equation, starting from certain initial conditions,
interpolates between the two classes when the centered solution is examined in
different asymptotic scaling regimes, that is, when normalized by t1/3 as t ↑ ∞ or
when normalized by t1/4 as t ↓ 0, nontrivial limits are obtained (cf. [1, 8]).

Moreover, it is believed that in many “critical” weakly asymmetric, d = 1 par-
ticle systems, that is, when the weak asymmetry is scaled at a critical level, the
diffusively scaled “height” function or integrated current should converge to the
solution of the KPZ equation with parameters depending on the structure of par-
ticle interactions and initial conditions. Recently, much progress has been made
in making clear this convergence. Part of the difficulty is that, since “solutions”
to the KPZ equation are expected to be distribution-valued, the nonlinear term in
the equation does not make sense, and so the equation is ill-posed. Hence, what
does it mean to solve the KPZ equation and also, when properly interpreted, how
to derive the KPZ equation from microscopic particle interactions?

One way to approach these questions is to observe that the Cole–Hopf transfor-
mation zt (x) := exp{(a/D)ht (x)} linearizes the KPZ equation to a stochastic heat
equation

∂tzt (x) = D�zt(x) + (aσ/D)zt (x)Ẇt (x),(1.2)

which can be solved uniquely starting from a class of initial conditions and is also
strictly positive for times t > 0 [44, 61]. Then the “Cole–Hopf” solution is defined
as ht (x) := log zt (x). In [14], starting from near stationary measures in a certain
weakly asymmetric simple exclusion process observed in diffusive scale, this sen-
timent was made rigorous. Namely, it was proved that the microscopic Cole–Hopf
transform of the microscopic height function, using a clever device in [25] which
linearizes the simple exclusion dynamics to a more manageable system, converges
to the Cole–Hopf transform of the KPZ equation, the solution to the stochastic
heat equation (1.2). More recently, in [1, 52] this notion of solution further gained
traction in that the result in [14] was nontrivially generalized to step profile deter-
ministic initial configurations. At the same time, in [30], it has been shown that
log zt (x) is the unique solution of a well-posed equation on a torus, derived from a
“rough paths” approximation of (1.1), so that it is clear what sort of KPZ equation
the “Cole–Hopf” solution actually solves.

In this article, another approach is considered which allows to generalize the
types of microscopic particle interactions considered, given that the device in [25]
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seems limited to simple exclusion and a few variants such as q-TASEP dynam-
ics [15]. At the microscopic level, the height function Ht(x), evaluated for t ≥ 0
and x ∈ Z, takes form

Ht(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

J0(t) −
x−1∑
y=0

ηt (y), for x ≥ 1,

J0(t), for x = 0,

J0(t) +
−1∑
y=x

ηt (y), for x ≤ −1,

(1.3)

where Jy(t) is the current across bond (y − 1, y) and ηt (y) is the particle number
at y ∈ Z at time t ≥ 0. Then the discrete gradients of the microscopic height func-
tion are the particle numbers, Ht(x + 1) − Ht(x) = ηt (x), and the corresponding
fluctuation field examined in diffusive scale, that is, when time is scaled in terms
of n2 and space is scaled by n, is the particle density fluctuation field Yn

t . The
guiding idea is that Yn

t should converge to Yt = ∇ht in some sense.
Formally, by carrying through the “∇” operation, Yt satisfies a type of stochastic

Burgers equation,

∂tYt (x) = D�Yt (x) + a∇(
Yt (x)

)2 + σ∇Ẇt (x),(1.4)

which again for the same reasons as for the original KPZ equation is ill-posed
when a �= 0. If a = 0, however, it is a type of Ornstein–Uhlenbeck equation which
possesses a unique solution when starting from a large class of initial distributions
(cf. [13, 61]).

A main contribution of the article is to understand the derived stochastic Burgers
equation (1.4) in the context of a general class of nearest-neighbor weakly asym-
metric interacting particle systems on Z, starting from perturbations of the invari-
ant measure νρ . This class is composed of systems with “gradient” dynamics, not
necessarily product invariant measures, sufficient spectral gap and “equivalence of
ensembles” estimates among other technical conditions (cf. Section 2.1), which
include in particular the already studied simple exclusion process, and also zero-
range and exclusion models with kinetically constrained or speed-change interac-
tions, which have varying and sometimes slow mixing behaviors. The initial dis-
tributions consist of “bounded entropy” perturbations of the invariant measure νρ

(cf. Section 2.1 for a precise statement).
Our results describe the limit points of the fluctuation field Yn,γ

t in diffu-
sive scale, in a reference frame moving with a process characteristic velocity
υn(t) ∼ n−1�n2(pn − qn)υt�. Here, pn − qn is the difference of the single par-
ticle jump rates which identifies the strength of the weak asymmetry considered,
and υ is a homogenized velocity parameter depending on the particle dynamics.
Given the size of pn − qn, a dichotomy emerges in the form of the limits de-
rived. Namely, for pn − qn = O(n−γ ), when 1/2 < γ ≤ 1, we show a “crossover



STOCHASTIC BURGERS FROM MICROSCOPIC INTERACTIONS 289

result” (Theorem 2.2) that Yn,γ
t converges to an Ornstein–Uhlenbeck field with

certain homogenized parameters. When γ = 1, convergence of Yn,γ
t to the same

Ornstein–Uhlenbeck field has been known for many particle systems since the
work [18]. For discussions of “crossover” results with respect to simple exclusion,
see [28, 53].

However, when γ = 1/2, a critical value, we prove (Theorem 2.3) that limit
points of Yn,γ

t satisfy a martingale formulation, which we dub as an “energy” for-
mulation (cf. Theorem 2.3), also with homogenized constants, which interprets the
stochastic Burgers equation: Namely, the nonlinear term in (1.4) is understood in
terms of a certain Cauchy limit of a function of the fluctuation field acting on an
approximation of a point mass as the approximation becomes more refined. We
remark, however, with respect to simple exclusion processes, convergence of Yn,γ

t

to a unique limit when γ = 1/2 is already known, and this limit is understood
in the “Cole–Hopf” sense as mentioned above [14]. Therefore, our results imply
that the “Cole–Hopf” limit of the fluctuation field satisfies also our “energy” for-
mulation. In this context, we note [3] further clarifies the “energy” formulation of
the simple exclusion limit starting from the invariant state νρ (cf. point 2 of Re-
mark 2.4). Also, we note another martingale formulation was given with respect to
the Burgers equation in [4].

In our general framework, convergence of Yn,γ
t to a unique limit when γ = 1/2

has not been shown, an important open question (cf. Remark 2.4). However,
one may still try to characterize limit points of the height function across pro-
cess characteristics, H

n,γ
t (x) := n−1/2Hn2t (nx − nυn(t)), via (1.3) given sub-

sequential convergence of Yn,γ
t . Although this is not the purpose of this pa-

per, we indicate how this might be accomplished to be more complete. In-
deed, by (1.3) and J0(t) − Jx(t) = ∑x−1

y=0(ηt (y) − η0(y)), one has H
n,γ
t (x) =

n−1/2Jnx−nυn(t)(n
2t) − n−1/2 ∑nx−nυn(t)−1

y=0 η0(y), say for x > υn(t). To write

the current in terms of the fluctuation field, formally, n−1/2Jnx−nυn(t)(n
2t) =

Yn,γ
t (1[x,∞)) − Yn,γ

0 (1[x,∞)) + o(1), although as there are an infinite number of
particles and 1[x,∞) is not a compactly supported function some sort of truncation
is needed to make a rigorous argument. Using the method in [51] and [32], one can
approximate n−1/2Jnx−nυn(t)(n

2t) by Yn,γ
t (Gk,x) −Yn,γ

0 (Gk,x) for large k where
Gk,x(z) = (1 − (z − x)+/k)+, and so it is possible to take subsequential limits of
H

n,γ
t .
Finally, we remark if uniqueness of solution for the γ = 1/2 “energy” formula-

tion were known in our more general framework, one would be able to identify the
solution, modulo parameters, as the limit already identified for simple exclusion
through the Cole–Hopf apparatus. In this way, one should be able to determine
that the height function limits, with respect to a general class of interactions start-
ing from nearly the invariant measure, are in the KPZ class for instance.

We now remark on the argument for Theorems 2.2 and 2.3. We take a stochastic
differential of Yn,γ

t , namely

dYn,γ
t = (

∂tYn,γ
t + LnYn,γ

t

)
dt + dMn,γ

t ,
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where Ln is the system infinitesimal generator and Mn,γ
t is a martingale. We note,

because the reference frame moves with velocity υn(t), the term ∂tYn,γ
t does not

vanish. Beginning in a perturbed invariant measure, the martingale term can be
handled by an ergodic theorem. However, to write the drift term ∂tYn,γ

t +LnYn,γ
t ,

in terms of the fluctuation field itself and, therefore, “close” the equation, is a
more difficult task, and requires what has been known as a “Boltzmann–Gibbs”
principle. Such a principle was first proved in [18] when γ = 1. In our context, we
would like to recover a second-order term, and the principle would replace∫ t

0

1

nγ−1/2

∑
x∈Z

∇G(x/n)τxV (ηn2s) ds

with

ϕ′′
V (ρ)

2

∫ t

0

1

nγ+1/2

∑
x∈Z

∇G(x/n)

×
{
Yn,γ

s

(
1

2ε
1[x−ε,x+ε]

)2

−Eνρ

[
Yn,γ

s

(
1

2ε
1[x−ε,x+ε]

)2]}
ds

in L2(Pνρ ) as n ↑ ∞ and ε ↓ 0. Here, G is a function in the Schwarz class, τx is
the x-shift operator, V is a mean-zero function with the property that the derivative
of its “tilted mean” ϕV (z) vanishes at z = ρ [cf. definition near (2.4)]. Given such
a replacement principle (cf. Section 3.2 for precise statements), one can prove
the sequence Yn,γ

t is tight and derive martingale formulations of limit points as
desired.

The case γ = 1/2 is the most difficult since there is no spatial averaging at all.
However, there is much cancelation with respect to the time integral which helps
to prove the estimate needed. We show the cases 1/2 < γ ≤ 1 would follow from
the γ = 1/2 replacement. A similar replacement for symmetric simple exclusion,
using specific duality methods, was performed in [5].

The method given here, in our general framework, is quite different. The main
idea is to use an involved H−1 renormalization scheme to bound errors in the
replacement. Such a scheme makes good use of three assumed ingredients [cf.
precise statements (R), (G), (EE) in Section 2.1]: First, the measure νρ is in-
variant with respect to all asymmetric and symmetric versions of the process,
the main reason for the “gradient dynamics” condition. Second, a spectral gap
lower bound for the symmetric process localized on a interval 
� with width �

and
∑

x∈
�
η(x) particles which, after averaging with respect to νρ , is of order

O(�−2). Also, third, an “equivalence of ensembles” estimate holds with respect to
canonical νρ(·|∑|x|≤� η(x) = k) and grand canonical νρ measures.

We note the current article is an evolution of the arXiv paper [27], encompassing
the work there on a type of exclusion model starting from a Bernoulli product in-
variant measure and a model specific Boltzmann–Gibbs principle. See also [3] for
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a different type of resolvent method specific to simple exclusion. In this context,
the current article is a nontrivial generalization to more diverse models, starting
from perturbations of the stationary state, using a more general H−1 renormaliza-
tion scheme. We remark that part of this improvement, of its own interest, is that
the Boltzmann–Gibbs principle (Theorem 3.2) shown here does not rely on the
independence structure of a product measure, or on a sharp spectral gap estimate,
or on a process “duality.” Finally, we note elements of our H−1 renormalization
scheme go back to [26] and [56] in different contexts.

We now give the structure of the article. In Section 2, the general class of models
studied, results and specific systems satisfying the class assumptions are discussed.
Then, in Section 3, we outline the proof of the main results, Theorems 2.2 and 2.3,
stating the form of Boltzmann–Gibbs principle used. In Section 4, this principle
is proved. Finally, in Section 5, we prove for a class of systems, including the
specific processes discussed in Section 2, the “equivalence of ensembles” estimate
assumed for the proofs in Section 3.

2. Abstract framework, results and models. We now discuss the abstract
framework we work with in Section 2.1, and state results in this framework in
Section 2.2. This framework covers a wide class of models such as zero-range
models and different types of exclusion processes which we detail in Sections 2.3–
2.5. A reader focusing on one of these models, might skip to its subsection while
referring to Section 2.1, and then proceed to results in Section 2.2.

2.1. Notation and assumptions. We consider a sequence of “weakly asym-
metric” nearest-neighbor “mass conservative” particle systems {ηn

t : t ≥ 0} on the
state space � = N

Z
0 where N0 = {0,1,2, . . .}. The configuration of the system

ηt = {ηt (x) :x ∈ Z} is a collection of occupation numbers ηt (x) which counts the
numbers of particles at sites x ∈ Z at time t ≥ 0. In some of the examples we will
consider, the occupation number is bounded by 1, in which case the effective state
space reduces to {0,1}Z.

“Gradient” dynamics. The dynamics will be of “gradient” type. That is, we
suppose there are functions {bR,n

x }n≥1 and {bL,n
x }n≥1 satisfying the following con-

ditions (R1) and (R2). Let τx be the shift operator where (τxη)(z) = η(x + z) and
τxf (η) = f (τxη) for x ∈ Z. Let also 
k = {j : |j | ≤ k} ⊂ Z for k ≥ 1.

(R1) For all n ≥ 1, bR,n
x = τxb

R,n
0 and bL,n

x = τxb
L,n
0 are nonnegative finite-

range functions on � such that b
R,n
0 and b

L,n
0 are supported on {η(y) :y ∈


R} for some R ≥ 1. We suppose uniformly in n that |bR,n
0 (η)| + |bL,n

0 (η)| ≤
C
∑

y∈
R
η(y). Moreover, there are nonnegative functions cn

x = τxc
n on �, sup-

ported on {η(x) :x ∈ 
R} such that

bR,n
x (η) − bL,n

x (η) = cn
x(η) − cn

x+1(η).
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In addition, suppose there are fixed functions bR
0 , bL

0 and c0 such that configuration-
wise

lim
n↑∞b

R,n
0 (η) = bR

0 (η), lim
n↑∞b

L,n
0 (η) = bL

0 (η) and lim
n↑∞ cn

0(η) = c0(η).

In some of the models considered, such as zero-range processes in Section 2.3,
the functions b

R,n
0 = bR

0 , b
L,n
0 = bL

0 and cn
0 = c0 are fixed and do not depend on

the parameter n. However, for the kinetically constrained exclusion models in Sec-
tion 2.4, the rates do depend on n.

(R2) With respect to a fixed measure νρ on �, for all n ≥ 1, we have

bR,n
x

(
ηx+1,x)dνx+1,x

ρ

dνρ

(η) = bL,n
x (η),

where νx+1,x
ρ is the measure of the variable ζ = ηx+1,x under νρ .

We also define bn
x(η) = bR,n

x (η) + bL,n
x (η), bn(η) = bn

0(η) and cn(η) = cn
0(η) to

simplify notation.
We now specify the process generator. For a ∈ R and γ > 0, let

pn = 1

2
+ a

2nγ
and qn = 1 − pn = 1

2
− a

2nγ
.

Let also n0 be such that 0 ≤ pn0, qn0 ≤ 1, and T > 0 be a fixed time.

(M) Suppose, for each a ∈ R, γ > 0 and n ≥ n0, that {ηn
t : t ∈ [0, T ]} is a

L2(νρ) Markov process with strongly continuous Markov semigroup P n
t and

Markov generator Ln (cf. Chapter I; Section IV.4 of [40]) with a core composed of
local L2(νρ) functions on which

Lnf (η) = n2
∑
x∈Z

{
bR,n
x (η)pn∇x,x+1f (η) + bL,n

x (η)qn∇x+1,xf (η)
}
,(2.1)

where ∇x,yf (η) = f (ηx,y) − f (η), and ηx,y is the configuration obtained from η

by moving a particle from x to y:

ηx,y(z) =
⎧⎪⎨⎪⎩

η(y) + 1, when z = y,

η(x) − 1, when z = x,

η(z), otherwise.

The role of a ∈ R and γ > 0 is to control the strength of the “weak asymmetry” in
the model.

Invariant measure νρ . We now specify some technical properties which νρ

should satisfy. Define for a probability measure κ , the path measure Pκ govern-
ing the process {ηn

t : t ∈ [0, T ]} with initial configurations η0 distributed according
to κ . Let then Eκ and Eκ denote expectations with respect to κ and Pκ , respec-
tively.
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(IM1) Suppose νρ is a translation-invariant measure which is “spatially mix-
ing.” That is, for local L2(νρ) functions f and h,

lim|x|↑∞Eνρ

[
f (η)τxh(η)

] = Eνρ [f ]Eνρ [h].

