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CONVERGENCE RATES FOR LOOP-ERASED RANDOM WALK
AND OTHER LOEWNER CURVES

BY FREDRIK JOHANSSON VIKLUND1

Columbia University

We estimate convergence rates for curves generated by Loewner’s dif-
ferential equation under the basic assumption that a convergence rate for the
driving terms is known. An important tool is what we call the tip structure
modulus, a geometric measure of regularity for Loewner curves parameter-
ized by capacity. It is analogous to Warschawski’s boundary structure mod-
ulus and closely related to annuli crossings. The main application we have
in mind is that of a random discrete-model curve approaching a Schramm–
Loewner evolution (SLE) curve in the lattice size scaling limit. We carry out
the approach in the case of loop-erased random walk (LERW) in a simply
connected domain. Under mild assumptions of boundary regularity, we ob-
tain an explicit power-law rate for the convergence of the LERW path toward
the radial SLE2 path in the supremum norm, the curves being parameterized
by capacity. On the deterministic side, we show that the tip structure modulus
gives a sufficient geometric condition for a Loewner curve to be Hölder con-
tinuous in the capacity parameterization, assuming its driving term is Hölder
continuous. We also briefly discuss the case when the curves are a priori
known to be Hölder continuous in the capacity parameterization and we ob-
tain a power-law convergence rate depending only on the regularity of the
curves.

1. Introduction, motivation and results.

1.1. Introduction. The Loewner equation is a partial differential equation that
produces a Loewner chain, a family of conformal mappings from a reference do-
main onto a continuously decreasing sequence of simply connected domains. The
evolution is controlled by a real valued function called driving term which acts
as a parameter. Under smoothness assumptions on the driving term, the Loewner
equation can be used to generate a growing continuous curve, by which we mean
a continuous function from some interval into the reference domain. Conversely,
starting from a suitable curve one can reverse the procedure to recover the driving
term and so there is a correspondence between Loewner curves and their driv-
ing terms. Following Schramm [22], Loewner’s equation has in recent years been
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successfully applied to study conformally invariant scaling limits of certain lattice
models from statistical physics. By taking a scaled Brownian motion as the driving
term, one obtains the one-parameter family of random fractal Schramm–Loewner
evolution (SLE) curves which are essentially the only possible conformally invari-
ant scaling limits of cluster interfaces with a certain Markovian property; see [22].
Convergence to SLE has been proved in several cases; see, for example, [23] and
the references therein. The use of the Loewner equation and SLE techniques in this
context has made it possible to give precise meaning to the (passage to the) scaling
limit itself, but also to prove conformal invariance, and to give rigorous proofs of
various predictions made by physicists. The latter is to large extent due to the fact
that the SLE processes are amenable to computation via stochastic calculus.

In this paper, we will be interested in quantifying the relationship between (ran-
dom) rough Loewner curves with driving terms that are close in the supremum
norm. To explain our interest, let us first consider a nonrandom setting. One can
view the Loewner equation as a highly nonlinear function from a space of driving
terms to a suitable metric space of (parameterized) curves and it is natural to ask
about continuity properties, if any. This point of view is closely related to work by
Lind, Marshall and Rohde; see [16] and [14]. For example, Theorem 4.1 of [14]
proves that curves driven by Hölder-1/2 driving terms with small semi-norm con-
verge as curves if their driving terms converge. So the “Loewner function” is con-
tinuous when restricted to this collection of driving terms and our results can be
used to show that it is Hölder continuous with an explicit exponent depending
only on the semi-norm assuming it is sufficiently small. One can also ask similar
questions, restricting attention to driving terms generating curves with some given
regularity.

Our principal motivation, however, comes from the observation that although
several discrete-model curves are known to converge (as curves up to reparameter-
ization) to SLE curves, next to nothing appears to be known about the rates of their
convergence. (See the paper [4] by Beneš, Kozdron and the author for a quantita-
tive result of convergence of loop-erased random walk at a fixed time with respect
to Hausdorff distance when the curves are viewed as compact sets.)

Good control over convergence rates would allow SLE techniques to be used
on mesoscopic scales, that is, scales of order εp with p ∈ (0,1) where ε is the
lattice spacing. It is reasonable to believe that such results will be helpful for ob-
taining fine properties of corresponding discrete models; this question was raised
by Schramm in connection with sharp estimation of critical exponents [23]. We
may compare the present setting with a related model. So-called strong approxi-
mation results such as the KMT approximation or the Skorokhod embedding [11]
yield couplings in which simple random walk and Brownian motion paths are close
with high probability, with error terms expressed explicitly in terms of the lattice
spacing. This gives a natural way to use techniques for Brownian motion to deduce
fine properties of simple random walk that can depend on behavior on mesoscopic
scales. This approach has been used by, for example, Lawler, Lawler and Puckette,
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and Beneš; see [12] and [3] and the references therein. It thus seems that approx-
imation results with explicit error terms for discrete models converging to SLE
could be quite useful. Presently, all known proofs of convergence to SLE goes via
convergence of the driving terms in one way or another, so it seems natural to take
a convergence rate for the driving terms as a starting point. We remark that the
work in [4] essentially reduces the derivation of a convergence rate for the driving
terms to the derivation of a convergence rate for the so-called martingale observ-
able in rough domains. We will show that a power-law convergence rate to an
SLE curve can be derived from a power-law convergence rate for the driving terms
provided some additional quantitative geometric information, related to crossing
events, is available for the discrete curves, along with an estimate on the growth of
the derivative of the SLE map. The approach is quite general and we believe it can
be applied to several models (even with nonsimple scaling limit curves) as soon
as the aforementioned information is available, though we carry out the specific
probabilistic estimates only in the case of loop-erased random walk.

1.2. Overview, results and related work. Let us briefly sketch the setup and
main ideas in the (chordal) half-plane setting, though we will later work mostly in
the disk. See Section 2 for precise definitions. Let W,Wn : [0, T ] → R be continu-
ous functions such that

sup
t∈[0,T ]

∣∣W(t) − Wn(t)
∣∣≤ ε,

where ε > 0 is small but for the moment fixed. Let f (t, z) :H → H(t) and
fn(t, z) :H → Hn(t) be the solutions to the chordal Loewner equation (Loewner
chains)

∂tf (t, z) = −∂zf (t, z)
2

z − U(t)
, f (0, z) = z, z ∈H

with U(t) replaced by W(t) and Wn(t), respectively. Assume that the Loewner
chains are generated by the curves γ and γn parameterized by capacity so that
for each t , H(t) and Hn(t) are the unbounded components of H \ γ [0, t] and
H\γn[0, t], respectively. (We can think of γn as the conformal image of a discrete-
model curve on a lattice approximation of a smooth domain D, where the mesh
of the lattice is n−1, and the driving term of γn is coupled with a scaled Brownian
motion W driving the chordal SLE curve γ so that the driving terms are at distance
at most ε = n−q for some q < 1.) Let y > 0; we will later choose y = y(ε). Let
t ∈ [0, T ]. We can write∣∣γ (t) − γn(t)

∣∣ ≤ ∣∣γ (t) − f
(
t,W(t) + iy

)∣∣
+ ∣∣f (t,W(t) + iy

)− f
(
t,Wn(t) + iy

)∣∣
+ ∣∣f (t,Wn(t) + iy

)− fn

(
t,Wn(t) + iy

)∣∣
+ ∣∣fn

(
t,Wn(t) + iy

)− γn(t)
∣∣

=: A1 + A2 + A3 + A4.
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We wish to estimate the Aj in terms of ε. Suppose that there are β < 1 and c < ∞
such that ∣∣f ′(t,W(t) + id

)∣∣≤ cd−β for all d ≤ y.(1)

If this estimate holds, then by integrating, A1 ≤ cy1−β . (Constants may change
from line to line, and are assumed to depend only on the parameters and not on
ε, y, etc.) By the distortion theorem, the same bound holds for A2 if y ≥ ε. The
third term, A3, represents the distance between two solutions to the Loewner equa-
tion having driving terms at supremum distance at most ε, and evaluated at the
same point. In Section 2.3, we will use the reverse-time Loewner flow to estimate
quantities like this. In particular, we will see that if Im z = y, then∣∣f (t, z) − fn(t, z)

∣∣≤ cεy−1

with c depending only on T . Hence, A3 ≤ cεy−1 and Cauchy’s integral formula
implies that ∣∣y∣∣f ′(t, z)

∣∣− y
∣∣f ′

n(t, z)
∣∣∣∣≤ cεy−1.

From this it follows, using Koebe’s estimate and (1), that if

�n(t, y) := dist
[
fn

(
t,Wn(t) + iy

)
, ∂Hn(t)

]
,

then

�n(t, y) ≤ cy
∣∣f ′

n

(
t,Wn(t) + iy

)∣∣≤ cy1−β + cεy−1;(2)

see Proposition 2.4. (Note that we have made no explicit assumption on the behav-
ior of |f ′

n|.) Now choose y(ε) = εp , for some p ∈ (0,1). Then

A1 + A2 + A3 ≤ cεp(1−β) + cε1−p

and it remains to bound A4. Clearly, A4 ≥ �n(t, ε
p) but we would like an upper

bound in terms of �n(t, ε
p). To proceed, some additional information about the

boundary behavior of fn is necessary.
For this, we will use what we call the tip structure modulus, a geometric gauge

of the regularity of a Loewner curve in the capacity parameterization, that is, for
our problem, the analog of Warschawski’s [26] measure with a similar name. Let
δ > 0 and consider St,δ , the set of all crosscuts of Hn(t) of diameter at most δ that
separate the tip, γn(t), from ∞ in Hn(t). Each crosscut C ∈ St,δ separates from ∞
in Hn(t) a piece γC of γn[0, t] obtained by tracing γn backward from γn(t) until C
is first hit. (If γn and C do not intersect, we set γC = γ .) We then define the tip
structure modulus, ηtip(δ), of γn(t), t ∈ [0, T ], to be the maximum of δ and

sup
t∈[0,T ]

sup
C∈St,δ

diamγC .

(See Section 3 for a precise definition.) Roughly speaking, ηtip(δ) is the maximal
distance the curve travels into a “bottle” with “bottleneck” opening smaller than
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δ viewed from the point toward which the curve is growing. (Similar conditions
have been used before; see below.) In Proposition 3.2, we show that∣∣fn

(
t,Wn(t) + iy

)− γn(t)
∣∣≤ c1ηtip

(
c2�n(t, y)

)
,(3)

where ηtip is the tip structure modulus for γn. Consequently, if we have a power-
law bound on the tip structure modulus evaluated at c�n(t, ε

p), that is, if

ηtip
(
c�n

(
t, εp))≤ c′(�n

(
t, εp))r

for some r ∈ (0,1), then by (2)

A4 ≤ cεp(1−β)r + cε(1−p)r .

We stress that the estimate on ηtip is only required to hold on the scale of �n(t, ε
p)

and note that the failure of the existence of such a bound on ηtip implies certain
crossing events for the curve. If the estimates hold uniformly in t ∈ [0, T ], then we
have obtained a power-law bound in terms of ε on supt∈[0,T ] |γ (t)− γn(t)| and we
can then conclude by optimizing over exponents.

To implement these ideas in a particular setting, we need to show that the as-
sumptions we used are satisfied uniformly in t ∈ [0, T ], with high probability in
terms of ε. If a convergence rate for the driving terms (or martingale observable
in rough domains) is known, then we believe it is possible to derive the remain-
ing required information from existing results in the literature without too much
effort, and we derive the needed SLE derivative estimates, from estimates in [6],
in this paper. Indeed, as already mentioned, the event that the geometric condition
fails implies annuli crossing events that are fairly well understood for the models
known to converge to SLE.

The organization of the paper is as follows. In Section 2.3, we discuss some
preliminaries and prove the quantitative comparison estimates for solutions to the
Loewner equation. These estimates might be of some independent interest; see, for
example, [8]. We also consider a natural case when the curves are a priori known
to be Hölder continuous in the capacity parameterization and derive a power-law
convergence rate depending only on the regularity of the curves. See Corollar-
ies 2.6 and 2.7.

In Section 3, we define the tip structure modulus and prove the estimates imply-
ing (3). Then in Theorem 3.5, we show that if a Loewner curve γ has the property
that there is M < ∞ such that ηtip(δ) ≤ Mδ, δ < δ0, and the driving term is Hölder
continuous, then γ is also Hölder continuous in the capacity parameterization with
exponent depending only on M and the exponent for the driving term. A linear
bound on the structure modulus is a natural analog of the John condition for sim-
ply connected domains; see, for example, Chapter 5 of [20]. Theorem 3.5 can thus
be viewed as the analog for Loewner curves of the well-known fact that a John
domain is also a Hölder domain [20].

In Section 4, we apply the above ideas to obtain a power-law estimate on the
convergence rate to radial SLE2 for the loop-erased random walk (LERW) path.
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Here is an informal version of the result; see Theorem 4.3 for a precise statement.
Let Dn be a n−1

Z
2 grid-domain approximation of a fixed simply connected Jordan

domain D containing 0 and with C1+α boundary and inner radius from 0 equal
to 1. (The proof works for the larger class of quasidisks [20], but we then get a
slower convergence rate which depends on the constant in the Ahlfors three-point
condition for D.) Let γn be the time-reversal of LERW in Dn from 0 to ∂Dn and
let γ̃n be its image in D under the conformal map ψn :Dn → D with the usual
normalization. Let γ̃ be the radial SLE2 path in D started uniformly on ∂D. Our
main result can now be given as follows.

THEOREM. For each n sufficiently large, there is a coupling of γ̃n with γ̃ such
that

P

{
sup

t∈[0,σ ]
∣∣γ̃n(t) − γ̃ (t)

∣∣> ε1/41
n

}
< ε1/41

n ,

where both curves are parameterized by capacity, εn = n−1/24 is the convergence
rate of the driving terms from [4], and σ is a stopping time. The same estimate
holds for the preimages of the curves in Dn.

