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A LARGE DEVIATION PRINCIPLE FOR WIGNER MATRICES
WITHOUT GAUSSIAN TAILS1

BY CHARLES BORDENAVE AND PIETRO CAPUTO

IMT UMR 5219 CNRS and Université Paul-Sabatier Toulouse III,
and Università Roma Tre

We consider n × n Hermitian matrices with i.i.d. entries Xij whose tail

probabilities P(|Xij | ≥ t) behave like e−atα for some a > 0 and α ∈ (0,2).
We establish a large deviation principle for the empirical spectral measure
of X/

√
n with speed n1+α/2 with a good rate function J (μ) that is finite

only if μ is of the form μ = μsc � ν for some probability measure ν on R,
where � denotes the free convolution and μsc is Wigner’s semicircle law.
We obtain explicit expressions for J (μsc � ν) in terms of the αth moment
of ν. The proof is based on the analysis of large deviations for the empirical
distribution of very sparse random rooted networks.

1. Introduction. Let Hn(C) denote the set of n × n Hermitian matrices. The
empirical spectral measure of a matrix A ∈ Hn(C) is the probability measure on R

defined by

μA = 1

n

n∑
k=1

δλk(A),

where λ1(A) ≥ · · · ≥ λn(A) denote the eigenvalues of A counting multiplicity.
Below, we consider the empirical spectral measure of a Wigner random matrix
X described as follows. Let (Xij )1≤i<j be i.i.d. complex random variables with
variance E|X12 − EX12|2 = 1, and let (Xii)i≥1 be an independent family of i.i.d.
real random variables. Extend this array by setting Xij = Xji for 1 ≤ j < i, and
consider the sequence of n × n Hermitian random matrices

X(n) = (Xij )1≤i,j≤n.(1)

For ease of notation, we often drop the argument n and simply write X for X(n).
The space P(R) of probability measures on R is endowed with the topology of

weak convergence: a sequence of probability measures (μn)n≥1 converges weakly
to μ if for any bounded continuous function f :R �→ R,

∫
f dμn → ∫

f dμ as
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n goes to infinity. We denote this convergence by μn � μ. Wigner’s celebrated
theorem asserts that almost surely,

μX/
√

n � μsc,(2)

where μsc is the semicircle law, that is, the probability measure with density
1

2π

√
4 − x2 on [−2,2]; see, for example, [3, 4, 19].

We consider large deviations, that is, events of the form μX/
√

n ∈ B where B

is a measurable set in P(R) whose closure does not contain the limiting law μsc.
Clearly, (2) implies that P(μX/

√
n ∈ B) → 0, n → ∞. It follows from known con-

centration estimates that if the entries Xij are bounded, or if they satisfy a log-

arithmic Sobolev inequality, then P(μX/
√

n ∈ B) decays to 0 as fast as e−cn2
for

some constant c > 0; see Guionnet and Zeitouni [17] or [3]. Further, if the Xij

have a Gaussian law such that X belongs to the Gaussian unitary ensemble GUE
or the Gaussian orthogonal ensemble GOE, then a full large deviation principle
for μX/

√
n with speed n2 has been established by Ben Arous and Guionnet in [7].

However, apart from the GUE and GOE cases, we are not aware of any case for
which the large deviation principle for μX/

√
n has been obtained. We refer to the

recent work of Chatterjee and Varadhan [13] for the large deviations of the largest
eigenvalues of X/n. For other models of random matrices where the joint law of
the eigenvalues has a tractable form, large deviation principles have been proved;
see, for example, [3], Section 2.6, or Eichelsbacher, Sommerauer and Stolz [16].

In this paper, we prove a large deviation principle under the assumption that Xij

has tail probabilities P(|Xij | ≥ t) of order e−atα for some a > 0, and α ∈ (0,2).
Before stating our assumptions and results in detail, let us make some preliminary
remarks.

It is not hard to see why n1+α/2 is the natural speed for large deviations in our
setting. For instance, for a fixed x ∈ R, consider the event |Xii | ∼ x

√
n, for all

i = 1, . . . , n, which has probability e−cn1+α/2
, for some c > 0. This event forces

all eigenvalues of X/
√

n to shift by x and, therefore, produces a shift by x of the
limiting spectral measure μsc. Similarly, by considering deviations on the scale√

n of few elements Xij in each row of the matrix X, one expects to be able
to produce more general deformations of μsc at a cost of order n1+α/2 on the
exponential scale. It turns out that this picture is correct, provided the deformations
of μsc are of the form μ = μsc � ν for some ν ∈ P(R), where � denotes the free
convolution. Roughly speaking, the idea is that the entries of X that are visible
on a scale

√
n form a very sparse weighted random graph or random network

Gn that is asymptotically independent from the rest of the matrix, and a large
deviation principle for μX/

√
n can be deduced from a large deviation principle

for the law of the random network Gn. This approach also allows us to obtain
explicit expressions for the rate function. The strategy of proof developed in the
present work for Wigner matrices could certainly be generalized to other models
such as random covariance matrices or random band matrices with the same type
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of tail assumptions on the entries. Large deviations with speed nα of the largest
eigenvalue may also be handled with similar techniques.

Main result. We recall that a sequence of random variables (Zn)n≥1 with val-
ues in a topological space X with Borel σ -field B, satisfies the large deviation
principle (LDP) with rate function J and speed v, if J :X �→ [0,∞] is a lower
semicontinuous function, v :N �→ [0,∞) is a function which increases to infinity,
and for every B ∈ B:

− inf
x∈B◦ J (x) ≤ lim inf

n→∞
1

v(n)
logP(Zn ∈ B) ≤ lim sup

n→∞
1

v(n)
logP(Zn ∈ B)

(3)
≤ − inf

x∈B
J (x),

where B◦ denotes the interior of B and B denotes the closure of B . We recall
that the lower semicontinuity of J means that the level sets {x ∈ X :J (x) ≤ t},
t ∈ [0,∞), are closed subsets of X . When the level sets are compact, the rate
function J is said to be good.

We now introduce our statistical assumption. Let a,α ∈ (0,∞). We say that a
complex random variable Y belongs to the class Sα(a), and write Y ∈ Sα(a), if

lim
t→∞−t−α logP

(|Y | ≥ t
) = a,(4)

and if Y/|Y | and |Y | are independent for large values of |Y |, that is, there exists
t0 > 0 and a probability ϑ ∈ P(S1) on the unit circle S

1 such that for all t ≥ t0, all
measurable sets U ⊂ S

1, one has

P
(
Y/|Y | ∈ U and |Y | ≥ t

) = ϑ(U)P
(|Y | ≥ t

)
.(5)

For instance, if Y is Weibull, that is, Y is a nonnegative random variable with
distribution function F(t) = 1 − e−atα , with α > 0, and a > 0, then Y ∈ Sα(a),
with ϑ = δ1, the unit mass at the point 1. Clearly, if Y ∈ Sα(a) is real valued,
then the associated measure ϑ must have support in {−1,1}. It will be convenient
to allow the value a = ∞ in (4). Namely, for α > 0 we write Y ∈ Sα(∞) when-
ever (4) holds with a = ∞. We do not require (5) in this case. For instance, if Y is a
bounded random variable, then Y ∈ Sα(∞), for all α > 0, and if Y has a Gaussian
tail, then Y ∈ Sα(∞), for all α ∈ (0,2). Moreover, if Y ∈ Sα(a) for some α,a > 0,
then Y ∈ Sβ(∞) for all β ∈ (0, α). We remark that (5) is a mild technical condition
that we do not expect to be crucial. However, it will turn out to be convenient for
the analysis of random networks in Section 3 below.

Throughout the paper, we assume that the array {Xij } is given as above, that
is, we have two independent families of random variables: the off-diagonal entries
Xij , i < j , which are i.i.d. copies of a complex random variable X12 with unit
variance, and the on-diagonal entries Xii , which are i.i.d. copies of a real random
variable X11. The matrix X = X(n) is defined as in (1). Moreover, the following
main assumption will always be understood without explicit mention.
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ASSUMPTION 1. There exist α ∈ (0,2) and a, b ∈ (0,∞] such that X12 ∈
Sα(a) and X11 ∈ Sα(b).

The main result can be formulated as follows.

THEOREM 1.1. Fix α ∈ (0,2) as in Assumption 1. The measures μX/
√

n sat-

isfy the LDP with speed n1+α/2 and good rate function

J (μ) =
{


(ν), if μ = μsc � ν for some ν ∈ P(R),

∞, otherwise,
(6)

where 
 :P(R) �→ [0,∞] is a good rate function.

More details on the rate function 
 will be given in Theorems 1.2 and 1.3 below.
We anticipate that 
(ν) = 0 if and only if ν = δ0, where δ0 is the Dirac mass at 0.
Moreover, as one should expect, in the case a = b = ∞, one has 
(ν) = ∞ for all
ν �= δ0.

The proof of Theorem 1.1 consists of two main parts. The first part, the “random
matrix theory part” of the work, is discussed in Section 2. Here, we show that at
speed n1+α/2 the large deviations are governed by the sparse n × n random matrix
C = C(n) defined by

Cij =
⎧⎨⎩

Xij√
n

, if ε(n) ≤ Xij√
n

≤ ε(n)−1,

0, otherwise,

where ε(n) is a cutoff sequence that for convenience will be set equal to 1/ logn.
In particular, we show that as far as the LDP with speed n1+α/2 is concerned,
μX/

√
n behaves as μsc � μC , where μC is the spectral measure of the matrix C;

see Proposition 2.1 below. As a consequence, the LDP for μX/
√

n will be obtained

by contraction if one has the LDP for μC with speed n1+α/2 and rate function 
.
The second part, the “random graph theory part” of the work, is presented in

Section 3. Here, we prove the above mentioned LDP for the spectral measures μC .
By viewing the matrix C as the adjacency matrix of a weighted graph, one runs
naturally into the analysis of large deviations for sparse random networks. This
is best formulated within the theory of local convergence for networks that was
recently developed by Benjamini and Schramm [5], Aldous and Steele [2] and
Aldous and Lyons [1]. Let us briefly sketch the main ideas—all details will be
given in Section 3. Let Gn be the sparse random network naturally associated
to the n × n matrix C, that is, Gn is the weighted graph with n vertices whose
adjacency matrix is given by C. Notice that the weights can have a sign, and there
are loops corresponding to nonzero diagonal entries of C. Take a vertex at random,
call it the root, and consider the connected component of Gn at that vertex. This
gives rise to a random connected rooted network, we call ρn its law. By identifying
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two networks which differ only by a permutation of the vertex labels, the law ρn is
regarded as an element of the space P(G∗) of probability measures on G∗, where
G∗ is the space of equivalence classes (under rooted isomorphisms) of connected
rooted networks. The essential point is that the eigenvalue distribution μC can be
identified with a suitable “spectral measure” μρn associated to the law ρn; see
also [9–11] for recent works based on the same idea.

Since the network Gn is very sparse, one has that almost surely ρn converges
(under the weak local convergence [1]) to the Dirac mass on the trivial element
of G∗, namely the network consisting of a single isolated vertex (the root). We
introduce a suitable weak topology on P(G∗), and prove that the measures ρn

satisfy a LDP with speed n1+α/2 and a good rate function I (ρ). The latter is finite
only if ρ belongs to the so called sofic measures, that is, if ρ is the weak local limit
of finite networks, and if the support of ρ satisfies some natural constraints. Call
Ps(G∗) the set of such probability measures. We find that for ρ ∈ Ps(G∗), one has

I (ρ) = bEρ

∣∣ωG(o)
∣∣α + a

2
Eρ

∑
v∈VG\o

∣∣ωG(o, v)
∣∣α,(7)

where Eρ denotes expectation w.r.t. ρ, the law of the equivalence class of a con-
nected rooted network (G,o), o denoting the root; ωG(o) denotes the weight of
the loop at the root, and ωG(o, v) denotes the weight of the edge (o, v) if v is an
element of the vertex set VG of the network. We refer to Proposition 3.9 for the
precise result.

It turns out that the choice of a “myopic” topology on P(G∗) is crucial to have
the desired result. On the other hand, we want this topology to be fine enough to
have that the map ρ �→ μρ defining the spectral measure associated to ρ is contin-
uous. If all this is satisfied, then a LDP for the spectral measure μC = μρn can be
obtained by contraction from the LDP for ρn; see Proposition 3.14. In particular,
we find that the function 
 in Theorem 1.1 is given by


(ν) = inf
{
I (ρ), ρ ∈Ps(G∗) :μρ = ν

}
.(8)

We now turn to more explicit characterizations of the rate function in Theo-
rem 1.1. From the approach discussed above, we will see that the rate function 


depends on the laws of X11 and X12 only through α,a, b and the supports of the
associated measures on S

1. While the variational principle (8) is not always explic-
itly solvable, there is a large class of ν ∈ P(R) for which 
(ν) can be computed.
This allows us to give explicit expressions for the rate function J (μ) in Theo-
rem 1.1. Recall that the free convolution with μsc is injective: for any μ ∈ P(R)

there is at most one ν ∈ P(R) such that μ = μsc �ν. Let Psym(R) denote the set of
symmetric probability measures on R. If μ = μsc � ν, then μ ∈ Psym(R) is equiv-
alent to ν ∈ Psym(R). For more details on free convolution with the semicircular
distribution, we refer to Biane [8]. For ν ∈ P(R), we use the notation

mα(ν) =
∫

|x|α dν(x)(9)
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for the αth moment of ν. If X11 ∈ Sα(b) for some b < ∞, then we write ϑb for the
associated measure given in (5). Recall that since X11 is real, ϑb is a measure on
{−1,1}. The following theorem summarizes the main facts we can establish about
the rate function.

