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LOCAL UNIVERSALITY OF REPULSIVE PARTICLE SYSTEMS
AND RANDOM MATRICES

BY FRIEDRICH GÖTZE1 AND MARTIN VENKER2

University of Bielefeld

We study local correlations of certain interacting particle systems on the
real line which show repulsion similar to eigenvalues of random Hermitian
matrices. Although the new particle system does not seem to have a natu-
ral spectral or determinantal representation, the local correlations in the bulk
coincide in the limit of infinitely many particles with those known from ran-
dom Hermitian matrices; in particular they can be expressed as determinants
of the so-called sine kernel. These results may provide an explanation for
the appearance of sine kernel correlation statistics in a number of situations
which do not have an obvious interpretation in terms of random matrices.

1. Introduction and main results. This paper is motivated by the surprising
emergence of sine kernel statistics in many real world observations such as parking
cars, perching birds on lines and so on. In the field of random matrices, the sine
kernel describes the local correlations of eigenvalues in the bulk of the spectrum
of Hermitian random matrices. There it has been shown to be universal to a high
extent; that is, it appears for many essentially different matrix distributions. In this
article we show that the sine kernel describes the local correlations of more general
repulsive particle systems on the real line which only share the repulsion strength
exponent β = 2 with the eigenvalues of (unitary invariant) Hermitian random ma-
trices. We expect that this behavior extends to larger classes of invariant ensembles
of random matrices, with repulsion exponents β different from two.

To formulate our results, let us recall the so-called invariant β-ensembles from
random matrix theory. Given a continuous function Q :R −→ R of sufficient
growth at infinity and β > 0, set

PN,Q,β(x) := 1

ZN,Q,β

∏
i<j

|xi − xj |βe
−N

∑N
j=1 Q(xj )

.(1)

(With a slight abuse of notation, we will not distinguish between a measure and
its density.) For the “classical values” β = 1,2,4, PN,Q,β is the eigenvalue dis-
tribution of a probability ensemble on the space of (N × N) matrices with real
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symmetric (β = 1), complex Hermitian (β = 2) or quaternionic self-dual (β = 4)
entries, respectively. For arbitrary β , only for quadratic Q, PN,Q,β is known to be
an eigenvalue distribution.

The notion of bulk universality is usually formulated via the correlation
functions of the ensemble. For a probability measure PN(x)dx on R

N and
k = 1,2, . . . ,N , the kth correlation function ρk

N :Rk −→ R of PN is defined as

ρk
N(x1, . . . , xk) :=

∫
RN−k

PN(x) dxk+1 · · ·dxN .

The correlation functions ρk
N are the densities of the marginals of PN . The measure

ρk
N(t) dt on R

k is called kth correlation measure.
It is known that under very mild conditions on Q, there is an absolutely contin-

uous probability measure μQ,β(t) dt on R, which is the weak limit of ρ1
N,Q,β(t) dt

as N → ∞.
Now, PN,Q,β is said to admit bulk universality, if for all a with μQ,β(a) > 0

and all t1, . . . , tk the limit

lim
N→∞

1

μQ,β(a)k
ρk

N

(
a + t1

NμQ,β(a)
, . . . , a + tk

NμQ,β(a)

)
(2)

exists and coincides with the one for PN,G,β , G quadratic (the so-called Gaussian
β-ensemble). Universality here should be understood as a coincidence of limit (2)
with the corresponding Gaussian β-ensemble. This has been established for large
classes of Q. The scaling in (2) is chosen such that the asymptotic mean spacing
between consecutive eigenvalues is normalized to 1. However, it is known that the
limit depends on β .

In the case β = 2, which appears frequently in “real world statistical studies,”
the limiting object (2) is determinantal of type

lim
N→∞

1

μQ,2(a)k
ρk

N

(
a + t1

NμQ,2(a)
, . . . , a + tk

NμQ,2(a)

)
(3)

= det
[

sin(π(ti − tj ))

π(ti − tj )

]
1≤i,j≤k

,

involving the sine kernel

S(t) := sin(πt)

πt
, t �= 0,S(0) := 1.

Universality for unitary invariant ensembles, that is, β = 2 invariant ensembles,
was proved in many papers, for example (naming only few) [10, 21, 23, 26,
27]. Recently universality (for general β-ensembles) was proved in [7, 8]. For
β = 1,2, bulk universality was also proved for Wigner matrices by two groups of
authors. Based on earlier work of Johansson [15], universality was shown for gen-
eral classes of Wigner matrices in a series of papers by Erdős, Yau, Schlein, Yin,
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Ramirez and Peche (see [12] for a survey on their results) and Tao and Vu; see [30]
for a survey on their results. We remark that bulk universality was proved in [13]
for the Hermitian fixed trace ensemble, a random matrix which is neither a Wigner
matrix nor determinantal.

Writing the density (1) in the Gibbsian form

PN,Q,β = 1

ZN,Q,β

e
β

∑
i<j log |xi−xj |−N

∑N
j=1 Q(xj )

,(4)

we see that PN,Q,β can be interpreted as an interacting particle system on R in an
external field, interacting via a 2d Coulomb potential.

It is believed that many complicated, strongly correlated systems share the local
bulk scaling limit (defined again by correlation functions) with some random ma-
trix model. This was conjectured by Wigner who used random matrices to model
energy levels of nuclei. By the underlying matrix structure, physical requirements
(conserved quantities, time reversal, . . . ) determine the value of β in the cases
β = 1,2,4. The limits with β = 2 also seem to appear in statistics of distances
between parking cars [1], waiting times at bus stops in certain cities [18] (see [5]
for a determinantal model) and the pair correlation conjecture of Montgomery [24]
for the zeros of the Riemann Zeta function on the critical line. See, for example,
[17] for more relations between the Riemann Zeta function and random matrix
theory. A common cause for the appearance of sine kernel statistics in a number of
statistics about real world repulsive systems and in physics and mathematics still
remains to be identified.

We consider here a class of more general interacting particle systems, defined
by the density

1

ZN,ϕ,Q

∏
i<j

ϕ(xi − xj )e
−N

∑N
j=1 Q(xj )

,(5)

where Q is a continuous function of sufficient growth at infinity compared to the
continuous function ϕ :R −→ [0,∞). Apart from some technical conditions we
will assume that

ϕ(0) = 0, ϕ(t) > 0 for t �= 0 and lim
t→0

ϕ(t)

|t |β = c > 0,(6)

or, in other terms, 0 is the only zero of ϕ and it is of order β .
We expect that (at least under some smoothness and growth conditions) the

bulk scaling limit of (5) coincides with that of the β-ensembles, since in view
of the regular local distribution of eigenvalues/particles at 1/N spacings only the
exponents of the interaction kernel should determine the local universality class.

The purpose of this paper is to prove this for β = 2 and a special class of
ϕ and Q. From now on, we will always deal with the case β = 2, therefore omit-
ting the subscript β . To state our results, let h be a continuous even function which
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is bounded below. Let Q be a continuous even function of sufficient growth at
infinity. By P h

N,Q we will denote the probability density on R
N defined by

P h
N,Q(x) := 1

Zh
N,Q

∏
i<j

|xi − xj |2 exp

{
−N

N∑
j=1

Q(xj ) − ∑
i<j

h(xi − xj )

}
,(7)

where Zh
N,Q denotes the normalizing constant. The density P h

N,Q can also be writ-

ten in the form (5) with ϕ(t) := t2 exp{−h(t)}. The first result describes the global
scaling limit of the correlation measures of P h

N,Q. To formulate it, introduce for
a twice differentiable convex function Q the quantity αQ := inft∈R Q′′(t). More-
over, denote by ρ

h,k
N,Q the kth correlation function of P h

N,Q.

THEOREM 1.1. Let h be a real analytic and even Schwartz function. Then
there exists a constant αh ≥ 0 such that for all real analytic, strictly convex and
even Q with αQ > αh, the following holds:

There exists a compactly supported probability measure μh
Q having a nonzero

and continuous density on the interior of its support and for k = 1,2, . . . , the kth
correlation measure of P h

N,Q converges weakly to the k-fold product (μh
Q)⊗k , that

is, for any bounded and continuous function g :Rk −→ R,

lim
N→∞

∫
gρ

h,k
N,Q dkt =

∫
g d

(
μh

Q

)⊗k
.(8)

REMARK. (a) If h is (additionally) positive semi-definite, then αh in Theo-
rem 1.1 may be explicitly chosen as αh = supt∈R −h′′(t).

(b) In general, the measure μh
Q depends on h.

(c) P h
N,Q does not seem to be either determinantal nor have a natural spectral

interpretation; therefore we will speak of particles instead of eigenvalues.
(d) We remark that in [9], macroscopic correlations have been studied in a more

general setup.

The next result states the universality of the sine kernel in the local scaling limit
in the bulk.

THEOREM 1.2. Let h and Q satisfy the assumptions of Theorem 1.1. Then for
k = 1,2, . . . , we have

lim
N→∞

1

μh
Q(a)k

ρ
h,k
N,Q

(
a + t1

Nμh
Q(a)

, . . . , a + tk

Nμh
Q(a)

)
(9)

= det
[

sin(π(ti − tj ))

π(ti − tj )

]
1≤i,j≤k

uniformly in t1, . . . , tk from any compact subset of Rk and uniformly in the point a

from any compact proper subset of the support of μh
Q.



LOCAL UNIVERSALITY OF REPULSIVE PARTICLE SYSTEMS 2211

REMARK. (a) If h is positive semi-definite, then αh in Theorem 1.2 may be
explicitly chosen as αh = supt∈R −h′′(t).

(b) Bulk universality for ensembles of form (7) with arbitrary β > 0 replac-
ing the repulsion exponent 2 in (7) has been shown by the second author in [34].
The notion of universality is weaker than in the present paper. The proof of bulk
universality uses methods similar to the present work, combined with techniques
developed by Erdős, Yau and co-workers; see, for example, [12] for a review.

(c) Similar results hold at the edge of the support of μh
Q. An article on edge

universality of P h
N,Q is in preparation [20].

We shall demonstrate our approach to bulk universality by means of the follow-
ing example of functions h and Q.

THEOREM 1.3. Let γ > 0 and α > 0 be arbitrary. Let h(t − s) := γ (t − s)2

and Q(t) = αt2. Then (8) and (9) hold for (P h
N,Q)N uniformly as in Theo-

rem 1.2. Here μh
Q will be the semi-circle distribution with support [−ω,ω],

ω := (
√

α + γ )−1.