[The stopping time σ = σ(ε, T ), which is needed for technical reasons, can be
taken as the minimum of some fixed T < ∞ and the first time such that the forward
SLE2 flow of −γ̃ (0) is smaller than some given ε > 0. We have limε→0 σ(ε, T ) =
T almost surely, see Appendix A.] This quantifies the convergence result [13],
Theorem 3.9, of Lawler, Schramm and Werner. As indicated, the proof considers
the couplings of [4] in which if s < 1/24, then with probability at least 1−n−s the
estimate supt∈[0,T ] |Wn(t) − W(t)| < n−s holds. Here, Wn is of the LERW in Dn

and W is a Brownian motion with speed 2 on ∂D. Using the Brownian motion as
driving term in the Loewner equation, we have a coupling of the LERW image and
SLE2 for each n, with their driving terms close. To prove Theorem 4.3, we then
show that the above reasoning can be carried out on an event with large probability
in terms of n. Some work is required to establish the needed geometric condition
for the LERW path; see Proposition 4.5.

In Appendix A, we derive an estimate on the probability (in terms of y) that
a bound of the type (1) holds for radial SLE from a corresponding estimate for
chordal SLE from [6].

Finally, in Appendix B we discuss a convergence rate result for a sequence of
grid-domain approximations of a quasidisk which allows us to directly “transfer”
the required geometric condition to D.

Besides classical articles by Ahlfors, Warschawski, Becker, Pommerenke and
others, which develop (Euclidean) geometric conditions for regularity estimates
on Riemann maps (see, e.g., [2, 17, 18, 25, 26] and the references therein), there
are close connections between the results and methods of this paper and more re-
cent work. Let us highlight some. We mentioned the work by Lind, Marshall and
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Rohde [14] and by Marshall and Rohde [16]; see also Wong’s paper [27]. The
paper by Aizenman and Burchard [1] characterizes tightness for probability mea-
sures on a space of (discrete model) curves modulo reparameterization in terms of
estimates on probabilities of annuli crossing events. The event that the geometric
condition fails is contained in a union of crossing events of this type and this is
what allows for estimation of probabilities. Kemppainen and Smirnov consider re-
lated questions and use similar conditions in [9] and a quantity somewhat similar
to the tip structure modulus has been used by Lind and Rohde in [15].

2. Preliminaries and the deterministic Loewner equation.

2.1. Preliminaries. We start by setting some notation. We will write D =
{z ∈ C : |z| < 1} for the unit disk in the complex plane. This is the basic refer-
ence domain, although we will occasionally also consider the upper half-plane
H= {z ∈ C : Im z > 0}. Let D � 0 be a simply connected domain. By the Riemann
mapping theorem, there exists a unique conformal map ψ :D →D with ψ(0) = 0
and ψ ′(0) > 0. If we do not state otherwise, we will always assume that uniformiz-
ing conformal maps like ψ are normalized in this way.

A crosscut C of a simply connected domain D is an open Jordan arc in D such
that C = C∪{ζ, η} with ζ, η ∈ ∂D. A crosscut partitions D into exactly two disjoint
components; see Chapter 2 of [20].

A (parameterized) curve γ is a continuous function γ (t) : I → C defined on
some interval I which we will usually assume to be [0, T ] for some fixed T > 0.
Given two curves γ1, γ2 defined on the same interval, we measure their distance
by the supremum norm

sup
t∈[0,T ]

∣∣γ1(t) − γ2(t)
∣∣.

Let γ : [0, T ] → D be a curve with γ (0) ∈ ∂D,0 /∈ γ [0, T ], and for t ∈ [0, T ], let
Dt be the connected component of 0 of D\γ [0, t]. We say that γ is parameterized
by capacity if the normalized conformal maps gt :Dt → D satisfy g′

t (0) = et for
t ∈ [0, T ]. (Clearly, not all curves in D can be parameterized in this way.) A repa-
rameterization of a curve γ is a new curve γ̃ obtained by γ̃ (t) = γ ◦ α(t), where
α(t) : [0, T̃ ] → [0, T ] is a strictly increasing and continuous function. We will of-
ten, when no confusion is possible, treat a curve and its reparameterizations as the
same. A (D-) Loewner curve is a curve γ in D as above, parameterized by ca-
pacity, for which the following continuity condition holds: for every ε > 0 there
exists δ > 0 such that for all s, t ∈ [0, T ] with 0 < t − s < δ there is a crosscut C
with diamC < ε that separates Kt \ Ks from 0 in Dt , where Kt = D \ Dt . Intu-
itively, a D-Loewner curve γ is a continuous curve such that: the conformal radius
from 0 of the complement of the curve is strictly and continuously decreasing, it
has no transversal self-crossings, and the tip γ (t) is always “visible” from 0. For
example, if γ is piecewise smooth with no double points and is contained in D
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for t ∈ (0, T ], then it is a Loewner curve. By Theorem 1 of [19], the D-Loewner
curves are exactly the curves that can be described using the radial Loewner equa-
tion driven by a continuous driving term, as discussed in the next section. We will
also consider (chordal) Loewner curves in H which are defined in a similar man-
ner; we refer to Chapter 4 of [10] for more information. We just note that in this
case it is convenient to parameterize γ by the so-called half-plane capacity, that
is, so that the conformal maps gt :Ht →H, where Ht is the unbounded connected
component of H \ γ [0, t], satisfy gt (z) = z + 2t/z + o(1/|z|) at ∞. (In this case,
the normalization is at a boundary point, and the tip of the curve is to be “visible”
from this point at all times.)

We will often write “constants” depending on parameters as c = c(a, b), etc. It
is then to be understood that c depends only on these parameters.

2.2. Loewner equations. We will be interested in two versions of Loewner’s
differential equation. We define radial and chordal Loewner vector fields by


D(z, ζ ) = −z
ζ + z

ζ − z
, 
H(z, ξ) = − 2

z − ξ
.

The radial and chordal Loewner equations are then given by

∂tf (t, z) = ∂zf (t, z)
X

(
z,W(t)

)
, f0(z) = z, z ∈ X,(4)

X = D and X = H, respectively. (We will sometimes refer to these equations the
D- and H-Loewner PDEs and their solutions as D- and H-Loewner chains, etc.)
Here, W : [0,∞) → ∂X is a (continuous) function called the driving term. In the
radial case, we will sometimes write the driving term as W(t) = eiξ(t) for a real
valued function ξ which, when no confusion is possible, for brevity is also referred
to as the driving term.

Let us discuss a few properties in the radial setting. (Similar results hold for the
chordal version.) For each t0 ≥ 0, the solution f (t0, ·) :D → Dt0 is a conformal
map onto a simply connected domain Dt0 ⊂ D. The family (f (t, z))t≥0 of con-
formal mappings is called a Loewner chain. A Loewner pair (f,W) consists of a
function f (t, z) and a (continuous) function W(t), t ≥ 0, such that f is the solution
to the Loewner equation with W as driving term. Under some rather mild regular-
ity assumptions on W [e.g., that W is Hölder-(1/2 + ε) for some ε > 0], there
exists a curve γ (t) such that Dt is the component of the origin of D \ γ [0, t], and
in this case we say that the Loewner chain is generated by the Loewner curve γ .
Conversely, given a Loewner curve, one can associate via the Loewner equation a
unique driving term such that the Loewner chain (ft ) in the Loewner pair (f,W)

is generated by γ . In fact, the driving term is the preimage in ∂D of the tip of the
growing curve. In terms of the inverse relationship, we have

γ (t) = lim
d→0+f

(
t, (1 − d)W(t)

)
.(5)
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A sufficient condition for (f,W) to be generated by a curve γ is that the limit (5)
exists for all t ≥ 0 and that t �→ γ (t) is continuous; see Theorem 4.1 of [21]. The
parameterization of γ given by (5) is the capacity parameterization.

We will use the notation ft (z) = f (t, z), f ′ = ∂zf and ḟ = ∂tf .

LEMMA 2.1. There exists a constant c0 < ∞ such that the following
holds. Let X ∈ {D,H}. Suppose that ft satisfies the X-Loewner PDE and that
dist(z, ∂X) = d . Then for s ≥ 0

e−c0s/d
2 ∣∣f ′

t (z)
∣∣≤ ∣∣f ′

t+s(z)
∣∣≤ ec0s/d

2 ∣∣f ′
t (z)

∣∣(6)

and ∣∣ft+s(z) − ft (z)
∣∣≤ c0 d

∣∣f ′
t (z)

∣∣(ec0s/d
2 − 1

)
.(7)

PROOF. See Lemma 3.5 of [6] for the proof in the chordal case. The radial
case is proved in the same way. �

For Hölder continuous driving terms, the existence of the curve and its regularity
in the capacity parameterization is completely determined by the local behavior at
the tip, that is, the growth of the derivative of the conformal map close to the
preimage of the tip. The following result is a version of Proposition 3.9 of [6], but
allows for a less regular driving term.

PROPOSITION 2.2. Let (f,W) be a D-Loewner pair and assume that W(t) =
eiξ(t) where ξ(t) is Hölder-α on [0, T ] for some α ≤ 1/2. Then the following holds.
Suppose there are c < ∞, d0 > 0, and 0 ≤ β < 1 such that

sup
t∈[0,T ]

d
∣∣f ′

t

(
(1 − d)W(t)

)∣∣≤ cd1−β ∀d ≤ d0.(8)

Then (f,W) is generated by a curve that is Hölder-α(1 −β) continuous on [0, T ].
The analogous statement holds for H-Loewner pairs.

REMARK. At t = 0, we have f ′
0(z) = 1 so we can never do better than β = 0

in (8). However, for t ≥ ε, we can have −1 ≤ β < 0 and in this case the curve will
be Hölder-α(1 − β) (which is then larger than α) for t ∈ [ε, T ] but only Hölder-α
on [0, T ].

PROOF OF PROPOSITION 2.2. The bound on the derivative implies that the
limit

γ (t) = lim
d→0+ft

(
(1 − d)W(t)

)
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exists for every t ∈ [0, T ] and since the convergence is uniform γ (t) is a continu-
ous function. Let s > 0 and set d = sα . If t, t + s ∈ [0, T ], we have∣∣γ (t + s) − γ (t)

∣∣≤ ∣∣γ (t + s) − ft+s

(
(1 − d)W(t + s)

)∣∣
+ ∣∣ft+s

(
(1 − d)W(t + s)

)− ft+s

(
(1 − d)W(t)

)∣∣
+ ∣∣ft+s

(
(1 − d)W(t)

)− ft

(
(1 − d)W(t)

)∣∣
+ ∣∣γ (t) − ft

(
(1 − d)W(t)

)∣∣.
If t > 0, then the estimate (8) implies that the first and last terms are bounded by
a constant times d1−β = sα(1−β). By assumption |ξ(t + s) − ξ(t)| ≤ csα = cd , so
the distortion theorem implies that∣∣ft+s

(
(1 − d)W(t + s)

)− ft+s

(
(1 − d)W(t)

)∣∣≤ cd1−β.

Finally, since s = d1/α and α ≤ 1/2, (7) implies∣∣ft+s

(
(1 − d)W(t)

)− ft

(
(1 − d)W(t)

)∣∣≤ cd1−β.

Since d|f ′
0((1 − d)W(0))| = d and so cannot decay faster than linearly, we get the

stated exponent on [0, T ]. �

2.3. An estimate for the reverse-time Loewner equation. We want to compare
solutions to the Loewner equation corresponding to driving terms which are close
in the supremum norm. We will use the reverse-time Loewner equation: let T < ∞
and let (fj ,Wj ), j = 1,2, be Loewner pairs. Let t0 ∈ (0, T ] be fixed. Consider
solutions hj (t, z; t0) = hj (t, z) to the reverse-time Loewner equation

∂thj (t, z) = 
X

(
hj ,Uj (t)

)
, hj (0, z) = z,(9)

where X equals D and H in the radial and chordal case, respectively. We say that
Uj is the driving term for (9). If we take Uj(t) = Wj(t0 − t) we have the well-
known identity

hj (t0, z; t0) = fj (t0, z), z ∈ X,j = 1,2,

where fj (t, z) solves the Loewner PDE (4) with Wj(t) as driving term. These
equalities only hold at the special time t = t0; the families of conformal mappings
(hj (·, z)) and (fj (·, z)) are in general different. Solutions t �→ h(t, z) to (9) flow
away from ∂X as t increases when z ∈ X and this implies that if z ∈ X is fixed
then the solution t �→ h(t, z) exists for all t ≥ 0.

Let ε and ν be given nonnegative numbers. Let z1, z2 ∈ X be given and suppose
that

sup
t∈[0,T ]

∣∣W1(t) − W2(t)
∣∣≤ ε, |z1 − z2| ≤ νε.

Set

H(t) = h1(t, z1) − h2(t, z2),
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where the hj are assumed to solve the reverse-time Loewner equations (9) driven
by

W̃j (t) := Wj(t0 − t), j = 1,2.

Then H(t0) = f1(t0, z1)− f2(t0, z2). We differentiate with respect to t and use (9)
to obtain the linear differential equation

Ḣ (t) − H(t)ψX(t) = (
W̃2(t) − W̃1(t)

)
ξX(t),

where

ψD(t) = h1h2 − W̃1W̃2 − (1/2)(h1 + h2)(W̃1 + W̃2)

(h1 − W̃1)(h2 − W̃2)
,

ξD(t) = h2
1 + h2

2

2(h1 − W̃1)(h2 − W̃2)

and

ψH(t) = 2

(h1 − W̃1)(h2 − W̃2)
,

ξH(t) = ψH(t).

Here, we have suppressed the dependence on t in the right-hand sides. We can
integrate the differential equation and with u(t) = exp{− ∫ t

0 ψX(s) ds} we find

H(t) = u(t)−1
(
H(0) +

∫ t

0
(W̃2 − W̃1)uξX ds

)
.

Hence, for 0 ≤ t ≤ t0,∣∣H(t)
∣∣≤ ∣∣H(0)

∣∣e∫ t
0 ReψX(s) ds +

∫ t

0
|W̃2 − W̃1|e

∫ t
s ReψX(r) dr |ξX|ds.(10)

Consequently, since

sup
t∈[0,t0]

∣∣W̃1(t) − W̃2(t)
∣∣≤ ε,

∣∣H(0)
∣∣= |z1 − z2| ≤ νε,

recalling that |f1(t0, z1) − f2(t0, z2)| = |H(t0)|, we get the estimate∣∣f1(t0, z1) − f2(t0, z2)
∣∣

(11)

≤ ε

(
νe
∫ t0

0 ReψX(s) ds +
∫ t0

0
e
∫ t0
s ReψX(r) dr |ξX|ds

)
.

