
The Annals of Probability
2014, Vol. 42, No. 4, 1516–1589
DOI: 10.1214/13-AOP836
© Institute of Mathematical Statistics, 2014

DYNAMICS OF (2 + 1)-DIMENSIONAL SOS SURFACES ABOVE
A WALL: SLOW MIXING INDUCED BY ENTROPIC REPULSION1

BY PIETRO CAPUTO, EYAL LUBETZKY, FABIO MARTINELLI,
ALLAN SLY AND FABIO LUCIO TONINELLI2

Università Roma Tre, Microsoft Research, Università Roma Tre,
University of California and CNRS and Université Lyon 1

We study the Glauber dynamics for the (2+ 1)D Solid-On-Solid model
above a hard wall and below a far away ceiling, on an L × L box of
Z2 with zero boundary conditions, at large inverse-temperature β. It was
shown by Bricmont, El Mellouki and Fröhlich [J. Stat. Phys. 42 (1986)
743–798] that the floor constraint induces an entropic repulsion effect which
lifts the surface to an average height H � (1/β) logL. As an essential step
in understanding the effect of entropic repulsion on the Glauber dynam-
ics we determine the equilibrium height H to within an additive constant:
H = (1/4β) logL+O(1). We then show that starting from zero initial con-
ditions the surface rises to its final height H through a sequence of metastable
transitions between consecutive levels. The time for a transition from height
h = aH , a ∈ (0,1), to height h + 1 is roughly exp(cLa) for some con-
stant c > 0. In particular, the mixing time of the dynamics is exponentially
large in L, that is, TMIX ≥ ecL. We also provide the matching upper bound
TMIX ≤ ec

′L, requiring a challenging analysis of the statistics of height con-
tours at low temperature and new coupling ideas and techniques. Finally, to
emphasize the role of entropic repulsion we show that without a floor con-
straint at height zero the mixing time is no longer exponentially large in L.

1. Introduction. The (d + 1)-dimensional Solid-On-Solid model is a crystal
surface model whose definition goes back to Temperley [47] in 1952 (also known
as the Onsager-Temperley sheet). Its configuration space on a finite box � ⊂ Zd

with a floor (wall) at 0, a ceiling at some n+ and zero boundary conditions is the
set ��,n+ of all height functions η on Zd such that � � x 	→ ηx ∈ {0,1, . . . , n+}
whereas ηx = 0 for all x /∈�. The probability of η ∈��,n+ is given by the Gibbs
distribution

π�(η)= 1

Z�

exp
(
−β ∑

x∼y
|ηx − ηy |

)
,(1.1)

where β > 0 is the inverse-temperature, x ∼ y denotes a nearest-neighbor bond in
the lattice Zd and the normalizing constant Z� is the partition function.
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Numerous works have studied the rich random surface phenomena, for exam-
ple, roughening, localization/delocalization, layering and wetting to name but a
few, exhibited by the SOS model and some of its many variants. These include
the discrete Gaussian (replacing |ηx − ηy | by |ηx − ηy |2 for the integer analogue
of the Gaussian free field), restricted SOS (nearest neighbor gradients restricted
to {0,±1}), body centered SOS [50], etc. (for more on these flavors see, e.g.,
[3, 5, 52]).

Of special importance is SOS with d = 2, the only dimension featuring a rough-
ening transition. Consider the SOS model without constraining walls (the height
function η takes values in Z). For d = 1, it is well known [22, 47, 48] that the SOS
surface is rough (delocalized) for any β > 0, that is, the expected height at the
origin (in absolute value) diverges in the thermodynamic limit |�| → ∞. How-
ever, for d ≥ 3 a Peierls argument shows that the surface is rigid (localized) for
any β > 0 (see [10]), that is, |η0| is uniformly bounded in expectation. This is also
the case for d = 2 and large enough β [8, 28]. That the surface is rough for d = 2
at high temperatures was established in seminal works of Fröhlich and Spencer
[25–27]. Numerical estimates for the critical inverse-temperature βR where the
roughening transition takes place suggest that βR ≈ 0.806.