In addition, suppose the mean Eνρ [η(0)] = ρ, and moment-generating function
Eνρ [eλη(0)] < ∞ for |λ| ≤ λ∗ for a λ∗ > 0.

Although product measures νρ are considered in most of the examples, we note, in
Section 2.5, a nonproduct measure νρ corresponding to an exponentially mixing
ergodic Markov chain is used.

Now, the measure νρ , by (IM1) and the “gradient dynamics” conditions (R1)
and (R2), is an invariant measure with respect to Ln for all a ∈ R and γ > 0.
Indeed, let φ be a local L2(νρ) function supported with respect to sites in 
k .
Then, for � > k, we have

Eνρ [Lnφ] = −n2Eνρ

[ ∑
|x|≤�

(pn − qn)φ(η)
[
cn
x(η) − cn

x+1(η)
]]

= −n2(pn − qn)Eνρ

[
φ(η)

(
cn−�(η) − cn

�+1(η)
)]

.

The limit as � ↑ ∞ vanishes, by translation-invariance and the spatial mixing as-
sumption in (IM1).

One can also compute that the L2(νρ) adjoint L∗
n is the generator with parameter

−a, that is, when the jump probability is reversed. Define Sn = (Ln +L∗
n)/2. Then

the Dirichlet form Dνρ,n(f ) := Eνρ [f (−Lnf )] = Eνρ [f (−Snf )] on local L2(νρ)

functions is given by

Dνρ (f ) = 1

2

∑
x∈Z

Eνρ

[
bR,n
x (η)

(∇x,x+1f (η)
)2]

.(2.2)

Moreover, when a = 0, Sn is the generator of the associated process and νρ is a
reversible measure.

Consider now the empirical measure

Yn
0 = 1√

n

∑
x∈Z

(
η(x) − ρ

)
δx/n

and its covariance under measure κ , on compactly supported functions,

Cn
κ (G,H) = Eκ

[(
Yn

0 (G) − Eκ

[
Yn

0 (G)
])(

Yn
0 (H) − Eκ

[
Yn

0 (H)
])]

.

(IM2) We assume, starting from νρ , that Yn
0 converges weakly to a spa-

tial Gaussian process with covariance Cνρ (G,H) := limn↑∞ Cn
νρ

(G,H) such that

Cνρ (G,G) ≤ C(ρ)‖G‖2
L2(R)

. Also, suppose the moment bound holds

sup�≥1 ‖( 1√
�

∑�
x=1(η(x) − ρ))2‖L4(νρ) < ∞.
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It will be convenient to define the variances

σ 2
n (ρ) := Cn

νρ
(H,H) = Eνρ

[(
1√

2n + 1

∑
x∈
n

(
η(x) − ρ

))2]

and σ 2(ρ) = Cνρ (H,H) = limn↑∞ σ 2
n (ρ) when H(x) = 1[−1,1](x).

When νρ is sufficiently mixing, the case of our examples, (IM2) holds with
Cνρ (G,H) = σ 2(ρ)〈G,H 〉L2(R).

Now, for λ ∈ (−λ∗, λ∗), consider the tilted measure νλ
ρ with “tilt” or “chemical

potential” λ given by its finite-dimensional projections

dνλ
ρ

dνρ

(
η(x) = e(x), x ∈ 
�|η(x) = ξ(x), x /∈ 
�

) = e
λ
∑

x∈
�
(e(x)−ρ)

Z(λ, �, ξ)
,(2.3)

where e, ξ ∈ � and Z(λ, �, ξ) is the normalization.

(D1) We will assume the measures {νλ
ρ : |λ| < λ∗} are well defined on �, that is

a limit of (2.3) as 
� ↗ Z can be taken, not depending on ξ . Also, we assume that
the measures can be indexed by density, that is, Eνλ

ρ
[η(0)] is strictly increasing in

λ for |λ| ≤ λ∗.

These assumptions hold when νρ is a nontrivial product measure satisfying (IM1):
d
dλ

Eνλ
ρ
[η(0)] = Eνλ

ρ
[(η(0) − Eνλ

ρ
[η(0)])2] > 0. They also hold when νρ corre-

sponds to the ergodic Markov chain in the case for the exclusion with speed-change
model (cf. details in Section 2.5).

The measures {νλ
ρ : |λ| < λ∗} are translation-invariant since νρ is assumed

translation-invariant (IM1). Also, given exponential moments of νρ (IM1),
Eνλ

ρ
[η(0)] is continuous in λ for |λ| < λ∗. Hence, by the strict increasing as-

sumption in (D1), one can reparameterize {νλ
ρ} in terms of density: Let z ∈

(ρ∗, ρ∗) where ρ∗ = limλ↓−λ∗ Eνλ
ρ
[η(0)] and ρ∗ = limλ↑λ∗ Eνλ

ρ
[η(0)]. Let λ(z) ∈

(−λ∗, λ∗) be the parameter such that E
ν

λ(z)
ρ

[η(0)] = z. Then we will define

νz = ν
λ(z)
ρ .

Define also, for a local L2(νρ) function f , the “tilted mean” function ϕf (z) :
(ρ∗, ρ∗) →R where

ϕf (z) = Eνz

[
f (η)

]
.

We consider the derivatives of ϕf (z) as the formal limits of the derivatives of
Eνz[f (η)|η(x) = ξ(x), x ∈ 
�] as � ↑ ∞. Define

ϕ′
f (z) := λ′(z)Eνz

[(
f (η) − Eνz[f ])(∑

x∈Z

(
η(x) − z

))]
,
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ϕ′′
f (z) := (

λ′(z)
)2

Eνz

[(
f (η) − Eνz[f ])(∑

x∈Z

(
η(x) − z

))2]
(2.4)

+ λ′′(z)Eνz

[(
f (η) − Eνz[f ])(∑

x∈Z

(
η(x) − z

))]
.

For the 0th derivative, we set ϕ
(0)
f (z) := Eνz[f ].

(D2) For local L2(νρ) functions f , suppose the limits (2.4) are well defined and
|ϕ′

f (ρ)|, |ϕ′′
f (ρ)| ≤ C(ρ)‖f ‖L2(νρ); already, |ϕf (ρ)| ≤ ‖f ‖L2(νρ). Also, suppose

lim
n↑∞ϕ′

fn
(ρ) = ϕ′

f (ρ) and lim
n↑∞ϕ′′

fn
(ρ) = ϕ′′

f (ρ)

when {fn} and f are local functions such that limn↑∞ fn(η) = f (η) and fn(η) ≤
f̂ (η) configuration-wise for each n where f̂ ∈ L2(νρ).

When {νx} are product or rapidly mixing Markov measures, again the case for our
examples, this condition also holds by calculation with (2.3).

Spectral gap. We now give a “spectral gap” condition. For � ≥ 1, recall 
� is
the box of size 2� + 1, namely 
� := {x ∈ Z : |x| ≤ �}. Let also, for k ≥ 0 and
ξ ∈ �, Gk,�,ξ := {η :

∑
x∈
�

η(x) = k, η(y) = ξ(y) for y /∈ 
�} be the hyperplane
of configurations on 
� with k particles which equal ξ outside 
�. Denote by
νk,�,ξ the canonical measure on Gk,�,ξ , namely

νk,�,ξ (·) := νρ

(
·
∣∣∣ ∑
x∈
�

η(x) = k, η(y) = ξ(y) for y /∈ 
�

)
.

Consider now the process, restricted to the hyperplane Gk,�,ξ with generator

Sn,Gk,�,ξ
f (η) = 1

2

∑
|x−y|=1
x,y∈
�

bn
x(η)∇x,yf (η).

This is a finite-state Markov process with reversible invariant measure νk,�,ξ . De-
note by λk,�,ξ,n the spectral gap, that is the second largest eigenvalue of −Sn,Gk,�,ξ

(with 0 being the largest). Let W(k, �, ξ, n) denote the reciprocal of λk,�,ξ,n, which
is set to ∞ if λk,�,ξ,n = 0. Then the associated Poincaré-inequality reads as

Var(f, νk,�,ξ ) ≤ W(k, �, ξ, n)Dn(f, νk,�,ξ ),(2.5)

where Var(f, νk,�,ξ ) is the variance of f with respect to νk,�,ξ and the canonical
Dirichlet form Dn(f, νk,�,ξ ) is given by

Dn(f, νk,�,ξ ) := 1

2

∑
x,x+1∈
�

Eνk,�,ξ

[
bR,n
x (η)

(∇x,x+1f (η)
)2]

.

When W(k, �, ξ, n) < ∞, the process is ergodic and νk,�,ξ is the unique invariant
measure.
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Denote the “outside variables” by ηc
� = {η(x) :x /∈ 
�}. We will assume the

following condition on W(k, �, ξ, n).

(G) Suppose there is a constant C = C(ρ) such that, for n ≥ 1, we have

Eνρ

[
W

( ∑
x∈
�

η(x), �, ηc
�, n

)2]
≤ C�4.

We remark a sufficient condition to verify (G) would be the uniform bound
supk,ξ,n �−2W(k, �, ξ, n) < ∞, which holds for some types but not all of the spe-
cific models discussed.

Equivalence of ensembles. We will also assume an “equivalence of ensembles”
estimate between the canonical and grand-canonical measures. Define, for � ≥ 1
and η ∈ �, the empirical average

η(�) = 1

2� + 1

∑
y∈
�

η(y).

(EE) For local L5(νρ) functions f , supported on {η(x) :x ∈ 
�0}, such that
ϕf (ρ) = ϕ′

f (ρ) = 0, and � ≥ �0, there exist constants α0 > 0 and C = C(ρ, �0, α0)

where∥∥∥∥Eνρ

[
f |η(�), ηc

�

]− ϕ′′
f (ρ)

2

[(
η(�) − ρ

)2 − σ 2
� (ρ)

2� + 1

]∥∥∥∥
L4(νρ)

≤ C‖f ‖L5(νρ)

�1+α0/2 .

On the other hand, when only ϕf (ρ) = 0 is known,

∥∥Eνρ

[
f |η(�), ηc

�

]− ϕ′
f (ρ)

(
η(�) − ρ

)∥∥
L4(νρ) ≤ C‖f ‖L5(νρ)

�1/2+α0/2 .

We remark, a weaker version, where the L2(νρ) norm, instead of the L4(νρ)

norm of the difference, is say less than the same right-hand side expressions with
‖f ‖L3(νρ) in place of ‖f ‖L5(νρ) would be sufficient for our purposes if there is a

uniform bound on the inverse gap: supk,ξ,n �−2W(k, �, ξ, n) < ∞.
Usually, such estimates follow from a local central limit theorem. In Proposi-

tion 5.1, we show, when νρ is a nondegenerate product measure, that (EE) holds
with α0 = 1. In Proposition 5.2, with respect to a Markovian measure, we prove
(EE) holds with α0 = 1 − ε for any fixed 0 < ε < 1. These two propositions cover
the examples discussed in the article.

Initial conditions. We will start from initial measures {μn} which have bounded
relative entropy H(μn;νρ) with respect to νρ .

(BE) Suppose {μn} satisfies

sup
n

H
(
μn;νρ

) = sup
n

Eνρ

[
dμn

dνρ

log
dμn

dνρ

]
< ∞.
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In addition, we presume a diffusive initial limit starting from {μn}.
(CLT) Under initial measures {μn}, we suppose Yn

0 converges weakly to a spa-
tial Gaussian process Ȳ0 with covariance C(G,H) = limn↑∞ Cn

μn(G,H) for com-
pactly supported functions G,H .

Of course, if μn ≡ νρ , (BE) and (CLT) trivially hold with C(G,H) =
Cνρ (G,H). When νρ is a product measure, a possible way to get nontrivial exam-
ples of measures {μn} satisfying (BE) and (CLT) is the following. For simplicity,
we consider the case on which νρ is a Bernoulli product measure on {0,1}Z. Let
{κn

x :x ∈ Z} be a given bounded sequence and define μn as the nonhomogeneous
Bernoulli product measure satisfying

μn

(
η(x) = 1

) = ρ + κn
x√
n
.

A simple computation shows that

H
(
μn;νρ

) ≤ C(‖κ‖�∞)

n

∑
x∈Z

(
κn
x

)2
.

Therefore, taking κn
x = κ(x/n), where κ :R → R is bounded and in L2(R), we

see that supn H(μn;νρ) < ∞, and (BE) is satisfied. On the other hand, since the
measure μn is product, a simple computation shows that, under {μn}, the process
Yn

0 converges in distribution to Ȳ0 + κ , where Ȳ0 is a white noise with variance
ρ(1 −ρ). In [48], the Cole–Hopf solution of KPZ is considered starting from such
initial conditions.

One may relate probabilities of events A under μn with those under νρ by an
application of the entropy inequality:

Pμn(A) ≤ log 2 + H(μn;νρ)

log(1 + Pνρ (A)−1)
.(2.6)

For instance, let r ∈ L2(νρ) be a local function. By the spatial mixing assump-
tion (IM2), under νρ , we have the convergence in probability,

lim
n→∞

∫ T

0

1

2n + 1

∑
x∈
n

τxr
(
ηn

s

)
ds = Eνρ

[
r(η)

]
.(2.7)

Then, by the entropy relation, also under {μn}, the same limit also holds in proba-
bility.

Of course, given that we begin from nearly the invariant measure νρ , (2.7) is a
trivial case of “hydrodynamics.” Formally, starting from more general measures,
the hydrodynamic equation for the limiting empirical density ρ = ρ(x, t) would
read

∂tρ(x, t) + a

2
∇ϕb

(
ρ(x, t)

) = 1

2
�ϕc

(
ρ(x, t)

)
.(2.8)
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In a sense, the main results of the paper are on the different fluctuations from
the law of large numbers (2.7) which arise for different regimes of the strength
asymmetry parameters a and γ .

2.2. Results. Denote by S(R) the standard Schwarz space of rapidly decreas-
ing functions equipped with the usual metric, and let S′(R) be its dual, namely the
set of tempered distributions in R, endowed with the strong topology. Denote the
density fluctuation field acting on functions H ∈ S(R) as

Yn
t (H) = 1√

n

∑
x∈Z

H

(
x

n

)(
ηn

t (x) − ρ
)
.

Denote by D([0, T ],S′(R)) and C([0, T ],S′(R)) the spaces of right continuous
functions with left limits and continuous functions respectively from [0, T ] to
S

′(R).
We now state a result from the literature which has been proved for some pro-

cesses (cf. [23], Chapter 11 in [34] for zero-range processes with bounded rate, [20,
50] for simple exclusion processes, and Section II.2.10 of [57] for exclusion sys-
tems with speed-change), sometimes from more general initial conditions, when
the asymmetry is of order O(n−1).

PROPOSITION 2.1. For γ = 1, starting from {μn}, the sequence {Yn
t ;n ≥ 1}

converges in the uniform topology on D([0, T ],S ′(R)) to the process Yt which
solves the Ornstein–Uhlenbeck equation

∂tYt = 1

2
ϕ′

c(ρ)�Yt + a

2
ϕ′

b(ρ)∇Yt +
√

1

2
ϕb(ρ)∇Ẇt ,(2.9)

where Ẇt is a space–time white noise with unit variance, and Y0 = Ȳ0, the field
given in (CLT).

The Ornstein–Uhlenbeck equation (2.9) has a drift term coming from the weak
asymmetry of the jump rates. The drift, as is well known, can be understood in
terms of a characteristic velocity υ = (a/2)ϕ′

b(ρ) from considering the lineariza-
tion of the hydrodynamic equation (2.8) (cf. Chapter II.2 of [57]). However, it can
be removed from the limit field by observing the density fluctuation field in the
frame of an observer moving along the process characteristics. Define

Yn,γ
t (H) = 1√

n

∑
x∈Z

H

(
x

n
− 1

n

{
aϕ′

bn(ρ)tn2

2nγ

})(
ηn

t (x) − ρ
)
.

If γ = 1, Proposition 2.1 is equivalent to the statement that Yn,γ
t converges in

the uniform topology on D([0, T ],S′(R)) to Yt , the unique solution of the drift-
removed Ornstein–Uhlenbeck equation

∂tYt = 1
2ϕ′

c(ρ)�Yt +
√

1
2ϕb(ρ)∇Ẇt .(2.10)
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This equation of course corresponds to (2.9) with a = 0, is well posed and has a
unique solution (cf. [61]).

Now we increase the strength of the asymmetry in the jump rates by decreasing
the value of γ . We show for 1/2 < γ < 1, starting from the measures {μn}, that
there is no effect in the convergence result of the fluctuation field.

