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A PROBABILISTIC SOLUTION TO THE
STROOCK–WILLIAMS EQUATION

BY GORAN PESKIR

The University of Manchester

We consider the initial boundary value problem

ut = μux + 1
2uxx (t > 0, x ≥ 0),

u(0, x) = f (x) (x ≥ 0),

ut (t,0) = νux(t,0) (t > 0)

of Stroock and Williams [Comm. Pure Appl. Math. 58 (2005) 1116–1148]
where μ,ν ∈R and the boundary condition is not of Feller’s type when ν < 0.
We show that when f belongs to C1

b with f (∞) = 0 then the following prob-
abilistic representation of the solution is valid:

u(t, x) = Ex
[
f (Xt )

] − Ex

[
f ′(Xt )

∫ �0
t (X)

0
e−2(ν−μ)s ds

]
,

where X is a reflecting Brownian motion with drift μ and �0(X) is the local
time of X at 0. The solution can be interpreted in terms of X and its creation
in 0 at rate proportional to �0(X). Invoking the law of (Xt , �

0
t (X)), this also

yields a closed integral formula for u expressed in terms of μ, ν and f .

1. Introduction. In this paper, we consider the initial boundary value problem

ut = μux + 1
2uxx (t > 0, x ≥ 0),(1.1)

u(0, x) = f (x) (x ≥ 0),(1.2)

ut (t,0) = νux(t,0) (t > 0)(1.3)

of Stroock and Williams [12] (see also [8, 9, 13, 14]) where μ,ν ∈ R and the
boundary condition is not of Feller’s type when ν < 0 (cf. [2–4]). If ν > 0, then it
is known that the solution to (1.1)–(1.3) with f ∈ Cb([0,∞)) can be represented
as

u(t, x) = Ex

[
f (X̃t )

]
,(1.4)

where X̃ starts at x under Px , behaves like Brownian motion with drift μ when in
(0,∞), and exhibits a sticky boundary behaviour at 0. The process X̃ can be con-
structed by a familiar time change of the reflecting Brownian motion X with drift μ
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(the inverse of the running time plus the local time of X at 0 divided by ν) forcing
it to spend more time at 0 (cf. [6], page 186). If ν = 0, then (1.4) remains valid with
X̃ being absorbed at 0 (corresponding to the limiting case of infinite stickiness).
If ν < 0, then Feller’s semigroup approach (cf. [2–5, 15]) is no longer applica-
ble since the speed measure of X̃ cannot be negative. Stroock and Williams [12]
show that the minimum principle breaks down in this case (nonnegative f can pro-
duce negative u) so that the solution to (1.1)–(1.3) cannot be represented by (1.4)
where X̃ is a strong Markov process which behaves like Brownian motion with
drift μ when in (0,∞) (for connections with Feller’s Brownian motions see [7],
Section 5.7).

Motivated by this peculiarity, Stroock and Williams [12] show that the solution
to (1.1)–(1.3) is still generated by a semi-group of operators when ν < 0 and they
characterise nonnegative solutions by means of the Riccati equation. This leads
to subspaces of functions f for which (1.4) remains valid with the same time-
changed Brownian motion X with drift μ that now jumps into (0,∞) or possibly to
a coffin state just before hitting 0. This representation of the solution is applicable
when f (0) = ∫ ∞

0 f (y)g(y) dy where g is the minimal nonnegative solution to
the Riccati equation. For more details and further fascinating developments along
these lines, see [8, 9, 12–14].

Inspired by these insights, in this paper we develop an entirely different ap-
proach to solving (1.1)–(1.3) probabilistically that applies to smooth initial data f

vanishing at ∞ with no further requirement on its shape. First, exploiting higher
degrees of smoothness of the solution u in the interior of the domain (which is a
well-known fact from the theory of parabolic PDEs), we reduce the sticky bound-
ary behaviour at 0 to (i) a reflecting boundary behaviour when ν = μ and (ii) an
elastic boundary behaviour when ν �= μ. Second, writing down the probabilistic
representations of the solutions to the resulting initial boundary value problems ex-
pressed in terms of the reflecting Brownian motion with drift μ and its local time
at 0, choosing joint realisations of these processes where the initial point is given
explicitly so that the needed algebraic manipulations are possible (making use of
the extended Lévy’s distributional theorem), we find that the following probabilis-
tic representation of the solution is valid:

u(t, x) = Ex

[
F

(
Xt, �

0
t (X)