One of the main motivations for studying an SOS surface constrained between
two walls, both its statics and its dynamics, stems from its correspondence with
the Ising model in the phase coexistence region. For concreteness, take a box of
side-length L in Z3 with minus boundary conditions on the bottom face and plus
elsewhere. One can view the (2+ 1)D SOS surface taking values in {0, . . . ,L} as
the interface of the minus component incident to the bottom face, in which case
the Hamiltonian in (1.1) agrees with that of Ising up to bubbles in the bulk. At
low enough temperatures bubbles and interface overhangs are microscopic, thus
SOS should give a qualitatively correct approximation of Ising (see [2, 22, 41]).
Indeed, in line with the (2+ 1)D SOS picture, it is known [49] that the 3D Ising
model undergoes a roughening transition at some βIS

R satisfying βc(3) ≤ βIS
R ≤

βc(2) [where βc(d) is the critical point for Ising on Zd ], yet there is still no rigorous
proof that βIS

R > βc(3) (see [52] for more details).
When the (2 + 1)D SOS surface is constrained to stay above a hard wall (or

floor), Bricmont, El Mellouki and Fröhlich [9] showed in 1986 the appearance of
the entropic repulsion: for large enough β , the floor pushes the SOS surface to
diverge even though β > βR. More precisely, using Pirogov–Sinaï theory (see the
review [45]), the authors of [9] showed that the SOS surface on an L × L box
rises, amid the penalizing zero boundary, to an average height H(L) satisfying
(1/Cβ) logL ≤ H(L) ≤ (C/β) logL for some absolute constant C > 0, in favor
of freedom to create spikes downwards.

Entropic repulsion is one of the key features of the physics of random surfaces.
This phenomenon has been rigorously analyzed mainly for some continuous-
height variants of the SOS model in which the interaction potential |ηx − ηy | is
replaced by a convex potential V (ηx − ηy); see, for example, [4, 6, 7, 15, 51, 53],
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see also [1] for a recent analysis of the wetting transition in the SOS model. As we
will see below, entropic repulsion has a profound impact not only on the equilib-
rium shape of the surface but also on its time evolution under natural Markovian
dynamics for the interface. The rigorous analysis of these dynamical effects of
entropic repulsion will be the central focus of this work.

The dynamics we consider is the heat bath dynamics, or Gibbs sampler, for the
equilibrium measure π�, that is, the discrete time Markov chain where at each step
a site x ∈� is picked at random and the height ηx of the surface at x is replaced
by a random variable η′x ∈ {0, . . . , n+} distributed according to the conditional
probability π�(·|ηy, y �= x). This defines a Markov chain with state space ��,n+ ,
reversible with respect to π�, commonly referred to as the Glauber dynamics.
As explained below, our results apply equally well to other standard choices of
reversible Markov chains, such as, for example, the Metropolis chain where only
moves of the type η′x = ηx ± 1 are allowed.

The mixing time TMIX is defined as the number of steps needed to reach ap-
proximate stationarity with respect to total variation distance, see Section 2 for
definitions.

The main result of this paper is that the mixing of Glauber dynamics for the
(2 + 1)D SOS is exponentially slow, due to the nature of the entropic repulsion
effect.

THEOREM 1. For any sufficiently large inverse-temperature β there is some
c(β) > 0 such that the following holds for all L ∈ N. The mixing time TMIX of
the Glauber dynamics of the (2+ 1)D SOS model on � = {1, . . . ,L}2 with zero
boundary conditions, floor at zero and ceiling at n+ with logL≤ n+ ≤ L satisfies

ecL ≤ TMIX ≤ e(1/c)L.(1.2)

The exponentially large mixing time in (1.2) is in striking contrast with the
rapid mixing displayed by Glauber dynamics of the (1+ 1)D SOS model [12, 38].
When d = 1 it is known that the main driving effect is a mean-curvature motion
which induces a diffusive relaxation to equilibrium, with TMIX of order L2 up to
poly(logL) corrections. As we will see, in (2+ 1)D instead the main mechanism
behind equilibration is a series of metastable transitions through an increasing se-
ries of effective energy barriers caused by the entropic repulsion. This is also in
contrast with the behavior of related interface models with continuous heights as,
for example, in [16, 20].