THEOREM 1.2. (a) For any ν ∈ P(R),


(ν) ≥
(

a

2
∧ b

)
mα(ν).

(b) If b < ∞ and supp(ϑb) = {−1,1}, then for any ν ∈ P(R):


(ν) ≤ bmα(ν).

(c) If b < ∞ and supp(ϑb) = {−1,1}, and ν ∈ Psym(R), then


(ν) =
(

a

2
∧ b

)
mα(ν).

Some remarks about Theorem 1.2. Part (a) shows clearly that 
(ν) = 0 is equiv-
alent to ν = δ0, that is, J (μ) = 0 is equivalent to μ = μsc. It also shows that J is a
good rate function since the level sets {mα(·) ≤ t}, t ∈ [0,∞) are compact in P(R).
Concerning the remaining statements, the fact that the moments mα(ν) appear nat-
urally in the rate function and the special role played by symmetric measures ν can
be understood as follows.

As one could expect, there is a natural way to achieve a large deviation
μX/

√
n ∼ μsc � ν by tilting only the diagonal entries of X, namely by consid-

ering events of the form μD/
√

n ∼ ν, where D denotes the diagonal matrix with
entries X11, . . . ,Xnn, and

μD/
√

n = 1

n

n∑
i=1

δXi,i/
√

n.

In view of (5), one can consider an arbitrary ν ∈ P(R) here if b < ∞ and
supp(ϑb) = {−1,1}. If b < ∞ and supp(ϑb) = {+1} (or {−1}) then only ν whose
support is R+ (or R−) can be considered. If b = ∞, then no measure ν �= δ0 will
have a finite cost on the scale n1+α/2.

Similarly, one can try to reach a large deviation μX/
√

n ∼ μsc � ν by tilting
only the off-diagonal entries of X. For instance, for n even, let A denote the block
diagonal matrix made up of the 2 × 2 blocks(

0 Xi,i+1

X̄i,i+1 0

)
, i = 1, . . . , n/2.

That is, A is defined by A2i−1,2i = Xi,i+1, A2i,2i−1 = X̄i,i+1, i = 1, . . . , n/2, and
Ai,j = 0 for all other entries. It is straightforward to see that the empirical spectral
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measures of A/
√

n is given by

μA/
√

n = 1

n

n/2∑
i=1

(δ|Xi,i+1|/√n + δ−|Xi,i+1|/√n).

Notice that μA/
√

n is a symmetric distribution. Thus, if we try to obtain μX/
√

n ∼
μsc � ν by requiring μA/

√
n ∼ ν we are forced to restrict to ν ∈Psym(R).

In view of this discussion, it is natural to look for upper bounds on the rate
function 
 in terms of the rate function associated to large deviations of μD/

√
n

and μA/
√

n. Our results will show in particular that if the variables Xij are as in
Assumption 1, with b < ∞ and supp(ϑb) = {−1,1}, then:

(1) μD/
√

n satisfies a LDP on P(R) with speed n1+α/2 and rate function
Ib(ν) = bmα(ν), for all ν ∈ P(R);

(2) μA/
√

n satisfies a LDP on P(R) with speed n1+α/2 and rate function equal
to Ia(ν) = a

2mα(ν), for all ν ∈Psym(R), and Ia(ν) = +∞ if ν /∈ Psym(R).

Since μD/
√

n and μA/
√

n are the empirical measures induced by i.i.d. ran-
dom variables rescaled by

√
n, the statements above can be seen as extremal in-

stances of Sanov’s theorem, in the case of variables with exponential tails of the
form (4). Thus, roughly speaking, part (b) in Theorem 1.2 can be interpreted as
the bound obtained by adopting the strategy μD/

√
n ∼ ν to reach the deviation

μX/
√

n ∼ μsc � ν. When b ≤ a/2, parts (a) and (b) above yield the expression


(ν) = bmα(ν),

showing that this strategy is optimal. Similarly, to illustrate part (c), observe that if
ν ∈ Psym(R), then for the deviation μX/

√
n ∼ μsc � ν one can also use the strategy

μA/
√

n ∼ ν. This reasoning will produce the bound 
(ν) ≤ (a/2 ∧ b)mα(ν). The
general bound in part (a) then shows that this is actually an optimal strategy if
a/2 ≤ b.

If the support of ϑb is only {+1} (or {−1}) then the above scenario changes in
that one can use the diagonal matrix D only to reach deviations ν whose support
is R+ (or R−). In this case, we have the following estimates. Without loss of
generality, we restrict to supp(ϑb) = {+1}.

THEOREM 1.3. Suppose b < ∞, and supp(ϑb) = {+1}.
(a) If supp(ν) ⊂ R+, then


(ν) ≤ bmα(ν).

(b) Suppose α ∈ (1,2). If ν ∈ Psym(R), then


(ν) = a

2
mα(ν).

(c) Suppose α ∈ (1,2). If
∫

x dν(x) < 0 then 
(ν) = +∞.
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The above result can be interpreted as before by appealing to the large deviations
of μD/

√
n and μA/

√
n. In particular, part (b) shows that since one cannot realize

a symmetric deviation ν ∈ Psym(R) using the matrix D only, it is less costly to
realize it using the matrix A only. Similarly, in part (c), one has that neither D
nor A, nor any other matrix with vanishing trace, can be used to produce a measure
ν with

∫
x dν(x) < 0 and, therefore, the rate function must be +∞. We believe

that results in parts (b) and (c) above should hold without the additional condition
α ∈ (1,2).

The proofs of Theorems 1.2 and 1.3 are given in Section 3.10.

2. Exponential equivalences. Throughout the rest of the paper, we fix the
cutoff sequence ε(n) as

ε(n) = 1

logn
.(10)

We decompose the matrix X as

X√
n

= A + B + C + D,(11)

where the matrices A,B,C,D are defined by

Aij = 1|Xij |<(logn)2/α

Xij√
n

, Bij = 1(logn)2/α≤|Xij |≤ε(n)n1/2
Xij√

n
,

Cij = 1ε(n)n1/2<|Xij |<ε(n)−1n1/2
Xij√

n
, Dij = 1ε(n)−1n1/2<|Xij |

Xij√
n

.

The matrix A represents the bulk of the original matrix, while the matrix C yields
the elements that are visible on the scale

√
n. The starting point of our analysis

(see Lemmas 2.2 and 2.3 below) is to show that the contribution of both B and D

is negligible for large deviations with speed n1+α/2.
We define the distance on P(R) as

d(μ, ν) = sup
{∣∣gμ(z) − gν(z)

∣∣ :Im(z) ≥ 2
}
,(12)

where gμ is the Cauchy–Stieltjes transform of μ, that is, for z ∈ C+ = {z ∈
C :Im(z) > 0},

gμ(z) =
∫

μ(dx)

x − z
.(13)

Recall that this distance is a metric for the weak convergence; see, for example, [3],
Theorem 2.4.4. Let also dKS denote the Kolmogorov–Smirnov distance and let
Wp denote the Lp-Wasserstein distance; see Appendix B below for the relevant
definitions. The introduction of the distance dKS is mainly due to the use of the
rank inequality of Lemma B.1. The Wasserstein distance on the other hand can
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be controlled in terms of the matrix elements thanks to the Hoffman–Wielandt
inequality in Lemma B.2. We shall relate these distances to the distance (12) via
the following estimate, which is a consequence of (75) and (77):

d(μ, ν) ≤ dKS(μ, ν) ∧ W1(μ, ν).(14)

The following proposition is the first major step on the way to prove Theo-
rem 1.1.

PROPOSITION 2.1. The random probability measures μsc � μC and μX/
√

n

are exponentially equivalent: for any δ > 0,

lim sup
n→∞

1

n1+α/2 logP
(
d(μX/

√
n,μsc �μC) ≥ δ

) = −∞.

The rest of this section is devoted to the proof of Proposition 2.1. The strat-
egy is as follows: we start by showing that the contribution of D in (11) can be
neglected (Lemma 2.2), then we show that B can also be neglected (Lemma 2.3).
The last step will then consist in proving that μA+C and μsc�μC are exponentially
equivalent. We note that the assumption (5) is not needed for the proof of Propo-
sition 2.1. Actually, a careful look at the proof shows that it is sufficient to replace
condition (4) by the weaker assumption lim supt→∞ t−α logP(|Y | ≥ t) < 0; see
Remark 2.7 below.

2.1. Preliminary estimates.

LEMMA 2.2 (Very large entries). The random probability measures μA+B+C

and μX/
√

n are exponentially equivalent: for any δ > 0,

lim sup
n→∞

1

n1+α/2 logP
(
d(μX/

√
n,μA+B+C) ≥ δ

) = −∞.

PROOF. From (14), it is sufficient to prove that for any δ > 0,

lim sup
n→∞

1

n1+α/2 logP
(
dKS(μX/

√
n,μA+B+C) ≥ δ

) = −∞.

Then, using the rank inequality Lemma B.1, it is sufficient to prove that for any
δ > 0

lim sup
n→∞

1

n1+α/2 logP
(
rank(D) ≥ δn

) = −∞.

However, since the rank is bounded by the number of nonzeros entries of a matrix,
one has

P
(
rank(D) ≥ 2δn

) ≤ P

( ∑
1≤i≤j≤n

1
(|Xij | ≥ ε(n)−1n1/2) ≥ δn

)
.
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The Bernoulli variables 1(|Xij | ≥ ε(n)−1n1/2),1 ≤ i ≤ j ≤ n, are independent.
Also, by assumption (4), their mean value pij = P(|Xij | ≥ ε(n)−1n1/2) satisfies

pij ≤ p(n) := e−cε(n)−αnα/2

for some c > 0. For our choice of ε(n) in (10), one has p(n) = o(1/n2). Hence, it
is sufficient to prove that for any δ > 0:

lim sup
n→∞

1

n1+α/2 logP
( ∑

1≤i≤j≤n

(
1
(|Xij | ≥ ε(n)−1n1/2)− pij

) ≥ δn

)
= −∞.

Recall Bennett’s inequality [6]: if Wi , i = 1, . . . ,m are independent Bernoulli(pi )
variables, and h(x) = (x + 1) log(x + 1) − x, then one has

P

(
m∑

i=1

(Wi − pi) ≥ t

)
≤ exp

(
−σ 2h

(
t

σ 2

))
(15)

with σ 2 = ∑m
i=1 pi(1 − pi). In our case, for all n large enough,

σ 2 = ∑
1≤i≤j≤n

pij (1 − pij ) ≤ n(n + 1)p(n)

2
.

Therefore, using h(x) ∼ x logx as x → ∞,

P

( ∑
1≤i≤j≤n

(
1
(|Xij | ≥ ε(n)−1n1/2)− pij

) ≥ δn

)
≤ exp

(
−σ 2h

(
nδ

σ 2

))
≤ exp

(
c0n log

(
np(n)

))
for some constant c0 > 0 depending on δ. Now, since n ≤ p(n)−1/2 for n large,
we find that for some c1 > 0, for all n large enough the last expression is upper
bounded by

exp
(

1

2
c0n logp(n)

)
≤ exp

(−c1n
1+α/2ε(n)−α).

This proves the claim. �

We now show that the contribution of B in (11) is also negligible. While
Lemma 2.2 would work for any α > 0, the next results use the fact that α ∈ (0,2).

LEMMA 2.3 (Moderately large entries). The random probability measures
μA+C and μX/

√
n are exponentially equivalent: for any δ > 0,

lim sup
n→∞

1

n1+α/2 logP
(
d(μX/

√
n,μA+C) ≥ δ

) = −∞.
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PROOF. From (14), Lemma 2.2 and the triangle inequality, it is sufficient to
check that for any δ > 0,

lim sup
n→∞

1

n1+α/2 logP
(
W2(μA+B+C,μA+C) ≥ δ

) = −∞,

where W2 ≥ W1 is the L2-Wasserstein distance defined by (76). From the
Hoffman–Wielandt inequality Lemma B.2, it is sufficient to prove that for any
δ > 0,

lim sup
n→∞

1

n1+α/2 logP
(

1

n
tr
(
B2) ≥ δ

)
= −∞.

We write
1

n
tr
(
B2) ≤ 2

n2

∑
1≤i≤j≤n

|Xij |21
(
(logn)2/α ≤ |Xij | ≤ ε(n)n1/2).

Thus, from Markov’s inequality, for any λ > 0,

P

(
1

n
tr
(
B2) ≥ 2δ

)
≤ e−λδ

∏
1≤i,j≤n

E
[
en−2λ|Xij |21((logn)2/α≤|Xij |≤ε(n)n1/2)].