The right-hand side in (11) can be estimated in different ways depending on
what data is available. We would like an estimate that depends only on ε and
d = dist({z1, z2}, ∂X). Estimating naively, using only the fact that points flow
away from ∂X under the reverse flow, gives a bound of order εeO(d−2). (This kind
of estimate was used in [4].) We shall see that we can do much better.
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2.3.1. The chordal case. To give some intuition, let us first briefly discuss the
easier chordal case which will be treated in greater detail in [8]. Assume ν = 1 for
simplicity. Write zj (t) = hj (t, zj ) − W̃j (t). We can apply the Cauchy–Schwarz
inequality to get∫ t

0
ReψH(t) dt ≤

∫ t

0

2

|z1(t)z2(t)| dt

≤
(∫ t

0

2

|z1(t)|2 dt

)1/2(∫ t

0

2

|z2(t)|2 dt

)1/2

.

Since ∂t log Im zj (t) = 2/|zj (t)|2, this can now be used to show that the right-
hand side of (11) is bounded by εd−1 times a constant depending only on T , if
Im zj (0) ≥ d, j = 1,2. (Note that there is no logarithmic correction.)

REMARK. The estimate εd−1 is essentially sharp if no further assumptions
are made. Indeed, consider a driving term W1(t) generating a Loewner chain such
that for some fixed p < 1 very close to 1, t0 > 0, there is a constant c > 0 such
that |f ′

1(t0,W1(t0) + id)| ≥ cd−p as d → 0. (As shown in [14], one can take
W1(t) = κ

√
t0 − t with κ very close to but smaller than 4. The curve traces a kind

of logarithmic spiral.) If we let W2(t) = W1(t)+ε, then f2(t, z) = f1(t, z−ε)+ε.
Hence, for ε ≤ d/2, by Koebe’s distortion theorem,∣∣f2

(
t0,W1(t0) + id

)− f1
(
t0,W1(t0) + id

)∣∣
≥ ∣∣f1

(
t0,W1(t0) + id − ε

)− f1
(
t0,W1(t0) + id

)∣∣− ε

≥ cε
∣∣f ′

1
(
t0,W1(t0) + id

)∣∣≥ cεd−p.

A similar example can be constructed for the radial case.

If more information is available, one can do better. The reader may check that
∂t Re logh′

j (t, z) = Re(2/zj (t)
2). From this, one can see that the bound can be

expressed in terms of the derivatives f ′
j . In fact, in joint work with Rohde and

Wong, [8], we show that∣∣f1(t0, z) − f2(t0, z)
∣∣

≤ ε exp
{

1

2

[
log

It0,y |f ′
1(t0, z)|
y

log
It0,y |f ′

2(t0, z)|
y

]1/2

+ log log
It0,y

y

}
,

where It,y =
√

4t + y2. If a nontrivial power-law bound on the growth of the
derivative at time t0 holds, that is, if cj < ∞ and βj < 1 are such that for j = 1,2,∣∣f ′

j

(
t0,Wj (t0) + id

)∣∣≤ cjd
−βj , d ≤ d0,(12)

then one gets a bound in (11) of order at most cεd−(1/2)[(1+β1)(1+β2)]1/2
logd−1,

where c depends only on cj , βj , j = 1,2.
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2.3.2. The radial case. We now consider the radial setting X = D. In order to
bound the right-hand side of (11) we need to estimate

∫ t0
s ReψD(s) ds. The idea is

to prove that for a constant q slightly larger than 1,

ReψD(t) ≤ q

√
1 + |z1(t)|

|1 − z1(t)| ·
√

1 + |z2(t)|
|1 − z2(t)| ,

where for t ∈ [0, t0], we define

zj (t) = hj (t, zj )W̃j (t).

Note that |zj (0)| = |zj |. Once we have this estimate, we can apply the Cauchy–
Schwarz inequality to the corresponding bound on

∫ t0
s ReψD(s) ds to decouple the

two flows and then compare with

1 + |zj (t)|
|1 − zj (t)|2 = ∂t log

(
1 − ∣∣zj (t)

∣∣).(13)

This last identity follows from the reverse-time Loewner equation (9). This will
give a bound in (11) of order εd−q , where q can be taken arbitrarily close to 1.
(Arguing as in the chordal case only gives a rough bound of order εd−4, but we
shall actually make use of this bound below.) This is essentially optimal in this
general setting as we saw above.

PROPOSITION 2.3. For j = 1,2, let (fj ,Wj ) be D-Loewner pairs. For any
ρ > 1, there exist ε0 = ε0(ρ) > 0, d0 = d0(ρ) > 0, and c = c(ρ) < ∞ such that
the following holds. Let T < ∞ and suppose that

sup
t∈[0,T ]

∣∣W1(t) − W2(t)
∣∣≤ ε,

where ε < ε0. Then for any z1, z2 ∈ D with |z1 − z2| ≤ ε and |z1|, |z2| ≤ 1−d with
(4ε)1/ρ ≤ d ≤ d0, ∣∣f1(T , z1) − f2(T , z2)

∣∣≤ cεd−ρ.(14)

PROOF. By factoring out W̃1W̃2, we can write

ReψD(t)

= Re
(

z1(t)z2(t) − 1 − (z1(t) + z2(t)) + O(ε)

(1 − z1(t))(1 − z2(t))

)
(15)

= Re{(z1(t)z2(t) − 1 − (z1(t) + z2(t)) + O(ε))(1 − z1(t))(1 − z2(t))}
|1 − z1(t)|2|1 − z2(t)|2 .

This uses that W̃1(t)W̃2(t) = 1 +O(ε) in the sense that |W̃1(t)W̃2(t)− 1| ≤ cε for
a universal constant c. For z,w ∈D we now consider the function

R(z,w) = Re{(zw − 1 − (z + w))(1 − z)(1 − w)}
|1 − z||1 − w|√(1 + |z|)(1 + |w|) ,
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which is bounded and continuous on the closed bi-disk D × D. We claim that
supz,w∈∂D R(z,w) ≤ 1. A computation shows that R simplifies when |z| = |w| = 1
so that

R(z,w) = (1 − Re z)(1 − Rew) + Im z Imw

2
√

(1 − Re z)(1 − Rew)

(|z| = |w| = 1
)
.

By changing coordinates z = eiθ and w = eiμ, with θ,μ ∈ [0,2π ], in the last
expression we find

(
R
(
eiθ , eiμ))2 = cos2

(
θ − μ

2

)
≤ 1.

Let δ > 0 be such that ρ = 1+2δ; we assume that δ is small. By the last expression
and the continuity of R, there exists ε′(δ) > 0 such that if 1−ε′ ≤ |z|, |w| ≤ 1 then
R(z,w) ≤ 1 + δ/2. We will fix ε′ from now on. We can think of ε′ as small but
macroscopic compared to ε. Returning to the flows, by (15) and the bound on R,
if ε is sufficiently small compared to δ, we have the estimate

ReψD(t) = Re
(

z1(t)z2(t) − 1 − (z1(t) + z2(t)) + O(ε)

(1 − z1(t))(1 − z2(t))

)
(16)

≤ (1 + δ)

√
1 + |z1(t)|

|1 − z1(t)| ·
√

1 + |z2(t)|
|1 − z2(t)| , 0 ≤ t ≤ τ,

where

τ = inf
{
t ≥ 0 : min

{∣∣z1(t)
∣∣, ∣∣z2(t)

∣∣}≤ 1 − ε′}.
We will assume that τ > 0 as there is nothing to prove otherwise. We split the
integral ∫ T

0
ReψD(s) ds =

∫ τ

0
ReψD(s) ds +

∫ T

τ
ReψD(s) ds.

We estimate the first integral using (16) and the Cauchy–Schwarz inequality. We
get, for 0 ≤ s ≤ τ :∫ τ

s
ReψD(s) ds ≤ (1 + δ)

(∫ τ

0

1 + |z1(s)|
|1 − z1(s)|2 ds

)1/2(∫ τ

0

1 + |z2(s)|
|1 − z2(s)|2 ds

)1/2

.

Using (13), we see that for 0 ≤ s ≤ τ ,∫ τ

s
ReψD(s) ds ≤ (1 + δ)

(
log
(

ε′

1 − |z1|
))1/2(

log
(

ε′

1 − |z2|
))1/2

.(17)
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Thus, with max{|z1|, |z2|} = 1 − d we conclude that∣∣z1(τ ) − z2(τ )
∣∣≤ ε

(
e
∫ τ

0 ReψD(s) ds +
∫ τ

0
e
∫ τ
s ReψD(r) dr |ξD|ds

)

≤ ε

(
ε′

d

)1+δ(
1 + log

ε′

d

)
(18)

≤ 2ε

(
ε′

d

)1+δ

log
1

d
,

if d ≤ 1/e. Here, we also used that∣∣ξD(s)
∣∣≤ √

1 + |z1(s)|
|1 − z1(s)| ·

√
1 + |z2(s)|

|1 − z2(s)| ,

the integral of which is estimated using the Cauchy–Schwarz inequality as above.
Recall that 1 + 2δ = ρ. There is a d0(ρ) > 0 such that d ≤ d0 implies that dρ =
d1+2δ ≤ d1+δ/ log(1/d). Consequently, if ε is sufficiently small we can choose d

such that

4ε
(
ε′)δ ≤ 4ε ≤ d1+2δ ≤ d1+2δ

0

and then use (18) to get the estimate

max
{∣∣z1(τ )

∣∣, ∣∣z2(τ )
∣∣}≤ 1 − ε′ + ∣∣z1(τ ) − z2(τ )

∣∣
≤ 1 − ε′ + 2ε

(
ε′)1+δ

d−(1+2δ)(19)

≤ 1 − ε′

2
.

Note the easy bound

ReψD(t) ≤ ∣∣ψD(t)
∣∣≤ 4

√
1 + |z1(t)|

|1 − z1(t)| ·
√

1 + |z2(t)|
|1 − z2(t)| , 0 ≤ t ≤ T .(20)

Combining this with the Cauchy–Schwarz inequality, (13) and (19) gives∫ T

τ
ReψD(s) ds ≤ 4 log

2

ε′ .

Putting things together, we get∣∣f1(T , z1) − f2(T , z1)
∣∣≤ ε

(
e
∫ T

0 ReψD(s) ds +
∫ T

0
e
∫ T
s ReψD(r) dr |ξD|ds

)

≤ 2ε log
1

d
exp

{
(1 + δ) log

ε′

d
+ 4 log

2

ε′
}

≤ cεd−(1+2δ),

where c = c(ρ) < ∞. �
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REMARK. We believe that the function R(z,w) used in the last proof is
bounded by 1 on the whole bi-disk, and with some work one should be able to
verify this. [However, this is not true for |R(z,w)|.] This would allow for taking
ρ = 1 in (14). This would not improve the resulting convergence rate in Theo-
rem 4.3, so we will not pursue this here. However, we do expect a bound of type
εd−(1/2)[(1+β1)(1+β2)]1/2

logd−1 to hold in the radial case, too. Having this estimate
could slightly improve the resulting convergence rate in Theorem 4.3.

Suppose now that for j = 1,2, fj satisfies the derivative estimate (12) with
β = βj and c = cj . [In the radial case, we consider the radial version of (12)
and take βj = 1; indeed, it is a general fact about (normalized) conformal maps
that (12) always holds with β = 1 for some constant universal constant c < ∞.]
Set

ρ0 = ρ0(β1, β2) =
{

1, if X = D;
1
2

√
(1 + β1)(1 + β2), if X = H.

(21)

Suppose ρ > ρ0 and p ∈ (0,1/ρ). Let ε > 0 and define

d∗ = εp.(22)

We have proved that for any z and w with |z − w| ≤ ε at distance at least d∗ from
the boundary, if the driving terms satisfy sup |W1(t) − W2(t)| ≤ ε, then there are
c = c(ρ,p) < ∞ and ε0 = ε0(ρ) > 0 such that if ε < ε0, then∣∣f1(t0, z) − f2(t0,w)

∣∣≤ cε1−ρp.

By estimating using Cauchy’s integral formula, we also get a bound relating the
derivatives: write fj (z) = fj (z, t0). Then with d = dist(z, ∂X),∣∣f ′

1(z) − f ′
2(z)

∣∣= 1

2π

∣∣∣∣∮|ζ−z|=r

f1(ζ ) − f2(ζ )

(z − ζ )2 dζ

∣∣∣∣≤ cεd−ρr−1,

where r ≤ d/2. Taking d = 2r = εp this estimate combined with the reverse tri-
angle inequality shows that there is a constant c = c(ρ,p,T ) < ∞ (recall that
t0 ≤ T ) such that

sup
z : dist(z,∂X)≥εp

∣∣∣∣f ′
1(z)

∣∣− ∣∣f ′
2(z)

∣∣∣∣≤ cε1−(1+ρ)p.

We have proved the radial part of the following result. (The chordal case is joint
work with Rohde and Wong; see [8] for its complete proof.)

PROPOSITION 2.4. Let X ∈ {D,H} and T > 0. Let (fj ,Wj ), j = 1,2, be
X-Loewner pairs so that fj solve (4) with Wj as driving terms and assume that the
fj satisfiy (8) with β = βj and c = cj < ∞. Suppose ρ > ρ0, where ρ0 is defined
by (21). Assume that z,w ∈ X and for ε > 0

sup
t∈[0,T ]

∣∣W1(t) − W2(t)
∣∣≤ ε, |z − w| ≤ ε
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and for p ∈ (0,1/ρ) define

d∗ = εp.(23)

There exist c = c(T ,ρ,p, c1, c2) < ∞, ε0 = ε0(ρ,p) > 0, d0 = d0(ρ) > 0 such
that if

d∗ ≤ dist
({z,w}, ∂X

)≤ d0

and ε < ε0, then

sup
t∈[0,T ]

∣∣f1(t, z) − f2(t,w)
∣∣+ sup

t∈[0,T ]
∣∣d∗
∣∣f ′

1(t, z)
∣∣− d∗

∣∣f ′
2(t, z)

∣∣∣∣≤ cε1−ρp.

One way to interpret the last proposition is that information about the derivative
of one of the conformal maps transfers to the other via the Loewner equation if
they are evaluated sufficiently far away from the boundary. The proper scale (or
resolution) is determined by the distance between the driving terms. Note that we
make no assumptions about the regularity of the driving terms; the above results
are consequences of the structure of the Loewner equation alone.