1.1. Metastability and entropic repulsion. Consider the evolution of an ini-
tially flat surface at height zero. We shall give a rough description of how it rises
to the final height H(L) through a series of metastable states indexed by h ≥ 0.
Roughly speaking the surface in state with label h is approximately flat at height
h with rare up or downward spikes. Of course downward spikes cannot be longer



DYNAMICS OF SOS SURFACES ABOVE A WALL 1519

than h because of the hard wall. If h < H(L) then the surface has an advantage
to rise to the next level h+ 1. This is due to the gain in entropy, measured by the
possibility of having downward spikes of length h + 1, beating the energy loss
from the zero boundary conditions.

The mechanism for jumping to the next level should then be very similar to
that occurring in the 2D Ising model at low temperature with a small external field
opposite to the boundary conditions (see [43, 44]). Specifically, via a large devia-
tion the surface at height h creates a large enough droplet of sites at height h+ 1
which afterwards expands to cover most of the available area. The energy/entropy
balance of any such droplet is roughly3 of order β|γ | − e−4β(h+1)A(γ ) where |γ |
and A(γ ) are the boundary length and area, respectively, and the effective field
e−4β(h+1) represents the probability of a 1× 1× (h+ 1) isolated downward spike.
Simple considerations suggest then that the critical length of a droplet should be
proportional to e4β(h+1). Finally, the well-established metastability theory for the
2D Ising model indicates that the activation time Th for such a critical droplet
should be exponential in the critical length4 (i.e., a double exponential in h) as
seen in Figure 1.

Of course, in order to establish, even partially, the above picture and to prove
the asymptotic of log(TMIX) as per (1.2) it is imperative to estimate the final equi-
librium height of the surface H(L) to within an additive O(1). In Section 3 (The-
orem 3.1), we improve the estimates of [9] to show that in fact the typical height

FIG. 1. Illustration of the series of metastable states in the surface evolution. The dynamics waits
time ec exp(4βh) until the formation of a macroscopic droplet (marked in red) which eventually raises
the average height from h− 1 to h.

3Here we are neglecting finer results taking into account the surface tension and the associated
Wulff theory; the basic conclusions of this reasoning are nevertheless still valid.

4At the early stages of the process when h is quite small the activation time has important correc-
tions to this guess due to the many locations in the L×L box where the droplet can appear. However,
as soon as h becomes of order log logL these entropic corrections become negligible.
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of the surface at equilibrium is H(L)+O(1), where

H(L)=
⌊

1

4β
logL

⌋
.(1.3)

The aforementioned picture of the evolution of the SOS surface through a series
of metastable states is quantified by the following result.

THEOREM 2. For any sufficiently large inverse-temperature β there is some
c(β) > 0 such that the following holds. Let (η(t))t≥0 be the Glauber dynamics for
the SOS model on � = {1, . . . ,L}2 with zero boundary conditions, floor at zero
and ceiling at n+ with logL ≤ n+ ≤ L, started from the all-zero initial state. Fix
a ∈ (0,1) and let τa =min{t :η(t) ∈�a} where

�a = {
η ∈��,n+ : #

{
x :ηx ≥ aH(L)

}
> 9

10 |�|
}
.(1.4)

Then limL→∞ π�(�a)= 1 and yet

lim
L→∞P

(
ecL

a ≤ τa ≤ e(1/c)L
a )= 1.(1.5)

In fact, we prove this with the constant 9
10 in (1.4) replaced by 1− ε(β) where

limβ→∞ ε(β) = 0. Moreover, the statement of the above theorem remains valid
when a = a(L)→ 1 as long as the target level h= aH(L) satisfies h≤H(L)− c

for some sufficiently large c(β) > 0.

REMARK. A natural conjecture in light of Theorem 2 is that there exists a con-
stant λ such that the distribution of τa × e−λLa

converges as L→∞ to an expo-
nential random variable.

We wish to emphasize that, as will emerge from the proof, the exponential slow-
down of equilibration is a coupled effect of entropic repulsion and of the rigidity
of the interface. In particular, the following rough upper bound shows that the sit-
uation is very much different when the floor constraint is absent (yet the ceiling
constraint remains unchanged).

THEOREM 3. Consider the (2 + 1)D SOS setting as in Theorem 1 with the
exception that the surface heights belong to the symmetric interval [−n+, n+].
Then TMIX ≤ exp(o(L)).