THEOREM 2.2 (Crossover fluctuations). For 1/2 < γ < 1, starting from ini-
tial measures {μn}, the sequence {Yn,γ

t ;n ≥ 1} converges in the uniform topol-
ogy on D([0, T ],S′(R)) to the process Yt which is the solution of the Ornstein–
Uhlenbeck equation (2.10) with initial condition Y0 = Ȳ0 given in (CLT).

However, for γ = 1/2, which is a threshold, a much different qualitative limit
behavior is obtained as the strength of the weak asymmetry in the jump rates is
big enough to influence the limit field. As mentioned in the Introduction, the limit
field Yt should satisfy, in some sense, a stochastic Burgers equation, written in our
framework as

∂tYt = ϕ′
c(ρ)

2
�Yt + a

2
ϕ′′

b (ρ)∇Y2
t +

√
1

2
ϕb(ρ)∇Ẇt ,(2.11)

although it is ill-posed.
We now detail in what sense we mean to “solve” (2.11) in terms of a mar-

tingale formulation. Let ι :R → [0,∞) be the function ι(z) = (1/2)1[−1,1](z).
Also, for 0 < ε ≤ 1, define ιε(z) = ε−1ι(ε−1z) and let Gε :R → [0,∞) be a
smooth compactly supported function in S(R) which approximates ιε: That is,
‖Gε‖2

L2(R)
≤ 2‖ιε‖2

L2(R)
= ε−1 and

lim
ε↓0

ε−1/2‖Gε − ιε‖L2(R) = 0.

Such choices can be readily found by convoluting ιε with smooth kernels. Also,
for x ∈ R, define the shift τx so that τxGε(z) = Gε(x + z).

Consider now an S
′(R)-valued process {Yt ; t ∈ [0, T ]} and for 0 ≤ s ≤ t ≤ T

let

Aε
s,t (H) =

∫ t

s

∫
R

∇H(x)
[
Yu(τ−xGε)

]2
dx du.

We say the process Y· satisfies the probability energy condition if for each H ∈
S(R), {

Aε
s,t (H)

}
is Cauchy in probability as ε ↓ 0(2.12)

and the limit in probability does not depend on the particular smoothing family
{Gε}. This limit defines the process {As,t ;0 ≤ s ≤ t ≤ T } given by

As,t (H) := lim
ε↓0

Aε
s,t (H),
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which is S′(R) valued (cf. pages 364–365; Theorem 6.15 of [61]).
We will say that {Yt ; t ∈ [0, T ]} is a probability energy solution of (2.11) if the

following conditions hold:

(i) Initially, Y0 is a spatial Gaussian process with covariance C(G,H) for
G,H ∈ S(R).

(ii) The process {Yt ; t ∈ [0, T ]} satisfies the probability energy condition
(2.12).

(iii) Then, the S
′(R) valued process {Mt : t ∈ [0, T ]} where

Mt (H) := Yt (H) −Y0(H) − ϕ′
c(ρ)

2

∫ t

0
Ys(�H)ds − aϕ′′

b (ρ)

2
A0,t (H)(2.13)

is a continuous martingale with quadratic variation〈
Mt (H)

〉 = ϕb(ρ)t

2
‖∇H‖2

L2(R)
.

In particular, condition (iii) specifies by Lévy’s theorem that Mt (H) is a Brownian
motion with variance (ϕb(ρ)/2)t‖∇H‖2

L2(R)
.

We also define a stronger notion of solution to (2.11) which may be verified in
some cases. We say that Yt satisfies the L2 energy condition if in (2.12), instead
of in the probability sense, we assert {Aε

s,t (H)} is Cauchy in L2 with respect to
the underlying probability measure, and As,t (H) is its L2 limit. Then we say Yt is
an L2 energy solution of (2.11) if (i) holds as before, (ii) the L2 energy condition
holds and (iii) holds with respect to the L2 limit As,t (H).

THEOREM 2.3 (KPZ fluctuations). For γ = 1/2, starting from initial mea-
sures {μn}, the sequence of processes {Yn,γ

t :n ≥ n0} is tight in the uniform topol-
ogy on D([0, T ],S′(R)). Moreover, any limit point of Yn,γ

t is a probability energy
solution with respect to (2.11) with initial field Ȳ0 given in (CLT).

If the initial measure is μn ≡ νρ , any limit point of Yn,γ
t is an L2 energy solution

of (2.11) with initial field Ȳ0 given in (CLT).

REMARK 2.4. We now make the following comments:

1. Formally, equation (2.13) corresponds to the stochastic Burgers equa-
tion (2.11) where the nonlinear term is represented by A0,t . We remark, as in [3],
by taking a fast subsequence in ε, one may write A0,t as a function of {Yu :u ≤ t},
and form an equation in which Yt satisfies (2.11) a.s. on a type of negative order
Hermite Hilbert space.

2. We also remark, as alluded to in the Introduction, if there were a unique
probability or L2 energy solution, that is uniqueness of process in the associated
“martingale formulation,” since with respect to simple exclusion the fluctuation
field limit is known in terms of the “Cole–Hopf” solution of the KPZ equation [14],
not only could one conclude a unique fluctuation field limit in Theorem 2.3 in the
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framework of the particle systems considered, but also identify it in terms of the
“Cole–Hopf” apparatus. What is required to show uniqueness of Yt is to determine
uniquely its finite dimensional distributions (cf. Section 4.4 of [21]), which the
nonlinearity of A0,t makes difficult.

3. We also note that the statement of Theorem 2.3 is nontrivial when a �= 0 and
b is such that

ϕ′′
b (ρ) �= 0.(2.14)

Otherwise, when ϕ′′
b (ρ) = 0, the limit field Yt satisfies the Ornstein–Uhlenbeck

equation (2.10). Examples, fitting in our framework, where the second derivative
vanishes include types of zero-range, that is independent particle systems where
ϕb(ρ) = 2ρ which are in the EW class.

2.3. Model 1: Zero-range processes. The one-dimensional weakly asymmet-
ric zero-range process ηn

t , on the state space � := N
Z
0 , consists of a collection of

random walks which interact in that the jump rate of a particle at vertex x only de-
pends on the number of particles at x. More precisely, the generator is in form (2.1)
where

bR,n
x (η) = g

(
η(x)

)
and bL,n

x (η) = g
(
η(x + 1)

)
do not depend on n and are fixed with respect to a function g :N0 →R+ such that
g(0) = 0, g(k) > 0 for k ≥ 1 and g is Lipschitz,

(LIP) supk≥0 |g(k + 1) − g(k)| < ∞.

Under this specification, a Markov process ηn
t can be constructed (on a subset of

�) [2]. Hence, (R1) holds and we identify the fixed function cn ≡ c as

c(η) = g
(
η(0)

)
.

The zero-range process possesses a family of invariant measures which are
fairly explicit product measures. For α ≥ 0, define

Z(α) := ∑
k≥0

αk

g(k)! ,

where g(k)! = g(1) · · ·g(k) for k ≥ 1 and g(0)! = 1. Let α∗ be the radius of conver-
gence of this power series and notice that Z increases on [0, α∗). Fix 0 ≤ α < α∗
and let ν̄α be the product measure on N

Z whose marginal at the site x is given by

ν̄α

{
η :η(x) = k

} =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

Z(α)

αk

g(k)! , when k ≥ 1,

1

Z(α)
, when k = 0.
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We now reparameterize these measures in terms of the “density.” Let ρ(α) :=
Eν̄α [η(0)] = αZ ′(α)/Z(α). By computing the derivative, we obtain that ρ(α) is
strictly increasing on [0, α∗). Then let α(·) denote its inverse. Define

νρ(·) := ν̄α(ρ)(·),
so that {νρ : 0 ≤ ρ < ρ∗} is a family of invariant measures parameterized by the
density. Here, ρ∗ = limα↑α∗ ρ(α), which may be finite or infinite depending on
whether limα→α∗ Z(α) converges or diverges.

Note, since νρ is a product measure, that ν
λ(z)
ρ = νz for 0 ≤ z < ρ∗, and condi-

tion (D) holds. One can readily check that (R2) holds:

g
(
ηx+1,x(x)

)dνx+1,x
ρ

dνρ

= g
(
η(x) + 1

) g(η(x))!g(η(x + 1))!
g(η(x) + 1)!g(η(x + 1) − 1)!

= g
(
η(x + 1)

)
.

Also, by the construction in [55], which extends the construction in [2] to an
L2(νρ) process, we have that Ln is a Markov L2(νρ) generator whose core can be
taken as the space of all local L2(νρ) functions. Indeed, in [55], a core of bounded
Lipschitz functions is identified; however, since any local L2(νρ) function is a
limit of bounded Lipschitz functions, and the formula (2.1) is well defined and
L2(νρ)-bounded for a local L2(νρ) function, by dominated convergence the core
can be extended. It follows that the measures {νρ : 0 ≤ ρ < ρ∗} are invariant for the
zero-range process. Also, (IM) holds as νρ is a product measure whose marginal
has some exponential moments. In addition, one can check that (EE) holds by
Proposition 5.1.

We now address the spectral gap properties of the system. Since the model in-
teractions are range 0, the gap does not depend on the outside variables ξ . How-
ever, the gap depends on g, as it should since g controls the rate of jumps. We
identify three types of rates for which a spectral gap bound has been proved. Let
β = k/(2� + 1)d .

• If g is not too different from the independent case, for which the gap is of order
O(�−2) uniform in k, one expects similar behavior as for a single particle. This
has been proved for d ≥ 1 in [38] under assumptions (LIP) and

(U) There exists x0 and ε0 > 0 such that g(x + x0)−g(x) ≥ ε0 for all x ≥ 0.

• If g is sublinear, that is C−1xγ ≤ g(x + 1) − g(x) ≤ Cxγ for 0 < γ < 1 and
C > 0, then it has been shown that the spectral gap depends on the number of
particles k, namely the gap for d ≥ 1 is O((1 + β)−γ �−2) [45].

• If g(x) = 1(x ≥ 1), then it has been shown in d ≥ 1 that the gap is O((1 +
β)−2�−2) [43]. In d = 1, this is true because of the connection between the
zero-range and simple exclusion processes for which the gap estimate is well
known [47]: The number of spaces between consecutive particles in simple ex-
clusion correspond to the number of particles in the zero-range process.
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In all these cases, (G) follows readily by straightforward moment calculations.

2.4. Model 2: Kinetically constrained exclusion systems. We consider a type
of exclusion process, which may be thought of as a microscopic model for porous
medium behavior, developed in [29] and references therein, in one dimension on
� = {0,1}Z where particles more likely hop to unoccupied nearest-neighbor sites
when at least m− 1 ≥ 1 other neighboring sites are full. When m = 2, the rates are
in the form

bR,n
x (η; θ) = η(x)

(
1 − η(x + 1)

)[
η(x − 1) + η(x + 2) + θ

2n

]
,

bL,n
x (η; θ) = η(x + 1)

(
1 − η(x)

)[
η(x − 1) + η(x + 2) + θ

2n

]
,

with respect to a parameter θ > 0. If θ would vanish, particles can jump from site
x to x +1 exactly when there is at least 1 particle in the vicinity of the bond (x, x +
1). However, with θ > 0, the jump from x to x + 1 may also occur irrespective of
the neighboring particle structure with a small rate θ/(2n).

When m ≥ 2, the rates generalize to

bR,n
x (η; θ) = η(x)

(
1 − η(x + 1)

)
An(η; θ),

bL,n
x (η; θ) = η(x + 1)

(
1 − η(x)

)
An(η; θ),

where An(η; θ) equals

−1∏
j=−(m−1)

η(x +j)+
2∏

j=−(m−2)

j �=0,1

η(x +j)+· · ·+
m−1∏
j=−1
j �=0,1

η(x +j)+
m∏

j=2

η(x +j)+ θ

2n
.

The role of θ > 0 is to make the system “ergodic.” If θ = 0, there would be
an infinite number of invariant measures, such as Dirac measures supported on
configurations which cannot evolve under the dynamics. The hydrodynamic limit
for this model corresponds to the porous medium equation, ∂tρt (t, u) = �ρm(t, u).

Now, one may calculate that bR,n
x (η; θ) − bL,n

x (η; θ) = cn
x(η) − cn

x+1(η) where,
for m ≥ 2,

cn(η; θ) =
0∏

j=−(m−1)

η(j) + · · · +
m−1∏
j=0

η(j)

−
1∏

j=−(m−1)

j �=0

η(j) − · · · −
m−1∏
j=−1
j �=0

η(j) + θ

2n
η(0).

In the case m = 2, the last formula reduces to cn(η; θ) = η(−1)η(0)+ η(0)η(1)−
η(−1)η(1) + θ

2n
η(0).
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Of course, uniformly in η, as n ↑ ∞, the terms involving θ vanish,

bR,n
x (η; θ) → bR

x (η) := bR,1
x (η;0), bL,n

x (η; θ) → bL
x (η) := bL,1

x (η;0) and

cn(η; θ) → c := c1(η;0).

Consider now the Bernoulli product measure on �:

νρ = ∏
x∈Z

μρ where μρ(1) = 1 − μρ(0) = ρ

for ρ ∈ [0,1]. By the construction in [40], it is now standard that Ln is a Markov
L2(νρ) generator. One may also inspect that condition (R2) holds with respect to
νρ . Hence, νρ is invariant for ρ ∈ [0,1]. Condition (IM) also holds as νρ supports

two-state configurations. In addition, as νρ is a product measure, νλ(z)
ρ = νz and (D)

holds. Also, by Proposition 5.1, (EE) is satisfied.
We now discuss the spectral gap behavior of the process.

PROPOSITION 2.5. For kinetically constrained exclusion processes evolving
on 
�, when m ≥ 2, there exists a constant C, uniform over ξ and n, such that

W(k, �, ξ, n) ≤ C�2
(

�

k

)m

1(k ≥ 1).

When m = 2 and k ≤ �/3, the above spectral gap estimate is already given
in Proposition 6.2 of [29]. However, a straightforward modification of the proof of
Proposition 6.2 in [29] yields the more general estimate in Proposition 2.5. Indeed,
the difference when m ≥ 2 is that to bound equation (6.10) in [29] in the general
case, one uses that there are at most Cjm−1 ways to arrange m − 1 particles in
an interval of width j . Now, a similar optimization on j as given in the proof of
Proposition 6.2 of [29] leads to the desired generalized spectral gap estimate.

LEMMA 2.6. For the kinetically constrained exclusion model, the spectral gap
condition (G) is satisfied.

PROOF. With respect to a constant C, which may change line to line,

Eνρ

[(
W

( ∑
x∈
�

η(x), �, ξ, n

))2]

≤ C�4Eνρ

[
1
(

1

2� + 1
≤ η(�)

)(
η�)−2m

]
≤ C�4

{
ε−2m + Eνρ

[
1
(

1

2� + 1
≤ η(�) < ε

)(
η(�))−2m

]}
≤ C�4{ε−2m + �2mPνρ

(
η(�) < ε

)}
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for a fixed ε < ρ. Then, as νρ is a Bernoulli product measure with density ρ, by a
large deviations estimate say, Eνρ [W(

∑
x∈
�

η(x), �, ξ, n)2] ≤ C�4 for all � ≥ 1.
�

2.5. Model 3: Gradient exclusion with speed change. In this version of ex-
clusion on � = {0,1}Z, rates are chosen which correspond to a Hamiltonian with
nearest-neighbor interactions,

Qβ(η) = −β
∑
x∈Z

(
η(x) − 1/2

)(
η(x + 1) − 1/2

)
for β ∈ R, which will be reversible with respect to a stationary Markovian measure
ν1/2. That is, specify ν1/2 by its finite-dimensional distributions

ν1/2
(
η(x) = e(x) :x ∈ 
�|η(y) = ξ(y) for y /∈ 
�

) = e−Qβ,�(e,ξ)

Z ,

where

Qβ,�(e, ξ) = −β
∑

x,x+1∈
�

(
e(x) − 1/2

)(
e(x + 1) − 1/2

)
− β

(
ξ(−� − 1) − 1/2

)(
e(−�) − 1/2

)
− β

(
e(�) − 1/2

)(
ξ(� + 1) − 1/2

)
,

e, ξ ∈ � and Z = Z(�, ξ) is the normalization. It is not difficult to see that ν1/2 is
Markovian with transition matrix

P = 1

eβ/4 + e−β/4

[
eβ/4 e−β/4

e−β/4 eβ/4

]
,

and marginal distribution 〈1/2,1/2〉 so that Eν1/2[η(0)] = 1/2.
Then, as discussed in [57], Section II.2.4, (R2) is ensured if we take the rates

bR,n
x = bR

x and bL,n
x = bL

x which do not depend on n as

bR
x (η) = η(x)

(
1 − η(x + 1)

)
× [

α1η(x − 1)η(x + 2) + α2
(
1 − η(x − 1)

)
η(x + 2)

+ α3η(x − 1)
(
1 − η(x + 2)

)+ α4
(
1 − η(x − 1)

)(
1 − η(x + 2)

)]
,

bL
x (η) = η(x + 1)

(
1 − η(x)

)
× [

α1η(x − 1)η(x + 2) + α3
(
1 − η(x − 1)

)
η(x + 2)

+ α2η(x − 1)
(
1 − η(x + 2)

)+ α4
(
1 − η(x − 1)

)(
1 − η(x + 2)

)]
,

where α1, α2 = eβα3, α4 > 0. The condition (R1) also follows if we also assume
that α1 − α2 − α3 + α4 = 0 so that, as can be checked, c(η) takes the form

c(η) = α4η(0) + (α3 − α4)η(−1)η(0) + (α3 − α4)η(0)η(1)

+ (α4 − α2)η(−1)η(1) + (α2 − α3)η(−1)η(0)η(1).
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Again, by [40], Ln is a Markov L2(νρ) generator for the process. We note when
β = 0 and αi = 1 for i = 1,2,3,4, the model is the simple exclusion process and
ν1/2 is the Bernoulli product measure with density 1/2.