To estimate the last expectation, we use the integration by part formula, for μ ∈
P(R) and g ∈ C1,∫ b

a
g(x) dμ(x) = g(a)μ

([a,∞)
)− g(b)μ

(
(b,∞)

)
(16)

+
∫ b

a
g′(x)μ

([x,∞)
)
dx.

Define the function

f (x) = n−2λx2 − cxα.(17)

Let μ denote the law of |Xij |, and g(x) = en−2λx2
. By Assumption 1, there exists

a constant c > 0 such that

μ
([t,∞)

)= P
(|Xij | ≥ t

) ≤ exp
(−ctα

)
(18)

for all t large enough. In particular, g(t)μ([t,∞)) ≤ ef (t). From (16), it follows
that

E
[
en−2λ|Xij |21((logn)2/α≤|Xij |≤ε(n)n1/2)]

≤ 1 +
∫ ε(n)n1/2

(logn)2/α
g(x) dμ(x)

(19)

≤ 1 + ef ((logn)2/α) +
∫ ε(n)n1/2

(logn)2/α

2λx

n2 ef (x) dx

≤ 1 + ef ((logn)2/α) + λε(n)2

n
max

x∈[(logn)2/α,ε(n)n1/2]
ef (x).
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We choose λ = 1
2cε(n)α−2n1+α/2, with the constant c > 0 given in (18). Simple

computations show that f (x) reaches its maximum for x ∈ [(logn)2/α, ε(n)n1/2]
at x = (logn)2/α , where it is equal to

1

2
cε(n)α−2nα/2−1(logn)4/α − c(logn)2.

Using (10), for n ≥ n0 this is smaller than − c
2(logn)2. Therefore, using 1+x ≤ ex ,

x ≥ 0, one has that (19) is bounded by exp [e−(c/4)(logn)2] for n large enough. It
follows that

1

n1+α/2 logP
(

1

n
tr
(
B2) ≥ 2δ

)
≤ −1

2
cδε(n)α−2 + n1−α/2e−(c/4)(logn)2

.

The desired conclusion follows. �

For s > 0, we define the compact set for the weak topology

Ks =
{
μ ∈ P(R) :

∫
x2 dμ ≤ s

}
.

For a suitable choice of s, we now check that μC is in Ks with large probability.

LEMMA 2.4 (Exponential tightness estimates).

lim sup
n→∞

1

n1+α/2 logP(μC /∈ K(logn)2) = −∞.

Moreover, if I = {(i, j) : |Xij | > (logn)2/α}, for any δ > 0,

lim
n→∞

1

n1+α/2 logP
(|I | ≥ δn1+α/2) = −∞.

PROOF. Notice that∫
x2 dμC = 1

n
tr
(
C2) ≤ 2

n2

∑
1≤i≤j≤n

|Xij |21
(
ε(n)n1/2 < |Xij | ≤ ε(n)−1n1/2).

We may repeat the argument in the proof of Lemma 2.3. This time we take λ =
1
2cε(n)2−αn1+α/2, where c is as in (18), and then define f as in (17). For any s > 0,
one has

P(μC /∈ K2s) ≤ e−λs

(
1+ef (ε(n)

√
n)+ 1

2
cnα/2ε(n)−α max

x∈[ε(n)n1/2,ε(n)−1n1/2]
ef (x)

)n2

.

Simple considerations show that f (x), for x ∈ [ε(n)n1/2, ε(n)−1n1/2] is max-
imized at x = ε(n)n1/2, where it satisfies f (ε(n)n1/2) ≤ −1

2cε(n)αnα/2. This
gives, for n large enough,

1

n1+α/2 logP(μC /∈ K2s) ≤ −1

2
csε(n)2−α + n1−α/2e−(1/4)cε(n)αnα/2

.
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We choose finally s = 1/(2ε(n)2). For our choice of ε(n) in (10), this implies the
first claim.

For the second claim, we have

P
(|I | ≥ 2δn1+α/2) ≤ P

( ∑
1≤i≤j≤n

1
(|Xij | ≥ (logn)2/α) ≥ δn1+α/2

)
.

The Bernoulli variables 1(|Xij | ≥ (logn)2/α),1 ≤ i ≤ j ≤ n, are independent.
Also, by Assumption 1, their average pij = P(|Xij | ≥ (logn)2/α) satisfies

pij ≤ p′(n) := e−c(logn)2

for some c > 0. We argue as in the proof of Lemma 2.2. From Bennett’s inequal-
ity (15),

P

( ∑
1≤i≤j≤n

(
1
(|Xij | ≥ (logn)2/α)− pij

) ≥ δn1+α/2
)

≤ exp
(
−c0n

1+α/2 log
(

nα/2−1

p′(n)

))
for some constant c0 = c0(δ) > 0. Since p′(n) = o(nα/2−1), this gives the claim.

�

2.2. Auxiliary estimates. To complete the proof of Proposition 2.1, we shall
need two extra results. The first is due to Guionnet and Zeitouni [17], Corollary 1.4.

THEOREM 2.5 (Concentration for matrices with bounded entries). Let κ ≥ 1,
let Y ∈ Hn(C) be a random matrix with independent entries (Yij )1≤i≤j≤n bounded
by κ , and let M ∈ Hn(C) be a deterministic matrix such that

∫
x2 dμM ≤ κ2. There

exists a universal constant c > 0 such that for all (cκ2/n)2/5 ≤ t ≤ 1,

P
(
W1(μY/

√
n+M,EμY/

√
n+M) ≥ t

) ≤ cκ

t3/2 exp
(
−n2t5

cκ4

)
.

In [17], Corollary 1.4, the result is stated for matrices Y in Hn(C) such that
the entries have independent real and imaginary parts. The extension to our setting
follows by using a version of Talagrand’s concentration inequality for independent
bounded variables in C. Also, the matrix M is not present in [17]. It is, however,
not hard to check that its presence does not change the argument in [17], page 132,
since one can use the bound∫

x2 dμY/
√

n+M ≤ 2
∫

x2 dμY/
√

n + 2
∫

x2 dμM ≤ 4κ2.

The latter is an easy consequence of, for example, Lemma B.2.
The second result we need is a uniform bound on the rate of the convergence of

the empirical spectral measure of sums of random matrices.
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THEOREM 2.6 (Uniform asymptotic freeness). Let Y = (Yij )1≤i,j≤n ∈ Hn(C)

be a Wigner random matrix with Var(Y12) = 1, E|Y12|3 < ∞ and E|Y11|2 < ∞.
There exists a universal constant c > 0 such that for any integer n ≥ 1 and any
M ∈Hn(C),

d(EμY/
√

n+M,μsc �μM) ≤ c

√
E|Y11|2 +E|Y12|3√

n
.

A striking point of the above theorem is that the constant c does not depend
on M . The result is a variation around Pastur and Shcherbina [19], Theorem 18.3.1.
The detailed proof of Theorem 2.6 is given in Appendix A below. We are now
ready to finish the proof of Proposition 2.1.

2.3. Proof of Proposition 2.1. By Lemmas 2.2 and 2.3, it is sufficient to prove
that μA+C and μsc �μC are exponentially equivalent: for any δ > 0,

lim
n→∞

1

n1+α/2 logP
(
d(μsc �μC,μA+C) ≥ δ

) = −∞.(20)

Let F be the σ -algebra generated by the random variables

{Xij 1|Xij |≥(logn)2/α }.
Then the random matrix C is F -measurable. Define the event

E =
{∫

x2 dμC ≤ (logn)2
}
.

Then E ∈ F . Lemma 2.4 implies that for some sequence s1(n) → ∞ and all n

large enough,

P
(
Ec) ≤ e−s1(n)n1+α/2

.(21)

Conditional on F ,
√

nA is a random matrix with independent entries
(
√

nAij )1≤i≤j≤n bounded by (logn)2/α . Thus, we may apply Theorem 2.5 with
Y/

√
n replaced by A, and M replaced by C. Using (14) to replace W1(·, ·) by

d(·, ·), taking t = δ, and κ = (logn)2/α in Theorem 2.5, one has that for all δ > 0,
there is a sequence s2(n) → ∞, n → ∞, such that

1EPF
(
d(EFμA+C,μA+C) ≥ δ

) ≤ e−s2(n)n1+α/2
,(22)

where PF and EF are the conditional probability and expectation given F . Notice
that Theorem 2.5 can be applied here since on the event E one has

∫
x2 dμC ≤

(logn)2 ≤ κ2. Moreover, (22) holds uniformly within E, since the bound of Theo-
rem 2.5 is uniform with respect to M satisfying

∫
x2 dμM ≤ κ2.

From (21) and (22), using the triangle inequality one has that (20) follows once
we prove that for any δ > 0:

lim
n→∞

1

n1+α/2 logP
(
d(μsc �μC,EFμA+C) ≥ δ

) = −∞.(23)



2468 C. BORDENAVE AND P. CAPUTO

Next, we use a coupling argument to remove the dependency between A and C.
Let Pn be the law of X12 conditioned on {|X12| < (logn)2/α}, and Qn be the law
of X11 conditioned on {|X11| < (logn)2/α}. We also define I = {(i, j) : |Xij | ≥
(logn)2/α}. Given F , if (i, j) ∈ I , then Aij = 0 while, if (i, j) /∈ I and 1 ≤ i ≤
j ≤ n, then

√
nAij has conditional law Pn or Qn depending on whether i < j or

i = j .
On our probability space, we now consider Y an independent Hermitian random

matrix such that (Yij )1≤i≤j≤n are independent, and for 1 ≤ i ≤ n, Yii has law Qn,
while for 1 ≤ i < j ≤ n, Yij has law Pn. We form the matrix

A′
ij = 1

(
(i, j) /∈ I

)
Aij + 1

(
(i, j) ∈ I

) Yij√
n
.

By construction,
√

nA′ and Y have the same distribution and are independent of F .
Also, by Lemma B.2 and Jensen’s inequality,

EFd(μA+C,μA′+C) ≤
√
EF

tr(A − A′)2

n

≤
√√√√ 1

n2

∑
1≤i,j≤n

EF1
(
(i, j) ∈ I

)|Yij |2 ≤ c0

√
|I |
n2 ,

where we have used the fact that, for some constant c0 > 0,

max
(
E|Y11|2,E|Y12|2) ≤ c2

0.

Define the event

F = {|I | ≤ δ2n2/c2
0
}
.

Then F ∈ F and

1FEFd(μA+C,μA′+C) ≤ δ.(24)

From Lemma 2.4, for some sequence s3(n) → ∞, for all n large enough,

P
(
Fc) ≤ e−s3(n)n1+α/2

.(25)

Observe that by definition of the distance (12),

d(EFμA′+C,EFμA+C) ≤ EFd(μA′+C,μA+C).

Since A′ and Y/
√

n have the same distribution, we deduce from (24), (25) and the
triangle inequality that the proof of (23) can be reduced to the proof of

lim
n→∞

1

n1+α/2 logP
(
d(μsc �μC,EFμY/

√
n+C) ≥ δ

) = −∞.(26)
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Clearly, E|Y12|3 ≤ c0(logn)6/α and σ 2 = Var(Y12) → 1. We may apply the uni-
form estimate of Theorem 2.6, applied to Y/(σ

√
n) and M = C, which is F -

measurable. We find for any δ > 0,

P
(
d(μsc �μC,EFμY/(σ

√
n)+C) ≥ δ

) = 0

for all n ≥ n0(δ) where n0(δ) is a constant depending only on δ.
On the other hand, arguing as above, from Hoffman–Wielandt’s inequality

(Lemma B.2) and Jensen’s inequality, for any δ > 0,

d(EFμY/
√

n+C,EFμY/(σ
√

n)+C) ≤ EFd(μY/
√

n+C,μY/(σ
√

n)+C)

≤ EF

√
(1 − 1/σ)2

n2 tr
(
Y 2

)
≤ |1 − 1/σ |

n

√
E tr

(
Y 2

) ≤ δ

for all n ≥ n1(δ) where n1(δ) is a constant depending only on δ.
This concludes the proof of (26) and of Proposition 2.1.

REMARK 2.7. In the proof of Proposition 2.1, we have only used the follow-
ing assumptions on the Wigner matrix X: (i) Var(X12) = 1 and (ii) there exists
c > 0 such that for all i ≤ j ,

lim sup
t→∞

1

tα
logP

(|Xij | ≥ t
) ≤ −c.

3. Large deviations of very sparse rooted networks. In this section, we start
by adapting to our setting the notion of local weak convergence of rooted networks,
introduced in [2, 5] and [1]. Next, we introduce a suitable projective limit topology
on the space of networks. Then we prove the LDP for the network Gn induced by
the very sparse matrix C. Finally, we introduce the spectral measure associated to
a network and project the LDP for networks onto a LDP for spectral measures.

3.1. Locally finite Hermitian networks. Let V be a countable set, the vertex
set. A pair (u, v) ∈ V 2 is an oriented edge. A network or weighted graph G =
(V ,ω) is a vertex set V together with a map ω from V 2 to C. We say that a
network is Hermitian, if for all (u, v) ∈ V 2,

ω(u, v) = ω(v,u).