Specifically, our proof gives the estimate TMIX ≤ exp(L(1/2)+o(1)). No effort
was made to improve the exponent 1

2 as we would expect the true mixing behavior
to be polynomial in L. We further expect that in the presence of a floor yet for
β < βR the mixing time will have a different scaling with the side-length L.

It is useful to compare our results with those of [13], where the Glauber dynam-
ics for the (2+1)D SOS above a hard wall, at low temperature and in the presence
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of a weak attracting (towards the wall) external field was analyzed in details. There
it was proved that certain critical values of the external field induce exponentially
slow mixing while for all other values the dynamics is rapidly mixing. Although
the slow mixing proved in [13] is similar to the one appearing in (1.2), the phys-
ical phenomenon behind it is very different. When an external field is present,
a critical value of it results in two possible and roughly equally likely heights for
the surface. In this case, slow mixing arises because of the presence of a typical
bottleneck in the phase space related to the bi-modal structure of the equilibrium
distribution. In the setting of Theorems 1 and 2 instead, there is in general no bi-
modal structure of the Gibbs measure and the slow mixing takes place because of
a multi-valley structure of the effective energy landscape induced by the entropic
repulsion which produces a whole family of bottlenecks.

1.2. Methods. We turn to a description of the main techniques involved in the
proof of the main theorems. Our results can be naturally divided into three families:
equilibrium estimates, lower bounds on equilibration times, and upper bounds on
equilibration times.

Equilibrium estimates. Our proof begins by deriving estimates for the equilib-
rium distribution which are crucial to the understanding of the dynamics (as dis-
cussed in Section 1.1) and of independent interest. Over most of the surface, the
height is concentrated around H(L) as defined in (1.3) with typical fluctuations of
constant size. Achieving estimates with a precision level of an additive O(1) turns
out to be essential for establishing the order of the mixing time exponent: indeed,
analogous estimates up to some additive g(L) tending to ∞ with L would set off
this exponent by a factor of eO(g).

The main techniques deployed for this part are a range of Peierls-type estimates
for what we refer to as h-contours, defined as closed dual circuits with values at
least h on the sites along their interior boundary and at most h − 1 along their
exterior boundary. In the simpler setting of no floor or ceiling (i.e., the sites are
free to take all values in Z as their heights), the map Sγ which decreases all sites
inside an h-contour γ by 1 is bijective and increases the Hamiltonian by |γ |, the
length of the contour. Hence, the probability of a given h-contour in this setting
is bounded by exp(−β|γ |). Iterating estimates of this form allows us to bound the
deviations of the sites with the correct asymptotic in the setup of having no walls.

The presence of a floor renders this basic Peierls argument invalid since the
map Sγ may leave sites in the interior with negative values. Rather than a tech-
nicality, this in fact lies at the heart of the entropic repulsion effect. We resort to
estimating the probability that a given h-contour has a strictly positive interior, a
quantity directly involving its area. By analyzing an isoperimetric tradeoff between
the contour’s area and perimeter, we show that large contours above height H(L)

are unlikely, which in turn implies O(1) typical fluctuations above this level. For
a lower bound on the typical height of the surface we show that if too many sites



1522 P. CAPUTO ET AL.

are below H(L)− k then the loss in energy due to raising the entire surface by 1 is
more than compensated by the increased entropy from the freedom to create down-
ward spikes reaching 0. Put together, these estimates guarantee that the height of
most sites is within a constant of H(L).

Equilibration times: Lower bounds. Fix h = aH(L) − 1 with a ∈ (0,1) and
consider the restricted ensemble obtained by conditioning the equilibrium mea-
sure on the event A that all h-contours have area smaller than δL2a , for some
small δ > 0. Our equilibrium estimates imply that in this restricted ensemble:

(i) each h-contour is actually very small [e.g., with area less than log(L)2],
with very high probability;

(ii) the probability of the boundary of A is O[exp(−cLa)];
(iii) the probability of having a large density of heights at least h+ 1= aH(L)

is O[exp(−cLa)].
In some sense (i), (ii) and (iii) above establish a bottleneck the Markov chain must
pass through and thus provide the sought lower bound of exp(c(β)La) on the typ-
ical value of the hitting time τa in Theorem 2 when the initial state is the all zero
configuration. In fact, the initially flat configuration can be replaced by mono-
tonicity by the restricted ensemble described above. Then, in order for τa to be
smaller than T , either the dynamics has gone through the boundary of A before
T or the event described in (iii) occurred without leaving A. Either way an event
with O(exp(−cLa)) probability occurred and the minimal time to see it must be
proportional to the inverse of its probability.