)]
,(1.5)

where X is a reflecting Brownian motion with drift μ starting at x under Px , and
�0(X) is the local time of X at 0. The function F is explicitly given by

F(x, �) = f (x) − f ′(x)

∫ �

0
e−2(ν−μ)s ds(1.6)

for x ≥ 0 and � ≥ 0. The derivation applies simultaneously to all μ and ν with no
restriction on the sign of ν, and the process X (with its local time) plays the role
of a fundamental solution in this context (a building block for all other solutions).
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Since (X, �0(X)) is a Markov process, we see that the solution u is generated
by the semi-group of transition operators (Pt )t≥0 acting on f by means of (1.5)
and (1.6) (in the reverse order). Moreover, it is clear from (1.5) and (1.6) that the
solution can be interpreted in terms of X and its creation in 0 at rate proportional
to �0(X). Note that this also holds when ν < 0 in which case the Feller’s semi-
group approach based on the probabilistic representation (1.4) is not applicable.
Finally, invoking the law of (Xt , �

0
t (X)) we derive a closed integral formula for

u expressed in terms of μ, ν and f . Integrating further by parts yields a closed
formula for u where smoothness of f is no longer needed.

2. Result and proof. Consider the initial boundary value problem (1.1)–(1.3)
and recall that C1

b([0,∞)) denotes the family of C1 functions f on [0,∞) such
that f and f ′ are bounded on [0,∞). Recall also that the standard normal density
and tail distribution functions are given by ϕ(x) = (1/

√
2π)e−x2/2 and �(x) =

1 − �(x) = ∫ ∞
x ϕ(y) dy for x ∈ R, respectively. The main result of the paper may

be stated as follows.

THEOREM 1. (i) If f ∈ C1
b([0,∞)) with f (∞) = 0, then there exists a

unique solution u to (1.1)–(1.3) satisfying u ∈ C∞((0,∞) × [0,∞)) with u,ux ∈
Cb([0, T ] × [0,∞)) for T > 0 and u(t,∞) = 0 for t > 0.

(ii) The solution u admits the following probabilistic representation:

u(t, x) = Ex

[
f (Xt)

] − Ex

[
f ′(Xt)

∫ �0
t (X)

0
e−2(ν−μ)s ds

]
,(2.1)

where X is a reflecting Brownian motion with drift μ starting at x under Px , and
�0(X) is the local time of X at 0 (see Figure 1 below).

(iii) The solution u admits the following integral representation:

u(t, x) =
∫ ∞

0
f (y)G(t;x, y) dy −

∫ ∞
0

f ′(y)H(t;x, y) dy(2.2)

where the kernels G and H are given by

G(t;x, y) = 1√
t

[
e2μyϕ

(
x + y + μt√

t

)
+ ϕ

(
x − y + μt√

t

)
(2.3)

− 2μe2μy�

(
x + y + μt√

t

)]
,

H(t;x, y) = e2μy

ν − μ

[
(2ν − μ)e2(ν−μ)(x+y+νt)�

(
x + y + (2ν − μ)t√

t

)

− μ�

(
x + y + μt√

t

)]

(2.4) if ν �= μ
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= 2e2μy

[(
1 + μ(x + y + μt)

)
�

(
x + y + μt√

t

)

− μ
√

tϕ

(
x + y + μt√

t

)]
if ν = μ

for t > 0 and x, y ≥ 0.

PROOF. Let f ∈ C1
b([0,∞)) with f (∞) = 0 be given and fixed. We first show

that any solution u to (1.1)–(1.3) satisfying u ∈ C∞((0,∞)×[0,∞)) with u,ux ∈
Cb([0, T ] × [0,∞)) for T > 0 and u(t,∞) = 0 for t > 0 admits the probabilistic
representation (2.1).