2.4. Supremum distance between Loewner curves. We will now consider
two Loewner curves, γj : [0, T ] → X,j = 1,2, generating the X-Loewner pairs
(fj ,Wj ) and suppose that

sup
t∈[0,T ]

∣∣W1(t) − W2(t)
∣∣≤ ε.(24)

We are interested in estimating the supremum distance supt∈[0,T ] |γ1(t) − γ2(t)|
when the curves are parameterized by capacity, in terms ε. We have the following
estimate.

PROPOSITION 2.5. Let X ∈ {D,H}. For j = 1,2, let (fj ,Wj ) be X-Loewner
pairs generated by the curves γj and suppose that there are d0 > 0 and βj , cj such
that fj satisfy (8) with β = βj and c = cj . Let ρ > ρ0, where ρ0 is given by (21).
Suppose that ε > 0 is such that

sup
t∈[0,T ]

∣∣W1(t) − W2(t)
∣∣≤ ε.

Let p ∈ (1,1/ρ) and set d = εp . There exist c = c(T ,ρ,p) < ∞ and ε0 =
ε0(ρ,p) > 0 such that if ε < ε0, then

sup
t∈[0,T ]

∣∣γ1(t) − γ2(t)
∣∣

≤ cε1−ρp + c sup
t∈[0,T ]

(∣∣γ1(t) − f1
(
t, (1 − d)W1(t)

)∣∣(25)

+ ∣∣γ2(t) − f2
(
t, (1 − d)W2(t)

)∣∣)
with fj (t, (1 − d)Wj (t)) replaced by fj (t,Wj (t) + id) in the chordal case.
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PROOF. We will do the radial case. Write∣∣γ1(t) − γ2(t)
∣∣≤ ∣∣γ1(t) − f1

(
t, (1 − d)W1(t)

)∣∣
+ ∣∣f1

(
t, (1 − d)W1(t)

)− f1
(
t, (1 − d)W2(t)

)∣∣
+ ∣∣f1

(
t, (1 − d)W2(t)

)− f2
(
t, (1 − d)W2(t)

)∣∣
+ ∣∣f2

(
t, (1 − d)W2(t)

)− γ2(t)
∣∣.

Denote by b1, . . . , b4 the four terms on the right-hand side in the last inequality
in the order in which they appear. By the distortion theorem, since d ≥ ε we have
that

b2 ≤ c dist
(
f1
(
t, (1 − d)W1(t)

)
, ∂f1(t,D)

)≤ cb1.

Finally, by Proposition 2.4, b3 ≤ cε1−ρp . �

COROLLARY 2.6. For j = 1,2, let (fj ,Wj ) be H-Loewner pairs generated
by the curves γj and assume that (24) holds. Suppose that there exist d0 > 0,
c < ∞, and β < 1 such that the fj satisfy the estimate (8). Then for every

r < 2
1 − β

3 − β
,

there exist c = c(r, T ) < ∞ and ε0 = ε0(r, T ) > 0 such that if ε < ε0, then

sup
t∈[0,T ]

∣∣γ1(t) − γ2(t)
∣∣≤ cεr .

PROOF. Under our assumptions ρ0 = (1+β)/2. Let ρ > ρ0 and 0 < p < 1/ρ.
We set d = εp , apply Proposition 2.5, and integrate the bound on the derivatives to
see that for ε > 0 sufficiently small,

sup
t∈[0,T ]

∣∣γ1(t) − γ2(t)
∣∣≤ c

(
ε1−ρp + εp(1−β)).

We optimize over exponents to find the stated bound for r . �

The proof of the next corollary is an analog for Loewner curves of the well-
known fact that the Riemann map onto a Hölder domain satisfies a power-law
bound on the growth of the derivative.

COROLLARY 2.7. For j = 1,2, let (fj ,Wj ) be H-Loewner pairs gener-
ated by the curves γj and assume that (24) holds. Suppose that both curves are
Hölder-α continuous in the capacity parameterization, where α > 0. Then for ev-
ery

r <
2α

1 + α
,
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there exist c = c(r, T ) < ∞ and ε0 = ε0(r, T ) > 0 such that if ε < ε0, then

sup
t∈[0,T ]

∣∣γ1(t) − γ2(t)
∣∣≤ cεr .

PROOF. We will prove a bound on the growth of the derivative and then apply
the previous corollary. It is enough to consider f (t, z) := f1(t, z) since we made
the same assumptions on both Loewner chains. Write γ = γ1 and W = W1 and for
t, t + s ∈ [0, T ], let

γ̃ = f −1(t, γ [t, t + s]).
Then γ̃ is a curve in H “rooted” at W(t). Set d = diam γ̃ . Let z ∈ γ̃ be a point such
that |z − W(t)| = d/2 and let � be the hyperbolic geodesic in H connecting W(t)

with z. Then � contains a point w with Imw ≥ d/4. Note that by the distortion
theorem, |f ′(t,w)| � |f ′(t,W(t) + id)| so that Koebe’s 1/4 theorem implies that
there is a universal constant c > 0 such that

B
(
f (t,w), cd

∣∣f ′(t,W(t) + id
)∣∣)⊂ f

(
t,B(w,d/8)

)
.

[Here, and in the sequel B(z, r) = {w : |w − z| < r}.] Consequently,

diamf (t,�) ≥ cd
∣∣f ′(t,W(t) + id

)∣∣.(26)

On the other hand, by the Gehring–Hayman theorem (see Chapter 4 of [20]) and
the assumption on γ , we have that there are constants c, c′ < ∞, depending only
on the constant in the modulus of continuity for γ , such that

diamf (t,�) ≤ c diamγ [t, t + s] ≤ c′sα.

Hence, using (26), there is a constant c < ∞ such that

d
∣∣f ′(t,W(t) + id

)∣∣≤ csα ≤ c′d2α,

where the last inequality follows since hcap γ̃ = 2s so that there is a universal
constant c < ∞ such that s ≤ cd2. The diameter d depended on s, but every d

sufficiently small can be written like this since s �→ d is an increasing continuous
function. �

REMARK. If γ (t) is Hölder-α continuous in the capacity parameterization,
then its driving term is at least Hölder-α/2: using the notion of the proof of Corol-
lary 2.7, we note that by the Beurling estimate, diam γ̃ ≤ csα/2 and by Lemma 2.1
of [13], we have |W(t + s) − W(t)| ≤ c diam γ̃ ≤ c′sα/2.
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3. Geometric conditions. This section develops a geometric condition that
we will use in place of a bound on the growth of the derivative of the conformal
map in order to measure the regularity of a Loewner curve locally at the tip. As
pointed out in the Introduction, several similar conditions have appeared in the
literature. We will work in the radial setting, but the results hold also in the chordal
setting with minor modifications in their statements and proofs.

Let D � 0 be a simply connected domain. Let ψ :D → D be the uniformizing
conformal map. We consider a radial Loewner curve γ : [0, T ] → D, that is, the
conformal image of γ in D using the conformal map ψ is a D-Loewner curve. In
this section we write Dt for the connected component of D \γ [0, t] containing the
origin.

3.1. Tip structure modulus. For s, t ∈ [0, T ] with s ≤ t , we let γs,t denote the
curve determined by γ (r), r ∈ [s, t]. For a crosscut C of Dt , we write JC for the
component of Dt \ C of smaller diameter.

For each 0 ≤ t ≤ T and δ > 0, let St,δ be the collection of crosscuts of Dt of
diameter at most δ that separate γ (t) from 0 in Dt . For a crosscut C ∈ St,δ , define

sC = inf
{
s > 0 :γ [t − s, t] ∩ C �= ∅

}
, γC = (

γ (r), r ∈ [t − sC, t]).
(We set sC = t if γ never intersects C.) For δ > 0, we define the tip structure
modulus of (γ (t), t ∈ [0, T ]) in D, written ηtip(δ), to be the maximum of δ and

sup
t∈[0,T ]

sup
C∈St,δ

diamγC .(27)

REMARK. In the chordal setting, we consider instead crosscuts separating
γ (t) from ∞ in Ht in the definition of the structure modulus. The remaining con-
struction is the same.

It is useful to introduce some more terminology. Given 0 < δ ≤ η, we will say
that the curve γ has a (δ, η)-bottleneck in D if there exist t ∈ [0, T ] and ζ ∈ ∂Dt

such that γ (t) and ζ can be connected by a crosscut Ct of Dt and diamJCt ≥ η

while diamCt ≤ δ. This definition is similar to the one for “quasi-loops” given by
Schramm in [22]. We say that the bottleneck is at z0 if the points ζ and γ (t) in the
previous definition are contained in the disk B(z0, η/4).

Similarly, given 0 < δ ≤ η we will say that the curve γ has a nested
(δ, η)-bottleneck in D if there exist t ∈ [0, T ] and C ∈ St,δ with

diamγC ≥ η.

That γ (t), t ∈ [0, T ] has no nested (δ, η)-bottleneck in D is clearly equivalent to
having the inequality ηtip(δ) ≤ η.
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REMARK. The definition of nested bottleneck is independent of the particular
chosen parameterization of the curve in the sense that any increasing reparameter-
ization would do in the definition. The definition is not, however, symmetric with
respect to reversibility of the curve.

The term “structure modulus” is borrowed from Warschawski [26] who used it
in the following sense: the “structure modulus of the boundary of D” is defined by
the function

ηW(δ) = sup
C

diamJC,

where the supremum is over all crosscuts (of D) of diameter at most δ and JC ⊂ ∂D

is the subarc of smaller diameter separated from 0 by C. Intuitively, the decay rate
of ηW places a restriction on bottlenecks/outward-pointing cusps in the boundary
and this gives estimates on the regularity of the Riemann mapping from D. For ex-
ample, D is a John domain if and only if ηW(δ) ≤ Aδ for some constant A < ∞.
One can use this to show (see [26]) that if h < 2/(A2π2), then the Riemann map
from D is Hölder-h on the closed unit disk. The tip structure modulus is the nat-
ural analogue to ηW for Loewner curves; see Theorem 3.5 below. Moreover, and
importantly, the tip structure modulus is related to annuli crossing events (see Fig-
ure 1), the probabilities of which are often known how to control for discrete-model

FIG. 1. A nested (δ, η)-bottleneck with diamC = δ and diamγC ≥ η, where γC = γ [s, t].
A 6-crossing event of a (δ, η)-annulus for the whole curve.
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curves; the connection between annuli crossings and regularity of curves is well
known; see, for example, [1].

3.2. Distance to the tip. Let (f,W) be a D-Loewner pair and assume it is
generated by a curve γ . We use the notation

�t(d) = dist
(
ft

(
(1 − d)Wt

)
,Dt

)
,

where Wt = eiξt is the driving term for (ft ). Note that Koebe’s distortion theorem
implies that

�t(d) � d
∣∣f ′

t

(
(1 − d)Wt

)∣∣.
Recall also that for each t , the tip of the curve is given by taking the radial limit

γ (t) = lim
d→0+ft

(
(1 − d)Wt

)
.

We saw in Section 2.4 that we need to obtain uniform (in t) bounds on∣∣γ (t) − ft

(
(1 − d)Wt

)∣∣.
A lower bound on this quantity is clearly given by �t(d) and if we have a bound
for ηtip(δ) in terms of δ, then we can also give an estimate from above in terms of
�t(d). We need the following lemma. (See Figure 2 for a sketch illustrating the
proof.)

FIG. 2. Sketch for the proof of Lemma 3.1. The crosscut gt (C) separates (1−d)Wt and gt (E) ⊂ ∂D

from 0 in D. The harmonic measure of gt (E) from (1 − d)Wt is at least 1/2. Hence, Wt ∈ gt (E).
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LEMMA 3.1. Let T < ∞ be given. There exist constants 0 < ρ1, c1 < ∞ with
ρ1 universal and c1 = c1(T ) such that the following holds. Let γ be a curve in D

generated by the Loewner pair (f,W). Let t ∈ [0, T ]. If �t(d) < c1 then there is
a crosscut C = Ct of Dt that separates ft ((1 − d)Wt) and γ (t) from 0 in Dt while

diamC ≤ ρ1�t(d).

Moreover, C can be taken to be a subarc of B(ft ((1 − d)Wt), ρ1�t(d)/2).

PROOF. Let t ∈ [0, T ] and set

zd = ft

(
(1 − d)Wt

)
.

We will write

� = �t(d) = dist(zd, ∂Dt).

For ρ > 1, consider (∂B(zd, ρ�))∩Dt . The components of this set form crosscuts
of Dt and we let C0 be the subset of those crosscuts that separate zd from 0 in Dt .
(Since the inner radius of Dt from 0 is bounded below by e−T /4, C0 is nonempty
whenever ρ� is smaller than, say, e−T /16.) Let Cρ be the unique crosscut in C0
with the property that it separates every other member in C0 from 0 in Dt . Let Oρ

be the component of Dt \Cρ that contains zd and let Eρ = ∂Oρ \Cρ . By Beurling’s
projection theorem and the maximum principle, there exists a universal ρ0 < ∞
and for each ρ > ρ0 a constant c0 = c0(ρ, T ) > 0 such that if � < c0 then we have
the following lower bound on harmonic measure:

ω(zd,Eρ,Oρ) > 1/2.(28)

Let O := O2ρ0 , C := C2ρ0 and E := E2ρ0 . Let c1 = c1(T ) < ∞ be such that if
� < c1, then the diameter of the preimage of C in D is at most 1/2 and (28) holds
with ρ replaced by 2ρ0. (Existence of such a c1 follows from Beurling’s projection
theorem.) We shall assume that � < c1 in the sequel. We claim that the preimage
of E in ∂D is an arc containing the point Wt . Indeed, it is clear that it is an arc
of ∂D. If gt = f −1

t then gt (C) is a crosscut of D separating gt (E) and (1 − d)Wt

from 0. By conformal invariance, the maximum principle and (28), the harmonic
measure of gt (E) from (1−d)Wt is strictly bigger than 1/2. Write Wt = eiξt . Note
that by symmetry, the harmonic measure from (1 − d)Wt of {ei(ξt+θ) : 0 ≤ θ ≤ π}
in D is exactly 1/2. Therefore, if Wt = eiξt /∈ gt (E), then the arc gt (E) must contain
the point ei(ξt+π). Since gt (C) separates (1 − d)Wt and ei(ξt+π) from 0, this would
imply that diamgt (C) > 1/2 and this is a contradiction. �

PROPOSITION 3.2. Let T < ∞ be given. There exist constants 0 < c1, c2,
c3 < ∞ with c1 depending only on T and c2, c3 universal such that the following
holds. Let γ be a curve in D generating the Loewner pair (f,W) and let ηtip(δ) be
the tip structure modulus for (γ (t), t ∈ [0, T ]). Then if t ∈ [0, T ] and �t(d) < c1,
we have ∣∣γ (t) − ft

(
(1 − d)Wt

)∣∣≤ c2ηtip
(
c3�t(d)

)
.(29)
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PROOF. We use the notation from the proof of Lemma 3.1. Set

δ0 = ρ1�/2,

where ρ1 is as in Lemma 3.1. Then by Lemma 3.1 (if � < c1, where c1 is the
constant of that lemma) there is a crosscut C ⊂ B(zd, δ0) separating zd and γ (t)

from 0 in Dt while diamC ≤ 2δ0. By the definition of tip structure modulus,
dist(γ (t),C) ≤ ηtip(2δ0) and consequently, |zd − γ (t)| ≤ ηtip(2δ0) + δ0. �

One can also estimate the distance to the tip directly in terms of d , the distance
to the boundary in D.