Equilibration times: Upper bounds. By the monotonicity of the system, it is
enough to consider the chain starting from the maximum and minimum configu-
rations. The natural approach is to apply the well-known canonical paths method
(see [17, 18, 30, 46] for various flavors of the method). As the cut-width of the
cube is L2, the most naïve application of this approach would give a bound of
exp(O(L2)). A better bound can be shown by considering the problem with max-
imum height n+ = logL. In this case, the cut-width is of order L logL yielding
a mixing time upper bound of exp(O(L logL)). Since the height fluctuations are
logarithmic, we can iterate this analysis using monotonicity and censoring to get
a bound of exp(O(L logL)) for the original model with n+ = L, vs. our lower
bound of exp(cL). However, removing the logL factor that separates these expo-
nents entails a significant amount of extra work.

The basic structure of the proof is to first establish a burn-in phase where we
show that, starting from the maximal and minimal configurations, the process
reaches a “good” set featuring small deviations from the equilibrium level H(L).
From there, we establish a modified canonical paths estimate (Theorem 2.4), show-
ing that it is enough to establish a reasonable probability of hitting the good set
from any starting location together with a good canonical paths estimate restricted
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FIG. 2. Glauber dynamics for SOS on a 64 × 64 square lattice at β = 0.9 from an initial state
η ≡ 10. Surface gradually falls towards level H = 1. Snapshots at t = 10 (top left), t = 100,
t = 1000, t = 10,000 (bottom right) in cont. time.

to this set. This new tool, which we believe is of interest on its own right, is de-
scribed in detail in Section 2.3 and proved in a general context in Section 5.

Showing that the surface falls down from the ceiling (the maximum height) to
H(L), as depicted in Figure 2, ought to have been the easier part of the burn-in
argument since high above the floor there is no entropic repulsion effect. Unfortu-
nately a number of major technical challenges must be overcome.

First, the effect of the entropic repulsion is still apparent for the estimates we
require when the surface is fairly close to H(L). To overcome this, we add a small
external field to the model, thereby modifying the mixing time by a factor of at
most exp(O(L)) (which is large but still of the same order as our designated upper
bound) and tilting the measure to remove these entropic repulsion effects. Second,
while our main equilibrium estimates were proved using Peierls-type estimates,
for the burn-in we require some of the cluster expansion machinery of [19] which
we extend to the SOS framework. This involves a number of challenges includ-
ing showing that the contours we consider do not interact significantly with the
boundary conditions, a highly nontrivial fact. Implementing this scheme is the
biggest challenge of the paper and we provide extensive notes for the reader in
these sections to explain the rather technical proofs.

Finally, the fact that the surface rises from the floor (the all zero initial condition)
to the vicinity of the equilibrium height H(L) in time exp(O(L)) is proved via an
unusual inductive scheme. Unlike other multi-scale inductive schemes, somewhat
surprisingly the one used here does not incur any penalizing factor on the upper
bound. We first prove weaker bounds on the mixing time and use these estimates
to show that a smaller box of side-length L/ logL mixes by time exp(O(L)). By
monotonicity, we can use this to bound the distance from the equilibrium height
of the surface in the original box by H(L) − H(L/ logL). By using this height
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estimate along with our canonical paths result, we get improved bounds on the
mixing time. This in turn allows us to take larger sub-boxes and iteratively achieve
better and better estimates on the distance to H(L). After sufficiently many iter-
ations, we show that the surface reaches height H(L)−O(1) in time exp(O(L))

and thereafter the canonical paths estimate completes the proof.

1.3. Related open problems.

Tilted walls. An interesting and to our knowledge widely open problem con-
cerns the SOS model with a nonhorizontal hard wall, that is, when the constraint
ηx ≥ 0 is replaced by ηx ≥ φn

x , where φn
x denotes the discrete approximation of

the plane orthogonal to the unit vector n, and n is assumed to have all components
different from zero. The equilibrium fluctuations for β =+∞ can be analyzed via
their representation through dimer coverings [31] and the variance of the surface
height in the middle of the box can be shown to be O(logL); see [11], Section 5,
for a proof. Moreover, at β = +∞, as far as the dynamics is concerned, it has
been proved [12] that the mixing time is of order L2 up to polylog(L) correc-
tions and that the relaxation process is driven by mean curvature motion. The case
β <+∞, however, remains open both for equilibrium fluctuations and for mixing
time bounds.