We now introduce a family of stationary, reversible measures by use of a “tilt”
or “chemical potential” λ. Define νλ

1/2, again specified by its finite-dimensional
distributions, through the relation

dνλ
1/2

dν1/2

(
η(x) = e(x) :x ∈ 
�|η(y) = ξ(y) for y /∈ 
�

) = e
λ
∑

x∈
�
(e(x)−1/2)

Z ′ ,

where e, ξ ∈ � and Z ′ = Z ′(�, ξ) is another normalization. These measures are
also Markovian with transition matrix

Pλ =
[

1 − u1 u1

v1 1 − v1

]
,(2.15)

where

u1 = r1(λ,β) + sinh(λ/2)

cosh(λ/2) + r1(λ,β)
, v1 = r1(λ,β) − sinh(λ/2)

cosh(λ/2) + r1(λ,β)

and r1(λ,β) =
√

sinh2(λ/2) + e−β . The stationary distribution equals πλ = (v1 +
u1)

−1〈v1, u1〉, which is the marginal distribution of νλ
1/2. These derivations are

performed in [12] and [62].
The measures {νλ

1/2 :λ ∈ R} are uniformly mixing: Indeed, the eigenvalues of
Pλ are 1 and 1 − u1 − v1, and the spectral gap u1 + v1 is uniformly bounded away
from 0 for λ ∈R.

One can calculate Eνλ
1/2

[η(0)] = u1/(u1 + v1) strictly increases in λ. To param-

eterize in terms of “density,” recall ν
λ(z)
1/2 = νz where λ = λ(z) is chosen so that

Eνz[η(0)] = z. Here, as z ↓ 0 = ρ∗, λ(z) ↓ −∞ and, as z ↑ 1 = ρ∗, λ(z) ↑ ∞; also
λ(1/2) = 0. Hence, since also νz is exponentially mixing, both (IM) and (D) hold.

From the defining relation for λ(z), u1/(u1 + v1) = z, one can differentiate at
z = 1/2 to find λ′(1/2)[e−β/2/4] = 1.

Also, we note the additive functional variance σ 2(z) [cf. (IM2)] satisfies the
formula σ 2(z) = Eπλ(z)

[u2] − Eπλ(z)
[(Pλ(z)u)2] where (I − Pλ(z))u = f and f =

〈−z,1 − z〉 represents the values of the function f (η) = η(0) − z; see Section 6.5
of [60]. In fact, we find σ 2(1/2) = e−β/2/4 and so λ′(1/2)σ 2(1/2) = 1.

The spectral gap for a more general process, including this one, has been
bounded as follows [41]: Uniformly over k and ξ (it does not depend on n), we
have

W(k, �, ξ, n) ≤ C�2.

Hence, (G) holds.
Also, in Proposition 5.2, we show that (EE) holds.
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3. Proofs-outline. The strategies of the proofs for Theorems 2.2 and 2.3 are
similar. We consider the stochastic differential of Yn,γ

t and represent it in terms
of corrector and martingale terms. Tightness is shown for each term in the decom-
position of Yn,γ

t . Under the assumption that the initial measure is the invariant
state νρ , limit points are identified using a Boltzmann–Gibbs principle, and shown
to satisfy (2.10) when 1/2 < γ ≤ 1 and to be energy solutions of (2.11) when
γ = 1/2. When the initial measures {μn} satisfy (BE), the entropy inequality then
allows to characterize the limit points as desired.

In the following Sections 3.1–3.3, associated martingales, Boltzmann–Gibbs
principles and tightness are discussed. In Section 3.4, limit points are identified
and Theorems 2.2 and 2.3 are proved.

To reduce some of the notation, we will drop the superscript “n” in the rate
functions and write bR,n

x = bR
x , bL,n

x = bL
x , bn

x = bx , bn = b, cn
x = cx and cn = c

until Section 3.4.

3.1. Associated martingales. For H ∈ S(R), x ∈ Z and n ≥ 1, define

�n
xH = n2

{
H

(
x + 1

n

)
+ H

(
x − 1

n

)
− 2H

(
x

n

)}
,

∇n
x H = n

{
H

(
x + 1

n

)
− H

(
x

n

)}
.

Define also, for γ, s ≥ 0, the functions

Hγ,s(·) = H

(
· − 1

n

⌊
aϕ′

b(ρ)sn2

2nγ

⌋)
and

(3.1)

H̃γ,s(·) = H

(
· − 1

n

{
aϕ′

b(ρ)sn2

2nγ

})
.

We note, in Hγ,s , the process characteristic shift is along n−1
Z, which helps make

tidy some proofs [in applying a Boltzmann–Gibbs principle (Theorem 3.2) in
proofs of Propositions 3.3 and 3.5], instead of along R as in H̃γ,s .

Let F(s, ηn
s ;H,n) = Yn,γ

s (H), and F(η;H,n) = n−1/2 ∑
x∈Z H(x

n
)(η(x)−ρ).

Although F(η;H,n) is an L2(νρ) function, in general, it is not a local function.
However, by approximation with local functions and noting by condition (R1) that
|b(η)| ≤ C

∑
|x|≤R η(x), one may conclude F(η;H,n) and also F 2(η;H,n) be-

long to the domain of Ln. In particular,

LnF
(
s, ηn

s ;H,n
)= 1

2
√

n

∑
x∈Z

cx

(
ηn

s

)
�n

xH̃γ,s + a

2nγ−1/2

∑
x∈Z

bx

(
ηn

s

)∇n
x H̃γ,s .

Also,

∂

∂s

F
(
s, ηn

s ;H,n
) =

{−aϕ′
b(ρ)n2

2nγ

}
1

n3/2

∑
x∈Z

∇H̃γ,s

(
x

n

)(
ηn

s (x) − ρ
)
.



308 P. GONÇALVES, M. JARA AND S. SETHURAMAN

Then

Mn,γ
t (H) := F

(
t, ηn

t ;H,n
)− F

(
0, ηn

0;H,n
)

−
∫ t

0

∂

∂s

F
(
s, ηn

s ;H,n
)+ LnF

(
s, ηn

s ;H,n
)
ds

is a martingale. We may decompose

Mn,γ
t (H) = Yn,γ

t (H) −Yn,γ
0 (H) − In,γ

t (H) −Bn,γ
t (H) −Kn,γ

t (H),(3.2)

where

In,γ
t (H) = 1

2

∫ t

0

1√
n

∑
x∈Z

(
cx

(
ηn

s

)− ϕc(ρ)
)
�n

xHγ,s ds,

Bn,γ
t (H) = a

2nγ−1/2

∫ t

0

∑
x∈Z

(
bx

(
ηn

s

)− ϕb(ρ) − ϕ′
b(ρ)

(
ηn

s (x) − ρ
))∇n

x Hγ,s ds,

Kn,γ
t (H)

=
∫ t

0

[
1√
n

∑
x∈Z

κn,1
x (H, s)

(
cx

(
ηn

s

)− ϕc(ρ)
)

+ a

2nγ−1/2

∑
x∈Z

κn,2
x (H, s)

(
bx

(
ηn

s

)− ϕb(ρ) − ϕ′
b(ρ)

(
ηn

s (x) − ρ
))]

ds.

Here, we introduced the centering constants ϕc(ρ) and ϕb(ρ) in In,γ
t and Bn,γ

t as
�n

xHγ,s and ∇n
x Hγ,s both sum to zero. Also,

κn,1
x (H, s) = �n

x(H̃γ,s − Hγ,s) = O
(
n−1) · �n

xH
′
γ,s + O

(
n−2) · H(4)

γ,s

(
x′/n

)
,

κn,2
x (H, s) = ∇n

x (H̃γ,s − Hγ,s)

= O
(
n−1) · �Hγ,s(x/n) + O

(
n−2) · H ′′′

γ,s

(
x′′/n

)
,

where |x′ − x|, |x′′ − x| ≤ 2.
To capture the quadratic variation 〈Mn,γ

t 〉, we compute

LnF
2(s, ηn

s ;H,n
)− 2F

(
s, ηn

s ;H,n
)
LnF

(
s, ηn

s ;H,n
)

= 1

2n

∑
x∈Z

bx

(
ηn

s

)(∇n
x H̃γ,s

)2 + a

2n1+γ

∑
x∈Z

(
cx

(
ηn

s

)− cx+1
(
ηn

s

))(∇n
x H̃γ,s

)2

so that (Mn,γ
t (H))2 − 〈Mn,γ

t (H)〉 is a martingale with〈
Mn,γ

t (H)
〉 = ∫ t

0

1

2n

∑
x∈Z

(∇n
x H̃γ,s

)2
bx

(
ηn

s

)
ds

+
∫ t

0

a

2n1+γ

∑
x∈Z

(
cx

(
ηn

s

)− cx+1
(
ηn

s

))(∇n
x H̃γ,s

)2
ds.
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When starting from the invariant measure νρ , noting the bounds in (R1), we have

Eνρ

[(
Mn,γ

t (H) −Mn,γ
s (H)

)2]
≤
{∫ t

s

(
1

n

∑
x∈Z

(∇n
x H̃γ,s

)2
)

ds

}
(3.3)

×
[

1

2
Eνρ

[
b(η)

]+ a

2nγ
Eνρ

[∣∣c0(η) − c1(η)
∣∣]]

≤ C(a)‖b‖L1(νρ)

∫ t

s

(
1

n

∑
x∈Z

(∇n
x H̃γ,s

)2
)

ds.

To express an exponential martingale, we now observe for 0 ≤ λ ≤ λ(H,n)

small that exp{λF(η;H,n)} is in the domain of Ln. Indeed, if H is a local func-
tion, as νρ is assumed in (IM) to have small parameter exponential moments, then
exp{λF(η;H,n)} ∈ L2(νρ) for all small λ. Again, an approximation argument
when H ∈ S(R) is not local shows also exp{λF(η;H,n)} belongs to the domain
of Ln. We calculate

exp
{−λF

(
u,ηn

u;H,n
)}( ∂

∂u

+ Ln

)
exp

{
λF

(
u,ηn

u;H,n
)}

= n2
∑
x∈Z

[
bR
x (η)pn

(
exp

{
λn−3/2(∇n

x H̃γ,u

)}− 1
)

+ bL
x (η)qn

(
exp

{−λn−3/2(∇n
x H̃γ,u

)}− 1
)]

− 1

n3/2

{
aλϕ′

b(ρ)n2

2nγ

}∑
x∈Z

∇H̃γ,u(x/n)
(
ηn

u(x) − ρ
)
,

which, given the assumptions on b in (R1) and on moments of νρ in (IM), belongs
to L2(νρ).

Hence, by the proof of Lemma IV.3.2 of [21],

Zs,t = exp
{
λF

(
t, ηn

t

)− λF
(
s, ηn

s

)−
∫ t

s
e−λF(u,ηn

u)

(
∂

∂u

+ Ln

)
eλF(u,ηn

u) du

}
is a martingale. We may expand Zs,t in terms of λ as

Zs,t = exp
{
λ
(
Mn,γ

t (H) −Mn,γ
s (H)

)
− λ2

2

〈
Mn,γ

t (H) −Mn,γ
s (H)

〉
+ λ3

3!
∫ t

s
R1 du + λ4

4!
∫ t

s
R2 du + λ5

∫ t

s
R3 du

}
,
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where

R1(u) = n2

2n9/2

∑
x∈Z

(
bR
x (η) − bL

x (η)
)(∇n

x H̃γ,u

)3

+ an2

2n9/2+(1/2+γ )

∑
x∈Z

bx(η)
(∇n

x H̃γ,u

)3
,

R2(u) = n2

2n6

∑
x∈Z

bx(η)
(∇n

x H̃γ,u

)4

+ an2

2n6+(1/2+γ )

∑
x∈Z

(
bR
x (η) − bL

x (η)
)(∇n

x H̃γ,u

)4
.

By the gradient condition and the bound on b in assumption (R), one may compute
for i = 1,2 that∥∥Ri(u)

∥∥
L4(νρ) ≤ C(a)

n3/2

∥∥b(η)
∥∥
L4(νρ)

(
1

n

∑
x

∣∣∇n
x H̃γ,u

∣∣2+i
)
.(3.4)

Since Eνρ [Zs,t ] = 1, by expanding in powers of λ, using Schwarz inequality, the
bound on the quadratic variation (3.3), bounds on Ri (3.4) and invariance of νρ ,
we obtain a bound for the fourth moment of Mn,γ

t (H) −Mn,γ
s (H):

Eνρ

[(
Mn,γ

t (H) −Mn,γ
s (H)

)4]
(3.5)

≤ C(a,H)‖b‖4
L(νρ)

(|t − s|2 + n−3/2|t − s|).
3.2. Generalized Boltzmann–Gibbs principles. To treat the stochastic differ-

ential of Yn,γ
t , we replace the spatial terms of form

∑
x∈Z h(x)τxf (η), where h is

a function on Z and f is a local function, in terms of the fluctuation field itself to
close the evolution equations. Such replacements fall under the term “Boltzmann–
Gibbs principles” coined by Brox–Rost in [18] which have general validity. For
instance, the following result forms the backbone of the argument for Proposi-
tion 2.1, when starting from the invariant measure νρ , with respect to the papers
cited just before the proposition statement.

PROPOSITION 3.1.
Let f be a local L2(νρ) function. For t ≥ 0 and h ∈ �2(Z), we have

lim
n→∞Eνρ

[(∫ t

0

1√
n

∑
x∈Z

(
τxf

(
ηn

s

)− ϕf (ρ) − ϕ′
f (ρ)

(
ηn

s (x) − ρ
))

h(x) ds

)2]
= 0.

We now state a main result of this paper which provides a sharper estimate,
perhaps of independent interest, when starting from νρ . To simplify expressions,
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we will use the notation(
ηn

s

)(�)
(x) := 1

2� + 1

∑
y∈
�

ηn
s (x + y).

THEOREM 3.2 (L2 generalized Boltzmann–Gibbs principle). Let f be a local
L5(νρ) function supported on sites 
�0 such that ϕf (ρ) = ϕ′

f (ρ) = 0. There exists

a constant C = C(ρ, �0) such that, for t ≥ 0, � ≥ �3
0 and h ∈ �1(Z) ∩ �2(Z),

Eνρ

[(∫ t

0

∑
x∈Z

(
τxf

(
ηn

s

)− ϕ′′
f (ρ)

2

{((
ηn

s

)(�)
(x) − ρ

)2 − σ 2
� (ρ)

2� + 1

})
h(x) ds

)2]

≤ C‖f ‖2
L5(νρ)

(
t�

n

(
1

n

∑
x∈Z

h2(x)

)
+ t2n2

�2+α0

(
1

n

∑
x∈Z

∣∣h(x)
∣∣)2)

.

On the other hand, when only ϕf (ρ) = 0 is known,

Eνρ

[(∫ t

0

∑
x∈Z

(
τxf

(
ηn

s

)− ϕ′
f (ρ)

{(
ηn

s

)(�)
(x) − ρ

})
h(x) ds

)2]

≤ C‖f ‖2
L5(νρ)

(
t�2

n

(
1

n

∑
x∈Z

h2(x)

)
+ t2n2

�1+α0

(
1

n

∑
x∈Z

∣∣h(x)
∣∣)2)

.

Here, α0 > 0 is the power in assumption (EE).

The proof of Theorem 3.2 is given in Section 4. We note, if the uniform spec-
tral gap holds, supk,ξ,n �−2W(k, �, ξ, n) < ∞, then the argument shows one can
replace in the right-hand sides above ‖f ‖L5(νρ) with ‖f ‖L3(νρ).