1. Setting v = ux and differentiating both sides in (1.1) with respect to x we
see that v solves the same equation

vt = μvx + 1
2vxx (t > 0, x ≥ 0).(2.5)

Moreover, differentiating both sides in (1.2) with respect to x we find that

v(0, x) = f ′(x) (x ≥ 0).(2.6)

Finally, combining (1.3) with (1.1) we see that (1.3) reads as follows:

vx(t,0) = λv(t,0) (t > 0),(2.7)

where we set λ = 2(ν−μ). In this way, we have obtained the initial boundary value
problem (2.5)–(2.7) for v. Note that the boundary condition (2.7) corresponds to
(i) a reflecting boundary behaviour when λ = 0 and (ii) an elastic boundary be-
haviour when λ �= 0. Setting

B
−μ
t = Bt − μt and S

−μ
t = sup

0≤s≤t

B−μ
s(2.8)

for t ≥ 0 where B is a standard Brownian motion, and denoting by Rμ,x a re-
flecting Brownian motion with drift μ starting at x in [0,∞), it is known that the
classic Lévy’s distributional theorem (see [11], page 240) extends as follows:(

x ∨ S−μ − B−μ, x ∨ S−μ − x
) law= (

Rμ,x, �0(
Rμ,x))

,(2.9)

where �0(Rμ,x) is the local time of Rμ,x at 0 (for a formal verification based on
Skorokhod’s lemma see the proof of Theorem 3.1 in [10]). Identifying

Xx
t := x ∨ S

−μ
t − B

−μ
t and �0

t

(
Xx) = x ∨ S

−μ
t − x(2.10)

in accordance with (2.9) above, we claim (cf. [6], pages 183–184) that the solution
v to the problem (2.5)–(2.7) admits the probabilistic representation

v(t, x) = E
[
e−λ�0

t (X
x)f ′(Xx

t

)]
(2.11)

for t ≥ 0 and x ≥ 0 (for multi-dimensional extensions see [1], Section 2).
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2. To verify (2.11), we can make use of standard arguments by letting time
run backward and applying Itô’s formula to v composed with (t − s,Xx

s ) and

multiplied by e−λ�0
s (X

x) for s ∈ [0, t) where t > 0 and x ≥ 0 are given and fixed.
This yields

e−λ�0
s (X

x)v
(
t − s,Xx

s

)
= v(t, x) +

∫ s

0
(−λ)e−λ�0

r (X
x)v

(
t − r,Xx

r

)
d�0

r

(
Xx)

+
∫ s

0
e−λ�0

r (X
x)(−vt )

(
t − r,Xx

r

)
dr

+
∫ s

0
e−λ�0

r (X
x)vx

(
t − r,Xx

r

)
d
(
x ∨ S−μ

r − B−μ
r

)

+ 1

2

∫ s

0
e−λ�0

r (X
x)vxx

(
t − r,Xx

r

)
d
〈
Xx,Xx 〉

r(2.12)

= v(t, x) +
∫ s

0
e−λ�0

r (X
x)(−λv + vx)

(
t − r,Xx

r

)
d
(
x ∨ S−μ

r

)

+
∫ s

0
e−λ�0

r (X
x)

(
−vt + μvx + 1

2
vxx

)(
t − r,Xx

r

)
dr

−
∫ s

0
e−λ�0

r (X
x)vx

(
t − r,Xx

r

)
dBr

= v(t, x) −
∫ s

0
e−λ�0

r (X
x)vx

(
t − r,Xx

r

)
dBr

since d(x ∨ S
−μ
r ) is zero off the set of all r at which Xx

r �= 0, while (−λv +
vx)(t − r,Xx

r ) = 0 for Xx
r = 0 by (2.7) above, so that the integral with respect to

d(x ∨ S
−μ
r ) is equal to zero. Note also that d〈Xx,Xx〉r = dr since r �→ x ∨ S

−μ
r

is increasing, and thus of bounded variation while in the final equality we also
use (2.5). From (2.12), we see that

v(t, x) = e−λ�0
s (X

x)v
(
t − s,Xx

s

) + Ms,(2.13)

where Ms = ∫ s
0 e−λ�0

r (X
x)vx(t − r,Xx

r ) dBr is a continuous local martingale for s ∈
[0, t). Choose a localisation sequence of stopping times (σn)n≥1 for M (meaning
that M stopped at σn is a martingale for each n ≥ 1 and σn ↑ ∞ as n → ∞), take
any sequence sn ↑ t as n → ∞, and set τn := σn ∧ sn for n ≥ 1. Then the optional
sampling theorem yields

v(t, x) = E
[
e−λ�0

τn
(Xx)v

(
t − τn,X

x
τn

)] + EMτn

= E
[
e−λ�0

τn
(Xx)v

(
t − τn,X

x
τn

)] → E
[
e−λ�0

t (X
x)v

(
0,Xx

t

)]
(2.14)