Mixing time for Ising model. In view of the natural connection with the Ising
model, the study of Glauber dynamics for the SOS can also shed some light on a,
still open, central problem in the theory of stochastic Ising models: its mixing time
under an all-plus boundary in the phase coexistence region. The long-standing
conjecture is that the mixing time of Glauber dynamics for the Ising model on a
box of side-length L with all-plus boundary should be at most polynomial in L at
any temperature. More precisely, the convergence to equilibrium should be driven
by a mean-curvature motion of the interface of the minus droplet in accordance
with Lifshitz’s law [35]. For instance, the mixing time of Glauber dynamics for
Ising on an L×L square lattice is conjectured [21] to be of order L2 in continuous
time. This was confirmed at zero temperature [14, 23, 33] and near-zero temper-
atures [11], yet the best-known upper bound for finite β > βc remains quite far,
a quasi-polynomial bound of LO(logL) due to [36]. The understanding of 3D Ising
is far more limited: while at zero temperature bounds of L2+o(1) were recently
proven in [11], no sub-exponential mixing bounds are known at any finite β > βc.

2. Definitions and tools.

2.1. Glauber dynamics for solid-on-solid. Let � and � denote the minimal and
maximal configurations in ��,n+ , that is, �x = 0 and �x = n+ for every x ∈�.
Given a finite connected subset �⊂ Z2, let ∂� denote its external boundary, that
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is, the set of sites in �c which are at distance 1 from �. To extend the SOS defi-
nition to arbitrary boundary conditions (b.c.) given by ξ :Z2 → Z, define the SOS
Hamiltonian with b.c. ξ to be

Hξ
�(η) :=

1

2

∑
x,y∈�
|x−y|=1

|ηx − ηy | +
∑

x∈�,y∈∂�
|x−y|=1

|ηx − ξy |.(2.1)

Given β > 0 and n+, the Gibbs measure π
ξ
� on ��,n+ with b.c. ξ is defined as

π
ξ
�(η)=

1

Z
ξ
�

exp
[−βHξ

�(η)
]
.(2.2)

NOTATION 2.1. In the sequel when the b.c. ξ ≡ n ∈ Z we will use the abbre-
viated form πn

�. We will occasionally drop the subscript � and superscript ξ from

the notation of πξ
� when there is no risk of confusion. Moreover, we will need to

address the following variants of πξ
�:

(i) the measure π̂n
� of SOS without walls (no floor and no ceiling) and with

b.c. at height n;
(ii) the measure �

ξ
� corresponding to π

ξ
� with n+ =+∞ (no ceiling);

(iii) starting from Section 6 the measures π
ξ,f
� (and its analog �

ξ,f
� with no

ceiling) corresponding to the SOS Hamiltonian with an additional external field
of the form 1

L

∑
y∈� f (ηy) with |f |∞ =O(e−cβ) for some fixed constant c [see,

e.g., (6.1)].

The dynamics under consideration is a discrete-time Markov chain
(η(t))t=0,1,..., defined as follows. To construct η(t + 1) given η(t),

• pick a site x ∈� uniformly at random;
• sample a new value for ηx(t + 1) from the equilibrium measure π

ξ
� conditioned

on the current heights at the neighboring sites, that is, η(t + 1)∼ π
ξ
�(η ∈ ·|ηy =

ηy(t) ∀y �= x).

The law of the process with initial condition ζ is denoted by Pζ , the configuration
at time t is ηζ (t) and its law is μζ

t . When there is no need to emphasize the initial
condition, we simply write η(t) for the configuration at time t . It is well known
that this Markov chain is reversible w.r.t. the invariant measure π

ξ
�.