PROPOSITION 3.3. There is a constant c < ∞ such that the following holds.
Let T < ∞ be given. Let γ be a curve in D generating the Loewner pair (f,W)

and let ηtip(δ) be the tip structure modulus for (γ (t), t ∈ [0, T ]). Then for every
t ∈ [0, T ] and d < 1/2,∣∣γ (t) − ft

(
(1 − d)Wt

)∣∣≤ cηtip
((

2πA/(log 1/d)
)1/2)

,(30)

where A may be chosen as min{π(diamγ0,T )2, π}.
PROOF. The needed estimate is a consequence of a classical result due to

J. Wolff. We will give a short proof using extremal length. Consider
A = A(r,R) ∩D centered around Wt , the preimage of γ (t) in ∂D. Let E and F be
the two boundary components of A which are contained in ∂D. By comparing with
a half-annulus and mapping to a rectangle, using also the comparison principle for
extremal length, we see that the extremal distance between E and F in A is at
most π/ log(R/r). Hence, by conformal invariance and the definition of extremal
length,

π

log(R/r)
≥ L2

A
,

where L is the euclidean length of the curve-family connecting f (E) with
f (F ) in f (A) and A is the Euclidean area of f (A). The number A is clearly
bounded above by the minimum of π(diamγ0,T )2 and π . Consequently, by tak-
ing r = d and R = √

d we see that there exists a crosscut C′ of Dt separat-
ing γ (t) and zd = ft ((1 − d)Wt) from 0 and the diameter of C′ is at most
l(d) := (2πA/(log 1/d))1/2. Hence, dist(γ (t),C′) ≤ ηtip(l(d)) and an argument
using the Gehring–Hayman theorem (see, e.g., Theorem 4.20 of [20], and also
below) now shows that dist(zd, γ (t)) ≤ c(ηtip(l(d)) + l(d)) ≤ c′ηtip(l(d)). �

We end the section with a lemma that combines some of the previous work in
this section and that of Section 2. It is tailored for the situation where a discrete
model Loewner curve approaches an SLE curve in the scaling limit. We will use it
in the proof of Theorem 4.3 in Section 4.
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LEMMA 3.4. For j = 1,2, let (fj ,Wj ) be D-Loewner pairs generated by
the curves γj . Fix T < ∞ and ρ > 1. Assume that there exist β < 1, r ∈ (0,1),
p ∈ (0, 1

ρ
) and ε > 0 such that the following holds with

d∗ = εp.

(i) The driving terms satisfy

sup
t∈[0,T ]

∣∣W1(t) − W2(t)
∣∣≤ ε;

(ii) There exists a constant c < ∞ such that the tip structure modulus for
(γ1(t), t ∈ [0, T ]) in D satisfies

ηtip(d∗) ≤ cdr∗;
(iii) There exists a constant c′ < ∞ such that the derivative estimate

sup
t∈[0,T ]

d
∣∣f ′

2
(
t, (1 − d)W2(t)

)∣∣≤ c′d1−β ∀d ≤ d∗,

holds.

Then there is a constant c′′ = c′′(T ,β, r,p, c, c′) < ∞ such that

sup
t∈[0,T ]

∣∣γ1(t) − γ2(t)
∣∣≤ c′′ max

{
εp(1−β)r , ε(1−ρp)r}.

The analogous statement holds for H-Loewner pairs.

PROOF. The proof is immediate from the assumptions using Proposition 2.5
combined with Proposition 3.2. �

3.3. Hölder regularity. We shall now see that the John-type condition
ηtip(δ) ≤ Aδ, δ < δ0, forces a curve driven by a Hölder continuous function to
be Hölder continuous in the capacity parameterization, with exponent depending
only on A and the exponent for the driving term. Note that we must have A ≥ 1. We
will derive a bound on the growth of the derivative as in (8) from the bound on ηtip.
Hölder regularity then follows from Proposition 2.2. The proof uses the length–
area principle. The situation is different from the classical one; see, for example,
[26] or [20], in that our assumptions do not prevent large bottlenecks to form.

THEOREM 3.5. Suppose that the radial Loewner pair (f, eiξ ) is generated
by a curve γ . Assume that ξ is Hölder continuous and that there exist A < ∞
and δ0 > 0 such that the tip structure modulus for (γ (t), t ∈ [0, T ]) in D satisfies
ηtip(δ) ≤ Aδ, δ < δ0. Then γ is Hölder continuous on [0, T ] with Hölder exponent
depending only on A and the Hölder exponent for ξ .
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REMARK. A bound on the tip structure modulus alone cannot imply Hölder
regularity of the path in the capacity parameterization; it is necessary to have some
regularity of the driving term. Indeed, consider the chordal setting and take γ to
be the graph of e−1/x, x ∈ [0,1]. For this curve, the tip structure modulus clearly
decays linearly, uniformly in t . On the other hand, parameterize by half-plane ca-
pacity and note that there is a universal constant c such that

2t = hcapγ [0, t] ≤ c height γ [0, t] · diamγ [0, t].
(This follows, e.g., from a harmonic measure estimate.) Hence,

t ≤ ce−1/Reγ (t) Reγ (t),

which shows that γ is not Hölder continuous at t = 0. (By precomposing with
slit map

√
z2 − 4T , a similar example can be constructed with the “singularity”

occurring at an arbitrary T > 0.) Moreover, if W is the driving term for γ , then

diamγ [0, t] � √
t + sup

s∈[0,t]
∣∣W(s)

∣∣,
so W is also not Hölder continuous. (In fact, a similar argument shows that if the
driving term is Hölder-α, α ≤ 1/2, at t = 0, then so is the curve.)

It is possible to take this example as a starting point to formulate a geometric
condition that implies Hölder continuity for the driving term. We shall not, how-
ever, pursue this further here.

Before giving the proof of Theorem 3.5, we need a simple lemma.

LEMMA 3.6. Let f :D → D be a conformal map with f (0) = 0. Define the
Stolz cone

Sr = {
1 − ρeiθ : 0 ≤ ρ ≤ r,−π/4 ≤ θ ≤ π/4

}
.

There is a universal constant c < ∞ such that

diamf (Sr) ≤ c diamf (σr),

where σr = [1 − r,1) is the line segment connecting 1 − r and 1.

PROOF. Let u = 1 − ρeiθ be an arbitrary point in Sr . By Koebe’s distortion
theorem, there is a universal constant c such that∣∣f (u) − f (1 − ρ)

∣∣≤ cρ
∣∣f ′(1 − ρ)

∣∣.
Hence, by Koebe’s estimate there is a universal constant c′ such that∣∣f (u) − f (1 − ρ)

∣∣≤ c′ dist
(
f (1 − ρ), ∂D

)
≤ c′ diamf (σr)

and this completes the proof. �
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PROOF OF THEOREM 3.5. Let t ∈ [0, T ] and write Wt = eiξt . Without loss
of generality, we may assume that t > 0 and that Wt = 1. We suppress the de-
pendence on t and write f for ft and D for Dt , etc. throughout the proof. Set
zr = f (1 − r) and �r = dist(zr , ∂D). By Proposition 3.3, there is an r0 depending
only on A and δ0 such that �r ≤ δ0 for all r ≤ r0. By taking r0 smaller if neces-
sary, depending only on T , we can guarantee that the assumptions of Lemma 3.1
are satisfied so that there will exist a universal ρ0 < ∞ and a crosscut C contained
in ∂B(zr , ρ0�r) that separates zr and γ (t) from 0 in D. Let σr = [1 − r,1]. We
claim that f (σr), which connects zr with γ (t) in D, satisfies

diamf (σr) ≤ cρ0A�r,(31)

where c is a universal constant. To prove this, note that since C separates
γ (t) and zr from 0, the hyperbolic geodesic f (σ1) ⊃ f (σr) which connects γ (t)

and 0 must intersect C. [Since γ is a Loewner curve, γ (t) is always on the bound-
ary of the simply connected domain Dt � 0.] Let �′′ be the curve obtained by
tracing f (σ1) from 0 to γ (t) until C is first hit. Let �′ = f (σ1) \ �′′. Then �′ is
a hyperbolic geodesic connecting a point on C with γ (t) in Dt and f (σr) ⊂ �′.
By the bound on the structure modulus, there is a curve � connecting γ (t) with C
in Dt and

diam� ≤ 2AdiamC ≤ 4ρ0A�r.

The Gehring–Hayman theorem (see, e.g., Chapter 4 of [20]) now implies that there
is a universal constant c such that

diamf (σr) ≤ diam�′ ≤ c(diam� + diamC)

and this gives (31).
Using Lemma 3.6, the remainder of the proof now proceeds by a standard

length–area type argument (see, e.g., Chapter 5 of [20]). Define

ϕ(r) =
∫ r

0

∣∣f ′(1 − r)
∣∣2r dr.

Then by Koebe’s distortion theorem, there is a universal constant c0 such that

r2∣∣f ′(1 − r)
∣∣2 ≤ c0

∫ r

r/2
r
∣∣f ′(1 − r)

∣∣2 dr ≤ c0ϕ(r).(32)

This theorem also implies that there is a constant c1 depending only on c0 such
that

ϕ(r) ≤ c1

∫ r

0

∫ π/4

−π/4

∣∣f ′(1 − reiθ )∣∣2r dr dθ = c1 areaf (Sr),

where Sr is the Stolz cone defined in the statement of Lemma 3.6. Now, by (31)
and Lemma 3.6 we have that

areaf (Sr) ≤ π2

4

(
diamf (Sr)

)2 ≤ c2�
2
r .
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Hence,

ϕ(r) ≤ c1 areaf (Sr) ≤ c3r
2∣∣f ′(1 − r)

∣∣2.
Consequently, since ϕ′(r) = r|f ′(1 − r)|2, we have for r0 > r and a constant c4
depending only on A

log
(

ϕ(r0)

ϕ(r)

)
=
∫ r0

r

ϕ′(r)
ϕ(r)

dr ≥ c−1
4 log

(
r0

r

)
.

Taking exponentials, using (32), gives for 0 < r ≤ r0

r2∣∣f ′(1 − r)
∣∣2 ≤ c5r

1/c4,

where c5 depends only on r0. Hence, if β = 1 − 1/(2c4) < 1 we see that

r
∣∣f ′(1 − r)

∣∣≤ c6r
1−β.

By Proposition 2.2, since the estimates were uniform in t , this implies Hölder
regularity with an exponent depending only on A and the exponent for W . �

4. Loop-erased random walk and SLE2. This section proves a convergence
rate result for loop-erased random walk using the setup detailed in the previous
sections.

4.1. Definitions. The radial Schramm–Loewner evolution, radial SLEκ , is de-
fined by taking W(t) = ei

√
κB(t) as driving term for the radial Loewner equation,

where B is standard Brownian motion. It is a fact that this Loewner chain is almost
surely generated by a curve—the SLEκ path. This is a random fractal curve which
is simple when 0 ≤ κ ≤ 4, has double points when 4 < κ and is space filling when
κ ≥ 8. See [21] for proofs of these results. In Appendix A, we discuss a derivative
estimate for radial SLEκ that we will state and use in this section when κ = 2. For
technical reasons, we need a stopping time σ for the radial SLE path γ̃ further
discussed in Appendix A. Fix a small constant ε > 0. We then define

σ = σ(ε, T ) = inf
{
t ≥ 0 :

∣∣gt (−1) − W(t)
∣∣≤ ε

}∧ T ,(33)

where gt = f −1
t is the forward Loewner SLE2 flow and W(t) is the driving term

for ft .

PROPOSITION 4.1. Let ε > 0 and T < ∞ be fixed and let (fs),0 ≤ s ≤ σ ,
be the stopped radial SLE2 Loewner chain with σ = σ(ε, T ) defined by (33).
For every β ∈ (2(

√
10 − 1)/9,1) and q < q(β), there exists a constant c =

c(β, q, ε, T ) < ∞ such for all d∗ ≤ 1

P

{
∀d ≤ d∗, sup

s∈[0,σ ]
d
∣∣f ′

s

(
(1 − d)W(s)

)∣∣≤ d1−β
}

≥ 1 − cdq∗ ,

where

q(β) = −1 + 2β + β2

4(1 + β)
.
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PROOF. See Appendix A. �

Let D � 0 be a simply connected domain and assume that the inner radius of D

with respect to 0 equals 1. We will assume, for simplicity, that D is a Jordan
domain with C1+α boundary, where α > 0. We shall consider a particular dis-
cretization of D. A grid-domain with respect to n−1

Z
2 is a simply connected do-

main whose boundary is a subset of the edge set of the graph n−1
Z

2. We define
Dn = Dn(D), the n−1

Z
2 grid-domain approximation of D, as the component of 0

of C minus those closed n−1
Z

2 lattice faces that intersect ∂D. Then clearly Dn

is a grid-domain contained in D. Let ψn :Dn → D be the normalized conformal
map.