A first step in the proof of Theorems 1.1 and 1.2 is to compare the correlation
functions of P h

N,Q with correlation functions of eigenvalues of some unitary in-
variant ensemble. To construct such an ensemble, we first determine μh

Q as the
equilibrium measure of some external field V (depending on h and Q) using a
fixed point argument. The difference between P h

N,Q and this unitary invariant en-
semble PN,V consists of (up to normalization) a factor exp{U(x)}, where U is
a quadratic interaction energy which may be expressed as a mixture of linear inter-
action energy terms using Gaussian processes. This finally leads, after a truncation
procedure, to a mixture representation of P h

N,Q by invariant ensembles with the
same bulk universality.

The paper is organized as follows. In Section 2, the asymptotics of P h
N,Q for

h(t − s) := γ (t − s)2 and Q(t) = αt2 are investigated, and in particular Theo-
rem 1.3 is proved. In Section 3, we associate to P h

N,Q a unitary invariant ensemble
which will turn out to have the same asymptotic behavior as P h

N,Q. Section 4 con-
tains concentration of measure inequalities. Section 5 deals with bounds on the
first correlation function of a unitary invariant ensemble. The proofs in this section
use established techniques which we decided to include in detail for the sake of
completeness of the exposition. Theorems 1.1 and 1.2 are proved in Section 6. In
the Appendix we recall a number of results on equilibrium measures.

A prior version of these results is based on the Ph.D. thesis of the second au-
thor [33].

2. A first example. In this section, we will study the probability measure

P
α,γ
N (x) := 1

Z
α,γ
N

∏
1≤i<j≤N

|xi − xj |2 exp
{
−αNM2(x)− γ

∑
i<j

(xi − xj )
2
}
,(10)
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using the potentials Mp(x) := ∑N
j=1 x

p
j with p = 2 and constants α,γ > 0, where

Z
α,γ
N denotes the normalization factor. In the following we shall suppress the de-

pendencies on α and γ .
We will reduce bulk universality of (P

α,γ
N )N to the well-known bulk universality

of the GUE.
It is convenient to introduce the distribution GUEω, depending on a parameter

ω > 0, as

P GUE
N,ω (x) := 1

ZGUE
N,ω

∏
j<k

|xk − xj |2 exp
{
− 2

ω2 NM2(x)

}
.

Under this scaling the first correlation measure of P GUE
N,ω will converge to the semi-

circle law supported on [−ω,ω]; for a proof see, for example, [25]. First we rewrite
the density PN := P

α,γ
N using

γ
∑
i<j

(xi − xj )
2 = γNM2(x) − γM1(x)2 as

PN(x) = 1

ZN

∏
1≤i<j≤N

|xi − xj |2(11)

× exp
{−(α + γ )NM2(x) + γM1(x)2}

.

Using the simple identity

exp
{
γ t2} = 1

2π

∫
R

exp{ε√γ t} exp
{−ε2/4

}
dε, we may write(12)

PN(x) = 1

2π

∫
R

1

ZN

∏
1≤i<j≤N

|xi − xj |2

× exp
{−(α + γ )NM2(x) + √

γ εM1(x)
}

× exp
{−ε2/4

}
dε

= 1

2π

∫
R

Zε
N

ZN

P ε
N(x)e−ε2/4 dε where(13)

P ε
N(x) := 1

Zε
N

∏
1≤i<j≤N

|xi − xj |2

× exp
{−(α + γ )NM2(x) + √

γ εM1(x)
}
,

Zε
N :=

∫
RN

∏
1≤i<j≤N

|xi − xj |2

× exp
{−(α + γ )NM2(x) + √

γ εM1(x)
}
dx.
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We have thus expressed PN as a probabilistic mixture of the probability mea-
sures P ε

N .
The next lemma deals with the ratio Zε

N/ZN .

LEMMA 2.1. For each ε, each N and all α,γ > 0 we have

Zε
N/ZN = exp

{
γ ε2

4(α + γ )

}(√
1 − γ

α + γ

)−1

.

PROOF. We first expand the fraction

Zε
N/ZN = (

Zε
N/ZGUE

N,ω

)
/
(
ZN/ZGUE

N,ω

)
where ω = (α + γ )−1/2.

The diagonal elements of a GUEω matrix are independent Gaussians with mean 0
and variance 1

2N(α+γ )
. Using this, we get easily for any ε, any N and any α,γ > 0

Zε
N/ZGUE

N,ω = EN,GUEω exp
{
ε
√

γM1(x)
} = exp

{
γ ε2 · (

4(α + γ )
)−1}

,

where EN,GUEω denotes expectation w.r.t. P GUE
N,ω . Similarly, we get for any N and

any α,γ > 0

ZN/ZGUE
N,ω = EN,GUEω exp

{
γM1(x)2} = (

1 − γ /(α + γ )
)−1/2

. �

DEFINITION 2.2. For ω > 0, the probability measure σω on R given by

σω(t) dt := 2

πω2

√
ω2 − t21[−ω,ω](x) dt

is called (Wigner’s) semicircle law (with parameter ω).

By equation (13), PN is a mixture of P ε
N . We show first that the statement of

Theorem 1.3 is true for each ε ∈ R if we replace P h
N,Q by P ε

N . Eventually we will
use Lebesgue’s dominated convergence theorem.

PROPOSITION 2.3. Let ρ
k,ε
N denote the kth correlation function of P ε

N and

set ω =
√

1
α+γ

.

(a) For any ε ∈ R, any k and any continuous, bounded g :Rk −→ R we have

lim
N→∞

∫
Rk

g dρ
k,ε
N =

∫
[−ω,ω]k

g d(σω)k.

(b) We have for any ε and any k,

lim
N→∞

1

σω(a)k
ρ

k,ε
N

(
a + t1

Nσω(a)
, . . . , a + tk

Nσω(a)

)
= det

(
S(ti − tj )

)
1≤i,j≤k

locally uniformly for all t1, . . . , tk and uniformly for a varying in a compact subset
of (−ω,ω).
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PROOF. A proof of the first part can be found in [14]. For the second part we
use orthogonal polynomials. Note that the polynomials orthogonal to a Gaussian
weight with nonzero mean are normalized shifted Hermite polynomials. Let π

(N)
j

denote the j th Hermite polynomial orthonormal w.r.t. the weight e−N(α+γ )t2
.

It is easy to check that the set of polynomials orthogonal w.r.t. the weight
e−N(α+γ )t2+ε

√
γ t are the polynomials (π

(N)∗
j )j , where

π
(N)∗
j (t) := e(ω′′ε2/2N)π

(N)
j

(
t − ω′ε/2N

)
(14)

with ω′ := √
γ /(α + γ ) and ω′′ := ω′2/4. The ensemble P ε

N is determinantal,
that is,

ρ
k,ε
N (t1, . . . , tk) = (N − k)!/(N !)det

(
K∗

N(ti, tj )
)k
i,j=1,(15)

where K∗
N(t, s) = ∑N−1

j=0 π
(N)∗
j (t)π

(N)∗
j (s). From (14) we get

K∗
N(t, s) = e(ω′′ε2)/NKN

(
t − ω′ε/2N, s − ω′ε/2N

)
,(16)

where KN denotes the kernel corresponding to the ensemble P GUE
N,ω . Hence we

have

1

σω(a)
K∗

N

(
a + t

Nσω(a)
, a + s

Nσω(a)

)

= e(ω′′ε2)/N

σω(a)
KN

(
a + t − ω′εσω(a)/2

Nσω(a)
, a + s − ω′εσω(a)/2

Nσω(a)

)
(17)

= e(ω′′ε2)/N

σω(a)
KN

(
a + t ′

Nσω(a)
, a + s′

Nσω(a)

)
,

where t ′ := t − ω′εσω(a)/2 and s′ := s − ω′εσω(a)/2. It is well known that

lim
N→∞

1

σω(a)
KN

(
a + t ′

Nσω(a)
, a + s′

Nσω(a)

)
= sin(π(t ′ − s′))

π(t ′ − s′)
.(18)

For a proof of (18) see, for example, [11], Chapter 8, or Theorem 6.1. Since
limN→∞ exp{(ω′′ε2)/N} = 1, we get from (17) and (18) that

lim
N→∞

1

σω(a)
K∗

N

(
a + t

Nσω(a)
, a + s

Nσω(a)

)
(19)

= sin(π(t ′ − s′))
π(t ′ − s′)

= sin(π(t − s))

π(t − s)
.

Now, by (19) and (15), the second assertion of Proposition 2.3 follows. As (18) is
true locally uniformly in t ′, s′ and uniformly in a ∈ I , I ⊂ [−ω,ω] compact, we
get (19) locally uniformly in t, s and uniformly in a ∈ I . �
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PROOF OF THEOREM 1.3. By equation (13) and Lemma 2.1 we know that

PN(x) =
∫
R

P ε
N(x)p(ε) dε,(20)

where p is an N -independent probability measure on R. Using Fubini’s theo-
rem, (20) implies

∫
Rk g dρk

N = ∫
R

∫
Rk g dρ

k,ε
N p(ε) dε and ρk

N(t1, . . . , tk) =∫
R

ρ
k,ε
N (t1, . . . , tk)p(ε) dε, and hence for each compact K ⊂ R

k and each com-
pact I ⊂ (−ω,ω)

sup
t∈K,a∈I

∣∣∣∣σω(a)−kρk
N

(
a + t1

Nσw(a)
, . . . , a + tk

Nσw(a)

)

− det
(
S(ti − tj )

)
1≤i,j≤k

∣∣∣∣
= sup

t∈K,a∈I

∣∣∣∣∫
R

p(ε)

(
σω(a)−kρ

k,ε
N

(
a + t1

Nσw(a)
, . . . , a + tk

Nσw(a)

)
(21)

− det
(
S(ti − tj )

)
1≤i,j≤k

)
dε

∣∣∣∣
≤

∫
R

p(ε) sup
t∈K,a∈I

∣∣∣∣σω(a)−kρ
k,ε
N

(
a + t1

Nσw(a)
, . . . , a + tk

Nσw(a)

)

− det
(
S(ti − tj )

)
1≤i,j≤k

∣∣∣∣dε,

where we stick to the notation of Proposition 2.3. Theorem 1.3 will follow
from Proposition 2.3 if

∫
Rk g dρ

k,ε
N and supt∈K,a∈I |ρk,ε

N (s1, . . . , sk)|, si := a +
ti/(Nσω(a)), are uniformly bounded in ε. The uniform boundedness of

∫
Rk g dρ

k,ε
N

is immediate as g is bounded.
To show uniform boundedness of ρ

k,ε
N (s1, . . . , sk) uniformly in ε, t and a, we

proceed as in the paper by Pastur and Shcherbina [27]. Since all correlation func-
tions are nonnegative, we see by Sylvester’s criterion from the determinantal rela-
tions (15) that the matrix (K∗

N(ti, tj ))1≤i,j≤k =: A is positive semi-definite and can
hence be written as A = B2 for some matrix B . Now using Hadamard’s inequality
we get

detA = (detB)2 ≤
k∏

j=1

k∑
i=1

|Bij |2 =
k∏

j=1

Ajj .