= E
[
e−λ�0

t (X
x)f ′(Xx

t

)]
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as n → ∞ by the dominated convergence theorem and (2.6) above where we use
that v ∈ Cb([0, T ] × [0,∞)) for T ≥ t and Ee|λ|�0

t (X
x) < ∞ for t > 0 in view

of (2.10) above. This establishes (2.11) as claimed.
3. Recalling that v = ux and u(t,∞) = 0 we find using (2.10) and (2.11) that

u(t, x) = −
∫ ∞
x

ux(t, y) dy + u(t,∞)

= −
∫ ∞
x

v(t, y) dy

= −
∫ ∞
x

E
[
e−λ(y∨S

−μ
t −y)f ′(y ∨ S

−μ
t − B

−μ
t

)]
dy

= −
∫ ∞
x

E
[
f ′(y − B

−μ
t

)
I
(
S

−μ
t ≤ y

)
+ e−λ(S

−μ
t −y)f ′(S−μ

t − B
−μ
t

)
I
(
S

−μ
t > y

)]
dy

(2.15)

= −E
[∫ ∞

x∨S
−μ
t

f ′(y − B
−μ
t

)
dy

]

− E
[∫ x∨S

−μ
t

x
e−λ(S

−μ
t −y)f ′(S−μ

t − B
−μ
t

)
dy

]

= −E
[∫ ∞

x∨S
−μ
t −B

−μ
t

f ′(z) dz

]

− E
[
f ′(x ∨ S

−μ
t − B

−μ
t

) ∫ x∨S
−μ
t

x
e−λ(x∨S

−μ
t −y) dy

]

= E
[
f

(
x ∨ S

−μ
t − B

−μ
t

)] − E
[
f ′(x ∨ S

−μ
t − B

−μ
t

) ∫ x∨S
−μ
t −x

0
e−λs ds

]

for t ≥ 0 and x ≥ 0, where in the second last equality we use that S
−μ
t = x ∨ S

−μ
t

since otherwise the integral from x to x ∨ S
−μ
t equals zero, and in the last equality

we use that f (∞) = 0. Making use of (2.9) in (2.15) establishes the probabilistic
representation (2.1) as claimed in the beginning of the proof.

4. Focusing on (2.1) and recalling (2.10), we see that an explicit calculation of
the right-hand side in (2.1) is possible since the probability density function g of
(B

−μ
t , S

−μ
t ) is known and can be readily derived from the known probability den-

sity function of (Bt , St ) when μ is zero (see, e.g., [7], page 27 or [11], page 110)
using a standard change-of-measure argument. This yields the following closed
form expression:

g(t;b, s) =
√

2

π

1

t3/2 (2s − b) exp
[
−(2s − b)2

2t
− μ

(
b + μt

2

)]
(2.16)
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FIG. 1. The solution u to the initial boundary value problem (1.1)–(1.3) when μ = 1, ν = −1/2
and f (x) = exp(−(x − 5/2)2) for x ≥ 0. Note that u takes negative values even though f is positive
so that the classic semi-group representation (1.4) of u is not possible in this case. The probabilistic
representation (2.1) is valid and this also yields the integral representation (2.2). The solution can
be interpreted in terms of a reflecting Brownian motion X with drift μ and its creation in 0 at rate
proportional to �0(X).

for t > 0 and b ≤ s with s ≥ 0. It follows that the functions on the right-hand side
of (2.1) can be given the following integral representations:

u1(t, x) := Ex

[
f (Xt)

] = E
[
f

(
x ∨ S

−μ
t − B

−μ
t

)]
(2.17)

=
∫ ∞

0

∫ s

−∞
f (x ∨ s − b)g(t;b, s) db ds,

u2(t, x) := Ex

[
f ′(Xt)

∫ �0
t (X)

0
e−λr dr

]

= Ex

[
f ′(x ∨ S

−μ
t − B

−μ
t

) ∫ x∨S
−μ
t −x

0
e−λr dr

]
(2.18)

=
∫ ∞

0

∫ s

−∞

(
f ′(x ∨ s − b)