Suppose S = S(j), j = 0,1, . . . ,m, is a finite nearest-neighbor walk on (the
vertices of n−1

Z
2 contained in) Dn. We define the loop-erasure L{S} ⊂ S in the

following way. If S is already self-avoiding, set L{S} = S. Otherwise, let s0 =
max{j :S(j) = S(0)}, and for i > 0, let si = max{j :S(j) = S(si−1 + 1)}. If we let
n = min{i : si = m}, then L{S} = {S(s0), S(s1), . . . , S(sn)}. Notice that L{S}(0) =
S(0) and L{S}(sn) = S(m), that is, the loop-erased walk has the same end points as
the original walk S. Loop-erased random walk (LERW) from 0 to ∂Dn in Dn is the
random self-avoiding walk γn obtained by taking S to be a simple random walk on
n−1

Z
2 started from 0 and stopped when reaching ∂Dn, and then setting γn = L{S}.

For a nearest-neighbor walk S, let SR be the time-reversed walk. It is known that
LERW has the following symmetry with respect to time-reversal: the distribution
of (L{S})R is equal to that of L{SR}. Sometimes it is more convenient to consider
L{SR}, and when we do we will call it the time-reversed LERW (or time-reversal
of LERW) and usually assume that the path is traced from the boundary toward 0;
we always add edges in the obvious way to discrete walks to make them curves.

4.2. Convergence rate for the LERW path. Lawler, Schramm and Werner
proved in [13] that, as n → ∞, the image of the time-reversed LERW path in D,
ψn(L{SR}), traced from ∂D toward 0, converges weakly with respect to a natu-
ral metric on curves modulo increasing reparameterization toward the radial SLE2
path started uniformly on ∂D. (See Theorem 3.9 of [13] for a precise statement.)
The goal of this section is to prove Theorem 4.3, which can be viewed as a quan-
titative version of Theorem 3.9 of [13].

Let D be a simply connected C1+α domain with grid-domain approximation
Dn = Dn(D). Let γn be the time-reversal of LERW on n−1

Z
2 from 0 to ∂Dn and

let γ̃n = ψn(γn) be its image in D traced from the boundary and parameterized by
capacity. (Since γn is a simple curve that intersects ∂Dn at only one point it follows
that γ̃n is a D-Loewner curve for each n.) Let Wn(t) be the Loewner driving term
for γ̃n. Fix s ∈ (0,1/24), and define

εn = n−s .
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THEOREM 4.2 ([4]). For every T > 0, there exists n0 = n0(T , s) < ∞ such
that the following holds. For each n ≥ n0, there is a coupling of γn with Brownian
motion B(t), t ≥ 0, where eiB(0) is uniformly distributed on the unit circle, with
the property that

P

{
sup

t∈[0,T ]
∣∣Wn(t) − W(t)

∣∣> εn

}
< εn,(34)

where W(t) = eiB(2t).

REMARK. The coupling(s) of Wn = eiθn and W = eiB in Theorem 4.2 are via
Shorokhod embedding of θn into B .

We can now state a precise version of the main result of the paper.

THEOREM 4.3. There exists n1 = n1(ε, T , s) < ∞ such that if n ≥ n1, then in
the coupling of Theorem 4.2, if γ̃ denotes the radial SLE2 path in D driven by W ,

P

{
sup

t∈[0,σ ]
∣∣γ̃n(t) − γ̃ (t)

∣∣> εm
n

}
< εm

n ,(35)

where both curves are parameterized by capacity,

m = 1/41

and σ = σ(ε, T ) is the stopping time defined by (33).

REMARK. The proof of Theorem 4.3 (with minor modifications) would also
work under the weaker assumption that D is a quasidisk. (The class of quasidisks
includes, e.g., the von Koch snowflake.) In this case, the rate would depend on
the constant in the Ahlfors three-point condition satisfied by ∂D; see Appendix B.
We may also note that the conclusion (and proof) of Theorem 4.3 holds true in
any coupling like the one of Theorem 4.2, with the proviso that εn decays slower
than n−1/2.

REMARK. By Lemma 4.7 below, the preimages of the curves (parameterized
by capacity) in Dn satisfy a similar estimate as in (35), namely,

P

{
sup

t∈[0,σ ]
∣∣γn(t) − ψ−1

n

(
γ̃ (t)

)∣∣> εm
n

}
< εm

n , m = 1/41.

In order to apply the work from previous sections, we need to verify that the
assumptions of these results hold with large probability. In Section 4.3, we will
first estimate the probability of the existence of a certain power-law bound for
the tip structure modulus for the LERW path in Dn. We show in Appendix B
that if ∂D is sufficiently smooth (C1+α), then the image of the LERW path in D

enjoys the same tip structure modulus up to constants. This uses a convergence rate
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result for grid-domain approximations of quasidisks that we derive from a result
of Warshawski’s. In Appendix A, we prove the needed estimate on the derivative
of the SLE2 conformal maps. These results are combined to prove Theorem 4.3 in
Section 4.5.

4.3. Tip structure modulus for LERW in a grid domain. An important tool to
get quantitative estimates for LERW is the Beurling estimate for simple random
walk; see, for example, [11]. There are many ways to formulate this result and we
state only one version here.

LEMMA 4.4. There exists a constant c < ∞ such that the following holds. Let
A ⊂ Z

2 be an infinite connected set. Let S be simple random walk on Z
2 started

from z and stopped at the time τA at which S hits A. Then for r > 1

P
{∣∣S(τA) − z

∣∣≥ r dist(z,A)
}≤ cr−1/2.

We can now formulate the main estimate of this section.

PROPOSITION 4.5. Let Dn be a grid domain with respect to n−1
Z

2 and as-
sume that 1 ≤ inrad(Dn) ≤ 2 and that diamDn ≤ R < ∞, where R is given. Let
γn be the time-reversal of loop-erased random walk from 0 to ∂Dn. Let η

(n)
tip (δ)

be the tip structure modulus for γn (traced from ∂Dn) stopped when first reaching
distance ε > 0 from 0. Let r ∈ (0,1/11). There exists a universal constant c0 > 0
and c = c(R, r, ε) < ∞ such that if n is sufficiently large and δ > c0/n, then

P
{
η

(n)
tip (δ) ≤ δr}≥ 1 − cδ1/5−11r/5| log δ|.(36)

REMARK. When we apply Proposition 4.5, we will choose δ = δ(n) ∈ ω(n−1)

(in the sense of Landau notation) so that δ > c0/n is automatically satisfied for n

sufficiently large.

REMARK. The Beurling estimate implies that there is a constant c < ∞ such
that

P{diamγn > R} ≤ cR−1/2

for large R. This means that one can formulate and prove Proposition 4.5 with an
estimate independent of the diameter of Dn.

4.4. Proof of Proposition 4.5. The result was formulated for the time-reversal
of LERW but in the proof we shall consider the LERW generated by erasing the
loops of simple random walk from 0 to ∂Dn (without the time-reversal). By time-
reversal symmetry, this is sufficient.



150 F. JOHANSSON VIKLUND

FIG. 3. A 6-crossing and crossings close to ∂D.

The strategy of the proof is based on that of the proof of Lemma 3.4 in [22],
but see also the related Lemma 3.12 of [13]. See Figure 3 for a sketch of dif-
ferent crossing configurations that may occur. Let w be a fixed point in Dn. Let
A = A(w; δ, η) = {z : δ < |z − w| < η} be the (δ, η)-annulus about w and assume
(for now) that δ > 10/n and we think of η as much larger than δ but still small com-
pared to inradD; eventually, we want to choose η = δr for some r ∈ (0,1). Let γ

be a curve in Dn. We say that γ has a k-crossing of the annulus A if the number of
components of γ ∩A that connect the two boundary components of A is at least k.
Recall that η(δ) is a bound for the tip structure modulus for γ in Dn if and only if γ

has no nested (δ, η(δ))-bottleneck in Dn. Now consider γn, the LERW path in Dn

traced from ∂Dn toward 0 and the event that there is a nested (δ,2η)-bottleneck
in γn stopped when reaching ∂B(0, ε). We claim that this event is contained in the
union of the following two events:

E5 = {There is a w ∈ Dn with |w| > ε such that γn has a 5-crossing of a
(δ, η)-annulus about w}.

EB = {The random walk generating γn travels more than distance η before hitting
∂Dn, after the first time it has come within distance δ from ∂Dn}.

Indeed, suppose that a nested (δ,2η)-bottleneck occurs in γn stopped when reach-
ing ∂B(0, ε). Then if we choose some parameterization of γn traced from ∂Dn

to 0, by definition there exist t0 and a crosscut C of D′ = Dn \ γ [0, t0] such that
diamC ≤ δ and diamγC ≥ 2η. Consider first the case when C ∩ ∂Dn �= ∅. Then
since γn connects ∂Dn with 0 and C separates a piece of γn from 0 we must have
that γn intersects C. Consequently, the random walk that generates γn intersects C,
and if C is to separate a piece of γn of diameter at least 2η the event EB must occur.

Now suppose that C ∩ ∂Dn = ∅. We will show that this implies that E5 must
occur. Notice that D′ \ C consists of two simply connected components, one of
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which has no part of its boundary in common with ∂Dn. Call this component O.
There are two cases: first, assume that 0 /∈ O. Then γC ⊂ O and so diamO ≥ 2η.
By considering ∂O \ (C ∪ γC) (giving two crossings) and γC traced from C to
γn(t0) and then continued along γn to 0 (giving three crossings) we see that γn

indeed contains a 5-crossing of (δ, η)-annulus. On the other hand, if 0 ∈ O we
have that B(0, ε) ⊂ O so diamO ≥ 2η if η < ε/2. In this case, γC ⊂ D′ \ O and
again considering ∂O \ (C ∪γC) and γC traced from C to γn(t0) and then continued
along γn to 0, we see that γn contains a 5-crossing of a (δ, η)-annulus.

We will estimate the probabilities of the two events E5 and EB , starting with the
last. In this case, the Beurling estimate immediately implies that there is a constant
c < ∞ such that

P(EB) ≤ c

(
δ

η

)1/2

.(37)

We proceed to bound P(E5). Fix a point w ∈ Dn with |w| > ε. Set

d0 = dist(w, ∂Dn) > 0

and define

B1 = B(w,η/4), B2 = B(w,η/2).

For a curve γ ⊂ Dn, we let Q3(γ ;w,δ, η) denote the event that γ has a 3-crossing
of a (δ, η)-annulus whose smaller boundary component is contained in B1. Simi-
larly, let Q5(γ ;w,δ, η) denote the event that γ has a 5-crossing of a (δ, η)-annulus
whose smaller boundary component is contained in B1. Clearly, the latter event is
contained in the former. We will first estimate the probability of

Q5 := Q5(γn;w,δ, η).

Let S(t) = Sn(t), t = 0,1, . . . , τ , be the simple random walk generating γn; it is
started from 0 and stopped at

τ = min
{
t ≥ 0 :S(t) ∈ ∂Dn

}
,

when ∂Dn is hit. Define

s1 = min
{
t ≥ 0 :S(t) ∈ B1

}
, t1 = min

{
t > s1 :S(t) /∈ B2

}
and recursively for j = 2,3, . . . ,

sj = min
{
t > tj−1 :S(t) ∈ B1

}
, tj = min

{
t > sj :S(t) /∈ B2

}
.

Note that we have s1 = 0 if |w| ≤ η/4 and s1 > 0 otherwise. We will write

Q5
j := Q5(L{S[0, tj ]};w,δ, η

)
, Q3

j := Q3(L{S[0, tj ]};w,δ, η
)
.
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Clearly, Q5
j ⊂Q3

j , but it does not necessarily hold that Q5
j+1 ⊂Q5

j or Q3
j+1 ⊂ Q3

j
because part of the curve forming a crossing may be erased. Note that for m ≥ 1

P
(
Q5)≤ P{τ > tm+1} + P

(
m⋃

j=1

Q5
j

)
.

We estimate P{τ > tm+1} in Lemma 4.6 below.
We have

P

(
m⋃

j=1

Q5
j

)
≤

m∑
j=1

P
(
Q5

j ,¬Q5
j−1

)
.

To get the last estimate, we split the event on the left-hand side according to the
first time a 5-crossing has occurred; here and in the sequel, for an event A the
symbol “¬A” means the complement of A. To bound P(Q5

j ,¬Q5
j−1), let us first

discuss the analogous quantity for a 3-crossing. In the proof of Lemma 3.4 of [22]
[on p. 241, after equation (3.4)], it was essentially shown that there is a (nonran-
dom) constant c < ∞ such that

P
(
Q3

j |¬Q3
j−1, S[0, tj−1])≤ c(j − 1)

(
δ

η

)1/2

.(38)

The exponent in the right-hand side of (38) was not specified in [22] so let us sketch
the proof and explain how one gets the exponent 1/2. Let {Ck}k be the components
of L{S[0, sj ]}∩B2 intersecting B1 but not containing S(sj ). By construction, there
are at most j − 1 such components. Conditionally, on S[0, tj−1], if L{S[0, tj ]} is
to contain a 3-crossing which was not there in L{S[0, tj−1]}, then S[sj , tj ] has to
come within distance δ of Ck ∩B1 for some k and then exit B2 without hitting that
same Ck . (It may hit other components.) For each component Ck , we can use the
strong Markov property and the Beurling estimate to see that this conditional prob-
ability of exiting B2 without hitting Ck is bounded above by c(δ/η)1/2. Summing
over the j − 1 components gives (38).

From (38),

P
(
Q3

j |¬Q3
j−1

)≤ c(j − 1)

(
δ

η

)1/2

.(39)

And this implies that

P
(
Q3

j

)≤ j∑
k=1

P
(
Q3

k,¬Q3
k−1

)≤ cj2
(

δ

η

)1/2

.(40)

We now turn to P(Q5
j ,¬Q5

j−1). Since (Q5
j ∩ ¬Q5

j−1) ⊂ Q3
j−1, (40) implies

P
(
Q5

j ,¬Q5
j−1

)= P
(
Q5

j ,¬Q5
j−1|Q3

j−1
)
P
(
Q3

j−1
)

≤ cP
(
Q5

j ,¬Q5
j−1|Q3

j−1
)
j2
(

δ

η

)1/2

.
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We continue to write

P
(
Q5

j ,¬Q5
j−1|Q3

j−1
)≤ P

(
Q5

j |¬Q5
j−1,Q3

j−1
)
.