In our case this reads

ρ
k,ε
N (s1, . . . , sk) ≤ (N − k)!/(N !)

k∏
j=1

KN(sj , sj ) ≤ Ck
k∏

j=1

ρ
1,ε
N (sj ),(22)
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where C is a constant such that C ≥ N/(N − k). Using (14), we get

ρ
1,ε
N (sj ) = 1

N

N−1∑
i=0

π
(N)∗
i (sj )

2e
−N(α+γ )s2

j +√
γ εsj

= 1

N

N−1∑
i=0

π
(N)
i

(
t − ω′ε/2N

)2
e−N(α+γ )(sj−ω′ε/2N)2

= ρ
1,GUEω

N

(
sj − ω′ε/2N

)
,

where ρ
1,GUEω

N is the first correlation function of the GUEω. From Propo-

sition 2.3(b) for k = 1, ε = 0 we get that ρ
1,GUEω

N (sj − ω′ε/2N) converges
(locally) uniformly in tj and a toward the bounded function σω(a), hence
there is a constant C′ such that for all N and all t ∈ K,a ∈ I we have
ρ

1,GUEω

N (sj − ω′ε/2N) ≤ C′. To see the required uniformity in ε , either adapt

the arguments in Section 6 following (77) or use that ρ
1,GUEω

N (s) is bounded
uniformly in N and s, as can be seen from its determinantal representation and
the well known asymptotics for the Hermite polynomials. This estimate together
with (22) finishes the proof of Theorem 1.3. �

3. The associated random matrix ensemble. In this section, we start with
the investigation of our main model. Let h be a continuous even function and Q

a strictly convex symmetric function and assume that

P h
N,Q(x) := 1

Zh
N,Q

∏
1≤i<j≤N

|xi − xj |2e−N
∑N

j=1 Q(xj )−∑
i<j h(xi−xj )

,(23)

defines the density of a probability measure on R
N , where

Zh
N,Q :=

∫
RN

∏
1≤i<j≤N

|xi − xj |2e−N
∑N

j=1 Q(xj )−∑
i<j h(xi−xj )

dx

denotes the normalizing constant. This is, for example, the case if h is bounded
below.

We will frequently use the notation

hμ(s) :=
∫

h(t − s) dμ(t), hμμ :=
∫ ∫

h(t − s) dμ(t) dμ(s)(24)

for a compactly supported probability measure μ on R. For the statement of the
next lemma, M1

c will denote the set of compactly supported (Borel) probability
measures on R.

LEMMA 3.1. Let h :R−→ R be even, twice differentiable, bounded and such
that h′′(t) ≥ −αQ for all t . Define Th :M1

c −→ M1
c , Th(μ) as the equilibrium

measure to the external field t 
→ Q(t) + hμ(t).
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Then Th has a fixed point, that is there exists a probability measure μh
Q which

is the equilibrium measure to the external field t 
→ Q(t) + ∫
h(t − s) dμh

Q(s).

PROOF. We will apply Schauder’s fixed point theorem, which states that each
continuous mapping T :C −→ C of a compact, convex and nonempty subset C of
a Hausdorff topological vector space has a fixed point.

We consider the topological vector space M(K) of all signed finite Borel
measures on some compact interval K of R, equipped with the topology of
vague convergence. This topology is metrizable and hence the space is Hausdorff
(see [28], Chapter 0). The subset M1(K) of all Borel probability measures on K is
nonempty, convex and compact. The compactness follows from Helly’s Selection
theorem. We will further restrict to measures μ which are symmetric around 0,
that is, μ(A) = μ(−A) for all Borel sets A. It is easy to see that this subset still
fulfills the assumptions of Schauder’s fixed point theorem.

Now we show that since h′′(t) ≥ −αQ and h is bounded, the support of the
equilibrium measure to the external field Q(t) + hμ(t) is included in a compact
set which can be chosen to be independent of μ. Indeed, by Theorem A.6, the
support of the equilibrium measure for Q(t)+hμ(t) is the smallest compact set K

(w.r.t. inclusion) of positive capacity maximizing the functional

K 
→ FQ+hμ(K) = log cap(K) − 2
∫

Q(t) dωK(t) − 2
∫

hμ(t) dωK(t)

(25)
= FQ(K) − 2

∫
hμ(t) dωK(t),

in particular we have

FQ+hμ(suppμQ) ≥ FQ(suppμQ) − 2‖h‖∞ ∈ R
(26)

since |hμ| ≤ ‖h‖∞.

As Q is convex and symmetric, suppμQ is a symmetric interval; see Theorem A.6.
Because h is twice differentiable, h′ (and by assumption also h) are bounded
on any compact set. Hence, if we choose a probability measure μ with com-
pact support, hμ is two times differentiable and (hμ)′′ = (h′′)μ. By the condition
h′′(t) ≥ −αQ, Q(t) + hμ(t) is convex for each compactly supported μ. Theo-
rem A.6 implies that the support of the equilibrium measure to Q(t) + hμ(t) is
a symmetric interval, say [−lμ, lμ]. Using Lemma A.1, we can rewrite (25) for an
arbitrary symmetric interval [−l, l] as

FQ+hμ

([−l, l]) = log(l/2) − 2
∫ l

−l
Q(t)

1

π
√

l2 − t2
dt

(27)

− 2
∫ l

−l
hμ(t)

1

π
√

l2 − t2
dt.
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Since Q is strictly convex and symmetric, we have Q(t) ≥ αQt2 + C for some
C ∈ R, and (27) implies (using that the variance of ω[−l,l] is l2/2) the inequality

FQ+hμ

([−l, l]) ≤ log(l/2) − αQl2 − C + 2‖h‖∞,(28)

which holds for any μ. Comparing (26) and (28), we see that

FQ+hμ(suppμQ) > FQ+hμ

([−l, l])
for all l > L, where L > 0 does not depend on μ. Hence such an [−l, l] cannot be
the support [−lμ, lμ] of the equilibrium measure for Q + hμ. Hence lμ ≤ L for all
compactly supported μ.

We have thus seen that Th maps the set M1
s (K) of symmetric probability

measures supported in K into itself, if K is chosen large enough. It remains to
show continuity of this map. Since we deal with a metric space, it is enough to
show that by Th, converging sequences are mapped to converging sequences. Let
(μn)n ⊂ M1(K) be a sequence converging vaguely, or equivalently, weakly to
a probability measure μ. Denote Th(μn) =: νn. Define the sequence of external
fields Vn(t) := Q(t)+hμn(t) which converges pointwise to V (t) := Q(t)+hμ(t).
We may assume that this convergence is uniform: by Theorem A.4, the equilibrium
measure does not depend on values of the external field outside of its support (from
which we know a priori that it lies in a certain compact set). Since h′ is bounded
on this compact set by some constant, say C, we also have |h′

μn
| ≤ C. This implies

that the sequence of functions (hμn)n is uniformly Lipschitz and hence equicontin-
uous. It follows that the sequence (Vn)n is also equicontinuous. Since their domain
is a compact and Vn converges pointwise, the equicontinuity implies uniform con-
vergence by the Arzela–Ascoli theorem.

Since all νn are supported on the same compact set, it follows that (νn)n is tight
and hence has a weakly converging subsequence (νnm)m. We will prove that this
limit measure, say ν′, is in fact ν = Th(μ), the measure belonging to the external
field V , and does not depend on the particular subsequence. It follows that the
sequence (νn)n converges to ν weakly as weak convergence is metrizable.

From the uniform convergence of Vn toward V , it follows by Theorem A.5(1)
that

Uνnm (s) =
∫

log |t − s|−1 dνnm(t)

converges uniformly (on C) toward Uν(s) := ∫
log |t − s|−1 dν(t). On the other

hand, by Theorem A.5(2) we have for almost all s ∈ C

lim
m→∞Uνnm (s) = Uν′

(s) =
∫

log |t − s|−1 dν′(t).

Hence Uν(s) = Uν′
(s) almost everywhere on C. Theorem A.5(3) yields that

ν = ν′, implying that the sequence (νn)n converges weakly to ν. As Th is a con-
tinuous mapping, Schauder’s fixed point theorem yields the existence of a fixed
point. �
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REMARK 3.2 (Uniqueness). So far we did not prove that this fixed point of Th

is unique. Uniqueness will follow for the class of ensembles from Theorem 1.1. For
those ensembles we will show that the first correlation measure converges weakly
to any fixed point, which shows uniqueness.

We proceed by decomposing the additional interaction term. Let h be as in
Lemma 3.1. Choose a fixed point μh

Q as in Lemma 3.1. We will stick to this mea-
sure from now on and write μ instead of μh

Q. We set using the notation (24)

∑
i<j

h(xi − xj ) = −N2

2
hμμ − N

2
h(0) + N

N∑
j=1

hμ(xj )

+ 1

2

(
N∑

i,j=1

h(xi − xj ) − [
hμ(xi) + hμ(xj ) − hμμ

])

= −N2

2
hμμ − N

2
h(0) + N

N∑
j=1

hμ(xj ) − U(x),

where

U(x) := −1

2

(
N∑

i,j=1

h(xi − xj ) − [
hμ(xi) + hμ(xj ) − hμμ

])
.(29)

Now we can rewrite P h
N,Q as

P h
N,Q(x) = 1

ZN,V,U

∏
1≤i<j≤N

|xi − xj |2e−N
∑N

j=1 V (xj )+U(x)
,(30)

where we defined the external field

V (t) := Q(t) + hμ(t)

and absorbed the constant exp{−(N2/2)hμμ − (N/2)h(0)} into the new normal-
izing constant ZN,V,U . We will from now on work with this representation of the
density of P h

N,Q. The proofs of Theorems 1.1 and 1.2 rely on comparison with the
unitary invariant matrix ensemble

PN,V (x) = 1

ZN,V

∏
1≤i<j≤N

|xi − xj |2e−N
∑N

j=1 V (xj )
.(31)

We will show that in the large N limit, the correlation measures in the global
scaling as well as correlation functions in the local scaling, are the same for
P h

N,Q and PN,V . In this sense the quantity U will turn out to be negligible.