3.3. Tightness. We prove tightness of the fluctuation fields, first starting from
the invariant measure νρ , using the L2 generalized Boltzmann–Gibbs principle.
Then by the relative entropy bound (2.6), we deduce tightness when beginning
from initial measures {μn}.

PROPOSITION 3.3. The sequences {Yn,γ
t : t ∈ [0, T ]}n≥1, {Mn,γ

t : t ∈
[0, T ]}n≥1, {In,γ

t : t ∈ [0, T ]}n≥1, {Bn,γ
t : t ∈ [0, T ]}n≥1, {Kn,γ

t : t ∈ [0, T ]} and
{〈Mn,γ

t 〉 : t ∈ [0, T ]}n≥1, when starting from the invariant measure νρ , are tight
in the uniform topology on D([0, T ],S′(R)).

PROOF. By Mitoma’s criterion [42], to prove tightness of the sequences
with respect to the uniform topology on D([0, T ],S′(R)), it is enough to show
tightness of {Yn,γ

t (H); t ∈ [0, T ]}n≥1, {Mn,γ
t (H) : t ∈ [0, T ]}n≥1, {In,γ

t (H) : t ∈
[0, T ]}n≥1, {Bn,γ

t (H) : t ∈ [0, T ]}n≥1, {Kn,γ
t (H) : t ∈ [0, T ]} and {〈Mn,γ

t (H)〉 : t ∈
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[0, T ]}n≥1, with respect to the uniform topology for all H ∈ S(R). Note that all
initial values vanish, except Yn,γ

0 (H).
Tightness of Yn,γ

t (H), in view of the decomposition Yn,γ
t (H) = Yn,γ

0 (H) +
In,γ

t (H) + Bn,γ
t (H) + Kn,γ

t (H) + Mn,γ
t (H), will follow from tightness of each

term. The tightness of Yn,γ
0 (H), given that we begin under νρ , follows from as-

sumption (IM).
For the martingale term, we use Doob’s inequality and stationarity to obtain

Pνρ

(
sup

|t−s|≤δ

0≤s,t≤T

∣∣Mn,γ
t (H) −Mn,γ

s (H)
∣∣ > ε

)

≤ ε−4
Eνρ

[
sup

|t−s|≤δ

0≤s,t≤T

∣∣Mn,γ
t (H) −Mn,γ

s (H)
∣∣4]

≤ Cε−4δ−1
Eνρ

[(
Mn,γ

δ (H)
)4]

.

Now, by the fourth moment estimate (3.5), we have

δ−1
Eνρ

[(
Mn

δ (H)
)4] ≤ C‖b‖L4(νρ)

(
δ + n−3/2),

which vanishes as n ↑ ∞ and then δ ↓ 0. This is enough to conclude that
{Mn,γ

t (H) : t ∈ [0, T ]}n≥1 is tight in the uniform topology.
We now prove tightness for Bn,γ

t (H) through the Kolmogorov–Centsov crite-
rion. The argument for In,γ

t (H) is similar. Also, the proofs for 〈Mn,γ
t (H)〉 and

Kn,γ
t (H), given their forms, are simpler and can be done using invariance of νρ

by squaring all terms. We focus on the case γ = 1/2, given that the estimates are
analogous and simpler when 1/2 < γ ≤ 1. Let

Vb(η) = b(η) − ϕb(ρ) − ϕ′
b(ρ)

(
η(0) − ρ

)
.

By assumption (R1), Vb has range R. Also, by its form, ϕVb
(ρ) = ϕ′

Vb
(ρ) = 0 and

also ϕ′′
Vb

(ρ) = ϕ′′
b (ρ).

Then

Bn,γ
t (H) = a

2

∫ t

0

∑
x∈Z

(∇n
x Hγ,s

)
τxVb(ηs) ds.

By invoking Theorem 3.2 and translation-invariance of νρ which allows to replace
∇n

x Hγ,s with ∇n
x H (which does not depend on time s), for � ≥ �3

0 = R3, with
respect to a constant C = C(a,ρ,R), we have

Eνρ

[(
Bn,γ

t (H)

− a

4

∫ t

0

∑
x∈Z

(∇n
x Hγ,s

)
ϕ′′

b (ρ)

{((
ηn

s

)(�)
(x) − ρ

)2 − σ 2
� (ρ)

2� + 1

}
ds

)2]
(3.6)

≤ C‖b‖2
L4(νρ)

{
t�

n
+ t2n2

�2+α0

}[(
1

n

∑
x∈Z

(∇n
x H

)2
)

+
(

1

n

∑
x∈Z

∣∣∇n
x H

∣∣)2]
.
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On the other hand, given sup�≥R Eνρ [(
√

�(η� − ρ))4] < ∞ by assumption
(IM) and |ϕ′′

b (ρ)| ≤ C‖b‖L2(νρ) by assumption (D), and the Schwarz inequality

(
∑

x h(x)r(x))2 ≤ (
∑

x |h(x)|)∑x |h(x)|r2(x), we have for � > R3 that

Eνρ

[(∫ t

0

∑
x∈Z

(∇n
x Hγ,s

)ϕ′′
b (ρ)

2

{((
ηn

s

)(�)
(x) − ρ

)2 − σ 2
� (ρ)

2� + 1

}
ds

)2]

≤ C(ρ)‖b‖2
L2(νρ)

t2n2

�2

(
1

n

∑
x∈Z

∣∣∇n
x H

∣∣)2

.

Hence, for � > R3, we have Eνρ [(Bn,γ
t (H))2] ≤ C(a,ρ,R,H)‖b‖2

L4(νρ)
[t�/n +

t2n2/�2], noting the domination n2/�2+α0 ≤ n2/�2. Then, if � is taken as � =
t1/3n > R3, we conclude Eνρ [(Bn,γ

t (H))2] ≤ C(a,ρ,R,H)‖b‖2
L4(νρ)

t4/3.

However, when t1/3n ≤ R3, we have by the same Schwarz bound that

Eνρ

[(
Bn,γ

t (H)
)2] ≤ C(ρ, a)‖b‖2

L2(νρ)
t2n2

(
1

n

∑
x

∣∣∇n
x H

∣∣)2

≤ C(ρ, a,H,R)‖b‖2
L2(νρ)

t4/3.

This shows tightness of Bn,γ
t (H).

Combining these estimates, we conclude the proof of the proposition. �

We now update to when the process begins from the measures {μn}.

PROPOSITION 3.4. The fluctuation field sequences {Yn,γ
t : t ∈ [0, T ]}n≥1,

{Mn,γ
t : t ∈ [0, T ]}n≥1, {In,γ

t : t ∈ [0, T ]}n≥1, {Bn,γ
t : t ∈ [0, T ]}n≥1, {Kn,γ

t : t ∈
[0, T ]}n≥1 and {〈Mn,γ

t 〉 : t ∈ [0, T ]}n≥1 are tight in the uniform topology on
D([0, T ],S′(R)) when starting from {μn} satisfying assumption (BE).

PROOF. As before, all initial values vanish except Yn,γ
0 which, however, is

tight by (CLT). Next, by Proposition 3.3, we have limδ↓0 limn↑∞ Pνρ (O
n
δ,ε) = 0

where

On
δ,ε =

{
sup

|t−s|≤δ

s,t∈[0,T ]

∥∥Xn
t − Xn

s

∥∥ > ε
}
,

and Xn
t may be equal to Yn,γ

t , Mn,γ
t , In,γ

t , Bn,γ
t , Kn,γ

t or 〈Mn,γ
t 〉. Then we have

by the entropy inequality (2.6) that also limδ↓0 limn↑∞ Pμn(Oδ,ε) = 0 which al-
lows to conclude. �
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3.4. Identification of limit points: Proofs of Theorems 2.2 and 2.3. With tight-
ness (Proposition 3.4) in hand, we now identify the limit points of {Yn,γ

t : t ∈
[0, T ]}n≥1 and its parts in decomposition (3.2). Let Qn be the distribution of(

Yn,γ
t ,Mn,γ

t ,In,γ
t ,Bn,γ

t ,Kn,γ
t ,

〈
Mn,γ

t

〉
: t ∈ [0, T ]),

and let n′ be a subsequence where Qn′
converges to a limit point Q. Let also Yt ,

Mt , It , Bt , Kt and Dt be the respective limits in distribution of the components.
Since tightness is shown in the uniform topology on D([0, T ],S′(R)), we have
that Yt , Mt , It , Bt , Kt and Dt have a.s. continuous paths.

Let now Gε :R → [0,∞) be a smooth compactly supported function for 0 <

ε ≤ 1 which approximates ιε(z) = ε−11[−1,1](zε−1) as in the definition of en-
ergy solution before Theorem 2.3. That is, ‖Gε‖2

L2(R)
≤ 2‖ιε‖2

L2(R)
= ε−1 and

limε↓0 ε−1/2‖Gε − ιε‖L2(R) = 0. Define

An,γ,ε
s,t (H) :=

∫ t

s

1

n

∑
x∈Z

(∇n
x H

)[
τxYn,γ

u (Gε)
]2

du.

Since for fixed 0 < ε ≤ 1 the map π· �→ ∫ t
s du

∫
dx(∇H(x)){πu(τ−xGε)}2 is con-

tinuous in the uniform topology on D([0, T ];S′(R)), we have subsequentially in
distribution that

lim
n′↑∞An′,γ,ε

s,t (H) =
∫ t

s
du

∫
dx

(∇H(x)
){
Yu(τ−xGε)

}2 =: Aε
s,t (H).

PROPOSITION 3.5. Suppose the initial distribution is the invariant measure
νρ and t ∈ [0, T ].

When γ = 1/2, there is a constant C = C(a,ρ,R) such that

lim
n↑∞Eνρ

[∣∣∣∣Bn,γ
t (H) − aϕ′′

b (ρ)

4
An,γ,ε

0,t (H)

∣∣∣∣2]
≤ Ct

(
ε + ε−1‖Gε − ιε‖2

L2(R)

)‖b‖2
L4(νρ)

[‖∇H‖2
L2(R)

+ ‖∇H‖2
L1(R)

]
.

Then, in L2(Pνρ ), Aε
0,t (H) is a Cauchy ε-sequence. Hence,

aϕ′′
b (ρ)

4
A0,t (H) := lim

ε↓0

aϕ′′
b (ρ)

4
Aε

0,t (H) = Bt (H).

In particular, we conclude As,t (H)
d= A0,t−s(H) does not depend on the specific

smoothing family {Gε}. Moreover, when 1/2 < γ ≤ 1, we have Bt (H) = 0.
In addition, when 1/2 ≤ γ ≤ 1,

lim
n↑∞Eνρ

[∣∣∣∣In,γ
t (H) − ϕ′

c(ρ)

2

∫ t

0
Yn,γ

s (�H)ds

∣∣∣∣2] = 0,
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lim
n↑∞Eνρ

[∣∣∣∣〈Mn,γ
t (H)

〉− ϕb(ρ)

2
t‖∇H‖2

L2(R)

∣∣∣∣2] = 0,

lim
n↑∞Eνρ

[∣∣Kn,γ
t (H)

∣∣2] = 0.

Then, in L2(Pνρ ), Kt (H) = 0 and

It (H) = ϕ′
c(ρ)

2

∫ t

0
Ys(�H)ds and Dt(H) = ϕb(ρ)

2
t‖∇H‖2

L2(R)
.

PROOF. We prove the limit display for Bt (H) when γ = 1/2 which shows, by
a Fatou’s lemma that Eνρ [|Bt (H) − (aϕ′′

b (ρ)/4)Aε
0,t (H)|2] ≤ C(a,ρ,R,H)t[ε +

ε−1‖Gε − ιε‖2
L2(R)

]. Therefore, Aε
0,t (H), as a sequence in ε, is Cauchy in L2(Pνρ ).

The arguments for It (H), Dt (H), and Kt (H), noting their forms, are similar; for
Dt (H) and Kt (H), one might also use spatial mixing assumed in (IM). To simplify
notation, we will call n = n′.

Note, for � = εn, that∑
x∈Z

(∇n
x Hγ,s

)((
ηn

s

)(�)
(x) − ρ

)2

= ∑
x∈Z

(∇n
x Hγ,s

)( 1

2nε + 1

∑
|z|≤nε

(
ηn

s (z + x) − ρ
))2

= 1 + O(n−1)

n

∑
x∈Z

(∇n
x H

)[
τxYn,γ

s (ιε)
]2

.

Here, the shift by n−1�aϕ′
b(ρ)sn2/(2nγ )� in ∇n

x Hγ,s [cf. (3.1)] was transferred to
τxYn,γ

s (ιε).
Then, with � = εn, by Theorem 3.2, as in the bound (3.6), we have

lim
n↑∞Eνρ

[(
Bn,γ

t (H) − aϕ′′
bn(ρ)

4

∫ t

0

1

n

∑
x∈Z

(∇n
x H

)
τxYn,γ

s (ιε)
2 ds

)2]

= lim
n↑∞Eνρ

[(
Bn,γ

t (H)

− aϕ′′
bn(ρ)

4

∫ t

0

1

n

∑
x∈Z

(∇n
x H

)
τx

{
Yn,γ

s (ιε)
2 − σ 2

� (ρ)

2ε

}
ds

)2]

≤ lim
n↑∞C(a,ρ,R)

∥∥bn
∥∥2
L4(νρ)t

(
ε + 1

ε2+α0nα0

)

×
[(

1

n

∑
x∈Z

(∇n
x H

)2
)

+
(

1

n

∑
x∈Z

∣∣∇n
x H

∣∣)2]
.
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Here, as the sum of ∇n
x Hγ,s on x vanishes, we introduced the centering constant

(2ε)−1σ 2
� (ρ) in the second line.

Now,

Yn,γ
s (ιε)

2 −Yn,γ
x (Gε)

2 = [
Yn,γ

s (ιε) −Yn,γ
s (Gε)

][
Yn,γ

s (ιε) +Yn,γ
s (Gε)

]
and by (IM2)

Cνρ (ιε − Gε, ιε − Gε)
1/2Cνρ (ιε + Gε, ιε + Gε)

1/2 ≤ C(ρ)ε−1/2‖Gε − ιε‖L2(R).

Hence, by Schwarz inequality,

lim
n↑∞Eνρ

[(∫ t

0

1

n

∑
x∈Z

(∇n
x H

)
τxYn,γ

s (ιε)
2 ds −An,γ,ε

0,t (H)

)2]

≤ C(ρ)ε−1‖Gε − ιε‖2
L2(R)

t2
(

1

n

∑
x∈Z

∣∣∇n
x H

∣∣)2

.

Finally, combining these estimates with the inequality (a + b)2 ≤ 2a2 + 2b2,
and by assumption (D) that limn↑∞ ϕ′′

bn(ρ) = ϕ′′
b (ρ), we complete the proof. �

PROPOSITION 3.6. Suppose the initial measures {μn} satisfy assumption
(BE), and t ∈ [0, T ].

When γ = 1/2, we have Aε
0,t (H) is a Cauchy ε-sequence in probability with

respect to a limit measure Q, and hence

aϕ′′
b (ρ)

4
A0,t (H) := lim

ε↓0

aϕ′′
b (ρ)

4
Aε

0,t (H) = Bt (H).

On the other hand, when 1/2 < γ ≤ 1, we have Bt (H) ≡ 0.
When 1/2 ≤ γ ≤ 1, we have Kn

t (H) ≡ 0,

It (H) = ϕ′
c(ρ)

2

∫ t

0
Ys(�H)ds and Dt (H) = ϕb(ρ)

2
t‖∇H‖2

L2(R)
.

PROOF. By assumption (BE), and lower semicontinuity of entropy, the limit
measure Q also has bounded entropy with respect to Pνρ , H(Q;Pνρ ) < ∞.
When γ = 1/2, by the L2(Pνρ ) statements in Proposition 3.5 and the entropy in-
equality (2.6), we have for δ > 0 that limε↓0 Q(|Bt (H) − (aϕ′′

b (ρ)/4)Aε
t (H)| >

δ) = 0, and so Aε
t (H) is Cauchy in probability with respect to Q. Therefore,

limε↓0(aϕ′′
b (ρ)/4)Aε

t (H) = Bt (H).
The other claims follow similarly. �

PROOF OF THEOREMS 2.2 AND 2.3. Let H ∈ S(R), t ∈ [0, T ], and suppose
the initial measures are {μn}. When γ = 1/2, by the decomposition (3.2), Proposi-
tion 3.6, and tightness of the constituent processes Yn,γ

t , Mn,γ
t , In,γ

t , Bn,γ
t , Kn,γ

t

and 〈Mn,γ
t 〉 in the uniform topology, any limit point of(

Yn,γ
t ,Mn,γ

t ,In,γ
t ,Bn,γ

t ,Kn,γ
t ,

〈
Mn,γ

t

〉
: t ∈ [0, T ])
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satisfies

Mt (H) = Yt (H) −Y0(H) − ϕ′
c(ρ)

2

∫ t

0
Ys(�H)ds − (

aϕ′′
b (ρ)/2

)
At (H).