For ease of notation, we sometimes set ω(v) = ω(v, v) for the weight of the loop
at v. The degree of v in G is defined by

deg(v) = ∑
u∈V

∣∣ω(v,u)
∣∣2.
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The network G is locally finite if for any vertex v, deg(v) < ∞.
A path π from u to v in V is a sequence π = (u0, . . . , uk) with u0 = u, uk = v

and, for 1 ≤ i ≤ k, |ω(ui−1, ui)| > 0. If such π :u → v exists, then one defines the
�2 distance

Dπ(u, v) =
(

k∑
i=1

∣∣ω(ui−1, ui)
∣∣−2

)1/2

.

The distance between u and v is defined as

D(u,v) = inf
π :u→v

Dπ(u, v).

Notice that weights are thought of as inverse of distances. If there is no path
π :u → v, then the distance D(u,v) is set to be infinite. A network is connected if
D(u,v) < ∞ for any u �= v ∈ V .

All networks we consider below will be Hermitian and locally finite, but not
necessarily connected. We call G the set of all such networks. For a network G ∈ G,
to avoid possible confusion, we will often denote by VG, ωG, degG the correspond-
ing vertex set, weight and degree functions.

Clearly, any n × n Hermitian matrix Hn ∈ Hn(C) defines a finite network G =
G(Hn) in a natural way, by taking

VG = {1, . . . , n}, ωG(i, j) = Hn(i, j).(27)

For simplicity, we often write simply Hn instead of G(Hn).

3.2. Rooted networks. Below, a rooted network (G,o) = (V ,ω, o) is a Her-
mitian, locally finite and connected network (V ,ω) with a distinguished vertex
o ∈ V , the root. For t > 0, we denote by (G,o)t the rooted network with vertex
set {u ∈ V :D(o,u) ≤ t}, and with the weights induced by ω. Two rooted net-
works (Gi, oi) = (Vi,ωi, oi), i ∈ {1,2}, are isomorphic if there exists a bijection
σ :V1 → V2 such that σ(o1) = o2 and σ(G1) = G2, where σ acts on G1 through
σ(u, v) = (σ (u), σ (v)) and σ(ω) = ω ◦ σ .

We define the semidistance dloc between two rooted networks (G1, o1) and
(G2, o2) to be

dloc
(
(G1, o1), (G2, o2)

) = 1

1 + T
,

where T is the supremum of those t > 0 such that there is a bijection σ :
V(G1,o1)t → V(G2,o2)t with σ(o1) = o2 and such that the function ωG2 ◦ σ − ωG1 is
bounded by 1/t on V 2

(G1,o1)t
.

The rooted network isomorphism defines a space G∗ of equivalence classes of
rooted networks (G,o). On the space G∗, dloc becomes a distance. The associated
topology will be referred to as the local topology. We write g for an element of G∗.

We shall denote the convergence on (G∗, dloc) by dloc(gn,g) → 0 or gn
loc→ g.
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The space (G∗, dloc) is separable and complete [1]. Let P(G∗) denote the space

of probability measures on G∗. For μ,μn ∈ P(G∗), we write μn
loc� μ when μn

converges weakly, that is, when
∫

f dμn → ∫
f dμ for every bounded continuous

function f on (G∗, dloc). This notion of weak convergence is often referred to as
local weak convergence. See [1] for more details and examples.

For a network G ∈ G, and v ∈ VG, one writes G(v) for the connected component
of G at v, that is, the largest connected network G′ ⊂ G with v ∈ VG′ . If G ∈ G is
finite, that is, VG is finite, one defines the probability measure U(G) ∈ P(G∗) as
the law of the equivalence class of the rooted network (G(o), o) where the root o

is sampled uniformly at random from VG:

U(G) = 1

VG

∑
v∈VG

δg(v),

where g(v) stands for the equivalence class of (G(v), v). If Gn,n ≥ 1, is a se-
quence of finite networks from G, we shall say that Gn has local weak limit

ρ ∈ P(G∗) if U(Gn)
loc� ρ.

3.3. Sofic measures. Following [1], a measure ρ ∈ P(G∗) is called sofic if
there exists a sequence of finite networks Gn,n ≥ 1, whose local weak limit is ρ.
We shall need to identify a subset of the sofic measures. Let ϑa,ϑb denote the
laws of X12/|X12| and X11/|X11|, respectively, for X12 ∈ Sα(a) and X11 ∈ Sα(b);
see Assumption 1, and let Sa, Sb ⊂ S

1 denote their supports. Let An ⊂ Hn(C) be
the set of n × n Hermitian matrices H such that either Hij = 0 or Hij/|Hij | ∈ Sa

for all i < j , and such that either Hii = 0 or Hii/|Hii | ∈ Sb for all i. We say that
ρ ∈ P(G∗) is admissible sofic if there exists a sequence of matrices Hn ∈ An such

that U(Hn)
loc� ρ, where Hn is identified with the associated network G(Hn) as

in (27). We denote by Ps(G∗) the set of admissible sofic probability measures.
Measures in Ps(G∗) will often be called simply sofic if no confusion can arise.

Let g∅ stand for the trivial network consisting of a single isolated vertex (the
root) with zero weights. We refer to g∅ as the empty network. Clearly, the Dirac
mass at the empty network ρ = δg∅ is sofic (it suffices to consider matrices with
zero entries). Let us consider some more examples.

EXAMPLE 3.1. Suppose that Sb = {−1,+1}. Let Y1, Y2, . . . be i.i.d. random
variables with distribution ν ∈ P(R). Consider the random diagonal matrix Hn

with Hn(i, i) = Yi . Then, by the law of large numbers, almost surely U(Hn)
loc� ρ,

where ρ is given by

ρ =
∫
R

δgx dν(x),

if gx is the network consisting of a single vertex (the root) with loop weight equal
to x.
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EXAMPLE 3.2. Suppose that Z1,Z3,Z5, . . . are i.i.d. complex random vari-
ables with law μ ∈ P(C) such that μ-a.s. one has either Z1 = 0, or Z1/|Z1| ∈ Sa .
Consider the n × n matrix H such that Hn(j, j + 1) = Zj , Hn(j + 1, j) = Z̄j ,
for all odd 1 ≤ j ≤ n − 1, and all other entries of Hn are zero. By construction,

Hn ∈ An almost surely. From the law of large numbers, almost surely U(Hn)
loc� ρ,

where ρ is given by

ρ = 1

2

∫
C

(δĝz
+ δĝz̄

) dμ(z),

if ĝz denotes the equivalence class of the two vertex network (V ,ω, o), with V =
{o,1}, ω(o,1) = z, ω(1, o) = z̄ and ω(o, o) = ω(1,1) = 0.

EXAMPLE 3.3. For any fixed n ∈ N, if Hn ∈ An, then U(Hn) ∈ Ps(G∗). In-
deed, take a sequence of m×m matrices Am ∈ Am defined as follows. Let k, r ≥ 0,
with r < n, be integers such that m = kn + r , and take Am as the block diag-
onal matrix with the first k blocks all equal to Hn and the last block of size r

equal to zero. Then U(Am) = n
n+(r/k)

U(Hn)+ 1
1+(kn/r)

δg∅ . As m → ∞, r/k → 0,
kn/r → ∞ and, therefore, U(Am) converges to U(Hn).

3.4. Truncated networks. It will be important to work with suitable trunca-
tions of the weights. To this end we consider, for 0 < θ < 1, networks G ∈ G such
that for any (u, v) ∈ V 2

G,

degG(v) ≤ θ−2 and
∣∣ωG(u, v)

∣∣ ≥ θ1
(
ωG(u, v) �= 0

)
.(28)

We call Gθ the set of all such networks. Clearly, any G ∈ Gθ is locally finite and
has at most θ−4 outgoing nonzero edges from any vertex. As before, one defines
the space Gθ∗ by taking equivalence classes of connected rooted networks from Gθ .
We define P(Gθ∗ ) as the sets of ρ ∈ P(G∗) with support in Gθ∗ , and set Ps(Gθ∗ ) =
P(Gθ∗ ) ∩Ps(G∗).

LEMMA 3.4. (i) Ps(G∗) is closed for the local weak topology.

(ii) For any θ > 0, Gθ∗ is a compact set for the local topology.

PROOF. For (i): by definition, Ps(G∗) is the closure of the set of U(G) such
that G is an admissible finite network [i.e., for some integer n ≥ 1, H ∈ An and
G = G(H) as in (27)].

For (ii): let g ∈ Gθ∗ and (G,o) be a rooted network in the equivalence class g.
Observe that each edge of G has a weight bounded above by θ−1. This implies
that in G each path whose total length is bounded by t > 0, contains at most t2/θ2

edges. Moreover, G has at most θ−4 outgoing edges from any vertex. Hence, G

has at most n(t) = θ−4t2/θ2
vertices at distance less than t from any given vertex.
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Now, we denote by Gθ,t∗ the set of equivalence classes of (G,o)t such that the
equivalence class of (G,o) is in Gθ∗ . There is a finite number, say m(t), of equiv-
alence classes of rooted connected graphs with less than n(t) vertices (without
weights). Since all weights of g ∈ Gθ∗ are in [θ, θ−1], there is a covering of Gθ,t∗
with balls of radius 1/(1 + t) of cardinal at most k(t) = m(t)(tθ−1)n(t)2

.
Notice that for any rooted network dloc((G,o), (G,o)t ) ≤ 1/(1 + t). Hence,

from the definition of dloc, we have proved that, for any t > 0, there exists a finite
covering of Gθ∗ with balls of radius 1/(1 + t). This proves that Gθ∗ is precompact.
The fact that Gθ∗ is closed follows directly from (28). �

Next, we describe a canonical way to obtain a network in Gθ by truncating
a network from G. This will allow us to introduce a topology on P(G∗) that is
weaker than the local weak topology. In particular, a topology for which Ps(G∗) is
compact; compare Lemmas 3.4 and 3.8. For 0 < θ < 1, define the two continuous
functions

χθ(x) =
⎧⎨⎩

0, if x ∈ [0, θ),

(x − θ)/θ, if x ∈ [θ,2θ),

1, if x ∈ [2θ,∞),

χ̃θ (x) =
⎧⎪⎨⎪⎩

1, if x ∈ [
0, θ−2 − 1

)
,

θ−2 − x, if x ∈ [
θ−2 − 1, θ−2),

0, if x ∈ [
θ−2,∞)

that will serve as approximations for the indicator functions 1(x ≥ θ) and 1(x ≤
θ−2).

If G = (V ,ω), we define G̃θ = (V , ω̃θ ) as the network with vertex set V and,
for all u, v ∈ V ,

ω̃θ (u, v) = ω(u, v)χ̃θ

(
degG(u) ∨ degG(v)

)
.(29)

Next, we define Gθ = (V ,ωθ) as the network with vertex set V and, for all
u, v ∈ V ,

ωθ(u, v) = ω̃θ (u, v)χθ

(∣∣ω̃θ (u, v)
∣∣).(30)

Clearly, Gθ satisfies (28), and for any u, v ∈ V , |ωGθ (u, v)| ≤ θ−1, and

degGθ
(u) ≤ degG(u) and

∣∣ωGθ (u, v)
∣∣ ≤ ∣∣ωG(u, v)

∣∣.(31)

If g ∈ G∗ and the network (G,o) is in the equivalence class g, then gθ ∈ Gθ∗ is
defined as the equivalence class of (Gθ(o), o), where Gθ is defined by (30). This
defines a map g �→ gθ from G∗ to Gθ∗ . If ρ ∈ P(G∗) and g has law ρ, the law of gθ

defines a new measure ρθ ∈ P(Gθ∗ ).
The next lemma follows easily from the continuity of χθ , χ̃θ and the fact that as

θ → 0, for any for x > 0, χθ(x) → 1 and χ̃θ (x) → 1.
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LEMMA 3.5 (Continuity of projections).

(i) For θ > 0, the map g �→ gθ from G∗ → Gθ∗ is continuous for the local
topology;

(ii) for θ > 0, the map ρ �→ ρθ from P(G∗) to P(Gθ∗ ) is continuous for the
local weak topology;

(iii) as θ → 0, one has gθ
loc→ g and ρθ

loc� ρ, for any g ∈ G∗ and ρ ∈ P(G∗).

3.5. Projective topology for locally finite rooted networks. In order to circum-
vent the lack of compacity of Ps(G∗) w.r.t. local weak topology, we now introduce
a weaker topology, the projective topology. For integers j ≥ 1, set

θj = 2−j .

Let pj :G∗ → Gθj∗ be defined by pj (g) = gθj
. Similarly, for 1 ≤ i ≤ j , pij :Gθj∗ →

Gθi∗ is the map pij (g) = gθi
, g ∈ Gθj∗ . The collection (pij )1≤i≤j is a projective

system in the sense that for any 1 ≤ i ≤ j ≤ k,

pik = pij ◦ pjk.(32)

The latter follows from 2θj+1 ≤ θj and θ−2
j ≤ θ−2

j+1 − 1.

Define the projective space G̃∗ ⊂ ∏
j≥1 G

θj∗ as the set of y = (y1, y2, . . .) ∈∏
j≥1 G

θj∗ such that for any i ≤ j , pij (yj ) = yi ; see, for example, [14], Ap-
pendix B, for more details on projective spaces. One can identify G∗ and G̃∗:

LEMMA 3.6. The map ι(g) = (pj (g))j≥1 from G∗ to G̃∗ is bijective.