4. Concentration of measure inequalities. We will frequently use the fol-
lowing well-known concentration of measure inequality ([4], Section 4.4).
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THEOREM 4.1. Let Q be an external field on an interval I = (a, b) (possibly
unbounded) with Q′′ ≥ c > 0 on I . Then we have for any Lipschitz function f on I

and any ε > 0

PN,Q

(∣∣∣∣∣
N∑

j=1

f (xj ) −EN,Q

N∑
j=1

f (xj )

∣∣∣∣∣ > ε

)
≤ 2 exp

{
− cε2

2|f |L2

}
and

EN,Q exp

{
ε

(
N∑

j=1

f (xj ) −EN,Q

N∑
j=1

f (xj )

)}
≤ exp

{
ε2|f |2L

2c

}
,

where for any Lipschitz function f we denote its Lipschitz constant by |f |L (on I ).

REMARK 4.2. In [4], only the case (a, b) = R is stated. As the proof for gen-
eral (a, b) is completely analogous, we do not give it here.

Theorem 4.1 yields a concentration inequality for linear statistics around their
expectations. However, we rather need concentration around their “limiting ex-
pectations.” It is well known (see, e.g., [14], Theorem 2.1) that for bounded and
continuous functions

lim
N→∞

1

N
E

N∑
j=1

f (xj ) =
∫

f (t) dμQ(t),(32)

where μQ denotes the equilibrium measure to Q. We need to quantify the rates
of convergence in (32). The following is a special case of a result in [29]; see
also [19].

PROPOSITION 4.3. Let Q be a convex external field on R which is real ana-
lytic in a neighborhood of supp(μQ). Let f be a function whose third derivative is
bounded on a neighborhood of supp(μQ). Then∣∣∣∣∣EN,Q

N∑
j=1

f (xj ) − N

∫
f dμQ

∣∣∣∣∣ ≤ C
(‖f ‖∞ + ∥∥f (3)

∥∥∞
)
,

where C does not depend on N or f , and ‖ · ‖∞ denotes the bound on the neigh-
borhood of supp(μQ).

From Theorem 4.1 and Proposition 4.3 we immediately get the following con-
centration inequality.

COROLLARY 4.4. Let Q be a real analytic external field with Q′′ ≥ c > 0.
Then for any Lipschitz function f whose third derivative is bounded on a neigh-
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borhood of supp(μQ), we have for any ε > 0

EN,Q exp

{
ε

(
N∑

j=1

f (xj ) − N

∫
f (t) dμQ(t)

)}

≤ exp
{
ε2|f |2L

2c
+ εC

(‖f ‖∞ + ∥∥f (3)
∥∥∞

)}
.

REMARK 4.5. Proposition 4.3 and Corollary 4.4 remain true up to an error
of order e−cN if we replace R by an interval I which covers the domain of the
equilibrium measure μQ. It is well known (see, e.g., [6, 27]) that changing the
external field outside a small neighborhood of the equilibrium measure results in
a change of the first correlation function of order e−cN for some c > 0. We will
prove this in Lemma 6.3 provided that I is large enough.

The next lemma gives, using Fourier techniques, a representation of the bivariate
statistic U in terms of certain linear statistics. A similar idea is used in [22].

LEMMA 4.6. The following holds:

U(x) = − 1

2
√

2π

∫ ∣∣ ◦
uN(t, x)

∣∣2ĥ(t) dt,

where

◦
uN(t, x) :=

N∑
j=1

cos(txj ) − N

∫
cos(ts) dμ(s) + √−1

N∑
j=1

sin(txj ),

ĥ(t) := 1√
2π

∫
R

e−itsh(s) ds.

PROOF. Recall from (29) that

U(x) = −1

2

(
N∑

i,j=1

h(xi − xj ) − [
hμ(xi) + hμ(xj ) − hμμ

])
.

Note that

1

2

∑
j,k

h(xj − xk) = 1

2
√

2π

∫ ∑
j,k

ei(xj−xk)t ĥ(t) dt = 1

2
√

2π

∫ ∣∣uN(t, x)
∣∣2ĥ(t) dt

with uN(t, x) := ∑N
j=1 eitxj . Writing

◦
uN(t, x) := uN(t, x) − N

∫
eits dμ(s), it is

not hard to check that

U(x) = − 1

2
√

2π

∫ ∣∣ ◦
uN(t, x)

∣∣2ĥ(t) dt.(33) �
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Note that we can write

E
h
N,Qf (x) = (ZN,V /ZN,V,U )EN,V f (x)eU(x).

With the help of representation (33), we shall bound this ratio of normalizing con-
stants.

PROPOSITION 4.7. If the constant αQ is large enough, then there exist con-
stants C1,C2 > 0 such that for all N

0 < C1 ≤ ZN,V,U/ZN,V = EN,V exp
{
U(x)

} ≤ C2.

PROOF. We start with proving the lower bound. By Jensen’s inequality we see

EN,V exp
{
U(x)

} ≥ exp
{
EN,VU(x)

}
.

Using Lemma 4.6 we show that the expectation of U is bounded in N . Fubini’s
theorem gives

−EN,VU(x) = 1

2
√

2π

∫
EN,V

∣∣ ◦
uN(t, x)

∣∣2ĥ(t) dt

= 1

2
√

2π

∫ (
EN,V

∣∣∣∣∣
N∑

j=1

cos(txj ) − N

∫
cos(ts) dμ(s)

∣∣∣∣∣
2

+EN,V

∣∣∣∣∣
N∑

j=1

sin(txj )

∣∣∣∣∣
2)

ĥ(t) dt.

By Corollary 4.4, the terms in the parentheses are bounded by a polynomial
function in t , as | cos(t ·)|L, | sin(t ·)|L ≤ t and ‖cos(t ·)(3)‖∞,‖sin(t ·)(3)‖∞ ≤ Ct3.
Hence, ĥ being a Schwartz function, we have EN,VU(x) ≥ −C′ for some C′ > 0.
Thus the lower bound follows choosing C1 := exp(−C′).

For the upper bound we will again use the representation of Lemma 4.6. Recall
that since h is even, ĥ is real-valued. Define ĥ+(y) := max{0, ĥ(y)} and ĥ−(y) :=
max{0,−ĥ(y)} such that ĥ = ĥ+ − ĥ−. For ĥ− = 0, which corresponds to the case
of a positive definite h, there is nothing to prove, so assume that ĥ− �= 0.

Introducing H− := (ĥ−)1/2 ≥ 0, we obtain by Jensen’s inequality and Tonelli’s
theorem

EN,V exp
{
−(2

√
2π)−1

∫
ĥ(t)

∣∣ ◦
uN(t, x)

∣∣2 dt

}
≤ EN,V exp

{
(2

√
2π)−1

∫
H−(t)2∣∣ ◦

uN(t, x)
∣∣2 dt

}
(34)

= EN,V exp
{
(2

√
2π)−1‖H−‖L1

∫ (
H−(t)/‖H−‖L1

)
H−(t)

∣∣ ◦
uN(t, x)

∣∣2 dt

}
≤

∫ (
H−(t)/‖H−‖L1

)
EN,V exp

{
(2

√
2π)−1‖H−‖L1H−(t)

∣∣ ◦
uN(t, x)

∣∣2}
dt.
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Abbreviating Kh := (2
√

2π)−1‖H−‖L1 and using the Cauchy–Schwarz inequality
and representation (33), we find

EN,V exp
{
KhH−(t)

∣∣ ◦
uN(t, x)

∣∣2}
(35)

≤ E
1/2
N,V exp

{
2KhH−(t)

∣∣∣∣∣
N∑

j=1

cos(txj ) − N

∫
cos(ts) dμ(s)

∣∣∣∣∣
2}

(36)

×E
1/2
N,V exp

{
2KhH−(t)

∣∣∣∣∣
N∑

j=1

sin(txj )

∣∣∣∣∣
2}

.(37)

Since by Corollary 4.4 the distributions of
∑N

j=1 cos(txj )−N
∫

cos(ts) dμ(s) and∑N
j=1 sin(txj ) are sub-Gaussian, we obtain, for example, for the first term for any

ε > 0,

EN,V exp

{
ε ·

√
2KhH−(t)

(
N∑

j=1

cos(txj ) − N

∫
cos(ts) dμ(s)

)}
(38)

≤ exp
{
ε2 · 2KhH−(t)t2(2αV )−1 + ε

√
2KhH−(t)C

(
1 + t3)}

,

where αV := mint V
′′(t) > 0, C does not depend on t or N . For αQ large enough

(hence αV large enough), we have 2KhH−(t)t2(2αV )−1 < 1/4 for all t . Since
H−(t) = ĥ

1/2
− (t) is decaying rapidly,

√
2KhH−(t)C(1 + t3) is bounded in t . Sum-

marizing, if αQ is large enough, we can bound (38) by

exp
{
cε2 + εC

}
with 0 < c < 1/4 and c,C do not depend on N or t . We conclude that (36) and (37)
and hence (35) are bounded in N . Finally, since ĥ is a Schwartz function, it follows
from (34) that

EN,V exp
{
−

∫
ĥ(t)

∣∣ ◦
uN(t, x)

∣∣2 dt

}
≤ C

for some constant C > 0 independent of N . This proves the upper bound and hence
the proposition. �

REMARK 4.8. The proof of Proposition 4.7 actually shows that for each λ > 0
there is a threshold αh(λ) > 0 and constants C1,C2 (depending on λ and αh) such
that

0 < C1 < EN,V exp
{
λU(x)

} ≤ C2 if αQ ≥ αh(λ).
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5. Bounding the first correlation function. This section deals with proper-
ties of the first correlation function. We give information on its decay and depen-
dence on additional external fields of lower order.

First of all, we need to introduce some notation from [14]:

KN,Q(x) := ∑
1≤i �=j≤N

kQ(xi, xj ),

(39)

kQ(t, s) := log |t − s|−1 + 1

2
Q(t) + 1

2
Q(s),

FQ := IQ(μ), ψQ(t) := Q(t) − log
(
t2 + 1

)
(40)

where IQ(μ) is defined in (82).