However, when 1/2 < γ ≤ 1,

Mt (H) = Yt (H) −Y0(H) − ϕ′
c(ρ)

2

∫ t

0
Ys(�H)ds.(3.7)

Also, in both cases, Y0(H) = Ȳ0(H) by assumption (CLT).
We also claim in both cases that Mt (H) is a continuous martingale with a

quadratic variation 〈
Mt (H)

〉 = ϕb(ρ)

2
t‖∇H‖2

L2(R)
.

Indeed, by Proposition 3.6, any limit point of the quadratic variation sequence
equals Dt (H) = (ϕb(ρ)/2)t‖∇H‖2

L2(R)
. Next, Mt (H) as the limit of martingales

with respect to the uniform topology is a continuous martingale. Also, by the tri-
angle inequality, Doob’s inequality and the quadratic variation bound (3.3),

sup
n

Eνρ

[
sup

0≤s≤t

∣∣Mn,γ
s (H) −Mn,γ

s− (H)
∣∣]

≤ 2 sup
n

Eνρ

[
sup

u∈[0,t]
∣∣Mn,γ

u (H)
∣∣2]1/2

≤ 2 sup
n

Eνρ

[〈
M

n,γ
t (H)

〉]1/2 ≤ C(a,T )‖b‖L1(νρ)‖∇H‖2
L2(R)

.

Then, by Corollary VI.6.30 of [31], (Mn,γ
t (H), 〈Mn,γ

t (H)〉) converges on a sub-
sequence in distribution to (Mt (H), 〈Mt (H)〉). Since, also 〈Mn,γ

t (H)〉 con-
verges on a subsequence in distribution to Dt (H) = (ϕb(ρ)/2)t‖∇H‖2

L2(R)
, we

have 〈Mt (H)〉 = (ϕb(ρ)/2)t‖∇H‖2
L2(R)

.
By Proposition 3.6, when γ = 1/2, Yt is a “probability energy solution” cor-

responding to the stochastic Burgers equation (2.11). But, if initially μn ≡ νρ , by
Proposition 3.5, Yt is an “L2 energy solution.” This completes the proof of Theo-
rem 2.3.

However, when 1/2 < γ ≤ 1, by the form of Mt (H) in (3.7), we conclude
Yt (H) solves the Ornstein–Uhlenbeck equation (2.10). By uniqueness, all subse-
quences converge to the same limit, and we obtain Theorem 2.2. �

4. Proof of the generalized Boltzmann–Gibbs principle. We start by recall-
ing the notion of H1,n and H−1,n spaces [35]. For n ≥ n0, recall Sn = (Ln +L∗

n)/2
[cf. near (2.2)], and define the H1,n seminorm ‖ · ‖1,n on L2(νρ) functions by

‖f ‖2
1,n := Eνρ

[
f (−Sn)f

] = n2Dνρ (f ).
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The Hilbert space H1,n is then the completion of functions with finite H1,n norm
modulo norm-zero functions. In particular, local bounded functions are dense
in H1,n.

Correspondingly, one can define the dual seminorm ‖ · ‖−1,n with respect to the
L2(νρ) inner-product by

‖f ‖−1,n := sup
{
Eνρ [f φ]
‖φ‖1,n

:φ �= 0 local, bounded
}
,

and the Hilbert space H−1,n which is the completion over those functions with
finite ‖ · ‖−1,n norm modulo norm-zero functions.

We now state a helping lemma for the results in this section. Define the restricted
Dirichlet form on local, bounded functions with respect to the grand canonical
measure νρ as

Dνρ,�(φ) = ∑
x,x+1∈
�

Eνρ

[
bR,n
x (η)

(∇x,x+1φ(η)
)2]

.

Recall the collection ηc
r := {η(x) :x /∈ 
r}.

PROPOSITION 4.1. Let r :� →R be an L4(νρ) function and �0 ≥ 2. Suppose
that Eνρ [r|η(�0), ηc

�0
] = 0 a.s. Then, for local, bounded functions φ, we have

∣∣Eνρ

[
r(η)φ(η)

]∣∣ ≤ Eνρ

[
W

( ∑
x∈
�0

η(x), �0, η
c
�0

, n

)2]1/4

‖r‖L4(νρ)D
1/2
νρ,�0

(φ).

PROOF. Recall, from Section 2.1, for k ≥ 0, �0 ≥ 2 and ξ ∈ �, the space

Gk,�0,ξ =
{
η : ∑

x∈
�0

η(x) = k, η(y) = ξ(y) for y /∈ 
�0

}
and generator Sn,G := Sn,Gk,�0,ξ

which governs the evolution of the symmetrized
process on Gk,�0,ξ . Suppose W(k, �0, ξ, n) < ∞ so that the measure νk,�0,ξ is the
unique invariant measure for the process.

Given Eνρ [r|
∑

|x|≤�0
η(x) = k, η(y) = ξ(y) for y /∈ 
�0] = Eνk,�0,ξ

[r] = 0, we
have r restricted to Gk,�0,ξ is orthogonal to constant functions and therefore be-
longs to the range of −Sn,G , that is the equation r = −Sn,Gu can be solved for
some function u :Gk,�0,ξ →R.

Now, with k = ∑
x∈
�0

η(x) and ξ = ηc
�0

, W(k, �0, η
c
�0

, n) < ∞ a.s. by assump-
tion (G). Hence,∣∣Eνρ [rφ]∣∣ = ∣∣Eνρ

[
Eνρ

[
rφ|η(�0), ηc

�0

]]∣∣
= ∣∣Eνρ

[
Eνρ

[
(−Sn,Gu)φ|η(�0), ηc

�0

]]∣∣
≤ Eνρ

[
Eνρ

[
u(−Sn,Gu)|η(�0), ηc

�0

]1/2
Eνρ

[
φ(−Sn,Gφ)|η(�0), ηc

�0

]1/2]
.

The last line follows as −Sn,G is a nonnegative symmetric operator and, therefore,
has a square root.
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Further, since W(k, �0, ξ, n) is the reciprocal of the spectral gap for −Sn,G , we
have

Eνρ

[
ru|η(�0), ηc

�0

] ≤ W
(
k, �0, η

c
�0

, n
)
Eνρ

[
r2|η(�0), ηc

�0

]
.

Therefore, we conclude∣∣Eνρ [rφ]∣∣ ≤ Eνρ

[
W

( ∑
x∈
�0

η(x), �0, η
c
�0

, n

)
Eνρ

[
r2|η(�0), ηc

�0

]]1/2

D
1/2
νρ,�0

(φ).

The desired bound now follows from Schwarz inequality. �

The following bound on the variance of additive functionals is the main way
we control the fluctuations of several quantities in the sequel. A proof of Proposi-
tion 4.2 can be found in Appendix 1.6 of [34].

To simplify notation, for the rest of the section, we will drop the superscript “n”
and write ηn = η.

PROPOSITION 4.2. Let r :� →R be a mean-zero L2(νρ) function, ϕr(ρ) = 0.
Then

Eνρ

[(∫ t

0
r(ηs) ds

)2]
≤ 20t‖r‖2−1,n.

The proof of Theorem 3.2, given at the end of the section, is made through a
succession of steps, labeled “one-block,” “renormalization step,” “two-blocks” and
“equivalence of ensembles” estimates.

LEMMA 4.3 (One-block estimate). Let f :� →R be a local L4(νρ) function
supported on sites in 
�0 such that ϕf (ρ) = 0. Then there exists a constant C =
C(ρ) such that for � ≥ �0, t ≥ 0 and h ∈ �1(Z) ∩ �2(Z):

Eνρ

[(∫ t

0

∑
x∈Z

h(x)τx

{
f (ηs) − Eνρ

[
f (ηs)|η(�)

s , (ηs)
c
�

]}
ds

)2]

≤ Ct
�3

n2 ‖f ‖2
L4(νρ)

∑
x∈Z

h2(x).

PROOF. By Proposition 4.2, we need only to estimate the H−1,n norm of the
integrand [which is in L2(νρ) since h ∈ �1(Z)]. Bound the H−1,n norm multiplied
by n, using Proposition 4.1, as follows:

sup
φ

D−1/2
νρ

(φ)Eνρ

[∑
x∈Z

h(x)τx

{
f − Eνρ

[
f |η(�), ηc

�

]}
φ

]
= sup

φ

∑
x∈Z

D−1/2
νρ

(φ)Eνρ

[
h(x)τx

(
f − Eνρ

[
f |η(�), ηc

�

])
φ
]

(4.1)
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≤ sup
φ

D−1/2
νρ

(φ)

× ∑
x∈Z

∣∣h(x)
∣∣Eνρ

[
W

( ∑
x∈
�

η(x), �, ηc
�, n

)2]1/4

‖f ‖L4(νρ)D
1/2
νρ,�(τ−xφ).

Observe now, by translation-invariance of νρ , that∑
x∈Z

Dνρ,�(τ−xφ) ≤ (2� + 1)Dνρ (φ).

Then, noting the spectral gap assumption (G), and using the relation 2ab =
infκ>0[a2κ + κ−1b2], we bound (4.1) by

sup
φ

D−1/2
νρ

(φ) inf
κ>0

{
κC�2‖f ‖2

L4(νρ)

∑
x∈Z

h2(x) + κ−1C�Dνρ (φ)

}

≤
(
C�3‖f ‖2

L4(νρ)

∑
x∈Z

h2(x)

)1/2

,

where C = C(ρ) is a constant. This completes the proof. �

Now we double the size of the box in the conditional expectation.

LEMMA 4.4 (Renormalization step). Let f :� → R be a local L5(νρ) func-
tion supported on sites in 
�0 such that ϕf (ρ) = ϕ′

f (ρ) = 0. There exists a con-

stant C = C(ρ, �0) such that for � ≥ �0, t ≥ 0 and h ∈ �1(Z) ∩ �2(Z):

Eνρ

[(∫ t

0

∑
x∈Z

τx

{
Eνρ

[
f (ηs)|η(�)

s , (ηs)
c
�

]

− Eνρ

[
f (ηs)|η(2�)

s , (ηs)
c
2�

]}
h(x) ds

)2]
≤ C‖f ‖2

L5(νρ)
t

�

n2

∑
x∈Z

h2(x).

On the other hand, when only ϕf (ρ) = 0 is known,

Eνρ

[(∫ t

0

∑
x∈Z

τx

{
Eνρ

[
f (ηs)|η(�)

s , (ηs)
c
�

]

− Eνρ

[
f (ηs)|η(2�)

s , (ηs)
c
2�

]}
h(x) ds

)2]

≤ C‖f ‖2
L5(νρ)

t
�2

n2

∑
x∈Z

h2(x).
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PROOF. We prove the first statement as the second is similar. Since

Eνρ

[
Eνρ

[
f (η)|η(�), ηc

�

]|η(2�), ηc
2�

] = Eνρ

[
f (η)|η(2�), ηc

2�

]
,

we follow now the same steps as in the proof of Lemma 4.3 to the last line. To
finish the proof, we now give an order O(‖f ‖2

L5(νρ)
�−2) bound on the variance∥∥Eνρ

[
f (η)|η(�), ηc

�

]− Eνρ

[
f (η)|η(2�), ηc

2�

]∥∥2
L4(νρ).

Adding and subtracting terms, and the inequality (a + b + c)2 ≤ 3a2 + 3b2 + 3c2,
the variance is bounded by

≤ 3
∥∥∥∥Eνρ

[
f (η) − ϕ′′

f (ρ)

2

{(
η(�) − ρ

)2 − σ 2
� (ρ)

2� + 1

}∣∣∣η(�), ηc
�

]∥∥∥∥2

L4(νρ)

+ 3
∥∥∥∥Eνρ

[
f (η) − ϕ′′

f (ρ)

2

{(
η(2�) − ρ

)2 − σ 2
2�(ρ)

2(2� + 1)

}∣∣∣η(2�), ηc
2�

]∥∥∥∥2

L4(νρ)

+ 3
∥∥∥∥ϕ′′

f (ρ)

2

{
Eνρ

[(
η(�) − ρ

)2 − σ 2
� (ρ)

2� + 1

∣∣∣η(�), ηc
�

]

+ Eνρ

[(
η(2�) − ρ

)2 − σ 2
2�(ρ)

2(2� + 1)

∣∣∣η(2�), ηc
2�

]}∥∥∥∥2

L4(νρ)

.

The last term, by the fourth moment bound of (η(k) − ρ)2 in (IM2) with k = � and
k = 2� and that |ϕ′′

f (ρ)| ≤ C(ρ)‖f ‖L2(νρ) in (D), is of order O(‖f ‖2
L2(νρ)

�−2). But

the first two terms are of order O(‖f ‖2
L5(νρ)

�−2+α0) by applying the equivalence

of ensembles assumption (EE). �

LEMMA 4.5 (Two-blocks estimate). Let f :� → R be a local L5(νρ) func-
tion supported on sites in 
�0 such that ϕf (ρ) = ϕ′

f (ρ) = 0. Then, there exists a

constant C = C(ρ, �0) such that for � ≥ �0, t ≥ 0 and h ∈ �1(Z) ∩ �2(Z):

Eνρ

[(∫ t

0

∑
x∈Z

τx

{
Eνρ

[
f (η)|η(�0), ηc

�0

]− Eνρ

[
f (η)|η(�), ηc

�

]}
h(x) ds

)2]

≤ C‖f ‖2
L5(νρ)

t
�

n2

∑
x∈Z

h2(x).

On the other hand, when only ϕf (ρ) = 0 is known,

Eνρ

[(∫ t

0

∑
x∈Z

τx

{
Eνρ

[
f (η)|η(�0), ηc

�0

]− Eνρ

[
f (η)|η(�), ηc

�

]}
h(x) ds

)2]

≤ C‖f ‖2
L5(νρ)

t
�2

n2

∑
x∈Z

h2(x).
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PROOF. We prove the first display as the second is analogous. Again, we in-
voke Proposition 4.2 and bound the square of the H−1,n norm. To this end, write
� = 2m+1�0 + r where 0 ≤ r ≤ 2m+1�0 − 1. Then

Eνρ

[
f (η)|η(�0), ηc

�0

]− Eνρ

[
f (η)|η(�), ηc

�

]
= Eνρ

[
f (η)|η(2m+1�0), ηc

2m+1�0

]− Eνρ

[
f (η)|η(�), ηc

�

]
+

m∑
i=0

{
Eνρ

[
f (η)|η(2i �0), ηc

2i�0

]− Eνρ

[
f (η)|η(2i+1�0), ηc

2i+1�0

]}
.

Now, by Minkowski’s inequality, with respect to the H−1,n norm, over the m+2
terms, and Lemma 4.4, we obtain that the left-hand side of the display in the lemma
statement is bounded by{(

Ct2m+1�0

n2

)1/2

+
m∑

i=0

(
Ct2i�0

n2

)1/2
}2

‖f ‖2
L5(νρ)

∑
x∈Z

h2(x)

≤
C‖f ‖2

L5(νρ)
t�

n2

∑
x∈Z

h2(x)

to finish the proof. �

LEMMA 4.6 (Equivalence of ensembles estimate). Let f :� → R be a local
L5(νρ) function supported on sites in 
�0 such that ϕf (ρ) = ϕ′

f (ρ) = 0. Then,

there exists a constant C = C(ρ, �0) such that for � ≥ �0, t ≥ 0 and h ∈ �1(Z):

Eνρ

[(∫ t

0

∑
x∈Z

τx

{
Eνρ

[
f (ηs)|η(�)

s , (ηs)
c
�

]

−ϕ′′
f (ρ)

2

((
η(�)

s − ρ
)2 − σ 2

� (ρ)

2� + 1

)}
h(x) ds

)2]

≤ C‖f ‖2
L5(νρ)

t2 n2

�2+α0

(
1

n

∑
x∈Z

∣∣h(x)
∣∣)2

.

On the other hand, when only ϕf (ρ) = 0 is known,

Eνρ

[(∫ t

0

∑
x∈Z

τx

{
Eνρ

[
f (ηs)|η(�)

s , (ηs)
c
�

]− ϕ′
f (ρ)

(
η(�)

s − ρ
)}

h(x) ds

)2]

≤ C‖f ‖2
L5(νρ)

t2 n2

�1+α0

(
1

n

∑
x∈Z

∣∣h(x)
∣∣)2

.