PROOF. The fact that ι is injective is a consequence of Lemma 3.5 part (iii).
It remains to prove that the map ι is surjective. Let y = (yj ) ∈ G̃∗. One can repre-
sent the yj ’s by rooted networks (Gj , o) = (Vj ,ωj , o) such that Vj ⊂ Vj+1. Set
V := ⋃

j≥1 Vj . By adding isolated points, one can view (Gj , o) as the connected

component at the root of the network Ĝj = (V ,ωj ), where ωj(u, v) = 0 whenever
either u or v (or both) belong to V \ Vj . Moreover, one has that Ĝi = (Ĝj )θi

for
all i < j . This sequence of networks is monotone in the sense of (31).

For fixed u, v ∈ V , and j ∈ N, if ωj(u, v) �= 0 then the degree of u and v is
bounded by 22j in any network Ĝk , k ≥ j and, therefore, ωk(u, v) = ωj+1(u, v)

for all k ≥ j + 1. In particular, for all u, v ∈ V the limit

ω(u, v) = lim
j→∞ωj(u, v)

exists and is finite. The same argument shows that for any u ∈ V , limj→∞ deg
Ĝj

(u)

exists and equals ∑
v∈V

∣∣ω(u, v)
∣∣2 < ∞.
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To prove surjectivity of the map ι, it suffices to take the network G = (V ,ω), and
observe that it satisfies Gθj

= Ĝj for all j ∈ N. �

With a slight abuse of notation, we will from now on write G∗ in place of G̃∗.
The projective topology on G∗ is the topology induced by the metric

dproj
(
g,g′) = ∑

j≥1

2−j dloc
(
gθj

,g′
θj

)
.

The metric space (G∗, dproj) is complete and separable. Also, gn
proj→ g, that is,

dproj(gn,g) → 0, if and only if for any θ > 0, (gn)θ
loc→ gθ . The projective weak

topology is the weak topology on P(G∗) associated to continuous functions on

(G∗, dproj). We denote the associated convergence by
proj� . Notice that ρn

proj� ρ if

and only if for any θ > 0, (ρn)θ
loc� ρθ . The topology generated by dproj is coarser

than the topology generated by dloc, and the weak topology associated to
proj� is

coarser than the weak topology associated to
loc�.

EXAMPLE 3.7. Consider the star shaped rooted network (Gn,1) = (Vn,ωn,1)

where Vn = {1, . . . , n}, with ωn(u, v) = ωn(v,u) = 1, if u = 1 and v �= 1, and
ω(u, v) = 0 otherwise. Let gn denote the associated equivalence class in G∗. Then
gn does not converge in (G∗, dloc) because of the diverging degree at the root. How-

ever, in (G∗, dproj), gn
proj→ g∅ where g∅ is the empty network. Moreover, U(Gn)

does not converge in P(G∗) for
loc� however U(Gn)

proj� δg∅ .

LEMMA 3.8. (i) G∗ is compact for the projective topology.

(ii) Ps(G∗) is compact for the projective weak topology.

PROOF. Statement (i) is a consequence of Tychonoff theorem and Lem-
ma 3.4(ii). It implies that P(G∗) is compact for projective weak topology. Hence,
to prove statement (ii), it is sufficient to check that Ps(G∗) is closed. Assume that

ρn ∈ Ps(G∗) and ρn
proj� ρ. Then for any θ > 0, (ρn)θ ∈ Ps(G∗) and (ρn)θ

loc� ρθ . By
Lemma 3.4(i), we deduce that ρθ ∈ Ps(G∗). However, as θ → 0, using Lemma 3.5,

we find ρθ
loc� ρ. By appealing to Lemma 3.4(i) again, we get ρ ∈ Ps(G∗). �

3.6. Large deviations for the network Gn. For a rooted network (G,o), G =
(VG,ωG), define the functions

ψ(G,o) = ∣∣ωG(o)
∣∣α and φ(G,o) = 1

2

∑
v∈VG\o

∣∣ωG(o, v)
∣∣α.(33)
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Since these functions are invariant under rooted isomorphisms, one can take them
as functions on G∗. Then, if ρ ∈ P(G∗) we write Eρψ , and Eρφ to denote the
corresponding expectations. We remark that for any θ > 0, the restriction of φ,ψ

to (Gθ∗ , dloc) gives two bounded continuous functions. Therefore, as functions on
(G∗, dproj), φ and ψ are lower semicontinuous.

We now come back to the random matrix C = C(n) defined in (11). For integer
n ≥ 1, consider the associated network

Gn = (Vn,ωn) with Vn = {1, . . . , n} and ωn(i, j) = Cij .(34)

From the first Borel–Cantelli lemma, almost surely the matrix C has no nonzero

entry for n large enough. Therefore, almost surely, U(Gn)
loc� δg∅ , the Dirac mass

at the empty network.
For ease of notation, we define the random probability measure

ρn = U(Gn).

Notice that, by definition one has

Eρnψ = 1

n1+α/2

n∑
i=1

|Xii |α1
(
ε(n)

√
n ≤ |Xii | ≤ ε(n)−1√n

)
(35)

and

Eρnφ = 1

n1+α/2

∑
1≤i<j≤n

|Xij |α1
(
ε(n)

√
n ≤ |Xij | ≤ ε(n)−1√n

)
.(36)

The next proposition gives the large deviation principle for ρn = U(Gn) for the
projective weak topology.

PROPOSITION 3.9. U(Gn) satisfies an LDP on P(G∗) equipped with the pro-
jective weak topology, with speed n1+α/2 and good rate function I :P(G∗) �→
[0,∞] defined by

I (ρ) =
{

bEρψ + aEρφ, if ρ ∈Ps(G∗),
+∞, if ρ /∈Ps(G∗).

(37)

If a or b is equal to ∞, the above formula holds with the convention ∞ × 0 = 0.

PROOF. By construction, ρn = U(Gn) ∈ Ps(G∗); see Example 3.3. Since
Ps(G∗) is closed (see Lemma 3.4), it is sufficient to establish the LDP on the space
Ps(G∗) with good rate function I (ρ) = bEρψ + aEρφ, ρ ∈ Ps(G∗).

Let Bproj(ρ, δ) [resp., Bloc(ρ, δ)] denote the closed ball with radius δ > 0 and
center ρ ∈ Ps(G∗) for the Lévy metric associated to the projective weak topology
(resp., local weak topology).
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Upper bound. By Lemma 3.8(ii), Ps(G∗) is compact. Hence, it is sufficient to
prove (see, e.g., [14]) that for any ρ ∈Ps(G∗)

lim sup
δ→0

lim sup
n→∞

1

n1+α/2 logP
(
ρn ∈ Bproj(ρ, δ)

) ≤ −bEρψ − aEρφ.(38)

Assume first that Eρψ and Eρφ are finite. From standard properties of weak
convergence, and the fact that φ,ψ are lower semicontinuous on (G∗, dproj), it fol-
lows that the maps μ �→ Eμψ and μ �→ Eμφ are lower semicontinuous on Ps(G∗)
w.r.t. the projective weak topology. Hence, we have for some continuous function
h(·) with h(0) = 0,

P
(
ρn ∈ Bproj(ρ, δ)

) ≤ P
(
Eρnψ ≥ Eρψ − h(δ);Eρnφ ≥ Eρφ − h(δ)

)
.

Since (35) and (36) are independent random variables,

P
(
ρn ∈ Bproj(ρ, δ)

)
(39)

≤ P
(
Eρnψ ≥ Eρψ − h(δ)

)
P
(
Eρnφ ≥ Eρφ − h(δ)

)
.

To prove the part of the bound involving φ, one may assume Eρφ > 0. Take δ

small enough, so that s := Eρφ − h(δ) > 0. From (36), using Markov’s inequality,
for any a1 > 0,

P(Eρnφ ≥ s) ≤ e−a1n
1+α/2s(

E exp
(
a1|X12|α1ε(n)

√
n≤|X12|≤ε(n)−1√n

))n(n−1)/2
.

Take 0 < a1 < a. By assumption, there exists a2 ∈ (a1, a), such that for all t > 0
large enough,

P
(|X12| ≥ t

) ≤ exp
(−a2t

α).
Using (16), one deduces that

E exp
(
a1|X12|α1ε(n)

√
n≤|X12|≤ε(n)−1√n

)
≤ 1 + e−(a2−a1)ε(n)αnα/2 + αa1

∫ ε(n)−1√n

ε(n)
√

n
xα−1e−(a2−a1)x

α

dx

≤ 1 + a2

a2 − a1
e−(a2−a1)ε(n)αnα/2

.

Therefore,

P(Eρnφ ≥ s) ≤ exp
(
−a1n

1+α/2s + a2

2(a2 − a1)
n2e−(a2−a1)ε(n)αnα/2

)
.

We have thus proved that for δ small enough

lim sup
n→∞

1

n1+α/2 logP(Eρnφ ≥ s) ≤ −a1
(
Eρφ − h(δ)

)
.
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Since the above inequality is true for any a1 < a, it also holds for a1 = a. Similarly,
one has

lim sup
n→∞

1

n1+α/2 logP(Eρnψ ≥ s) ≤ −b
(
Eρψ − h(δ)

)
.

From (39), it follows that (38) holds under the assumption that both Eρψ,Eρφ are
finite.

If, for example, Eρψ is infinite, then the above argument can be repeated, re-
placing Eρψ by a large number K , and then letting K → ∞ at the end. The same
reasoning applies to the case where Eρφ = ∞. Similarly, if, for example, b = ∞
and Eρψ > 0, one can replace b above by a large number K and then let K → ∞
at the end. The same applies to the case a = ∞ and Eρφ > 0. In particular, in all
these cases one has that the left-hand side of (38) is −∞. �

Lower bound. It is sufficient to prove that for any ρ ∈ Ps(G∗) and any δ > 0,

lim inf
n→∞

1

n1+α/2 logP
(
ρn ∈ Bproj(ρ, δ)

)≥ −bEρψ − aEρφ.(40)

In order to prove (40), we may assume without loss of generality that I (ρ) =
bEρψ + aEρφ < ∞. By monotonicity (31), one has that

lim
j→∞ I (ρθj

) = I (ρ).

Therefore, since the projective topology is generated from the product topology

on
∏

j≥1 G
θj∗ , it is sufficient to prove (40) for all ρ ∈ Ps(Gθ∗ ), for all 0 < θ < 1.

Finally, since the local weak topology is finer than the projective weak topology, it
is enough to prove that for any 0 < θ < 1, ρ ∈ Ps(Gθ∗ ) and δ > 0,

lim inf
n→∞

1

n1+α/2 logP
(
ρn ∈ Bloc(ρ, δ)

)≥ −bEρψ − aEρφ.(41)

Let us start with some simple consequences of Assumption 1. From (4), there
exists a positive sequence ηn converging to 0 such that, for any s ≥ ε(n) = 1/ logn,

e−(a+ηn)sαnα/2 ≤ P
(|X12| ≥ s

√
n
) ≤ e−(a−ηn)sαnα/2

.(42)

In particular, if s ≥ ε(n), then for any γ > 0, for all n large enough,

P
(|X12| ∈ [s, s + γ )

√
n
) ≥ 1

2e−(a+ηn)sαnα/2
.

Therefore, using (5), one finds that there exists a sequence an → a such that for
every γ > 0, for all n large enough, for every z ∈ C, with |z| ≥ ε(n), z/|z| ∈ Sa ,

P
(
X12/

√
n ∈ BC(z, γ )

) ≥ e−an|z|αnα/2
,(43)

where Sa denotes the compact support of the measure ϑa ∈ P(S1) associated to
X12, and BC(z, γ ) is the Euclidean ball in C, with center z and radius γ > 0.
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Similarly, there exists a sequence bn → b such that for every γ > 0, for all n

large enough, for every x ∈R, with |x| ≥ ε(n), x/|x| ∈ Sb,

P
(
X11/

√
n ∈ BR(x, γ )

) ≥ e−bn|x|αnα/2
.(44)

We remark that (43) and (44) are the only places where the assumption (5) is used
in this work.

Since ρ ∈ Ps(Gθ∗ ), there exists a sequence of matrices Hn ∈ An, such that the

associated network as in (27) is in Gθ and such that U(Hn)
loc� ρ. In particular, for

n sufficiently large one has

U(Hn) ∈ Bloc(ρ, δ/2).

From Lemma 3.10, there exists γ = γ (δ, θ) > 0 such that if |ωGn(i) − Hn(i, i)| ≤
γ and |ωGn(i, j) − Hn(i, j)| ≤ γ for all 1 ≤ i ≤ j ≤ n, then ρn = U(Gn) ∈
Bloc(U(Hn), δ/2). Then, by the triangle inequality, for all n large enough,

P
(
ρn ∈ Bloc(ρ, δ)

)
≥ P

(
ρn ∈ Bloc

(
U(Hn), δ/2

))
≥ P

(
max

1≤i≤n

∣∣ωGn(i) − Hn(i, i)
∣∣≤ γ, max

1≤i<j≤n

∣∣ωGn(i, j) − Hn(i, j)
∣∣ ≤ γ

)
.