From the simple inequality |t − s| ≤ √
t2 + 1

√
s2 + 1 we conclude log |t − s|−1 ≥

−1
2 log(t2 + 1)(s2 + 1) and hence

kQ(t, s) ≥ (1/2)ψQ(t) + (1/2)ψQ(s).(41)

We also note that since Q is an external field, there is a constant cQ such that

ψQ(t) ≥ cQ.(42)

We define a generalized unitary invariant ensemble on R
N (or some compact

[a, b]N ) via

P M
N,Q,f (x) := 1

ZM
N,Q,f

∏
1≤i<j≤N

|xi − xj |2e−M
∑N

j=1 Q(xj )+∑N
j=1 f (xj )

,(43)

where N,M ∈ N and f is a continuous function with |f (t)| ≤ Q(t) for t large
enough. Usually we have M = N or M = N − 1. If M = N , we will write PN,Q,f

instead of P M
N,Q,f . If f = 0, we write P M

N,Q. The following result is due to Johans-
son.

PROPOSITION 5.1. Let

AN,ε :=
{
x ∈R

N :
1

N2 KN,Q(x) ≤ FQ + ε

}
.

Then there is some constant C such that, if limN→∞ N/MN → 1,

P
MN

N,Q

(
R

N \ AN,ε+a

) ≤ Ce−aN2
for all N ≥ N0(ε) and all a ≥ 0.

PROOF. See [14], Lemma 4.2. �

We now deal with the decay of ρ1
N,Q. The following lemma can be found in

several papers including [14, 27]. We follow [14].
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LEMMA 5.2. Let Q be a continuous function satisfying Q(t) ≥ (1+δ) log(1+
t2) for some δ > 0 and all t large enough. Then there is a constant C > 0 such that
for all t ,

ρ1
N,Q(t) ≤ eCNe−N[Q(t)−log(1+t2)].

PROOF. We will from now on drop the subscript Q, defining

P M
N (x) := 1

ZM
N

∏
1≤i<j≤N

|xi − xj |2e−M
∑N

j=1 Q(xj )

and abbreviating ρ1
N := ρ1

N,Q, we compute

ρ1
N(t) = ZN

N−1

ZN
N

E
N−1
N

(
N−1∏
j=1

(xj − t)2

)
e−NQ(t),

(44)
ZN

N

ZN
N−1

= E
N
N−1

(∫
e

2
∑N−1

j=1 log |xj−t |−NQ(t)
dt

)
.

Since adding a constant to Q does not change the ensemble, we will assume that
Q ≥ 0, which corresponds to considering the potential Q+CQ, where CQ denotes
a lower bound of Q. Setting Z := ∫

e−Q(t) dt we get by Jensen’s inequality

Z
1

Z

∫
exp

{
2

N−1∑
j=1

log |xj − t | − NQ(t)

}
dt

≥ Z exp

{
1

Z

∫ (
2

N−1∑
j=1

log |xj − t | − (N − 1)Q(t)

)
e−Q(t) dt

}
.

Since Q ≥ 0, we get∫
log |t − xj |e−Q(t) dt ≥

∫ xj+1

xj−1
log |t − xj |dt = −2.

Summarizing we see that

ZN
N /ZN

N−1 ≥ Z exp{−CN} for some constant C > 0.(45)

Using the inequality (xj − t)2 ≤ (1 + x2
j )(1 + t2) gives

E
N−1
N

(
N−1∏
j=1

(xj − t)2

)
≤ (

1 + t2)N
E

N−1
N

(
N−1∏
j=1

(
1 + x2

j

))
.(46)

As before, we can assume (otherwise we add a constant) that Q satisfies Q(t) ≥
(1 + δ) log(1 + t2) for all t and some δ > 0. Using notation (39)–(40) and inequal-
ity (41), this condition yields

KN−1,Q(x) ≥ δ(N − 1)

N−1∑
j=1

log(1 + xj )
2.
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Proposition 5.1 shows that for A large enough we have

P N
N−1,Q

(
N−1∑
j=1

log(1 + xj )
2 ≥ AN

)
(47)

≤ P N
N−1,Q

(
KN−1,Q(x) ≥ δA(N − 1)N

) ≤ e−cAN2

for some constant c > 0. From this we conclude that for A large enough

E
N−1
N

(
N−1∏
j=1

(
1 + x2

j

)) ≤ eAN +E
N−1
N

(
N−1∏
j=1

(
1 + x2

j

)
1∏N−1

j=1 (1+x2
j )≥eAN

)
.

Equation (47) gives that

P N
N−1,Q

(
N−1∑
j=1

log(1 + xj )
2 − AN ≥ |y|

)
≤ exp

{−cAN2 − c|y|N}
.

From this bound it is easy to see that EN−1
N (

∏N−1
j=1 (1 + x2

j )1∏N−1
j=1 (1+x2

j )≥exp{AN})
is of order exp{−CN2} for some C > 0. Hence we have

E
N−1
N

(
N−1∏
j=1

(
1 + x2

j

)) ≤ exp{cAN} for some c.(48)

In view of (44) we find combining (45), (46) and (48),

ρ1
N,Q(t) ≤ exp{CN} exp

{−N
[
Q(t) − log

(
1 + t2)]}

. �

From the previous lemma we easily deduce the following important corollary;
cf. [11, 14, 27].

COROLLARY 5.3. Let Q be as in Lemma 5.2. Then there are L,C > 0 such
that for all t with t > L, we have

ρ1
N(t) ≤ exp

{−CNQ(t)
}
.

We finish the section with a useful bound on the first correlation function ρ1
N,Q,f

of the unitary invariant ensemble PN,Q,f ; see (43).

LEMMA 5.4. Let f be bounded. Then we have

ρ1
N,Q,f (t) ≤ ρ1

N,Q(t)e2‖f ‖∞ .

PROOF. We use the identity

ρ1
N,Q,f (t) = e−NQ+f

NλN(e−NQ+f , t)
,(49)
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where λN(e−NQ+f , ·) is the so-called N th Christoffel function to the weight
e−NQ+f (see [32] for references and more information on Christoffel functions)

λN(W, t) := inf
PN−1(t)=1

∫ ∣∣PN−1(s)
∣∣2W(s)ds,(50)

where the infimum is taken over all polynomials PN−1 of at most degree N − 1
with the property that PN−1(t) = 1 and W denotes a weight function on R. It is ob-
vious from (50) that λN(W1, ·) ≤ λN(W2, ·) if W1 ≤ W2. Then the lemma follows
easily by e−NQ−‖f ‖∞ ≤ e−NQ+f ≤ e−NQ+‖f ‖∞ . �

6. Proofs of Theorems 1.1 and 1.2. We first cite a general result by Levin
and Lubinsky ([21], Theorem 1.1) about bulk universality for unitary invariant
ensembles. Recall the definition of ρk

N,Q,f following (43).

THEOREM 6.1. Let Q be a continuous external field on the set � ⊂R, which
is assumed to consist of at most finitely many intervals. Let f be a bounded con-
tinuous function on �. Let KN denote the kernel

KN(t, s) =
N−1∑
j=0

ψ
(N)
j (t)ψ

(N)
j (s),

where (ψ
(N)
j )j are the orthonormal functions to the weight e−NQ(t)+f (t). Let J be

a closed interval lying inside the support of μQ. Assume that μQ is absolutely
continuous in a neighborhood of J and that Q′ and the density μQ are continuous
in that neighborhood, while μQ > 0 there. Then uniformly for a ∈ J and t, s in
compacts of the real line, we have

lim
N→∞

KN(a + (t/(KN(a, a))), a + (s/(KN(a, a)))

KN(a, a)
= sin(π(t − s))

π(t − s)
.(51)

We use a notion of bulk universality which slightly differs from (51); namely
we scale by the limiting density μQ instead of using the N -particle density. The
following obvious corollary is a translation of Theorem 6.1 into this setup.

COROLLARY 6.2. Let Q, f and μQ be as in Theorem 6.1. Then bulk univer-
sality as defined in (2) holds for the unitary invariant ensemble PN,Q,f .

PROOF. The corollary follows from the well-known determinantal relations
for unitary invariant ensembles, the local uniformness of the limit (51) in t, s and
the fact that by [32], Theorem 1.2, we have uniformly in compact proper subsets
of suppμQ

lim
N→∞

1

N
KN(a, a) = lim

N→∞ρ1
N,Q,f (a) = μQ(a). �
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We will prove Theorems 1.1 and 1.2 together by comparing the correlation func-
tions of the ensembles P h

N,Q [see (30)] and PN,V ; see (31). We start with ρk
N,V ,

the kth correlation function of PN,V . We obtain ρk
N,V (a + t1

Nμ(a)
, . . . , a + tk

Nμ(a)
)

as k-marginal, integrating the density

PN,V

(
a + t1

Nμ(a)
, . . . , a + tk

Nμ(a)
, xk+1, . . . , xN

)
over xk+1, . . . , xN . We have k fixed eigenvalues at positions a + t1

Nμ(a)
, . . . , a +

tk
Nμ(a)

and N −k random eigenvalues. We first rewrite ρk
N,V in terms of these N −k

random eigenvalues as follows:

ρk
N,V

(
a + t1

Nμ(a)
, . . . , a + tk

Nμ(a)

)

=
∫
RN−k

1

ZN,V

exp

{
−N

N∑
j=k+1

V (xj ) + 2
∑

i<j ;i,j>k

log |xj − xi |
}

× exp

{
−N

k∑
j=1

V

(
a + tj

Nμ(a)

)
+ 2

∑
i<j ;i,j≤k

log
∣∣∣∣ ti − tj

Nμ(a)

∣∣∣∣
}

(52)

× exp
{

2
∑

i≤k,j>k

log
∣∣∣∣a + ti

Nμ(a)
− xj

∣∣∣∣}dxk+1 · · ·dxN

= F(a, t)
ZN

N−k,V

ZN,V

E
N
N−k,V exp

{
2

∑
i≤k,j>k

log
∣∣∣∣a + ti

Nμ(a)
− xj

∣∣∣∣},(53)

where

F(a, t) := exp

{
−N

k∑
j=1

V

(
a + tj

Nμ(a)

)
+ 2

∑
i<j ;i,j≤k

log
∣∣∣∣ ti − tj

Nμ(a)

∣∣∣∣
}

(54)

is the factor (52), which depends only on the fixed particles, and

P N
N−k,V (xk+1, . . . , xN) := 1

ZN
N−k,V

∏
k+1≤i<j≤N

|xi − xj |2e−N
∑N

j=k+1 V (xj )
.