We can estimate the last expression by observing that

P
(
Q5

j |¬Q5
j−1,Q3

j−1, S[0, tj−1])≤ c(j − 1)

(
δ

η

)1/2

.

Indeed, this estimate is proved in exactly the same way as (39) using the Beurling
estimate.

Combining our bounds, we get

P

(
m⋃

j=1

Q5
j

)
≤ cm4 δ

η
.(41)

We now take ν > 0 and let m = �δ−ν�. We then use Lemma 4.6 (here we write
the estimate for d0 > η/4; in the case d0 ≤ η/4 we use the second bound of
Lemma 4.6) to get

P
(
Q5)≤ (

1 − c3

| log(16d0/η)|
)�δ−ν�

+ c
δ1−4ν

η
(42)

≤ cδν
∣∣log(16d0/η)

∣∣+ c
δ1−4ν

η
.

This bound is for a fixed w. To conclude, note that there is a universal c < ∞ such
that we can (deterministically) cover Dn using at most cR2η−2 overlapping disks
B(wk, η/4) in such a way for every w such that γn has a 5-crossing of A(w; δ, η),
the smaller boundary component of A(w; δ, η) is contained in B(wk, η/4) for
some k. Consequently, for c = c(R) < ∞,

P(E5) ≤ cη−2δν
∣∣log(16d0/η)

∣∣+ cη−3δ1−4ν.(43)

For any r ∈ (0,1/11), if η = δr , we can take ν = (1 − r)/5 in (43) which makes
both terms in the bound of the same (“polynomial”) order so that the right-hand
side of (43) decays like δ1/5−11r/5 with a logarithmic correction. Since this term is
always larger than the one coming from EB , this completes the proof of Proposi-
tion 4.5, assuming Lemma 4.6.

LEMMA 4.6. There exist constants 0 < c1, c2 < 1 such that

P{τ > tm+1} ≤
⎧⎪⎨⎪⎩
(

1 − c1

| log(16d0η−1)|
)m

, if d0 > η/4;

(1 − c2)
m, if d0 ≤ η/4.
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PROOF. We first assume that d0 > η/4. Using, for example, Proposition 6.4.1
of [11], we see that the probability that a simple random walk started just outside
of B2 exits B(z0,8d0) before hitting B1 is bounded below by

| log 2| − O((ηn)−1)

| log(16d0η−1)| ≥ | log 2|
2| log(16d0η−1)|

if ηn > c1, where c1 < ∞ is a universal constant. (This uses also that d0 > η/4.)
This estimate is a discrete version of the expression for the harmonic measure
of one of the boundary components in an annulus. Moreover, there is a universal
constant c > 0 such that the probability that simple random walk from (a vertex
adjacent to) ∂B(z0,8d0) separates B(z0, d0) from ∞ before hitting B(z0, d0) is
bounded below by c. (Recall that our assumptions imply that d0 > c′/n, where
we can assume that c′ is large.) Consequently, by the strong Markov property the
probability that simple random walk started from ∂B2 exits Dn before hitting B1 is
bounded below by c1/| log(16d0η

−1)|. By iterating this argument using the strong
Markov property,

P{τ > tm+1} ≤
(

1 − c1

| log(16d0η−1)|
)m

.(44)

When d0 ≤ η/4 the Beurling estimate and the Markov property directly show that
the right-hand side of (44) can be replaced by (1−c2)

m, where c2 > 0 is a universal
constant. �

If the boundary of the domain D that is being approximated is sufficiently reg-
ular, then the structure modulus on a sufficiently large mesoscopic scale for the
image curve in D is essentially the same as the one in Dn. The next lemma, proved
in Appendix B, makes this precise.

LEMMA 4.7. Suppose D � 0 is a simply connected domain Jordan domain
with C1+α boundary, where α > 0. Let Dn be the n−1

Z
2 grid-domain approxima-

tion of D and let γn be a Loewner curve in Dn connecting ∂Dn with 0. There is
a constant c depending only on α and the diameter of D such that the following
holds. Set 0 < r < 1/2 and dn = n−r and let η

(n)
tip (δ;Dn) be the tip structure mod-

ulus for γn in Dn. Then for all n sufficiently large (independently of γn) the tip
structure modulus η

(n)
tip (δ;D) for ψn(γn) in D satisfies

η
(n)
tip

(
c−1dn;D)≤ cη

(n)
tip (dn;Dn).

4.5. Proof of Theorem 4.3. We write γ for the radial SLE2 path in D corre-
sponding to the Brownian motion in (34). We thus have a coupling of the radial
SLE2 path and the image of the LERW path γ̃n and we will estimate the distance
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between these curves in this coupling. Take s ∈ (0,1/24) and n > n0 where n0 is
as in Theorem 4.2; fix ρ > 1 and for p ∈ (0,1/ρ), let

εn = n−s, dn = (εn)
p.

For each n ≥ n0, we shall define three events each of which occurs with large
probability in our coupling. On the intersection of these events, we can apply our
estimates from Sections 2 and 3.

(a) Let An = An(s) be the event that the estimate

sup
t∈[0,T ]

∣∣Wn(t) − W(t)
∣∣≤ εn

holds. By Theorem 4.2, we know that there exists n0 < ∞ such that if n ≥ n0 then

P(An) ≥ 1 − εn.

(b) For β ∈ (2(
√

10 − 1)/9,1), let Bn = Bn(s, r, β, ε, T , cB) be the event the
radial SLE2 Loewner chain (ft ) driven by W(t) satisfies the estimate

sup
t∈[0,σ ]

d
∣∣f ′(t, (1 − d)W(t)

)∣∣≤ cBd1−β ∀d ≤ dn.

(Recall that ε, T were used in the definition of the stopping-time σ ≤ T .) Then by
Proposition 4.1 there exist c′

B < ∞, independent of n, and n1 < ∞ such that if
n ≥ n1 then

P(Bn) ≥ 1 − c′
Bdq

n ,

where

q < q2(β) = −1 + 2β + β2

4(1 + β)
.

(c) For r ∈ (0,1/11), let Cn = Cn(s, r,p, cC,α,diamD) be the event that the
tip structure modulus for γ̃n(t), t ∈ [0, T ], in D, η

(n)
tip , satisfies

η
(n)
tip (dn) ≤ cCdr

n.

We know from Proposition 4.5 and Lemma 4.7 that there exist cC, c′
C < ∞, inde-

pendent of n, and n2 < ∞ such that if n ≥ n2 then

P(Cn) ≥ 1 − c′
Cd1/5−11r/5

n | logdn|.
Consequently, there exist cB, cC < ∞ and c < ∞, all independent of n (but de-
pending on s, r,p, ε, T ,β,α,diamD), such that for all n sufficiently large,

P(An ∩Bn ∩ Cn) ≥ 1 − c
(
εn + dq

n + d1/5−11r/5
n | logdn|)(45)
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and on the event An ∩ Bn ∩ Cn we can apply Lemma 3.4 with constants c = cC ,
c′ = cB independent of n to see that there exists c′′ independent of n (but depending
on the above parameters) such that for all n sufficiently large,

sup
t∈[0,σ ]

∣∣γ̃n(t) − γ̃ (t)
∣∣≤ c′′(dr(1−β)

n + ε(1−ρp)r
n

)
.(46)

We now wish to optimize over the parameters in the exponents. Since dn = ε
p
n ,

we see that d
r(1−β)
n dominates in (46) when p ∈ (0,1/(1 + ρ − β)] and ε

r(1−ρp)
n

whenever p ∈ [1/(1 + ρ − β),1]. Suppose p ∈ (0,1/(1 + ρ − β)].
Set

μ(β, r) = min
{
r(1 − β),−1 + 2β + β2

4(1 + β)
,

1

5
− 11r

5

}
.

The optimal rate is given by optimizing μ over β, r and then choosing p very close
to 1/(1 + ρ − β). (No improvement is obtained by considering p ∈ [1/(1 + ρ −
β),1].) Let β∗ ∈ (2(

√
10 − 1)/9,1) be a solution to

45β3 − 128β2 − 84β + 68 = 0.

(One can check that β∗ = 0.497 . . . .) Then if r∗ = 1/(16 − β∗) ∈ (0,1/11)

μ(r∗, β∗) = max
{
μ(β, r) :

2(
√

10 − 1)

9
< β < 1,0 < r <

1

11

}
= 0.037 . . . .

Consequently, for every

m < m∗ = μ(r∗, β∗)
2 − β∗

,

we obtain bounds in (45) and (46) of order εm
n for all n sufficiently large. Since

1/41 < m∗ = 0.024 . . . , this completes the proof.

APPENDIX A: DERIVATIVE ESTIMATE FOR RADIAL SLE

This section proves a derivative estimate for both chordal and radial SLE. The
radial case was needed in Section 4 in the case κ = 2. The chordal case is a direct
consequence of an estimate from [6], but the radial case requires a little bit of work.
In this case, our goal will be to estimate explicitly in terms of d∗ and β the probabil-
ity of the event that when (f (t, z)) is the radial SLEκ Loewner chain, the estimate
d|f ′(t, (1 − d)W(t))| ≤ cd1−β for all d ≤ d∗ holds uniformly in t ∈ [0, T ]. This
will follow from a moment estimate for the chordal reverse flow in [6] after chang-
ing “coordinates” from radial to chordal SLE. See also Section 7 of [4] where a
similar but nonequivalent situation is dealt with. We will use ideas from [24].



CONVERGENCE RATES FOR LOEWNER CURVES 157

A.1. Change of coordinates. Let (fs,Ws) be a radial Loewner pair generated
by the curve γ (s) with Ws continuous. Recall that fs :D → D \ Ks = Ds and that
Ks is the hull generated by γ [0, s]. Let gs = f −1

s and set zs = gs(−1)Ws . We
will need to keep track of the “disconnection time” σ ′ when Ks first disconnects
−1 from 0 in D, in other words, the first time that zs hits 1. Fix ε > 0 small and
T < ∞, and define

σ = σ(ε, T ) = inf
{
s ≥ 0 : |1 − zs | ≤ ε

}∧ T .(47)

Clearly, σ < σ ′.

LEMMA A.1. There exists a constant c = c(ε, T ) > 0 such that

inf
s∈[0,T ]

∣∣g′
s∧σ (−1)

∣∣≥ c.

PROOF. The Loewner equation implies that with zs as above,∣∣g′
s(−1)

∣∣= exp
{∫ s

0
Re

2

(1 − zs)2 − 1ds

}
.

This shows that |g′
s(−1)| is strictly decreasing in s and that |g′

T ∧σ (−1)| ≥ c =
c(ε, T ) > 0. �

REMARK. Note that if gs is the radial SLEκ forward flow, and if

θs := −i log zs = −i loggs(−1) − √
κBs, θ0 = π,

then by Itô’s formula,

dθs = cot(θs/2) ds − √
κ dBs.

If κ < 4, then it follows from [10], Lemma 1.27, that almost surely θs does not hit
{0,2π} in finite time. Hence, for each T < ∞, if κ < 4, then almost surely,

lim
ε→0

σ(ε, T ) = T .

Consider now the Mobius transformation

ϕ :H→D, ϕ(z) = i − z

i + z
.

Then ϕ−1 ◦ γ is a curve in H (for sufficiently small s) and for s ≥ 0 we define

t (s) := hcap
(
ϕ−1(γ [0, s]))/2.

For each s ∈ [0, σ ], let Ft(s) :H → Ht(s) := ϕ−1(Ds) be the conformal mapping
satisfying the hydrodynamical normalization Ft(s)(z) = z − 2t (s)/z + o(1/|z|) at
infinity. It is known (see, e.g., [24]) that t (s) is a strictly increasing, continuous
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function of s up to the disconnection time and we will write s(t) for the inverse
of t (s). One can write (see [24] and [4])

fs = ϕ ◦ Ft(s) ◦ �s.(48)

Here,

�s(z) :D→H, �s(z) = zμt(s) − λsμt(s)

z − λs

,(49)

where the reader may verify that if

Gt(s)(z) = F−1
t (s)(z), gs(z) = f −1

s (z),

then

μt(s) = Gt(s)(i), λs = gs(−1).

In fact, by expanding G at infinity via (48),

Imμt(s) = −g′
s(−1)

gs(−1)
= ∣∣g′

s(−1)
∣∣.(50)

This uses that

Re
(

1 − g′′
s (−1)

g′
s(−1)

)
= −g′

s(−1)

gs(−1)
,

which holds because the left-hand side equals ∂θ [arg ∂θgs(e
iθ )] at θ = π , and gs

maps the circle to the circle locally at −1 so that the change of the tangent is equal
to the change of the argument which is what is represented by the right-hand side.
By Lemma A.1 and (50) there exists c1 = c1(ε, T ) > 0 such that

Imμt(s) ≥ c1, s ∈ [0, σ ].(51)

Set

τ := t (σ )

and consider the family (Ft ), t ∈ [0, τ ], with the half-plane capacity parameter-
ization. It satisfies the chordal Loewner PDE in t and we let Ut = �s(t)(Ws(t))

be the corresponding chordal driving term. The estimate (51) implies that there is
T ′ = T ′(ε, T ) < ∞ such that τ ≤ T ′. Indeed, in Theorem 3 of [24] it is shown
that s′(t) = 4(Imμs(t))

2/|μs(t) − Ut |4 which is bounded away from 0 on [0, τ ].
Using (51) and that |Ws − λs | ≥ ε for s ∈ [0, σ ], we see that there exist constants
0 < c < ∞ and d0 > 0 depending only on ε and T such that for all d ≤ d0, uni-
formly in s ∈ [0, σ ],∣∣Re

(
�s

(
(1 − d)Ws

))− Ut(s)

∣∣≤ cd, c−1 d ≤ Im
(
�s

(
(1 − d)Ws

))≤ cd.

In other words, the hyperbolic distance between �s((1 − d)Ws) and Ut(s) + id is
bounded by a constant depending only on ε and T . Therefore, we can use Koebe’s
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distortion theorem to see that there exist c, c′ < ∞ depending only on ε, T such
that for all s ∈ [0, σ ]∣∣f ′

s

(
(1 − d)Ws

)∣∣≤ c
∣∣F ′

t (s)

(
�s

(
(1 − d)Ws

))∣∣≤ c′∣∣F ′
t (s)(Ut(s) + id)

∣∣.
We have proved the following result.