Independence of the weights ωGn(i, j) = Ci,j , 1 ≤ i ≤ j ≤ n then gives

P
(
ρn ∈ Bloc(ρ, δ)

)
≥

n∏
i=1

P
(∣∣Cii − Hn(i, i)

∣∣≤ γ
) ∏

1≤i<j≤n

P
(∣∣Cij − Hn(i, j)

∣∣≤ γ
)
.

Notice that whenever Hn(i, j) �= 0 one has |Hn(i, j)| ≥ θ , and thus using (42)
and (44) one has for all i = 1, . . . , n:

P
(∣∣Cii − Hn(i, i)

∣∣≤ γ
)

≥ e−bnnα/2|Hn(i,i)|α (1(∣∣Hn(i, i)
∣∣> 0

)
+ (

1 − e−cε(n)αnα/2)
1
(∣∣Hn(i, i)

∣∣= 0
))

≥ e−bnnα/2|Hn(i,i)|α (1 − e−cε(n)αnα/2)
,

where the constant c satisfies c ≥ b/2 > 0. Similarly, using (43), for all i ≤ j and
for some c ≥ a/2 > 0:

P
(∣∣Cij − Hn(i, j)

∣∣≤ γ
) ≥ e−annα/2|Hn(i,j)|α (1 − e−cε(n)αnα/2)

.

Observe that
1

n

∑
1≤i≤n

∣∣Hn(i, i)
∣∣α = EU(Hn)ψ,

1

n

∑
1≤i<j≤n

∣∣Hn(i, j)
∣∣α = EU(Hn)φ.
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Summarizing, using (1 − e−cε(n)αnα/2
)n

2 ≥ 1/2 for n large enough, one finds

P
(
ρn ∈ Bloc(ρ, δ)

) ≥ 1
2e−bnn1+α/2

EU(Hn)ψe−ann1+α/2
EU(Hn)φ.(45)

Since ψ and φ are continuous and bounded on Gθ∗ , one has EU(Hn)ψ → Eρψ and
EU(Hn)φ → Eρφ, as n → ∞. Moreover, an → a and bn → b. Therefore, (45) im-
plies the desired bound (41). This concludes the proof of the lower bound. �

The next lemma was used in the proof of the lower bound of Proposition 3.9.
While the estimate is somewhat rough, it is crucial that it is uniform in the cardi-
nality n of the vertex set.

LEMMA 3.10. Let 0 < θ < 1 and δ > 0. There exists γ = γ (δ, θ) > 0 such
that for any integer n ≥ 1, for any networks G ∈ G, H ∈ Gθ with common vertex
set V = {1, . . . , n} such that

max
(u,v)∈V 2

∣∣ωG(u, v) − ωH(u, v)
∣∣ ≤ γ,(46)

then

max
u∈V

dloc
((

G(u),u
)
,
(
H(u),u

)) ≤ δ.(47)

In particular,

U(G) ∈ Bloc
(
U(H), δ

)
.

PROOF. Each edge of H has a weight bounded above by θ−1. This implies
that in H each path whose total length is bounded by t > 0, contains at most t2/θ2

edges. Moreover, H has at most θ−4 outgoing edges from any vertex. Hence, H

has at most m = θ−4t2/θ2
vertices at distance less than t from any given vertex. Fix

the root u ∈ V and t > 0. Therefore, there must exist t0 > 0 such that t/2 < t0 < t ,
and an interval I = [t0 − t/(8m), t0 + t/(8m)], such that there is no vertex within
distance s ∈ I from u in H .

If e1, . . . , ek are the edges on a path in H , then provided that 0 < γ < θ/2, one
has [(

k∑
i=1

∣∣ωH(ei)
∣∣−2

)1/2

−
(

k∑
i=1

∣∣ωG(ei)
∣∣−2

)1/2]2

≤
k∑

i=1

(∣∣ωH(ei)
∣∣−1 − ∣∣ωG(ei)

∣∣−1)2 ≤ 4γ 2k

θ4 .

The first inequality follows from the convexity of [0,∞)2 � (x, y) �→ (
√

x−√
y)2,

which yields ((
∑

i ui)
1/2 − (

∑
i vi)

1/2)2 ≤ ∑
i (u

1/2
i − v

1/2
i )2, for any u, v ∈ R

k+.
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The second inequality follows from |ωH(ei)| ≥ θ and the assumption (46). In the
worst possible case, one can take k = t2/θ2 for the number of edges at distance
t0 from u. Together with the previous observation, this shows that if 2γ

√
k/θ2 ≤

t/(8m), that is, γ ≤ θ3/(16m), then the neighborhood of u consisting of vertices
within distance t0 in G and in H have the same vertex set. From the definition of
dloc, this choice of γ in (46) implies that

dloc
((

G(u),u
)
,
(
H(u),u

)) ≤ 1

1 + γ −1 ∧ t0
≤ 2

t
.

Thus, taking t = 2/δ, one has (47), as soon as, for example, γ ≤ θ3/(16m) =
θ3+16/(δ2θ2)/16. From the definition of the Lévy distance, it immediately follows
that U(G) ∈ Bloc(U(H), δ). �

REMARK 3.11. In the proof of Proposition 3.9, we have not appealed to gen-
eral results, such as Dawson–Gärtner’s theorem, that are available for projective
topologies (see, e.g., [14], Section 4.6). We have, however, crucially used the com-
pactness of Ps(G∗) for the projective weak topology. It is not hard to check that
the rate function I (ρ) in (37) is not good for the weak topology (level sets are not
compact).

3.7. Spectral measure. For a network G = (V ,ω) ∈ Gθ , we may define the
bounded linear operator T on the Hilbert space �2(V ) by

T ev = ∑
u∈V

ω(u, v)eu(48)

for any v ∈ V , where {eu, u ∈ V } denotes the canonical orthonormal basis of
�2(V ). T is bounded since

‖T ev‖2
2 = ∑

u∈V

∣∣ω(v,u)
∣∣2 = deg(v) ≤ θ−2.(49)

Also, since G is Hermitian, T is self-adjoint. We may thus define the spectral
measure at vector ev , see, e.g., [20], as the unique probability measure μv

T on R

such that for any integer k ≥ 1,∫
xk dμv

T = 〈
ev, T

kev

〉
.(50)

Notice that for rooted networks (G,o) with G ∈ Gθ , then the associated spectral
measure μo

T is constant on the equivalence class of (G,o), so that μo
T can be

defined as a measurable map from Gθ∗ to P(R). Thus, if ρ ∈P(Gθ∗ ) for some θ > 0,
one can define the spectral measure of ρ as

μρ = Eρμo
T .(51)
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In particular, consider a Hermitian matrix Hn ∈ Hn(C), let Gn = G(Hn) be the
associated network as in (27), and let ρn = U(Gn). Then, if (ψ1, . . . ,ψn) is an
orthonormal basis of eigenvectors of Hn with associated eigenvalues (λ1, . . . , λn),
by the spectral theorem, for any v ∈ {1, . . . , n},

μv
Hn

=
n∑

i=1

∣∣〈ψi, ev〉
∣∣2δλi

,

where μv
Hn

stands for the spectral measure at v; see (50). Moreover, the empirical
distribution of the eigenvalues of Hn satisfies

μHn = 1

n

n∑
i=1

δλi
= 1

n

n∑
v=1

μv
Hn

= μρn.(52)

Hence, our definition of spectral measure for a sofic distribution coincides for finite
networks with the empirical distribution of the eigenvalues.

We turn to the definition of μρ for the case where ρ ∈ P(G∗) but there is no
θ > 0 such that ρ ∈ P(Gθ∗ ). In this case, (51) allows one to define the spectral
measures μρθ , where the truncated network ρθ is defined as in Lemma 3.5. Next,
we shall define the spectral measure μρ as the limit of μρθ as θ → 0, provided
some extra assumptions are satisfied. More precisely, for a rooted network (G,o),
G ∈ G, and for β > 0, let

ξβ(G,o) = ∑
v∈VG

∣∣ωG(o, v)
∣∣β.(53)

Since ξβ is constant on the equivalence class of (G,o), it can be seen as a function
on G∗. For β > 0, τ > 0, define

Ps,β,τ (G∗) = {
ρ ∈ Ps(G∗) :Eρξβ < τ

}
.

Lemma 3.12 below is an extension to the weighted case of analogous statements
in [10, 11], where spectral measures are defined for random rooted graphs (with
no weights). The first result allows one to define the spectral measure μρ of any
ρ ∈ Ps,β,τ (G∗).

LEMMA 3.12. Let 0 < β < 2, τ > 1 and ρ ∈ Ps,β,τ (G∗). Then the weak limit

μρ := lim
θ→0

μρθ

exists in P(R).

PROOF. To prove the lemma, we are going to show that the sequence μρθ ,
θ → 0, is Cauchy w.r.t. the metric (12).

By assumption, there exists a sequence Gn of networks on {1, . . . , n} such that

ρn
loc� ρ, where ρn = U(Gn). Call Tn the associated Hermitian matrix. The em-

pirical distribution of the eigenvalues of Tn satisfies μTn = μρn by (52) applied to
Hn = Tn.
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The truncations (ρn)θ and ρθ satisfy (ρn)θ
loc� ρθ by Lemma 3.5(ii). Moreover,

for all θ > 0,

μ(ρn)θ � μρθ .(54)

To prove (54), let T θ denote the random bounded self-adjoint operator associated
to ρθ via (48) and let T θ

n be the matrices associated to (ρn)θ . One can realize

these operators on a common Hilbert space �2(V ). Since (ρn)θ
loc� ρθ , from the

Skorokhod representation theorem one can define a common probability space
such that the associated networks converge locally almost surely, so that a.s.
T θ

n ev → T θev , in �2(V ), for any v ∈ V . This implies the strong resolvent con-
vergence; see, for example, [20], Theorem VIII.25(a), and in particular that for
any v ∈ V , a.s.

μv
T θ

n
� μv

T θ .

Then (54) follows by applying this to v = o and taking expectation.
Let T θ

n , T̃ θ
n be the matrices associated to (Gn)θ and (G̃n)θ , respectively, where

(G̃n)θ is defined according to (29), and (Gn)θ according to (30). From (14), using
the triangle inequality, Lemmas B.1 and B.2,

d(μT θ
n
,μTn) ≤ 1

n
rank

(
T̃ θ

n − Tn

)+
(

1

n
tr
(
T̃ θ

n − T θ
n

)2
)1/2

.

From the definition (29), one has

1

n
rank

(
T̃ θ

n − Tn

) ≤ 2

n

n∑
i=1

1
(
degGn

(i) ≥ θ−2 − 1
) = 2Pρn

(
degG(o) ≥ θ−2 − 1

)
.

From (30), one finds

1

n
tr
(
T̃ θ

n − T θ
n

)2 ≤ 1

n

n∑
i,j=1

∣∣ωGn(i, j)
∣∣21

(∣∣ωGn(i, j)
∣∣≤ 2θ

)
1
(
degGn

(i) ≤ θ−2)
= Eρn1

(
degG(o) ≤ θ−2)∑

v

∣∣ωG(o, v)
∣∣21

(∣∣ωG(o, v)
∣∣ ≤ 2θ

)
.

Letting n go to infinity, using μT θ
n

= μ(ρn)θ , and (54), one has d(μT θ
n
,μ

T θ ′
n

) →
d(μρθ ,μρθ ′ ). Therefore, by the triangle inequality and the dominated convergence

theorem, for any 0 < θ ′ < θ < 1/
√

2,

d(μρθ ,μρθ ′ ) ≤ 4Pρ

(
degG(o) ≥ θ−2/2

)
+ 2

(
Eρ1

(
degG(o) ≤ θ−2)∑

v

∣∣ωG(o, v)
∣∣21

(∣∣ωG(o, v)
∣∣ ≤ 2θ

))1/2

.
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Notice that, for β ∈ (0,2)

degG(o)β/2 =
(∑

v

∣∣ωG(o, v)
∣∣2)β/2

≤ ∑
v

∣∣ωG(o, v)
∣∣β = ξβ(G,o),(55)

where we use that
∑k

i=1 ar
i ≤ (

∑k
i=1 ai)

r for all ai ≥ 0, r ≥ 1 and k ∈ N. Moreover,∑
v

∣∣ωG(o, v)
∣∣21

(∣∣ωG(o, v)
∣∣ ≤ θ

) ≤ θ2−βξβ(G,o).

Hence, from Markov’s inequality,

d(μρθ ,μρθ ′ ) ≤ 4θβ
Eρξβ + 2θ1−β/2(Eρξβ)1/2.(56)

By assumption Eρξβ is finite. Hence, the sequence μρθ is Cauchy. �

LEMMA 3.13. For any β ∈ (0,2), τ > 0, the map ρ �→ μρ from Ps,β,τ (G∗) to
P(R) is continuous for the projective weak topology.

PROOF. For any θ > 0, from (56),

d(μρθ ,μρ) ≤ c
(
θβ + θ1−β/2),(57)

with a constant c = c(τ ) > 0. Hence, from the triangle inequality, if ρ,ρ′ ∈
Ps,β,τ (G∗),

d(μρ,μρ′) ≤ 2c
(
θβ + θ1−β/2)+ d(μρθ ,μρ′

θ
).