As before, the subscript N − k indicates that P N
N−k,V is a probability measure in

N − k variables, whereas the superscript N indicates that the factor in front of the
external field term

∑N
j=k+1 V (xj ) of P N

N−k,V is N and not N − k. We keep the
labeling xk+1, . . . , xN . Setting

LN
N−k,V (a, t, x)

(55)
:= 2

∑
i≤k,j>k

log
∣∣∣∣a + ti

Nμ(a)
− xj

∣∣∣∣ + log
[
F(a, t)

ZN
N−k,V

ZN,V

]
,
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we get from (53) the equality

ρk
N,V

(
a + t1

Nμ(a)
, . . . , a + tk

Nμ(a)

)
= E

N
N−k,V exp

{
LN

N−k,V (a, t, x)
}
.(56)

Similar to (53), we see that the kth correlation function ρ
h,k
N,Q of P h

N,Q at a +
t1

Nμ(a)
, . . . , a + tk

Nμ(a)
can be written as

1

EN,V exp{U(x)}E
N
N−k,V exp

{
U(t, x) + LN

N−k,V (a, t, x)
}
,(57)

where we abbreviated U(a + t1
Nμ(a)

, . . . , a + tk
Nμ(a)

, xk+1, . . . , xN) by U(t, x).
In the following we shall abbreviate (t1, . . . , tk, xk+1, . . . , xN) by (t, x), and by

(t, x)j we will denote the j th component of the vector (t, x). Furthermore, for the
sake of brevity, we set

Ra := LN
N−k,V (a, t, x) and R := LN

N−k,V

(
0,Nμ(0)t, x

)
.(58)

Note that R arises in the global scaling, whereas Ra appears in the local scaling.
It will later turn out to be convenient that all the xj ’s lie in a compact set. To this
end we formulate the following truncation lemma. This procedure is well known
for invariant ensembles; see, for instance, [14] or [9].

LEMMA 6.3. For αQ large enough, the following holds: for each k there are
L,C > 0 such that for all N and for all t1, . . . , tk∣∣∣∣ρh,k

N,Q(t1, . . . , tk) − 1

EN,V,L exp{U(x)}E
N
N−k,V ,L exp

{
U(t, x) + RL

}∣∣∣∣ ≤ e−CN,

where EM
N,V,L denotes expectation w.r.t. the ensemble P M

N,V,L obtained by normal-

izing the ensemble P M
N,V restricted to [−L,L]N and RL is the analog of R in

which all integrations over R have been replaced by integrations over [−L,L].
Furthermore, for any external field Q on R, the following holds: for each k there
are L′,C > 0 such that for all N and all t1, . . . , tk∣∣ρk

N,Q(t1, . . . , tk) − ρk
N,Q,L′(t1, . . . , tk)

∣∣ ≤ e−C′N,

where ρk
N,Q,L′ is the kth correlation function of the ensemble PN,Q,L′ obtained by

normalizing the ensemble PN,Q restricted to [−L′,L′]N .

PROOF. We will use representation (57) and show that the restriction of inte-
grals to [−L,L]N ⊂ R

N , respectively, [−L,L]N−k ⊂ R
N−k results in an asymp-

totically negligible error. For EN,V eU we use Hölder’s inequality to estimate

EN,V

(
exp

{
U(x)

}
1([−L,L]N)c(x)

)
≤ (

EN,V exp
{
(1 + ε)U(x)

})1/(1+ε)(
PN,V

(([−L,L]N )c))1/ε′
,
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where 1/(1 + ε) + 1/ε′ = 1 and ε > 0 is fixed. Now EN,V e(1+ε)U(x) is uniformly
bounded in N by Proposition 4.7 provided that αQ is large enough. Furthermore,
by Corollary 5.3 we get for the L defined there

PN,V

(([−L,L]N )c) ≤ N

∫
|t |>L

ρ1
N,V (t) dt

(59)
≤ N

∫
|t |>L

e−CNV (t) dt ≤ e−C′N

for some C′ > 0. In fact, C′ can be chosen arbitrarily large by increasing L. We
conclude that

EN,V

(
exp

{
U(x)

}
1([−L,L]N)c(x)

) ≤ exp
{−C′′N

}
for some C′′ > 0, if L is large enough. It follows by (59) as well that the exchange
of the normalizing constants ZN,V and ZN

N−k,V by their counterparts ZN,V,L, and
ZN

N−k,V ,L and hence also the exchange of R by RL is asymptotically negligible.
In order to bound E

N
N−k,V (exp{U(t, x) + R}1([−L,L]N)c(x)), first use Hölder’s

inequality as above. It remains to estimate EN
N−k,V exp{(1 + ε)U(t, x) + (1 + ε)R}

for some fixed ε > 0. Again by Hölder’s inequality we reduce this to bounding
E

N
N−k,V exp{(1 + ε′)U(t, x)} and E

N
N−k,V exp{(1 + ε′′)R} for some ε′, ε′′ > 0. Re-

call from (33) that

U(x) = − 1

2
√

2π

∫ ∣∣ ◦
uN(s, x)

∣∣2ĥ(s) ds,

where

◦
uN(s, x) =

N∑
j=1

cos(sxj ) − N

∫
cos(st) dμ(t) + √−1

N∑
j=1

sin(sxj ).

For any a and any t1, . . . , tk we get

U(t, x) ≤ 1

2
√

2π

∫ ∣∣∣∣∣
N∑

j=k+1

cos(sxj ) − (N − k)

∫
cos(su) dμ(u)

+
k∑

j=1

cos(stj ) − k

∫
cos(su) dμ(u)

∣∣∣∣∣
2

ĥ−(s) ds

+ 1

2
√

2π

∫ ∣∣∣∣∣
N∑

j=k+1

sin(sxj ) +
k∑

j=1

sin(stj )

∣∣∣∣∣
2

ĥ−(s) ds(60)

≤ 1√
2π

∫ ∣∣∣∣∣
N∑

j=k+1

cos(sxj ) − (N − k)

∫
cos(su) dμ(u)

∣∣∣∣∣
2

ĥ−(s) ds

+ 1√
2π

∫ ∣∣∣∣∣
N∑

j=k+1

sin(sxj )

∣∣∣∣∣
2

ĥ−(s) ds + 5k2
√

2π

∫
ĥ−(s) ds,
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where we used the inequalities (a + b)2 ≤ 2(a2 + b2) and | cos |, | sin | ≤ 1. From
this we conclude as in the proof of Proposition 4.7 that EN

N−k,V exp{(1 + ε′)U(t,

x)} ≤ C provided that αQ is large enough (which does not depend on k), and
C does not depend on t1, . . . , tk or N . To see that Theorem 4.1 also applies for
P N

N−k,V is obvious, and for Proposition 4.3 we use that P N
N−k,V = P N−k

N−k,V ,f with
f (t) := kV (t), and the notation introduced in (43). Proposition 4.3 is proved in
[29] also for the case of PN,Q,f for real-analytic Q and f , hence it can be applied
as in the proof of Proposition 4.7. We may now bound E

N
N−k,V exp{(1 + ε′′)R} as

in the arguments following (46). Recall that

R := 2
∑

i≤k,j>k

log |ti − xj | + log
[
F

(
0,Nμ(0)t

)ZN
N−k,V

ZN,V

]
,

where F(a, t) was defined in (54). Using the same Jensen type trick as in the proof
of Lemma 5.2, we find that ZN

N−k,V /ZN,V ≤ exp{CkN} for some C. As in (46)
we get

E
N
N−k,V exp

{(
2 + 2ε′′) ∑

i≤k,j>k

log |ti − xj |
}

≤ exp
{
(N − k)

(
1 + ε′′)∑

i≤k

log
(
1 + t2

i

)}
(61)

×E
N
N−k,V exp

{(
1 + ε′′) ∑

j>k

log
(
1 + x2

j

)}
.

Analogously to (48) we conclude that EN
N−k,V exp{(2 + 2ε′′)∑

j>k log(1 + x2
j )} ≤

exp{cN} for some c > 0. Using (42), it is straightforward to bound

exp
{
(N − k)

(
2 + 2ε′′)∑

i≤k

log
(
1 + t2

i

) + log
[
F

(
0,Nμ(0)t

)
ZN

N−k,V /ZN,V

]}
(62)

≤ exp

{
−c1N

k∑
i=1

[
V (ti) − c2 log

(
1 + t2

i

)] + CkN

}
,

where c1, c2 are absolute positive constants. Since V is strictly convex, this yields

E
N
N−k,V exp

{(
1 + ε′′)R} ≤ eCN

and hence

E
N
N−k,V exp

{
(1 + ε)U(t, x) + (1 + ε)R

} ≤ eC′N

for some C,C′. From (59), we get that for L and N large enough

E
N
N−k,V

(
exp

{
U(t, x) + R

}
1([−L,L]N)c(x)

) ≤ e−C′′N
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for some C′′ > 0 and all t1, . . . , tk .
From (57), (60) and (61) we also obtain similarly as in Lemma 5.2

ρ
h,k
N,Q(t1, . . . , tk) ≤ exp

{
CN − c1N

k∑
i=1

[
V (ti) − c2 log

(
1 + t2

i

)]}

for some positive C,c1, c2. As before, this implies that we can assume all t1, . . . , tk
to lie in some compact set.

The second assertion of the lemma follows analogously from (59), (62) and (61)
with ε′′ = 0. �

PROOF OF THEOREMS 1.1 AND 1.2. We first outline the main idea of the
proof. Recall from (29) that

U(x) = −(1/2)

(
N∑

i,j=1

h(xi − xj ) − [
hμ(xi) + hμ(xj ) − hμμ

])
.