∫ x∨s−x

0
e−λr dr

)
g(t;b, s) db ds

for t > 0 and x ≥ 0 where λ = 2(ν − μ). A lengthy elementary calculation then
shows that

u1(t, x) =
∫ ∞

0
f (y)G(t;x, y) dy,(2.19)



2204 G. PESKIR

u2(t, x) =
∫ ∞

0
f ′(y)H(t;x, y) dy(2.20)

for t > 0 and x ≥ 0 where G and H are given in (2.3) and (2.4) above. Noting that

u(t, x) = u1(t, x) − u2(t, x)(2.21)

we see that this establishes the integral representation (2.2) as claimed.
5. A direct analysis of the integral representations (2.19) and (2.20) with G and

H from (2.3) and (2.4) then shows that u from (2.21) belongs to both C∞((0,∞)×
[0,∞)) and Cb([0, T ] × [0,∞)) for T > 0 and u(t,∞) = 0 for t > 0. A similar
analysis also shows that both u1

x and u2
x belong to Cb(([0, T ] × [0,∞)) \ {(0,0)})

for T > 0. Moreover, it can be directly verified that (i) u1
x(t, x) → f ′(x) as t ↓ 0

for all x > 0 but u1
x(t,0) = 0 for all t > 0 so that u1

x is not continuous at (0,0)

unless f ′(0) = 0; and (ii) u2
x(t, x) → 0 as t ↓ 0 for all x > 0 but u2

x(t,0) → −f ′(0)

as t ↓ 0 so that u2
x is not continuous at (0,0) either unless f ′(0) = 0. Despite the

possibility that both u1
x and u2

x are discontinuous at (0,0), it turns out that when
acting in cohort to form ux = u1

x − u2
x the resulting function ux is continuous at

(0,0) so that ux belongs to Cb([0, T ] × [0,∞)) for T > 0. It follows therefore
from the construction and these arguments that the function u defined by (2.2)
with G and H from (2.3) and (2.4) solves the initial boundary problem (1.1)–
(1.3) and satisfies u ∈ C∞((0,∞) × [0,∞)) with u,ux ∈ Cb([0, T ] × [0,∞)) for
T > 0 and u(t,∞) = 0 for t > 0. Placing then any such u at the beginning of the
proof and repeating the same arguments as above, we can conclude that u admits
the probabilistic representation (2.1). These arguments therefore establish both the
existence and uniqueness of the solution u to the initial boundary problem (1.1)–
(1.3) satisfying the specified conditions and the proof is complete. �

REMARK 1 (Nonsmooth initial data). The integral representation (2.2) re-
quires that f is differentiable. Integrating by parts we find that∫ ∞

0
f ′(y)H(t;x, y) dy = −f (0)H(t;x,0) −

∫ ∞
0

f (y)Hy(t;x, y) dy.(2.22)

Inserting this back into (2.2), we find that u admits the following integral repre-
sentation:

u(t, x) =
∫ ∞

0
f (y)(G + Hy)(t;x, y) dy + f (0)H(t;x,0),(2.23)

where the first function is given by

(G + Hy)(t;x, y)

= 1√
t

[
ϕ

(
x − y + μt√

t

)
− e2μyϕ

(
x + y + μt√

t

)]

− 2νe2μy

ν − μ

[
μ�

(
x + y + μt√

t

)
(2.24)
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+ (μ − 2ν)e2(ν−μ)(x+y+νt)�

(
x + y + (2ν − μ)t√

t

)]

if ν �= μ

= 1√
t
ϕ

(
x − y + μt√

t

)

− e2μy

√
t

[(
1 + 4μ2t

)
ϕ

(
x + y + μt√

t

)

− 4μ
(
1 + μ(x + y) + μ2t

)√
t�

(
x + y + μt√

t

)]

if ν = μ

and the second function is given by

H(t;x,0) = 1

ν − μ

[
(2ν − μ)e2(ν−μ)(x+νt)�

(
x + (2ν − μ)t√

t

)

− μ�

(
x + μt√

t

)]
if ν �= μ(2.25)

= 2
[(

1 + μ(x + μt)
)
�

(
x + μt√

t

)
− μ

√
tϕ

(
x + μt√

t

)]
if ν = μ

for t > 0 and x, y ≥ 0. Note that smoothness of f is no longer needed in the inte-
gral representation (2.23) and this formula for u can be used when f ∈ Cb([0,∞))

for instance.
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