Consider a sequence ρ ′ such that ρ′ proj� ρ. If ρ′ proj� ρ then ρ′
θ

loc� ρθ and, therefore,
with the same argument used in the proof of (54) above one finds

μρ′
θ
� μρθ .

We deduce that

lim sup
ρ′proj�ρ

d(μρ,μρ′) ≤ 2c
(
θβ + θ1−β/2).

Since θ > 0 is arbitrarily small, the statement of the lemma follows. �

3.8. Large deviations for the empirical spectral measure μC . We can ap-
ply the previous results to the empirical spectral measure μC , where C = C(n)

is the random matrix defined in (11). So far, we have defined μρ for every
ρ ∈ ⋃

0<β<2
⋃

τ>1 Ps,β,τ (G∗). If ρ ∈ Ps(G∗) but ρ /∈ ⋃
0<β<2

⋃
τ>1 Ps,β,τ (G∗),

then we set

μρ = δ0.
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PROPOSITION 3.14. The empirical spectral measures μC satisfy an LDP on
P(R) equipped with the weak topology, with speed n1+α/2 and good rate function

 given by


(ν) = inf
{
I (ρ), ρ ∈ Ps(G∗) :μρ = ν

}
,(58)

where I (ρ) is the good rate function in Proposition 3.9.

PROOF. Recall that by (52) the network Gn in (34) satisfies ρn = U(Gn) and

μρn = μC.

Notice that if c = (a
2 ∧ b), then

I (ρ) ≥ cEρξα,(59)

where ξα is defined by (53). Hence, by Lemma 3.13, the map ρ �→ μρ is continu-
ous on the domain of I (ρ). We would like to apply a contraction principle to get
the LDP for μρn from the LDP for ρn; see, for example, [14], Theorem 4.2.1(a).
However, a little care is needed here because ρ �→ μρ is continuous on the set
I (·) < ∞ only.

We start with the lower bound. Assume that B is an open set in P(R). For
each τ > 0, by Lemma 3.13, the function fτ :ρ �→ μρ from Ps,α,τ (G∗) → P(R) is
continuous. Hence, f −1

τ (B) is an open subset of Ps,α,τ (G∗), and

P(μρn ∈ B) ≥ P
(
ρn ∈ f −1

τ (B)
)
.

From Proposition 3.9, it follows that

− inf
ρ∈Ps,α,τ (G∗) : μρ∈B

I (ρ) ≤ lim inf
n→∞

1

n1+α/2 logP(μρn ∈ B).

Using (59), one has for some c > 0:

− inf
ρ∈Ps (G∗) : μρ∈B

I (ρ) ≤ (−cτ) ∨ lim inf
n→∞

1

n1+α/2 logP(μρn ∈ B).

Letting τ tend to infinity, we obtain the desired lower bound:

− inf
ν∈B


(ν) ≤ lim sup
n→∞

1

n1+α/2 logP(μρn ∈ B).

To prove the upper bound, assume that B is a closed set in P(R). By
Lemma 3.13, f −1

τ (B) is a closed subset of Ps,α,τ (G∗). Write

P(μρn ∈ B) ≤ P
(
μρn ∈ B;ρn ∈ Ps,α,τ (G∗)

)+ P
(
ρn /∈ Ps,α,τ (G∗)

)
.

Proposition 3.9 yields

lim sup
n→∞

1

n1+α/2 logP
(
μρn ∈ B;ρn ∈ Ps,α,τ (G∗)

) ≤ − inf
ρ∈Ps,α,τ (G∗) : μρ∈B

I (ρ),
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and, for some c > 0:

lim sup
n→∞

1

n1+α/2 logP
(
ρn /∈ Ps,α,τ (G∗)

) ≤ −cτ.

We have checked that

lim sup
n→∞

1

n1+α/2 logP(μρn ∈ B) ≤ −
[
(cτ ) ∧ inf

μ∈B

(μ)

]
.

Letting τ tend to infinity, we obtain the desired upper bound. The fact that 
 is a
good rate function can be seen as in [14], Theorem 4.2.1(a), or, more directly, it
follows from Lemma 3.15 below. �

3.9. Proof of Theorem 1.1. Thanks to Proposition 2.1, all we have to show is
that is that the sequence of measures μsc �μC satisfies a LDP in P(R) with speed
n1+α/2, with the good rate function 
 defined in Proposition 3.14. Since the map
ν �→ μsc � ν is continuous in P(R), the above is an immediate consequence of
Proposition 3.14 and the standard contraction principle. This completes the proof
of Theorem 1.1.

3.10. On the rate function 
. We turn to a proof of the properties of the rate
function listed in Theorems 1.2 and 1.3.

LEMMA 3.15. For any β ∈ (0,2), τ > 1, for any ρ ∈ Ps,β,τ (G∗), one has∫
|x|β dμρ(x) ≤ Eρξβ.(60)

PROOF. We use the following Schatten bound: for all 0 < p ≤ 2,∫
|x|p dμA(x) ≤ 1

n

n∑
k=1

(
n∑

j=1

|Akj |2
)p/2

(61)

for every Hermitian matrix A ∈ Hn(C). For a proof, see Zhan [21], proof of The-
orem 3.32. For ρ ∈ Ps,β,τ (G∗), there exists a sequence of matrices Hn such that

ρn = U(Hn)
loc� ρ. Let T θ

n be the Hermitian matrix associated to (Hn)θ , the trun-
cated network. From (61) and (55), one has for all θ > 0:∫

|x|β dμT θ
n
(x) ≤ Eρn

[(
θ−2 ∧∑

v

∣∣ω(o, v)
∣∣2)β/2]

≤ Eρn

(
θ−β ∧ ξβ(G,o)

)
.

For θ > 0, the spectral measures μT θ
n

= μ(ρn)θ have compact support uniformly
in n. Thus, letting n go to infinity, from (54) one has∫

|x|β dμρθ (x) ≤ Eρξβ.(62)
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On the other hand, by definition of μρ (see Lemma 3.12), one has μρθ � μρ ,
θ → 0 and, therefore,∫

|x|β dμρ(x) ≤ lim inf
θ→0

∫
|x|β dμρθ (x).

This proves the claim (60). �

PROOF OF THEOREM 1.2(A). The proof is an immediate consequence of
Lemma 3.15. Indeed, from (59) and the definition of 
, it suffices to show that
for any τ > 1, for any ρ ∈ Ps,α,τ (G∗), one has∫

|x|α dμρ(x) ≤ Eρξα.(63)

This is the case α = β in (60). �

PROOF OF THEOREM 1.2(B). For x ∈ R, let gx ∈ G∗ denote the network con-
sisting of a single vertex o with weight ω(o, o) = x. If ν ∈ P(R), let ρ ∈ P(G∗)
denote the law ρ = ∫

R
δgx dν(x). Notice that

Eρξα =
∫
R

|x|α dν(x) = mα(ν).

Thus, we can assume Eρξα < ∞, otherwise there is nothing to prove. Since we
assume supp(ϑb) = {−1,+1}, one has that ρ is admissible sofic; see Example 3.1,
and ρ ∈ Ps,α,τ (G∗) for some τ > 1. The spectral measure μρ of ρ, defined as in
Lemma 3.12 is easily seen to be μρ = ν. Then 
(ν) ≤ I (ρ) = bEρξα = bmα(ν).

�

PROOF OF THEOREM 1.2(C). Thanks to parts (a) and (b), all we need to prove
is that


(ν) ≤ a

2
mα(ν),(64)

for all symmetric probabilities ν on R.
For z ∈ C, let ĝz ∈ G∗ denote the equivalence class of the two vertex network

(V ,ω, o), with V = {o,1}, ω(o,1) = z, ω(1, o) = z̄ and ω(o, o) = ω(1,1) = 0.
Fix some eiϕ ∈ Sa = supp(ϑa), let T be a nonnegative random variable with some
distribution μ+ on [0,∞), and let μ ∈ P(C) denote the law of T eiϕ . The law

ρ = 1

2

∫
C

(δĝz
+ δĝz̄

) dμ(z),

is sofic; see Example 3.2. A simple computation shows that the spectral measure
of ρ satisfies μρ = μsym, where μsym denotes the symmetric probability on R such
that ∫

R

f (x) dμsym(x) = 1

2

∫ ∞
0

(
f (x) + f (−x)

)
dμ+(x)
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for all bounded measurable f .
To prove (64), let ν ∈ Psym(R) and write μ+ for the law of |X| when X has

law ν. Then ν = μsym and the associated ρ satisfies μρ = ν. Therefore,


(ν) ≤ I (ρ) = a

2

∫ ∞
0

xα dμ+(x) = a

2
mα(ν). �

PROOF OF THEOREM 1.3(a). We proceed as in the proof of Theorem 1.3(b).
Here, Sb = {+1}, and thus the law ρ = ∫

R
δgx dν(x) that we used there is not

necessarily admissible sofic. However, it is so if one assumes supp(ν) ⊂ R+. The
rest of the argument applies with no modifications. �

For the remaining statements, we use the following observation.

LEMMA 3.16. If ρ ∈ Ps,β,τ (G∗) for some β ∈ (1,2), τ > 1, then∫
R

x dμρ(x) = EρωG(o).(65)

PROOF. By definition of the spectral measure μρθ [see (50)], for every θ > 0
one has ∫

R

x dμρθ (x) = Eρθ ωG(o) = EρωGθ (o),

where Gθ is the truncation of G; see (30). The weights ωGθ (o) satisfy |ωGθ (o)| ≤
|ωG(o)| and, since β > 1, Eρ |ωG(o)| ≤ (Eρξβ)1/β < τ 1/β . Thus, by the dominated
convergence theorem,

lim
θ→0

∫
R

x dμρθ (x) = EρωG(o).

From (62), and the fact that β > 1, we know that the identity map x �→ x is uni-
formly integrable for (μρθ )θ>0. Therefore, by definition of μρ (see Lemma 3.12),
the limit above also equals

∫
R

x dμρ(x). �

PROOF OF THEOREM 1.3(b). In view of the bound (64), it suffices to show
that if ρ ∈ Ps(G∗) with μρ = ν, then

a

2

∫
|x|α dμρ(x) ≤ I (ρ).(66)

Thanks to (59), one may assume that ρ ∈ Ps,α,τ (G∗) for some τ > 1. Moreover,
by (59) and (63), we know that (66) holds if b ≥ a/2. If b < a/2, we proceed as
follows. Since α > 1 here, we may apply Lemma 3.16, and obtain that

0 =
∫
R

x dν(x) = EρωG(o),



LARGE DEVIATIONS PRINCIPLE FOR WIGNER MATRICES 2489

where we use the symmetry assumption on ν. Since Sb = {+1}, one has that
ωG(o) ≥ 0 and, therefore, ωG(o) = 0 ρ-a.s. In conclusion, I (ρ) = aEρφ =
a
2Eρξα , and the claim (66) follows from (60). �

PROOF OF THEOREM 1.3(c). Suppose that I (ρ) < ∞. Then by (59), one has
ρ ∈ Ps,α,τ (G∗) for some τ > 1. Since α > 1, Lemma 3.16 yields

∫
R

x dν(x) =
EρωG(o) which, together with the assumption

∫
R

x dν(x) < 0, implies

EρωG(o) < 0.

However, Sb = {+1} implies that EρωG(o) ≥ 0, a contradiction. Thus, I (ρ) =
+∞, for all ρ ∈ Ps(G∗) such that μρ = ν. �

APPENDIX A: UNIFORM ASYMPTOTIC FREENESS

A.1. Proof of Theorem 2.6. Recall the definition (13) of the function
gμ :C+ �→ C+, for a given μ ∈ P(R). Theorem 2.6 is a consequence of the fol-
lowing result.

THEOREM A.1 (Uniform bound in subordination formula). Let Y =
(Yij )1≤i,j≤n ∈ Hn(C) be a Wigner random matrix with Var(Y12) = 1, E|Y12|3 < ∞
and E|Y11|2 < ∞. There exists a universal constant c > 0, such that for any integer
n ≥ 1, any M ∈Hn(C), any z ∈ C+, Im(z) ≥ 1,

∣∣g(z) − gμM

(
z + g(z)

)∣∣ ≤ c
(E|Y11|2)1/2 +E|Y12|3

n1/2 ,

where g(z) = EgμY/
√

n+M
(z).