Assume for a moment that −h/2 is positive semi-definite, or in other words,
the covariance function of a centered stationary Gaussian process (Gt)t∈[−L,L],
that is, −h(t − s)/2 = E(GtGs). We may linearize the bivariate statistic
−(1/2)

∑N
i,j=1 h(xi − xj ) via

exp

{
−(1/2)

N∑
i,j=1

h(xi − xj )

}
= E exp

{
N∑

j=1

Gxj

}
,

where E denotes expectation w.r.t. the underlying probability measure. By defini-
tion we conclude that

exp
{
U(x)

} = E exp

{
N∑

j=1

Gxj
− N

∫
G· dμ

}
,(63)

provided that G· is a.s. integrable w.r.t. μ. Since we would like to apply Corol-
lary 4.4 to the linear statistic in (63), we need that G· is sufficiently smooth with
probability one. To see this, we use the well-known Karhunen–Loève expansion
of G. By a classical result due to Mercer, the covariance function h admits an
expansion, converging uniformly on [−L,L],

−h(t − s)/2 =
∞∑
i=1

λiθi(t)θi(s),(64)

where (θi)i denotes an orthonormal system of eigenfunctions of the integral ker-
nel h with real and positive eigenvalues (λi)i , that is,∫ L

−L
−(1/2)h(t − s)θi(s) ds = λiθi(t) ∀i.
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The Karhunen–Loève expansion of G is then given by

Gt =
∞∑
i=1

λ
1/2
i ξiθi(t),(65)

where (ξi)i , ξi := (λi)
−1/2 ∫ L

−L θi(t)Gt dt , are independent standard normal vari-
ables. The convergence in (65) is a.s. uniform on the compact interval [−L,L];
see [3], Theorem 3.1.2. The a.s. continuity of Gt used for this theorem follows, for
example, from the Kolmogorov–Chentsov theorem ([16], Theorem 3.23). Since
h is analytic on some domain containing the compact set, say A := [−L,L] ×
[−δ, δ] ⊂ C, δ > 0, its eigenfunctions (with nonzero eigenvalues) are analytic
on A. Hence the uniform convergence in (65) implies that Gw,w ∈ A is analytic
with probability one. Furthermore, recall that the derivative process (G′

t )t∈[−L,L]
of G is a centered (real-valued) Gaussian process with covariance function h′′/2;
see, for example, [2], Theorem 2.2.2.

To summarize, if −h is positive semi-definite, U admits the linearization (63) in
terms of linear statistics with random test functions which fulfill the prerequisites
of Corollary 4.4 if we restrict ourselves to a compact [−L,L]. In the following we
sketch the main strategy in this case. Let k ∈ N be fixed. Eventually we will prove

lim
N→∞ρ

h,k
N,Q

(
a + t1

Nμ(a)
, . . . , a + tk

Nμ(a)

)
− S

k(t) = 0(66)

locally uniformly, where

S
k(t) := μ(a)k det

[
sin(π(ti − tj ))

π(ti − tj )

]
1≤i,j≤k

.

By the boundedness of EN,V eU (Proposition 4.7) and Lemma 6.3, (66) converges
to zero if and only if

EN,V,LeUρ
h,k
N,Q

(
a + t1

Nμ(a)
, . . . , a + tk

Nμ(a)

)
−EN,V,LeUSk(t)

tends to 0, where the L > 0 was introduced in Lemma 6.3. But this means, us-
ing (56), (57) and the abbreviation Ra,L, which denotes a version of Ra which is
truncated to [−L,L] [see (58)] and Lemma 6.3 that

E
N
N−k,V ,L exp

{
U(t, x) + Ra,L

} −EN,V,L exp{U}Sk(t) → 0(67)

as N → ∞. The linearization procedure then gives

E
N
N−k,V ,L exp

{
U(t, x) + Ra,L

} −EN,V,L exp{U}Sk(t)

= E

[
E

N
N−k,V ,L exp

{
N∑

j=1

G(t,x)j + Ra,L

}
(68)

−EN,V,L exp

{
N∑

j=1

Gxj

}
S

k(t)

]
.



2234 F. GÖTZE AND M. VENKER

We find similarly as in (57) that(
EN,V,L exp

{
N∑

j=1

Gxj

})−1

E
N
N−k,V ,L exp

{
N∑

j=1

G(t,x)j + Ra,L

}
(69)

= ρk
N,V,G·,L

(
a + t1

Nμ(a)
, . . . , a + tk

Nμ(a)

)
,

where PN,V,G·,L denotes the determinantal ensemble on [−L,L]N with external
field exp{−NV (t) + Gt }.

With representation (69), we can use the bulk universality of PN,V,G·,L to show
convergence of

E
N
N−k,V ,L exp

{
N∑

j=1

G(t,x)j + Ra,L

}
−EN,V,L exp

{
N∑

j=1

Gxj

}
S

k(t)(70)

to 0 almost surely. To show that convergence to 0 also holds for the expectation,
we will bound (70) in terms of G·. Here we can use that G is a Gaussian process
and quantities like ‖G·‖∞ and ‖G′·‖∞ have sub-Gaussian tails.

We now turn to the detailed proof. As −h is in general not positive semi-definite,
we may extend the previous case by means of the following argument. Recall
the decomposition of ĥ into nonnegative functions ĥ = (ĥ)+ − (ĥ)−. By setting

h+ := ̂
(ĥ)+, h− := ̂

(ĥ)−, we get a decomposition h = h+ − h− of h into positive
semi-definite, real-analytic functions. Define for a complex parameter z ∈ C

Uz(x) := z

2

(
N∑

i,j=1

h+(xi − xj ) − [
h+

μ(xi) + h+
μ(xj ) − h+

μμ

])
(71)

+ 1

2

(
N∑

i,j=1

h−(xi − xj ) − [
h−

μ(xi) + h−
μ(xj ) − h−

μμ

])
.(72)

Note that U−1 = U . Similar to (67), we have to show that for z = −1,

E
N
N−k,V ,L exp

{
Uz(t, x) + Ra,L

} −EN,V,L exp{Uz}Sk(t) → 0

as N → ∞. As the linearization procedure only works for nonnegative z, we shall
use the following result, known as Vitali’s convergence theorem, which can be
found, for example, in [31].

THEOREM 6.4 (Vitali’s convergence theorem). Let fn(z) be a sequence of
analytic functions on a region D ⊂ C with |fn(z)| ≤ M for all n and all z ∈ D.
Assume that limn→∞ fn(z) exists for a set of z having a limit point in D. Then
limn→∞ fn(z) exists for all z in the interior of D and the limit is an analytic
function in z.
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We will apply Vitali’s convergence theorem to the sequence (in N ) of the fol-
lowing analytic functions of z:

WN,z(a, t) := E
N
N−k,V ,L exp

{
Uz(t, x) + Ra,L

} −EN,V,L exp{Uz}Sk(t).(73)

Introduce the domain D := {z = x + iy ∈ C :x, y ∈ R, x < C(αQ)}, where
C(αQ) > 0 is a sufficiently small constant such that the following quantity is
bounded by some constant C:

EN,V,L exp{UC(αQ)} ≤ C

(the existence of such constants follows from the proof of Proposition 4.7). First
we shall show uniform boundedness of WN,z(a, t) for all N,a, t and z ∈ D. By the
definition of Uz in (71) and the positivity of (72) and (71) for positive z (being vari-
ances of Gaussian random variables) it is clear that it suffices to bound WN,z(a, t)

for real, positive z, since for negative real parts of z the boundedness of WN,z(a, t)

is obvious. Hence we restrict ourselves to 0 ≤ z < C(αQ) only. Let G+ and G−
denote two independent, centered and stationary Gaussian processes on a proba-
bility space (�,A,P ) indexed by A := [−L,L] × [−ε, ε] ⊂ C with covariance
functions (z/2)h+ and h−/2, respectively, where h+ and h− are analytic on A.
Writing Gt = G+

t − ∫
G+· dμ+G−

t − ∫
G−· dμ and denoting by E the expectation

w.r.t. P , we can rewrite

E
N
N−k,V ,L exp

{
Uz(t, x) + Ra,L

} −EN,V,L exp{Uz}Sk(t)

(74)

= E

[
E

N
N−k,V ,L exp

{
N∑

j=1

G(t,x)j + Ra,L

}
−EN,V,L exp

{
N∑

j=1

Gxj

}
S

k(t)

]
.

Similar to (69), we have(
EN,V,L exp

{
N∑

j=1

Gxj

})−1

E
N
N−k,V ,L exp

{
N∑

j=1

G(t,x)j + Ra,L

}
(75)

= ρk
N,V,G·,L

(
a + t1

Nμ(a)
, . . . , a + tk

Nμ(a)

)
,

where PN,V,G·,L denotes the determinantal ensemble on [−L,L]N with external
field exp{−NV (t) + G+

t + G−
t }.

Fix compact sets E ⊂ R
k and I ⊂ suppμ◦. We have

sup
t∈E,a∈I

∣∣∣∣∣E
[
E

N
N−k,V ,L exp

{
N∑

j=1

G(t,x)j + Ra,L

}

−EN,V,L exp

{
N∑

j=1

Gxj

}
S

k(t)

]∣∣∣∣∣(76)
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≤ E sup
t∈E,a∈I

∣∣∣∣∣EN
N−k,V ,L exp

{
N∑

j=1

G(t,x)j + Ra,L

}

−EN,V,L exp

{
N∑

j=1

Gxj

}
S

k(t)

∣∣∣∣∣.
Since (75) converges by Theorem 6.1 to S

k(t) locally uniformly and the term
EN,V,L exp{∑N

j=1 Gxj
} is bounded in N by Corollary 4.4 and bounded away

from 0 by Proposition 4.3 and Lemma 6.3, we see that the term

sup
t∈E,a∈I

∣∣∣∣∣EN
N−k,V ,L exp

{
N∑

j=1

G(t,x)j + Ra,L

}
−EN,V,L exp

{
N∑

j=1

Gxj

}
S

k(t)

∣∣∣∣∣(77)

converges to 0 a.s. w.r.t. P . To show convergence of (76) to 0, it remains
to show that (77) is uniformly integrable w.r.t. P . We first consider the term
EN,V,L exp{∑N

j=1 Gxj
}. In view of Corollary 4.4, we need to determine the dis-

tribution of the Lipschitz constant of G+ + G− and of∥∥G+ + G−∥∥∞ + ∥∥(
G+ + G−)(3)∥∥∞(78)

on [−L,L]. The derivative processes (G+)′ and (G−)′ are Gaussian with covari-
ance functions −(z/2)(h+)′′ and −(h−)′′/2, respectively. Furthermore, it is well
known that supt∈[−L,L] |G+

t | and supt∈[−L,L] |G−
t | are sub-Gaussian with certain

means and variances −(z/2)(h+)′′(0) and −(h−)′′(0)/2, respectively. By the same
argument, ‖G+ + G−‖∞ and ‖(G+ + G−)(3)‖∞ are sub-Gaussian with certain
means and the variances given in terms of derivatives of (h+) and (h−). For a ref-
erence, see, for example, [3], Theorem 2.1.1. From the sub-Gaussianity of these
quantities and Corollary 4.4, it is easy to see that

EN,V,L exp

{
N∑

j=1

Gxj

}
,(79)

has a P -integrable dominating function, provided that αQ (and hence αV ) is large
enough. Note that the estimates above are uniform in z varying in a small interval.
It remains to show that

E
N
N−k,V ,L exp

{
N∑

j=1

G(t,x)j + Ra,L

}
(80)

is uniformly integrable and bounded in z for z varying in a small interval. To this
end we use that (80) is equal to

EN,V,L exp

{
N∑

j=1

Gxj

}
ρk

N,V,G·,L

(
a + t1

Nμ(a)
, . . . , a + tk

Nμ(a)

)
.
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As in the proof of Theorem 1.3, we get

ρk
N,V,G·,L

(
a + t1

Nμ(a)
, . . . , a + tk

Nμ(a)

)

≤ Ck
k∏

j=1

ρ1
N,V,G·,L

(
a + tj

Nμ(a)

)
,

where C is such that C ≥ N/(N − k). By Lemma 5.4 we have

ρ1
N,V,G·,L

(
a + tj

Nμ(a)

)
≤ ρ1

N,V,L

(
a + tj

Nμ(a)

)
e2‖G·‖∞,

where ‖G·‖∞ := supt∈[−L,L] |Gt |. Bulk universality for k = 1 gives that
ρ1

N,V,L(a + tj
Nμ(a)

) converges (locally) uniformly toward the bounded func-
tion μ(a). We conclude that there is a constant C > 0 such that for t1, . . . , tk ∈ E,
a ∈ I we have

ρk
N,V,G·,L

(
a + t1

Nμ(a)
, . . . , a + tk

Nμ(a)

)
≤ Ce2k‖G·‖∞ .