Here, α0 > 0 is the power mentioned in assumption (EE).
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PROOF. By squaring and using invariance of νρ , the left-hand side of the dis-
play is bounded by

2t2
Eνρ

[(∑
x∈Z

∣∣h(x)
∣∣∣∣r(x)

∣∣)2]
,

where r(x) is the τx-shifted expression in curly braces in the display of Lemma 4.6.
Now, by Schwarz inequality,(∑

x∈Z

∣∣h(x)
∣∣r(x)

)2

≤
(∑

x∈Z

∣∣h(x)
∣∣)∑

x∈Z

∣∣h(x)
∣∣r2(x).

Since νρ is translation-invariant, the desired bound is now obtained by noting the
form of r(x) and the equivalence of ensembles assumption (EE). �

PROOF OF THEOREM 3.2. By combining Lemma 4.3 with � = �0, and Lem-
mas 4.5 and 4.6, we straightforwardly obtain the result. �

5. Equivalence of ensembles. We prove, as a consequence of Proposition 5.1,
that condition (EE) holds for a large class of systems with product invariant mea-
sures. In this case, νk,�,ξ does not depend on ξ , which simplifies the conditional
expectation in the statement of (EE).

Next, we show in Proposition 5.2 that (EE) also holds for the Markov chain
measure ν1/2 defined in Section 2.5. Some parts of the proofs of these statements
are similar to those in [56].

Define 
+
m = {x : 1 ≤ x ≤ m}.

PROPOSITION 5.1. Let νρ be a product measure on � such that (IM) holds,
and 0 < νρ(η(0) = j) < 1 for j = 0,1. Let also f be a local L5(νρ) function,
supported on sites 
+

�0
, such that ϕf (ρ) = ϕ′

f (ρ) = 0. Then there exists a constant
C = C(ρ, �0), such that for n ≥ �0 we have∥∥∥∥Eνρ

[
f (η)|y]−

{
y2 − σ 2(ρ)

n

}ϕ′′
f (ρ)

2

∥∥∥∥
L4(νρ)

≤ C‖f ‖L5(νρ)

n3/2 .

On the other hand, when only ϕf (ρ) = 0 is known,

∥∥Eνρ

[
f (η)|y]− yϕ′

f (ρ)
∥∥
L4(νρ) ≤ C‖f ‖L5(νρ)

n
.

Here, y := 1
n

∑
x∈
+

n
η(x) − ρ.

PROOF. We prove the first display as the second statement, following the same
scheme, has a simpler argument. At the expense of the constant, we need only to
consider all large n > �0. To simplify notation, we will call � = �0. The proof
follows in several steps.
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Step 1. Recall the tilted measures {νz :ρ∗ < z < ρ∗} given after assumption (D1)
which are well defined as νρ is a product measure. Let σ 2(z) = Eνz[(η(0) − z)2].
Note also the canonical expectation Eνz[f |y] does not depend on z, and that we
are free to choose it as desired.

Develop

Eνρ

[
f (η)|y] = Eνy+ρ

[
f (η)

∣∣∣1
n

∑
x∈
+

n

η(x) − ρ = y

]

= Eνy+ρ [f (η)1((1/n)
∑

x∈
+
n

η(x) − ρ = y)]
νy+ρ((1/n)

∑
x∈
+

n
η(x) − ρ = y)

.

Define θm(z) = √
mνy+ρ(

∑
x∈
+

m
η(x) − ρ − y = z), and write the last expres-

sion as

Eνy+ρ

[
f (η)

√
nθn−�(−∑

x∈
+
�
(η(x) − y − ρ))

√
n − �θn(0)

]
.

The goal will be now to expand θn−�(z) to recover the main terms approximating
Eνρ [f |y] when |y| is small. We will treat the case when |y| is bounded away
from 0 afterward.

Step 2. To expand θm(z), let ψy(t) = Eνy+ρ [eit (η(x)−ρ−y)] be the characteristic
function. Then one can write

θm(x) =
√

m

2π

∫ π

−π
e−itxψm

y (t) dt

= 1

2π

∫ π
√

m

−π
√

m
e−itx/

√
mψm

y (t/
√

m)dt.

By Taylor expansion,

2πθm(x) =
∫ π

√
m

−π
√

m
ψm

y (t/
√

m)dt −
∫ π

√
m

−π
√

m

ixt√
m

ψm
y (t/

√
m)dt

− 1

2

∫ π
√

m

−π
√

m

x2t2

m
ψm

y (t/
√

m)dt(5.1)

+ O

( |x|3
m3/2

)∫ π
√

m

−π
√

m
|t |3∣∣ψm

y (t/
√

m)
∣∣dt.

Step 3. Let δ > 0 be such that (ρ − δ, ρ + δ) ⊂ (ρ∗, ρ∗) and sufficiently small
in the following estimates. Let also 0 < ε ≤ π .

First, sup|y|≤δ,ε≤|t |≤π |ψm
y (t)| < Cm

0 where C0 < 1: Write∣∣ψy(t)
∣∣ ≤ ∣∣νy+ρ

(
η(0) = 0

)+ eit νy+ρ

(
η(0) = 1

)∣∣+ ∑
k≥2

νy+ρ

(
η(0) = k

)
≤ (

A2 − 2νy+ρ

(
η(0) = 0

)
νy+ρ

(
η(0) = 1

)[
1 − cos(t)

])1/2 + 1 − A,



STOCHASTIC BURGERS FROM MICROSCOPIC INTERACTIONS 325

where A = νy+ρ(η(0) = 0)+νy+ρ(η(0) = 1). By the proposition assumptions and
continuity of νy+ρ(η(0) = k) in y, 0 < νy+ρ(η(0) = j) < 1 for j = 0,1 uniformly
for |y| ≤ δ. Hence, uniformly over ε ≤ |t | ≤ π , |y| ≤ δ, the right-hand side of the
display above is strictly bounded by a constant C0 < 1.

Second, for 0 ≤ |t/√m| < ε and |y| ≤ δ,

ψm
y (t/

√
m) = [

1 − (
t2σ 2(y + ρ)/(2m)

)+ O
(
C(δ)|t |3m−3/2)]m

so that |ψm
y (t/

√
m)| ≤ e−C1(y,ε)t2

. Here, by continuity in y and σ 2(ρ) > 0, when
ε is small, inf|y|≤δ C1(y, ε) > 0. Similarly, we note sup|y|≤δ σ 2(y + ρ) < ∞, and
inf|y|≤δ σ 2(y + ρ) > 0.

Last, by the classical local limit theorem, limm↑∞ θm(0) = (2πσ 2(y + ρ))−1/2.
Step 4. We now observe, for |y| ≤ δ and m ≥ 1, as a consequence of the esti-

mates in step 3, the integral in the last term in (5.1) is uniformly bounded: Split
the integral over the ranges |t/√m| < ε and |t/√m| ≥ ε and bound each part sep-
arately.

Also, similarly, we split the second integral in (5.1), when |y| ≤ δ, over ranges
|t/√m| ≥ ε and |t/√m| < ε. On the first range, the restricted integral exponen-
tially decays, and on the range |t/√m| < ε, the restricted integral is almost the
integral of an odd function since here

ψm
y (t/

√
m) =

(
1 − t2σ 2(y + ρ)

2m

)m[
1 + O

(
C(δ)|t |3m−1/2)].

Therefore, we conclude that the second integral in (5.1) is of order O(m−1/2).
Step 5. Then, for |y| ≤ δ, we have

Eνρ

[
f (η)|y] = κ0Eνy+ρ

[
f (η)

]+ κ1√
n − �

Eνy+ρ

[
f (η)

( ∑
x∈
+

�

η(x) − ρ − y

)]

+ κ2

n − �
Eνy+ρ

[
f (η)

( ∑
x∈
+

�

η(x) − ρ − y

)2]
+ εf (n),

where |εf (n)| ≤ C(ρ, �, δ)‖f ‖L2(νρ)n
−3/2 and κi = κi(n) for i = 0,1,2 are ex-

plicit expressions. Indeed, one observes

κ0(n) =
√

n√
n − �

θn−�(0)

θn(0)
= 1 + O

(
n−1/2),

κ1(n) =
√

n

θn(0)
√

n − �

1

2π

∫ π
√

n−�

−π
√

n−�
itψn−�

y

(
t√

n − �

)
dt = O

(
n−1/2),

κ2(n) = −√
n

2θn(0)
√

n − �

1

2π

∫ π
√

n−�

−π
√

n−�
t2ψn−�

y

(
t√

n − �

)
dt

= −1

2σ 2(y + ρ)
+ O

(
n−1/2).
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Step 6. We now develop expansions of Eνy+ρ [h] for a local L2(νρ) function
h supported on coordinates in 
+

� . The “tilting” given in the Introduction, (2.3)
reduces to

Eνy+ρ [h] = Eνρ

[
h(η)

e
λ(y+ρ)

∑
x∈


+
�

(η(x)−ρ)

M�(λ(y + ρ))

]
,

where λ(y + ρ) is the “tilt” chosen to change the density to y + ρ and M(λ) =
Eνρ [eλ(η(x)−ρ)]. Note that z − ρ = M ′(λ(z))/M(λ(z)) and

λ′(z) =
[
M ′′(λ(z))

M(λ(z))
−
(

M ′(λ(z))

M(λ(z))

)2]−1

= 1

σ 2(z)
.

Consider the first and second derivatives of Eνy+ρ [h] given exactly in (2.4) as
νy+ρ is a product measure. The third derivative takes the form

d3

dy3 Eνy+ρ

[
h(η)

] = λ′′′(y + ρ)Eνy+ρ

[
h̄(η)

( ∑
x∈
+

�

η(x) − y − ρ

)]

+ 3λ′(y + ρ)λ′′(y + ρ)Eνy+ρ

[
h̄(η)

( ∑
x∈
+

�

η(x) − y − ρ

)2]

+ (
λ′(y + ρ)

)3
Eνy+ρ

[
h̄(η)

( ∑
x∈
+

�

η(x) − y − ρ

)3]

− 3
(
λ′(y + ρ)

)3
Eνy+ρ

[
h̄(η)

( ∑
x∈
+

�

η(x) − y − ρ

)]

× Eνy+ρ

[( ∑
x∈
+

�

η(x) − y − ρ

)2]
,

where h̄(η) = h(η) − Eνy+ρ [h].
Then, for |y| ≤ δ, when ϕh(ρ) = ϕ′

h(ρ) = 0, we may expand around y = 0:

Eνy+ρ

[
h(η)

] = (
λ′(ρ)

)2 y2

2
Eνρ

[
h(η)

( ∑
x∈
+

�

η(x) − ρ

)2]
+ |y|3r(ρ, δ, h).

When only ϕh(ρ) = 0 is known,

Eνy+ρ

[
h(η)

] = λ′(ρ)yEνρ

[
h(η)

( ∑
x∈
+

�

η(x) − ρ

)]
+ |y|2r(ρ, δ, h).

When possibly ϕh(ρ) �= 0,

Eνy+ρ

[
h(η)

] = Eνρ

[
h(η)

]+ |y|r(ρ, δ, h).
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Here, as the first and second derivatives in (2.4) and the third derivative above
are bounded for |y| ≤ δ, we may conclude that the remainders |r(ρ, δ, h)| ≤
C(ρ, δ)‖h‖L2(νρ).

We now relate the terms Eνρ [h(η)(
∑

x∈
+
�
(η(x) − ρ))k] to derivatives ϕ

(k)
h (ρ):

From (2.4), for k = 1,2, when ϕ
(k−1)
h (ρ) = ϕh(ρ) = 0, we have

ϕ
(k)
h (ρ) = (

λ′(ρ)
)k

Eνρ

[
h(η)

( ∑
x∈
+

�

(
η(x) − ρ

))k]
.(5.2)

Step 7. Consider the expansion of Eνρ [f |y] in step 5 when |y| ≤ δ. With h equal
to variously f , f (η)(

∑
x∈
+

�
(η(x) − ρ)), and f (η)(

∑
x∈
+

�
(η(x) − ρ))2, we may

write

Eνρ [f |y] = κ0

2

(
λ′(ρ)

)2
y2Eνρ

[
f (η)

(∑

+

�

(
η(x) − ρ

))2]
+ κ0|y|3r(f )

+ κ1λ
′(ρ)y√
n − �

Eνρ

[
f (η)

(∑

+

�

(
η(x) − ρ

))2]
+ κ1√

n − �
|y|2r(f )

+ κ2

n − �
Eνρ

[
f (η)

(∑

+

�

(
η(x) − ρ

))2]
+ κ2

n − �
|y|r(f ) + εf (n),

where |r(f )| ≤ C(ρ, �, δ)‖f ‖2
L2(νρ)

.

Hence, noting the assumptions on ϕf (ρ), (5.2), and Eνρ [y2p] = O(n−p) so that
each y factor is O(n−1/2), we can group the dominant terms so that

Eνρ

[
1
(|y| ≤ δ

)
×
(
Eνρ

[
f (η)|y]−

{
κ0y

2

2
+ 1

λ′(ρ)

κ1y√
n

+ 1

(λ′(ρ))2

κ2

n

}
ϕ′′

f (ρ)

)4]
≤ C(ρ, δ)‖f ‖4

L2(νρ)
n−6.

Noting κ0(n) = 1 + O(n−1/2), κ1(n) = O(n−1/2), formula λ′(ρ) = σ−2(ρ) in
step 6, |ϕ′′(ρ)| ≤ C‖f ‖L2(νρ) and, by Taylor expansion of σ 2(y+ρ) around y = 0,

κ2(n) = −2−1σ−2(ρ) + O(n−1/2), we have further

Eνρ

[
1
(|y| ≤ δ

)(
Eνρ

[
f (η)|y]−

{
y2 − σ 2(ρ)

n

}ϕ′′
f (ρ)

2

)4]
≤ C‖f ‖4

L2(νρ)
n−6.
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Step 8. On the other hand, by say large deviations estimates, we bound

Eνρ

[
1
(|y| > δ

)(
Eνρ

[
f (η)|y]−

{
y2 − σ 2(ρ)

n

}ϕ′′
f (ρ)

2

)4]
≤ C‖f ‖4

L5(νρ)
O
(
n−6)

to complete the proof. �

We now prove the equivalence ensembles estimate (EE) with respect to a
Markovian measure. Recall the Gibbs measures ν1/2 and νz = ν

λ(z)
1/2 , and tran-

sition matrix P defined in Section 2.5. To see how the next proposition can
be used to satisfy assumption (EE), we note (1) the estimate is uniform in the
“outside variables” ηc

�, and (2) since the transition matrix P is positive, the L∞
norm of any local function supported on sites 
�0 can be bounded ‖f ‖L∞ ≤
C(�0, β)‖f ‖Lp(ν1/2) for p > 0. Recall also the definitions of ϕf (ρ) and its deriva-
tives in (2.4).

PROPOSITION 5.2. Let f be a local function, supported on sites indexed by

�0 , such that ϕf (1/2) = ϕ′

f (1/2) = 0. Then, for each 0 < ε < 1, there is a con-
stant C = C(�0, ε) such that for a, b ∈ {0,1} and n ≥ �0,∥∥∥∥Eν1/2

[
f |y,η(−n − 1) = a, η(n + 1) = b

]− ϕ′′
f (1/2)

2

[
y2 − σ 2

n (1/2)

2n + 1

]∥∥∥∥
L4(ν1/2)

≤ C‖f ‖L∞

n3/2−ε
.

On the other hand, when only ϕf (1/2) = 0 is known,∥∥∥∥Eν1/2

[
f |y,η(−n − 1) = a, η(n + 1) = b

]− yϕ′
f

(
1

2

)∥∥∥∥
L4(ν1/2)

≤ C‖f ‖L∞

n1−ε
.

Here, y = (2n + 1)−1 ∑
x∈
n

(η(x) − 1
2).

PROOF. The argument has the same structure as for Proposition 5.1. We will
concentrate on the first display for all large n; the second statement has a simi-
lar argument. Since ν1/2 corresponds to an ergodic finite-state Markov chain with
uniform invariant measure, it is exponentially mixing and allows standard approx-
imations, which are used in many steps.

Step 1. Let χ > 0 be small and n′ = n − nχ . Write

Eν1/2

[
f |y,η(−n − 1) = a, η(n + 1) = b

]
= Eνy+1/2

[
f (η)|y,η(−n − 1) = a, η(n + 1) = b

]
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= Eνy+1/2

[
f (η)

√
2n + 1θ

χ
n,y,a,b(−

∑
x∈
nχ (η(x) − y − 1/2))√

2n′θn,y,a,b(0)

∣∣∣
η(−n − 1) = a, η(n + 1) = b

]
,

where

θ
χ
n,y,a,b(z) = √

2n′νy+1/2

( ∑
nχ<|x|≤n

η(x) − y − 1/2 = z
∣∣∣

η
(
nχ ), η(−nχ ), η(−n − 1) = a,

η(n + 1) = b

)
,

θn,y,a,b(z) = √
2n + 1νy+1/2

( ∑
x∈
n

η(x) − y − 1/2 = z
∣∣∣

η(−n − 1) = a, η(n + 1) = b

)
.