Theorem A.1 is a small generalization of Pastur and Shcherbina [19], Theo-
rem 18.3.1: the main difference here is that we do not assume that the real and
imaginary parts of Yij are independent. We also allow the mean of the entries to
be nonzero. Note that the rate 1/

√
n in Theorem A.1 is not necessarily optimal

with stronger assumptions; see, for example, [12], equation (3.8). We postpone the
proof of Theorem A.1 to the next subsection. We first check that it implies Theo-
rem 2.6. This is done by a simple contraction argument. For z ∈ C+, we define the
C+ →C+ map,

φz :h �→ gμM
(z + h).(67)

It is Lipschitz with constant 1/Im(z)2. In particular, if Im(z) ≥ 2, φz is a contrac-
tion with Lipschitz constant 1/4. Now, it is well known that if μ = μM �μsc, we
have for all z ∈ C+ the subordination formula,

gμ(z) = gμM

(
z + gμ(z)

) = φz

(
gμ(z)

)
,
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see Biane [8]. In particular, if for some probability measure ν ∈ P(R) and ε ≥ 0,∣∣gν(z) − gμM

(
z + gν(z)

)∣∣ ≤ ε,

then

|gμ(z) − gν(z)
∣∣ ≤ ε + ∣∣φz

(
gμ(z)

)− φz

(
gν(z)

)∣∣ ≤ ε + 1

Im(z)2

∣∣gμ(z) − gν(z)
∣∣.

So that, if Im(z) ≥ 2, ∣∣gμ(z) − gν(z)
∣∣ ≤ 4

3ε.

Hence, from the definition of the distance d(μ, ν) in (12), we see that Theorem 2.6
is a corollary of Theorem A.1.

A.2. Proof of Theorem A.1: The Gaussian case. In this subsection, we as-
sume that:

(1) G = (Re(Y12),Im(Y12)) is a centered Gaussian vector in R
2 with covari-

ance K ∈ H2(R), tr(K) = 1.
(2) Y11 is a centered Gaussian in R with variance 1.

The proof is a variant of Pastur and Shcherbina [19], Lemma 2.2.3 (the main
difference is that in [19], Lemma 2.2.3, the covariance matrix K is diagonal). We
first recall the Gaussian integration by part formula (see, e.g., [19]): for any con-
tinuously differentiable function F :R2 �→R, with E‖∇F(G)‖2 < ∞,

EF(G)G = KE∇F(G).(68)

We identify Hn(C) with R
n2

. Then, if 
 :Hn(C) �→ C is a continuously differen-
tiable function, we define Djk
(X) as the derivative with respect to Re(Xjk), and
for 1 ≤ j �= k ≤ n, D′

jk
(X) as the derivative with respect to Im(Xjk).

Define the resolvent R(X) = (X − z)−1, z ∈ C+. From the resolvent formula,

R(X + A) − R(X) = −R(X + A)AR(X),(69)

valid for any matrix A ∈ Hn(C), a standard computation shows that if 1 ≤ j, k ≤ n,
and 1 ≤ a �= b ≤ n, then

DabRjk = −(RjaRbk + RjbRak) and D′
abRjk = −i(RjaRbk − RjbRak),

while if 1 ≤ a ≤ n, then

DaaRjk = −RjaRak.

Set X = Y/
√

n + M , so that

R = (Y/
√

n + M − z)−1.
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Using (68) we get, for 0 ≤ a �= b ≤ n, and all j, k:

ERjkYab = 1√
n
E
[
K11DabRjk + K12D

′
abRjk + iK21DabRjk + iK22D

′
abRjk

]
= − 1√

n
E
[
(K11 − K22 + iK12 + iK21)RjaRbk

(70)
+ (K11 + K22 − iK12 + iK21)RjbRak

]
= − 1√

n
E(γRjaRbk + RjbRak),

where at the last line, we have used the symmetry of K and tr(K) = 1, together
with the notation

γ = K11 − K22 + 2iK12 = EY 2
ab.

Notice that |γ | ≤ 1. Similarly, for a = b one has

ERjkYaa = − 1√
n
ERjaRak.(71)

Next, set

G(z) = (M − z)−1.

Notice that in this case the dependency of G(z) on z is explicit in our notation.
From the resolvent formula (69),

R = G(z) − 1√
n
RYG(z).

Hence, for 1 ≤ j, k ≤ n, using (70)–(71),

ERjk = G(z)jk − 1√
n

∑
1≤a,b≤n

E[RjaYab]G(z)bk

= G(z)jk + γ

n

∑
1≤a �=b≤n

E[RjaRba]G(z)bk + 1

n

∑
1≤a,b≤n

E[RjbRaa]G(z)bk.

We set

g = gμY/
√

n+M
(z) = 1

n

n∑
a=1

Raa, g = Eg, g = g −Eg,

and consider the diagonal matrix D with Djk = 1j=kRjk . We find

ER = G(z) +E[gR]G(z) + γ

n
E
[
R
(
R� − D

)]
G(z).
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Multiplying on the right-hand side by G(z)−1 = M − z and subtracting gR, one
has

ER(M − z − g) = I +EgR + γ

n
ER

(
R� − D

)
.

Multiplying on the right-hand side by G(z + g),

ER = G(z + g) +EgRG(z + g) + γ

n
ER

(
R� − D

)
G(z + g).

Finally, multiplying by 1
n

and taking the trace,

g = gμM
(z + g) + 1

n
Eg tr

[
RG(z + g)

]+ γ

n2E tr
[
R
(
R� − D

)
G(z + g)

]
.

As a function of the entries of Y , g has Lipschitz constant O(n−1 Im(z)−2). This
fact can be seen, for example, as in [3], Lemma 2.3.1. Since the entries of Y satisfy
a Poincaré inequality, a standard concentration bound [18] implies

E|g| = O
(
n−1 Im(z)−2).

Also, since | tr(AB)| ≤ n‖A‖‖B‖, we find∣∣∣∣1n trRG(z + g)

∣∣∣∣ ≤ Im(z)−2 and
∣∣trR(

R� − D
)
G(z + g)

∣∣ ≤ 2nIm(z)−3.

This concludes the proof of Theorem A.1 in the Gaussian case.

A.3. Proof of Theorem A.1: The general case. Let Y ij = Yij − EY12. Then
Y − Y has rank at most 1. Hence, by Lemma B.1,∣∣gμY/

√
n+M

(z) − gμY/
√

n+M
(z)

∣∣ ≤ O
((

nIm(z)
)−1)

,

where we have used (14) and the fact that f (x) = (x − z)−1 has a bounded vari-
ation norm of order Im(z)−1. Also, we recall that the map φz defined by (67)
is Lipschitz with constant 1/Im(z)2. Hence, in order to prove Theorem A.1, we
assume without loss of generality that the off-diagonal entries of the matrix are
centered: EY12 = 0.

We now check that the diagonal entries of Y are negligible. Let Y ′ be the matrix
obtained from Y by setting the diagonal equal to zero: Y ′

ij = 1i �=jYij .

LEMMA A.2 (Diagonal entries are negligible). For z ∈ C+, Im z ≥ 1,∣∣EgμY/
√

n+M
(z) −EgμY ′/√n+M

(z)
∣∣ = O

((
E|Y11|2/n

)1/2)
.

PROOF. From (77), we find∣∣EgμY/
√

n+M
(z) −EgμY ′/√n+M

(z)
∣∣ ≤ EW1(μY/

√
n+M,μY ′/√n+M)

(Im z)2

≤ EW2(μY/
√

n+M,μY ′/√n+M)

(Im z)2 .
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Then by Lemma B.2 using Jensen inequality,

EW2(μY/
√

n+M,μY ′/√n+M) ≤ 1

n

(
n∑

i=1

E|Yii |2
)1/2

= 1√
n

(
E|Y11|2)1/2

. �

As a consequence of Lemma A.2, we can assume without loss of generality
that the diagonal entries of Y are independent centered Gaussian with variance 1.
By Section A.2, the conclusion of Theorem A.1 holds for the matrix Ŷ whose
off-diagonal entries are centered Gaussian random variables with covariance is K ,
where K is the covariance of Y , and with diagonal entries centered Gaussian with
variance 1. Therefore, since the map φz defined by (67) is Lipschitz, in order to
prove Theorem A.1, it is sufficient to establish that

∣∣EgμY/
√

n+M
(z) −EgμŶ/

√
n+M

(z)
∣∣ ≤ c

E|Y12|3
n1/2 .(72)

We may repeat verbatim the interpolation trick in Pastur and Shcherbina [19], The-
orem 18.3.1. Consider the random matrix Ŷ , independent of Y , and for 0 ≤ t ≤ 1,
define the matrix

Y(t) = √
tY + √

1 − t Ŷ .

Set R(t) = (Y (t)/
√

n + M − zI)−1. Then, using the resolvent equation (69)

gμY/
√

n+M
(z) − gμŶ/

√
n+M

(z)

= 1

n

∫ 1

0

d

dt
trR(t) dt

= − 1

n3/2

∫ 1

0
trR(t)Y ′(t)R(t) dt(73)

= − 1

2n3/2

∫ 1

0
trR(t)

(
Y√
t

− Ŷ√
1 − t

)
R(t) dt

= − 1

2n3/2

∫ 1

0

[
trR2(t)

Y√
t

− trR2(t)
Ŷ√
1 − t

]
dt.

Next, consider the extension of (68) to arbitrary centered random variable G

with covariance K . Namely, for any twice continuously differentiable function
F :R2 �→R, with E‖∇F(G)‖2 < ∞ and supx∈R2 ‖HessF(x)‖ < ∞, a Taylor ex-
pansion gives

EF(G)G = KE∇F(G) + O
(
E‖G‖3

2 sup
x∈R2

∥∥HessF(x)
∥∥).
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Since Y and Ŷ have the same first two moments, we get for all t ∈ [0,1]

E trR2(t)
Y√
t

−E trR2(t)
Ŷ√
1 − t

= ∑
1≤j,k≤n

ER2(t)kj
Yjk√

t
−ER2(t)kj

Ŷjk√
1 − t

≤ c
E|Y12|3

n

∑
1≤j,k≤n

sup
X∈Hn(C),ε,ε′

∣∣Dε
jkD

ε′
jk

(
R(X)2)

kj

∣∣,
where c > 0 is a constant, and Dε

jkD
ε′
jk ranges over D2

jk,D
′2
jk and DjkD

′
jk . How-

ever, it follows from (70)–(71) that∣∣Dε
jkD

ε′
jk

(
R(X)2)

kj

∣∣
is a finite linear combination of products of 4 resolvent entries of the form∏4

i=1 R(X)uivi
. Since for any X ∈ Hn(C), |R(X)jk| ≤ (Im z)−1, one has for some

new constant c > 0 and for all t ∈ [0,1]:∣∣∣∣E trR2(t)
Y√
t

−E trR2(t)
Ŷ√
1 − t

∣∣∣∣ ≤ cn
E|Y12|3
(Im z)4 .

Plugging this last upper bound in (73) concludes the proof (72) and of Theo-
rem A.1.

APPENDIX B

In this section, we collect some standard facts that are repeatedly used in the
main text. For probability measures μ,μ′ ∈ P(R), the Kolmogorov–Smirnov (KS)
distance is defined by

dKS
(
μ,μ′) = sup

t∈R
∣∣μ(−∞, t] − μ′(−∞, t]∣∣.(74)

The KS distance is closely related to functions with bounded variations. More
precisely, for f :R �→R the bounded variation norm is defined as

‖f ‖BV = sup
∑
k∈Z

∣∣f (xk+1) − f (xk)
∣∣,

where the supremum is over all sequence (xk)k∈Z with xn ≤ xn+1. If f =
1((−∞, t)), then ‖f ‖BV = 1 while if the derivative of f is in L1(R), we have
‖f ‖BV = ∫ |f ′(x)|dx. The KS distance is also given by the variational formula

dKS
(
μ,μ′) = sup

{∫
f dμ −

∫
f dμ′ :‖f ‖BV ≤ 1

}
.(75)
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[Indeed, the functions Ht = 1((−∞, t)), t ∈R, are the extremal points of the con-
vex set of functions f with ‖f ‖BV ≤ 1 and the map f → ∫

f dμ − ∫
f dμ′ is

linear].
For p ≥ 1 and μ,μ′ ∈ P(R) such that

∫ |x|p dμ(x) and
∫ |x|p dμ′(x) are finite,

their Lp-Wasserstein distance is defined as

Wp

(
μ,μ′) =

(
inf
π

∫
R×R

|x − y|p dπ(x, y)

)1/p

,(76)

where the infimum is over all coupling π of μ and μ′ (i.e., π is probability measure
on R × R whose first marginal is equal to μ and second marginal is equal to μ′).
Hölder’s inequality implies that for 1 ≤ p ≤ p′, Wp ≤ Wp′ .

For any p ≥ 1, if Wp(μn,μ) converges to 0 then μn � μ. This follows, for
example, from the Kantorovich–Rubinstein duality

W1
(
μ,μ′) = sup

{∫
f dμ −

∫
f dμ′ :‖f ‖Lip ≤ 1

}
,(77)

where ‖f ‖Lip denotes the Lipschitz constant of f (see, e.g., Dudley [15], Theo-
rem 11.8.2).

The following inequality is a standard consequence of interlacing; see, for ex-
ample, [4], Theorem A.43.

LEMMA B.1 (Rank inequality). If A, B in Hn(C), then

dKS(μA,μB) ≤ 1

n
rank(A − B).

Next, we recall a very useful estimate which allows one to bound eigen-
value differences in terms of matrix entries. For a proof see, for example, [3],
Lemma 2.1.19.

LEMMA B.2 (Hoffman–Wielandt inequality). If A, B in Hn(C), then

W2(μA,μB) ≤
√

1

n
tr
[
(A − B)2

]
.
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