As ‖G·‖∞ is sub-Gaussian, we get in combination with (79) that (77) is uniformly
integrable w.r.t. P , provided that αQ is large enough. It is clear that this bound is
uniform in z ∈ [0, ε) for some small ε > 0.

To summarize, we have shown that (76) converges to 0 for (small) positive z,
or in other terms, locally uniform convergence in a and t of WN,z(a, t) (for small
positive z) as N → ∞. We have also shown uniform boundedness of WN,z(a, t)

for arbitrary N,a, t and z ∈ (−∞, ε)×R⊂ C and as locally uniform convergence
implies pointwise convergence, we get by Vitali’s convergence theorem that the
sequence (in N ) of functions WN,z(a, t) converges to 0 for z = −1 pointwise in
a and t . To get locally uniform convergence in t and a for z = −1, recall that
by Arzelà–Ascoli’s theorem, a sequence of continuous functions on a compact
set has a uniformly converging subsequence if and only if the sequence is uni-
formly bounded and equicontinuous. Thus it remains to show that (WN,z(a, t))N
is equicontinuous in a and t (boundedness has already been shown). As the conver-
gence of WN,z(a, t) is uniform in a, t for small positive z, Arzelà–Ascoli’s theorem
implies equicontinuity (in a, t) of (WN,z(a, t))N for small positive z. To see that
this implies equicontinuity (in a, t) of (WN,z(a, t))N also for z = −1, observe that
a (real-valued) sequence of functions (fN)N on some compact K ⊂R

d is equicon-
tinuous in x ∈ K if and only if for each sequence (xm)m ⊂ K , limm→∞ xm = x

and each sequence (Nm)m ⊂ N we have limm→∞ fNm(xm) − fNm(x) = 0. Us-
ing this characterisation, equicontinuity for z = −1 is easily seen by apply-
ing Vitali’s convergence theorem to deduce limm→∞ WNm,−1(am, tm) = 0 from
limm→∞ WNm,z(am, tm) = 0 for small positive z. This completes the proof of The-
orem 1.2.
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To prove Theorem 1.1, take g :Rk −→ R bounded and continuous. With the
same arguments as above, we arrive in analogy to (74)–(75) at proving

E

[
EN,V,L exp

{
N∑

j=1

Gxj

}∫
Rk

ρk
N,V,G·,L(t1, . . . , tk)g(t1, . . . , tk) dt1 · · ·dtk

−EN,V,L exp

{
N∑

j=1

Gxj

}∫
Rk

g(t1, . . . , tk)μ(t1) · · ·μ(tk) dt1 · · ·dtk

]
→ 0.

All the boundedness and integrability arguments above for EN,V,L exp{∑N
j=1 Gxj

}
can be used again. The convergence of

∫
Rk ρk

N,V,G·(t)g(t) dt toward∫
g(t)μ(t1) · · ·μ(tk) dt is given by [14], Theorem 2.1. Lemma 6.3 enables us to

transfer Johansson’s result to the correlation function ρk
N,V,G·,L. This finishes the

proof of Theorem 1.1. �

APPENDIX: EQUILIBRIUM MEASURES WITH EXTERNAL FIELDS

In this appendix, we recall some results about equilibrium measures, mainly
from the book by Saff and Totik [28], Section I.1. The following can be found
in [28], Section I.1.

Let M1(�) denote the set of Borel probability measures on a set �. Define for
� ⊂ C compact the logarithmic energy of μ ∈ M1(�) as

I (μ) :=
∫ ∫

log |z − t |−1 dμ(z) dμ(t)(81)

and the energy V of � by V := infμ∈M1(�) I (μ). It turns out that V is finite or ∞
and in the finite case there is a unique measure ω� which minimizes (81). This
measure ω� is called equilibrium measure of � and the quantity cap(�) := e−V

is called capacity of �. For an arbitrary Borel set �, we define the capacity of � as

cap(�) := sup
{
cap(K) :K ⊂ � compact

}
.

LEMMA A.1. If � = [−l, l], l ≥ 0, then cap(�) = l/2 and the equilibrium
measure is the arcsine distribution with support [−l, l],

dω�(t) = 1

π
√

l2 − t2
dt, t ∈ [−l, l].

ω� has mean 0 and variance l2/2.

PROOF. See [28], Section I.1. �

DEFINITION A.2. Let � ⊂ R be closed. Let Q :� −→ [0,∞] satisfy:

(a) Q is lower semicontinuous;
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(b) �0 := {t ∈ � :Q(t) < ∞} has positive capacity;
(c) if � is unbounded, then lim|t |→∞,t∈� Q(t) − log |t | = ∞.

If Q satisfies these properties, we call it external field on � and W = e−Q its
corresponding weight function.

Furthermore, define for μ ∈ M1(�) the energy functional

IQ(μ) :=
∫

Q(t) dμ(t) +
∫ ∫

log |s − t |−1 dμ(s) dμ(t).(82)

REMARK A.3. In [28] the authors define the energy functional to be (in our
notation) I2Q instead of IQ. It is more convenient for our purposes to use this
definition. We note that under this change qualitative results from [28] remain the
same but quantitative results involving Q have to be changed by a factor 2 or 1/2,
respectively.

IQ(μ) might be ∞, but the following theorem holds. The support of a measure
μ will be denoted as supp(μ).

THEOREM A.4. Let Q be an external field on �.

(a) There is a unique probability measure μQ ∈ M1(�) with

IQ(μQ) = inf
μ∈M1(�)

IQ(μ).(83)

(b) μQ has a compact support.
(c) Let Q̃ be an external field on � such that Q̃ = Q on a compact set K with

supp(μQ) ⊂ K and Q̃(t) = ∞ for t /∈ K . Then μQ̃ = μQ.

PROOF. Statements (a) and (b) can be found in [28], Theorem I.1.3, (c) fol-
lows from [28], Theorem I.3.3 (also see the remark on page 48 in [28]). �

μQ is called the equilibrium measure for Q. The next theorem summarizes
properties of the logarithmic potential

Uμ(z) :=
∫

log |z − t |−1 dμ(t).

THEOREM A.5. (a) Let Q and Q̃ be external fields on � such that
|Q − Q̃| ≤ ε on �. Then for all z ∈ C,∣∣UμQ(z) − U

μQ̃(z)
∣∣ ≤ 2ε.

(b) Let K ⊂ R be compact and (μn)n be a sequence in M1(K) converging
weakly to a probability measure μ. Then for a.e. z ∈ C (w.r.t. the Lebesgue measure
on C),

lim inf
n→∞ Uμn(z) = Uμ(z).
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(c) If μ and ν are two compactly supported probability measures and their
logarithmic potentials Uμ and Uν coincide almost everywhere on C, then μ = ν.

PROOF. Statement (a) is contained in [28], Corollary I.4.2, statement (b)
is [28], Theorem I.6.9, and assertion (c) is [28], Corollary II.2.2. �

THEOREM A.6. Let Q be an external field on �.

(a) For a compact set K of positive capacity, define the functional

FQ(K) := log cap(K) − 2
∫

QdωK.

For any compact K of positive capacity, we have FQ(K) ≤ FQ(supp(μQ)). Fur-
thermore, if K is compact and of positive capacity and such that FQ(K) =
FQ(supp(μQ)), then supp(μQ) ⊂ K .

(b) If Q is convex, then supp(μQ) is an interval.
(c) If Q is even, then supp(μQ) is even.

PROOF. For statement (a), see [28], Theorem IV.1.5, for statements
(b) and (c), see [28], Theorem IV.1.10. �

THEOREM A.7. (a) Let Q be an external field on �. If Q is finite on supp(μQ)

and locally of class C1+ε for some ε > 0 (which means that Q is continuously
differentiable and the derivative Q′ is Hölder continuous with parameter ε), then
μQ has a continuous density on the interior of supp(μQ).

(b) If Q has two Lipschitz derivatives and is strictly convex, then supp(μQ) =:
[a, b] and the density of μQ can be represented as

dμ(t)

dt
= r(t)

√
(t − a)(b − t)1[a,b](t),(84)

where r can be extended into an analytic function on a domain containing [a, b]
and r(t) > 0 for t ∈ [a, b]. In particular, the density is positive on (a, b).

PROOF. Statement (a) is [28], Theorem IV.2.5, and for assertion (b), see, for
example, the appendix of the paper by McLaughlin and Miller [23]. �
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[8] BOURGADE, P., ERDŐS, L. and YAU, H.-T. (2014). Universality of general β-ensembles.
Duke Math. J. 163 1127–1190. MR3192527

[9] BOUTET DE MONVEL, A., PASTUR, L. and SHCHERBINA, M. (1995). On the statistical me-
chanics approach in the random matrix theory: Integrated density of states. J. Stat. Phys.
79 585–611. MR1327898

[10] DEIFT, P., KRIECHERBAUER, T., MCLAUGHLIN, K. T.-R., VENAKIDES, S. and ZHOU, X.
(1999). Uniform asymptotics for polynomials orthogonal with respect to varying expo-
nential weights and applications to universality questions in random matrix theory. Comm.
Pure Appl. Math. 52 1335–1425. MR1702716

[11] DEIFT, P. A. (1999). Orthogonal Polynomials and Random Matrices: A Riemann–Hilbert
Approach. New York Univ. Courant Institute of Mathematical Sciences, New York.
MR1677884
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