Step 2. Let the characteristic function ψn,y,χ,a,b(t) for |t | ≤ π be defined by

Eνy+1/2

[
eit

∑
nχ <|x|≤n(η(x)−y−1/2)|η(nχ ), η(−nχ ), η(−n − 1) = a, η(n + 1) = b

]
.

Let δ > 0 be such that (ρ − δ, ρ + δ) ⊂ (0,1) and sufficiently small in the
following estimates. Suppose |y| ≤ δ. Let also r > 0 be a small number. We now
state a few relations, and then argue them. First, for |t | < r , we claim

ψn,y,χ,a,b

(
t√
2n′

)
=

(
1 − t2σ 2(y + 1/2)

2(2n′)

)2n′[
1 + O

(
n′−1/2)],(5.3)

where σ 2(z) = limn↑∞(2n + 1)−1Eνz[(
∑

x∈
n
η(x) − z)2] is the limiting variance

of the additive functional n−1/2 ∑n
x=1 η(x) − z with respect to measure νz (cf.

formula in Section 2.5).
Therefore, for |t | < r and C = C(δ, r) > 0, we have |ψn,y,χ,a,b(t/

√
2n′)| <

exp{−Ct2}.
Next, we claim, for r ≤ |t | ≤ π that∣∣ψn,y,χ,a,b(t)

∣∣ < A2n′
,(5.4)

where A = A(δ, r) < 1.
We also state a case of a local central limit theorem for ergodic Markov

chains [36],

lim
n↑∞ θn,y,a,b(0) = 1√

2πσ 2(y + 1/2)
.
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We now give an argument for the above claims which may be skipped on first
reading. Recall u1 and v1 near (2.15) with λ = λ(y + 1/2), and consider the trans-
fer matrix:

P̃ (s) =
[
(1 − u1)e

s(−1/2−y) u1e
s(1/2−y)

v1e
s(−1/2−y) (1 − v1)e

s(1/2−y)

]
.

By the Markov property, one writes

ψn,y,χ,a,b(t) = P̃ (it)n
′
(η(−nχ), a)P̃ (it)n

′
(η(nχ), b)

P̃ (0)n
′
(η(−nχ), a)P̃ (0)n

′
(η(nχ), b)

.(5.5)

We may diagonalize P̃ (it/
√

m)m = Q(it/
√

m)Dm(it/
√

m)Q−1(it/
√

m), for
large m, where D(t) is a diagonal matrix with eigenvalues w1(t) and w2(t) and
Q(t) is the matrix of the corresponding eigenvectors. Of course, when t = 0,
1 = w1(0) > w2(0) = 1 − u1 − v1 with corresponding eigenvectors 〈1,1〉 and
〈u1,−v1〉. For large m, w1(it/

√
m) is the eigenvalue with maximum absolute

value and is expressed as

e−ity/
√

m

2

[
(1 − u1)e

−it/(2
√

m) + (1 − v1)e
it/(2

√
m)

+ {(
(1 − u1)e

−it/(2
√

m) − (1 − v1)e
it/(2

√
m))2 + 4u1v1

}1/2]
.

It is not difficult to check that

w′
1(0) = −ity/

√
m + it/(2

√
m)

[
(u1 − v1)/(u1 + v1)

]
= (it/

√
m)Eπ1(y+1/2)

[
η(0) − 1/2 − y

] = 0,

where π1(y + 1/2) = (u1 + v1)
−1〈v1, u1〉 is the marginal of νy+1/2 (cf. Sec-

tion 2.5). One now expands, as all quantities are smooth, w1(it/m) = 1 −
(t2/2m)w′′

1(0) + O(m−3/2) where the error is uniform for |y| ≤ δ and |t | ≤ π .
Similarly, Q(it/

√
m) = Q(0) + O(m−1/2). One can identify w′′

1(0) as the vari-
ance σ 2(y + 1/2) since we know

Eνy+1/2

[
e(it/

√
m)

∑m
x=1 η(x)−y−1/2]

= π1(y + 1/2)P (it/
√

m)m1

= (
1 − t2w′′

1(0)/(2m)
)m(1 + O

(
m−1/2))

must converge to e−t2σ 2(y+1/2)/2. Here, π1(y + 1/2) is thought of as a row vector,
and 1 is the column vector with entries equal to 1.

Putting these estimates together, we may conclude (5.3). To verify (5.4), from
equation (5.5), we need only show the moduli |w1(it)|, |w2(it)| < 1 uniformly for
r ≤ |t | ≤ π and |y| ≤ δ. One way is the following. Suppose y = 0 and note that
the moduli are less than 1 at |t | = π . For r ≤ |t | ≤ π , from the determinant of
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P̃ (it), w1(it)w2(it) = 1 − u1 − v1. In particular, if w1(it) say is of the form eiθ

with |θ | ≤ π , then w2(it) = e−iθ (1 −u1 − v1). From the trace, we obtain equation
eiθ + e−iθ (1 −u1 − v1) = (1 −u1)e

−it/2 + (1 − v1)e
it/2 which is absurd: The real

part is cos(θ)(2 − u1 − v2) = cos(t/2)(2 − u1 − v2) which yields θ = t/2. But the
imaginary part is sin(θ)(u1 + v1) = sin(t/2)(u1 − v1) which is a contradiction as
r/2 < |θ | = |t |/2 ≤ π/2 and v1 �= 0 for y = 0. Hence, by continuity, for |y| ≤ δ

small, we conclude the claim.
Step 3. Now, write

θ
χ
n,y,a,b(x) =

√
2n′

2π

∫ π

−π
e−itxψn,y,χ,a,b(t) dt

= 1

2π

∫ π
√

2n′

−π
√

2n′
e−itx/

√
2n′

ψn,y,χ,a,b

(
t/

√
2n′)dt.

The last expression is rewritten as

1

2π

∫ π
√

2n′

−π
√

2n′
ψn,y,χ,a,b

(
t/

√
2n′)dt − ix

2π
√

2n′

∫ π
√

2n′

−π
√

2n′
tψn,y,χ,a,b

(
t/

√
2n′)dt

− x2

4πn′
∫ π

√
2n′

−π
√

2n′
t2ψn,y,χ,a,b

(
t/

√
2n′)dt + r0(x)n−3/2

in terms of error r0(x) which, by the estimates in step 2, is of order O(|x|3).
The second integral in the last display is also estimated of order O(n′−1/2) by

the same argument as given in step 3 of the proof of Proposition 5.1.
Step 4. Then, for |y| ≤ δ, we have

Eν1/2

[
f |y,η(−n − 1) = a, η(n + 1) = b

]
= κ0Eνy+1/2

[
f (η)|η(−n − 1) = a, η(n + 1) = b

]
+ κ1√

2n′ Eνy+1/2

[
f (η)

( ∑
|x|≤nχ

η(x) − 1

2
− y

)∣∣∣η(−n − 1) = a,

η(n + 1) = b

]

+ κ2

2n′ Eνy+1/2

[
f (η)

( ∑
|x|≤nχ

η(x) − 1

2
− y

)2∣∣∣η(−n − 1) = a,

η(n + 1) = b

]
+ εf (n),

where |εf (n)| ≤ C‖f ‖L∞(νρ)n
−3/2+3χ and κi = κi(n) for i = 0,1,2 have the

same asymptotics as in step 5 of the proof of Proposition 5.1.
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Step 5. Recall the tilted measures and the formula for the tilt λ(z) in Sec-
tion 2.5. Recall also the definitions of ϕ

(i)
f (ρ) (2.4). For |y| ≤ δ and i = 0,1,2,

using the uniform exponentially mixing property of the measures {νy+1/2 : |y| ≤ δ}
and ϕf (1/2) = ϕ′

f (1/2) = 0, we claim

Eνy+1/2

[
f (η)

( ∑
|x|≤nχ

η(x) − 1/2 − y

)i ∣∣∣η(−n − 1) = a, η(n + 1) = b

]

= λ′(1/2)2−iy2−i

(2 − i)! Eν1/2

[
f (η)

( ∑
|x|≤n2χ

η(x) − 1/2
)2]

(5.6)

+ |y|3−ir1(f, n) + r2(f, n).

Here, the error r1(f, n) stands for the error made first in Taylor approximation
around y = 0 with respect to the conditioned measure: Using that νy+1/2 is ex-
ponentially mixing, one can bound the first, second and third derivatives be-
low (5.9), (5.10) and (5.11), uniformly in a, b and |y| ≤ δ after a calculation so that
|r1(f, n)| ≤ C(δ)n4χ‖f ‖L∞ . The error r2(f, n) represents other errors made by
exponential approximations and |r2(h,n)| ≤ C‖f ‖L∞n−3/2. The reader, on first
reading, may like to skip now to step 6.

Indeed, in more detail, when i = 1,

Eνy+1/2

[
f (η)

( ∑
|x|≤nχ

η(x) − 1/2 − y

)∣∣∣η(−n − 1) = a, η(n + 1) = b

]

= Eν1/2

[
f (η)

( ∑
|x|≤nχ

η(x) − 1/2
)∣∣∣η(−n − 1) = a, η(n + 1) = b

]
(5.7)

+ By + y2r1(f, n),

where, referring to the first derivative expression (5.9), B equals

λ′
(

1

2

)
Eν1/2

[
f (η)

( ∑
|x|≤nχ

η(x) − 1

2

)( ∑
|x|≤n

η̃(x)

)∣∣∣
η(−n − 1) = a, η(n + 1) = b

]
(5.8)

− 2nχEν1/2

[
f |η(−n − 1) = a, η(n + 1) = b

]
and η̃(x) = η(x) − Eν1/2[η(x)|η(−n− 1) = a, η(n + 1) = b]. The error r1(f, n) is
less than the bound on the second derivative (5.10) with h = f (η)(

∑
|x|≤nχ η(x)−

1/2) plus 2nχ times the bound on the first derivative (5.9) with h = f . We now
bound the second derivative; estimating the first derivative is similar. See notation
h̄ and η̄(x) above (5.9).
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For |y| ≤ δ, from the formula for the tilt λ(z) in Section 2.5, the deriva-
tives λ(k)(y + 1/2) for k = 1,2,3 are uniformly bounded. The expectation
Eνy+1/2[h̄(η)(

∑
|x|≤n η̄(x))|η(−n − 1) = a, η(n + 1) = b] in (5.10) is handled as

follows. By splitting the sum
∑

|x|≤n η̄(x) over indices |x| ≤ n2χ , n2χ < |x| ≤
n − nχ and |x| > n − nχ , and using the uniform exponentially mixing property
of νy+1/2, for |y| ≤ δ, and that all variables |η(x)| ≤ 1, one bounds this term as
O(‖f ‖L∞n3χ).

Consider now the other term Eνy+1/2[h̄(η)(
∑

|x|≤n η̄(x))2|η(−n−1) = a, η(n+
1) = b] in (5.10). Split the sum over |x| ≤ n into sums over |x| ≤ n(1+u)χ and
|x| > n(1+u)χ , and square to yield three terms. Bounding the cross term is the most
involved, the other two being straightforward. The cross term is

2Eνy+1/2

[
h̄(η)

( ∑
|x|≤n(1+u)χ

η̄(x)

)( ∑
n(1+u)χ<|x|≤n

η̄(x)

)∣∣∣
η(−n − 1) = a, η(n + 1) = b

]
.

By splitting the sum over n(1+u)χ < |x| ≤ n into sums on n(1+u)χ < |x| <

n(1+2u)χ , n(1+2u)χ ≤ |x| ≤ n − nuχ and |x| > n − nuχ , and using the exponen-
tially mixing property of νy+1/2, one can bound the cross term O(‖f ‖L∞n(3+3u)χ )

which for u < 1/3 gives the desired error bound.
We now relate terms in (5.7) to ϕ′

f (1/2) and ϕ′′
f (1/2) [cf. (2.4)], using the expo-

nentially mixing property. It is straightforward that the difference between the first
conditional expectation on the right-hand side of (5.7) and λ′(1/2)−1ϕ′

f (1/2) = 0
is exponentially close. Also, as ϕ′

f (1/2) = 0, the first conditional expectation in

the expression B in (5.8) is exponentially close to (λ′(1/2))−1ϕ′′
f (1/2), which in

turn is exponentially close to the expectation on the right-hand side of (5.6). The
other expectation in B is exponentially small.

The cases i = 0,2 with respect to equation (5.6), are argued analogously.
Here, for functions h supported on sites in 
nχ , and notation

h̄(η) = h(η) − Eνy+1/2

[
h|η(−n − 1) = a, η(n + 1) = b

]
and

η̄(x) = η(x) − Eνy+1/2

[
η(x)|η(−n − 1) = a, η(n + 1) = b

]
,

the first derivative is
d

dy
Eνy+1/2

[
h(η)|η(−n − 1) = a, η(n + 1) = b

]
= λ′

(
y + 1

2

)
(5.9)

× Eνy+1/2

[
h̄(η)

( ∑
|x|≤n

η̄(x)

)∣∣∣η(−n − 1) = a, η(n + 1) = b

]
.
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The second derivative is

d2

dy2 Eνy+1/2

[
h(η)|η(−n − 1) = a, η(n + 1) = b

]
= λ′′

(
y + 1

2

)
Eνy+1/2

[
h̄(η)

( ∑
|x|≤n

η̄(x)

)∣∣∣η(−n − 1) = a, η(n + 1) = b

]
(5.10)

+
(
λ′
(
y + 1

2

))2

× Eνy+1/2

[
h̄(η)

( ∑
|x|≤n

η̄(x)

)2∣∣∣η(−n − 1) = a, η(n + 1) = b

]
.

The third derivative is

d3

dy3 Eνy+1/2

[
h(η)|η(−n − 1) = a, η(n + 1) = b

]
= λ′′′

(
y + 1

2

)
Eνy+1/2

[
h̄(η)

( ∑
|x|≤n

η̄(x)

)∣∣∣η(−n − 1) = a, η(n + 1) = b

]

+ 3λ′
(
y + 1

2

)
λ′′

(
y + 1

2

)

× Eνy+1/2

[
h̄(η)

( ∑
|x|≤n

η̄(x)

)2∣∣∣η(−n − 1) = a, η(n + 1) = b

]

+
(
λ′
(
y + 1

2

))3

(5.11)

× Eνy+1/2

[
h̄(η)

( ∑
|x|≤n

η̄(x)

)3∣∣∣η(−n − 1) = a, η(n + 1) = b

]

− 3
(
λ′
(
y + 1

2

))3

× Eνy+1/2

[
h̄(η)

( ∑
|x|≤n

η̄(x)

)∣∣∣η(−n − 1) = a, η(n + 1) = b

]

× Eνy+1/2

[( ∑
|x|≤n

η̄(x)

)2∣∣∣η(−n − 1) = a, η(n + 1) = b

]
.
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Step 6. By the exponentially mixing property of ν1/2 and the assumption
ϕf (1/2) = ϕ′

f (1/2) = 0 [cf. (2.4)], we have

λ′(1/2)2Eν1/2

[
f (η)

( ∑
|x|≤n2χ

η(x) − 1/2
)2]

= ϕ′′
f (1/2) + O

(
n−3/2).

Also, note the relation λ′(1/2)σ 2(1/2) = 1 (cf. Section 2.5), and by exponential
mixing that |σ 2(1/2) − σ 2

n (1/2)| = O(n−1). Recall the asymptotic behaviors of
κ0, κ1 and κ2 (cf. step 5 of proof of Proposition 5.1). In addition, a factor n4χy

is of order O(n−(1/2−4χ)) in L4(ν1/2). Hence, with the parameter χ chosen small
enough, dominant terms may be gathered, as done in the proof of Proposition 5.1,
to obtain for all large n that∥∥∥∥1

(|y| ≤ δ
)(

Eν1/2

[
f |y,η(−n − 1) = a, η(n + 1) = b

]
− ϕ′′

f (1/2)

2

[
y2 − σ 2

n (1/2)

2n + 1

])∥∥∥∥
L4(ν1/2)

≤ C‖f ‖L∞n−3/2+ε.

On the other hand, large deviation estimates yield∥∥∥∥1
(|y| > δ

)(
Eν1/2

[
f |y,η(−n − 1) = a, η(n + 1) = b

]
− ϕ′′

f (1/2)

2

[
y2 − σ 2

n (1/2)

2n + 1

])∥∥∥∥
L4(ν1/2)

≤ C‖f ‖L∞n−3/2. �
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