PROPOSITION A.2. Let T < ∞ and ε > 0 be given. Suppose that (fs,Ws) is
a radial Loewner pair generated by the curve γ (s). Define σ = σ(ε, T ) by (47).
Let (Ft ,Ut ) be the chordal Loewner pair generated by the curve s �→ ϕ−1(γ (s)),
s ∈ [0, σ ] reparameterized by half-plane capacity and let τ = t (σ ). There exists
c = c(ε, T ) < ∞ and d0 = d0(ε, T ) > 0 such that for all d ≤ d0,

sup
s∈[0,σ ]

∣∣f ′
s

(
(1 − d)Ws

)∣∣≤ c sup
t∈[0,τ ]

∣∣F ′
t (Ut + id)

∣∣.
Now assume that (fs) is the radial SLEκ Loewner chain. Then σ is a stopping

time for (fs) and τ is a stopping time for (Ft ). The law of the chordal driving term
Ut stopped at τ is absolutely continuous with respect to the law of standard linear
Brownian motion with speed κ , as shown in [24]. Moreover, by (51) the Girsanov
density is uniformly bounded above by a constant depending only on κ, ε and T .
Indeed, it is a product of powers of |G′

t (i)|, Imμt , and |μt − Ut |, all which are
bounded away from 0 and ∞ when t ≤ τ . Since (Ft ) is absolutely continuous
with respect to a chordal SLEκ Loewner chain and since the Girsanov density is
uniformly bounded (for fixed κ, ε, T ), using Proposition A.2 we can estimate the
behavior of sups∈[0,σ ] |f ′

s ((1 − d)Ws)| using standard chordal SLE.

A.2. Derivative estimate for chordal SLE. We now derive the needed esti-
mate on the growth of the derivative in chordal coordinates. The estimate is essen-
tially a direct consequence of work in [6] and we will describe the modifications
here. Let (Ft ), t ≥ 0, be the standard chordal SLE Loewner chain mapping H onto
the unbounded connected component of H \ γ [0, t]. We write F̂t (z) = Ft(z + Ut),
where U is the chordal driving term for (Ft ). Recall that the chordal reverse SLEκ

flow is the family of conformal mappings solving

ḣt = − 2

ht − √
κBt

, h0(z) = z,

where B is standard Brownian motion. For fixed t0 > 0, |h′
t0
(z)| is equal to |F̂ ′

t0
(z)|

in distribution. Hence, (first) moment estimates for |F̂ ′
t0
| are reduced to correspond-

ing estimates for |h′
t0
| and these are often more easily obtained. Note that scaling

implies that for fixed y > 0, |h′
t (iy)| d= |h′

ty−2(i)|. Define

ζ(λ) = λ +
√

(4 + κ)2 − 8λκ − (4 + κ)

4
.
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We will assume that

λ < λc = 1 + 2

κ
+ 3κ

32
.

In this range, we quote the following estimate from [6]. See also [7] and the refer-
ences therein.

LEMMA A.3. Let ht be the chordal reverse SLEκ flow, κ > 0. There exists a
constant c < ∞ such that for λ < λc.

E
[∣∣h′

t (i)
∣∣λ]≤ ct−ζ(λ)/2, t ≥ 1.(52)

This result now implies the needed estimate which is a version of Proposi-
tion 4.2 of [6] with a decay rate; we will sketch the proof and refer the reader
to [6] for more details. Let κ > 0 and define the function

ρ(β) = β + 2(1 + β)

κ
+ β2κ

8(1 + β)

and

q(β) = min
{
λcβ,ρ(β) − 2

}
, β+ < β < 1,

where

β+ = max
{

0,
4(κ

√
8 + κ − (4 − κ))

(4 + κ)2

}
.

Note that q(β) > 0 for β in the above range.

PROPOSITION A.4. Let T < ∞ be fixed and let (Ft ) be the chordal SLEκ

Loewner chain, κ ∈ (0,8). Let β ∈ (β+,1) and q < q(β). There exists a constant
0 < c < ∞ depending only on T , κ, q such that for every y∗ < 1

P

{
∀y ≤ y∗, sup

t∈[0,T ]
y
∣∣F̂ ′

t (iy)
∣∣≤ cy1−β

}
≥ 1 − cyq∗ .

PROOF. (Sketch.) By the distortion theorem, scaling and the fact that Brow-
nian motion is almost surely weakly Hölder-(1/2), it is enough (see [6]) to show
that for β+ < β < 1 and q < q(β)

∞∑
n=N∗

22n∑
j=1

P
(∣∣F̂ ′

j2−2n

(
i2−n)∣∣> 2βn)≤ c2−N∗q,
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where N∗ = �logy−1∗ �. We have for 0 < λ < λc using scaling, Chebyshev’s in-
equality and Lemma A.3,

∞∑
n=N∗

22n∑
j=1

P
(∣∣F̂ ′

j2−2n

(
i2−n)∣∣> 2βn)

≤
∞∑

n=N∗

22n∑
j=1

2−nλβ
E
[∣∣F̂ ′

j2−2n

(
i2−n)∣∣λ]≤ c

∞∑
n=N∗

22n∑
j=1

2−nλβ
E
[∣∣h′

j (i)
∣∣λ]

≤ c

∞∑
n=N∗

22n∑
j=1

2−nλβj−ζ/2 ≤ c

∞∑
n=N∗

22n∑
j=1

2−nλβ(1 + 2n(2−ζ ))
≤ c

(
2−N∗λβ + 2−N∗(λβ+ζ−2)).

Recall that λ ∈ (0, λc). Note that ζ − 2 < 0 if and only if κ > 1, so for these κ

the smaller exponent is λβ + ζ − 2. In this range, we find q(β) by maximizing
over 0 < λ < λc for β fixed so that q(β) = maxλ λβ + ζ(λ) − 2. The lower bound
β+ is the smallest β > 0 such that β > β+ implies q(β) > 0. When κ ≤ 1, λβ is
the smaller exponent and we must restrict attention to β > 0. We pick the largest
λ = λc. �

From this and the work in the previous subsection, we immediately obtain the
following proposition. Recall that the stopping time σ was defined in (47).

PROPOSITION A.5. Let κ ∈ (0,8). Let ε > 0 be fixed and let (fs),0 ≤ s ≤ σ ,
be the radial SLEκ Loewner chain stopped at σ as defined by (47). For every
β ∈ (β+,1) and q < q(β), there exists a constant c = c(β, κ, q, ε, T ) < ∞ such
that for d∗ < 1,

P

{
∀d ≤ d∗, sup

s∈[0,σ ]
d
∣∣f ′

s

(
(1 − d)Ws

)∣∣≤ cd1−β
}

≥ 1 − cdq∗ .

We note that when κ = 2

q(β) = −1 + 2β + β2

4(1 + β)
, β+ = 2(

√
10 − 1)

9
.

APPENDIX B: MAPPING TO D

When mapping conformally a curve into a reference domain, bounds on the tip
structure modulus for the curve are not automatically preserved. In this section,
we will consider a general case without reference to a specific discrete model. It
seems that this general setting requires information about boundary regularity of
the approximated domain (as opposed to information about the behavior of the
discrete curve). In particular, we will need uniform control of the distortion of
annuli on the scales of the structure modulus.
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B.1. Grid domains. Recall the definition of a grid domain that was given in
Section 4. Let D � 0 be simply connected, and assume that the inner radius with
respect to 0 equals 1. Let Dn = Dn(D) be the n−1

Z
2 grid-domain approximation

of D. Notice that every point on ∂Dn is within distance
√

2/n of a point on ∂D,
so that the inner Hausdorff distance between ∂Dn and ∂D is at most

√
2/n. Let

ψ :D → D be the conformal map normalized by ψ(0) = 0 and ψ ′(0) > 0. Simi-
larly, for n = 1,2, . . . , let ψn :Dn →D be conformal maps with the same normal-
ization. The sequence of domains Dn converge to D in the Carathéodory sense,
and so the ψn converge to ψ uniformly on compacts. Our goal will be to find a
convergence rate for

sup
z∈Dn

∣∣ψn(z) − ψ(z)
∣∣.

For this to be achievable, we need some information about the regularity of the
boundary of D. We will here consider the class of quasidisks, although it will be
clear that similar methods can be used to handle other classes of domains (e.g.,
John domains) where Euclidean geometric estimates on the behavior of the con-
formal mapping on the boundary are available.

B.2. Discrete approximation of a quasidisk. A quasicircle is the image of
the unit circle under a quasiconformal mapping. A quasidisk is a (bounded) do-
main bounded by a quasicircle. See [20] for definitions and an overview from a
conformal mapping point of view. A quasicircle is not necessarily rectifiable as
the example of the von Koch snowflake shows.

We find it convenient to use an equivalent but more geometric definition, namely
Ahlfors’ three-point condition: the closed Jordan curve ∂D is a quasicircle if and
only if there exists a constant A < ∞ such that for any two points x, y ∈ ∂D it
holds that

diamJ (x, y) ≤ A|x − y|,(53)

where J (x, y) ⊂ ∂D is the arc of smaller diameter connecting x with y. One can
consider the smallest such A as a measure of regularity. This regularity implies
some uniform regularity for the grid-domain approximation Dn and this allows us
to estimate the convergence rate of ψn using a result from [26]. See also Section 5
of [16] where similar questions are discussed.

LEMMA B.1. Let D be a quasidisk satisfying (53) and let Dn be the n−1
Z

2

grid-domain approximation of D. Let ψ,ψn be the normalized conformal maps
from D and Dn, respectively, onto D. Then there exists a constant c < ∞ depend-
ing only on A and the diameter of D such that

sup
z∈Dn

∣∣ψn(z) − ψ(z)
∣∣≤ c

logn√
n

.(54)
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PROOF. We will first show that Dn satisfies (53) uniformly in n with a constant
A′ depending only on A. Let x, y ∈ ∂Dn. First, we consider the case when |x −
y| < 1/n. Then since ∂Dn is a Jordan curve which is a subset of the edge set
of n−1

Z
2, we have that diamJ (x, y) ≤ √

2|x−y|. Now assume that |x−y| ≥ 1/n.
Let ξ and η be points on ∂D closest to x and y, respectively. Clearly, |x − ξ | and
|y − η| are both at most

√
2/n. Let α,β be the two line segments connecting x

with ξ and y with η. First, assume that the curve � = J (x, y) ∪ α ∪ β separates
J (ξ, η) from 0 in D. Let Qj, j = 1, . . . ,N , be those lattice squares whose faces are
outside of Dn but whose boundaries touch J (x, y). By the construction of Dn and
the Jordan curve theorem, since � separates 0 from J (ξ, η), each Qj is intersected
by α ∪ β ∪ J (ξ, η). Consequently,

diam� ≤ diamJ (ξ, η) + 2
√

2/n ≤ A|ξ − η| + 2
√

2/n.

Hence,

diamJ (x, y) ≤ diam� ≤ A|x − y| + (2A + 2)
√

2/n.

Now, if � does not separate J (ξ, η) from 0 in D, then since � is a crosscut of D,
(∂Dn \ J (x, y)) ∪ α ∪ β does separate J (ξ, η) from 0 in D. Thus, in this case we
can do the same argument as in the previous paragraph showing that diam(∂Dn \
J (x, y)) ≤ diamJ (ξ, η) + 2

√
2/n. But by definition, diamJ (x, y) ≤ diam(∂Dn \

J (x, y)).
Using also the estimate we obtained in the case when |x − y| < 1/n, we con-

clude that

diamJ (x, y) ≤ (
A + (2A + 2)

√
2
)|x − y|.(55)

By (55), there is a constant c depending only on A and the diameter of D such the
Warschawshi structure moduli η

(n)
W of ∂Dn satisfy

η
(n)
W (δ) ≤ cδ, δ ≤ 1.

Consequently, since Dn ⊂ D and each point on ∂Dn is within distance
√

2/n of
a point on ∂D, part (a) of Theorem VII in [26] implies (54). �

For simplicity, we will now assume that ∂D is C1+α for some α > 0, that is,
we assume that there is a parameterization of ∂D which has a Hölder-α derivative.
By Kellogg’s theorem; see, for example, [5], this assumption implies that the con-
formal map ψ :D → D (and ψ−1) is in C1+α(D). (So we can take the conformal
parameterization of ∂D.) In particular, ψ is bilipschitz on D, that is, there is a
constant c < ∞ depending only on α and the diameter of D such that

c−1|z − w| ≤ ∣∣ψ(z) − ψ(w)
∣∣≤ c|z − w|, z,w ∈ D.(56)

Similar uniform estimates, but of Hölder type, and corresponding versions of
Lemma 4.7 (stated again below) hold if D is assumed to be a quasidisk. Indeed, the
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uniformizing conformal map and its inverse are then Hölder continuous on a neigh-
borhood of ∂D with an exponent depending only on A; see [20]. From (56), we
immediately get the required control over distortion of annuli up to constants on
sufficiently large scales. We can now prove Lemma 4.7 which we state again.

LEMMA B.2. Suppose D � 0 is a simply connected domain Jordan domain
with C1+α boundary, where α > 0. Let Dn be the n−1

Z
2 grid-domain approxima-

tion of D and let γn be a Loewner curve in Dn connecting ∂Dn with 0. There is
a constant c depending only on α and the diameter of D such that the following
holds. Set 0 < r < 1/2 and dn = n−r and let η

(n)
tip (δ;Dn) be the tip structure mod-

ulus for γn in Dn. Then for all n sufficiently large (independently of γn) the tip
structure modulus η

(n)
tip (δ;D) for ψn(γn) in D satisfies

η
(n)
tip

(
c−1dn;D)≤ cη

(n)
tip (dn;Dn).

PROOF. Let ηn = η(n)(dn;Dn). We can assume that ηn ≥ 2dn. It is enough
to verify that there exists a constant c independent of n such that for all annuli
A(z) = {w :dn ≤ |w − z| ≤ ηn}, z ∈ Dn we have

ψn

(
A(z) ∩ Dn

)⊂ {
w : c−1dn ≤ ∣∣w − ψn(z)

∣∣≤ cηn

}∩D.

But this follows immediately from Lemma B.1 with the assumption that dn decays
slower than O(n−1/2) and (56). �
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