The mixing time TMIX is defined to be the time the process takes to converge to
equilibrium in total variation distance, that is,

TMIX = inf
{
t > 0 : max

η∈��,n+

∥∥μη
t − π

ξ
�

∥∥≤ 1

2e

}
,(2.3)
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where ‖μ− ν‖ denotes the total variation distance between two measures μ,ν. It
is well known (e.g., [34], Section 4.5) that the total variation distance from equi-
librium decays exponentially with rate TMIX, namely

max
η∈��,n+

∥∥μη
t − π

ξ
�

∥∥≤ e−�t/TMIX�.(2.4)

The relaxation time TREL is the inverse of the spectral gap of the transition ker-
nel of the chain. The spectral gap, denoted by gap, has the following variational
characterization:

gap= inf
π
ξ
�(f (I − P)f )

Var
π
ξ
�
(f )

,(2.5)

where P is the transition kernel of the chain, I is the identity matrix and the infi-
mum is over all nonconstant functions f . The following standard inequality (see,
e.g., [34], Section 12.2, and [42]) relates the mixing time and the relaxation time:

TREL − 1≤ TMIX ≤ TREL log(2e/πmin)(2.6)

with πmin :=minη∈��,n+ π
ξ
�(η). By definition, in the SOS model |��,n+| = (n++

1)|�| and πmin ≥ exp(−4β|�|n+)/|��,n+|, thus for large enough n+

TREL − 1≤ TMIX ≤ 5β|�|n+TREL.(2.7)

From now on we refer to the Markov chain defined above as the Glauber dy-
namics. One can use standard comparison estimates to obtain equivalent versions
of our main results for other standard choices of Markov chains that are reversible
w.r.t. the SOS Gibbs measures, such as, for example, the Metropolis chain with
±1 updates. Indeed, since the heights are confined within an interval of size O(L)

it is not hard to see that the ratio between the different mixing times is at most
polynomial in L. We refer to, for example, [11], Section 6, for a detailed argument
in this direction.

2.2. Monotonicity. Our dynamics is monotone (or attractive) in the following
sense. One equips the configuration space with the natural partial order such that
σ ≤ η if σx ≤ ηx for every x ∈�. It is possible to couple on the same probability
space the evolutions corresponding to every possible initial condition ζ and bound-
ary condition ξ in such a way that if ξ ≤ ξ ′ and ζ ≤ ζ ′ then ηζ (t, ξ)≤ ηζ

′
(t, ξ ′) for

every t . Here, we indicated explicitly the dependence on the boundary conditions
but we will not do so in the following. The law of the global monotone coupling is
denoted P.

A first consequence of monotonicity is that the FKG inequalities [24] hold:
if f and g are two increasing (w.r.t. the above partial ordering) functions, then
π
ξ
�(fg) ≥ π

ξ
�(f )π

ξ
�(g) and the same holds for the measure π̂

ξ
� without the

floor/ceiling.
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Monotonicity also implies the following standard fact [cf., e.g., the proof
of [39], equation (2.10)]: for every initial condition η and boundary condition ξ ,∥∥μη

t − π
ξ
�

∥∥≤ 2n+|�|max
(∥∥μ�t − π

ξ
�

∥∥,∥∥μ�t − π
ξ
�

∥∥)
.(2.8)

Another consequence of monotonicity is the so-called Peres–Winkler censoring
inequality. Take integers 0 = t0 < t1 < · · · < tk = T , a sequence of Vi ⊂ � and
0 ≤ ai ≤ bi ≤ n+, i ≤ k. Consider the following modified dynamics (η̃(t))0≤t≤T .
To construct η̃(t + 1) given η̃(t),

• pick a site x ∈� uniformly at random;
• at time t with ti−1 < t ≤ ti do as follows:

– if x /∈ Vi or if x ∈ Vi and η̃x(t) /∈ {ai, . . . , bi} then do nothing;
– if x ∈ Vi and ai ≤ η̃x(t)≤ bi then replace its value with a new value η̃x(t+1)

in {ai, . . . , bi} with probability proportional to the stationary measure condi-
tioned on the value of the neighboring columns,

η̃(t + 1)∼ π
ξ
�

(
η ∈ ·|ηx ∈ {ai, . . . , bi}, ηy = η̃y(t) ∀y �= x

)
.

Call μ̃ν
t the law at time t when the initial distribution is ν. The following then

holds:

THEOREM 2.2 (Special case of [40], Theorem 1.1). If the initial distribu-
tion ν is such that ν(η)/πξ

�(η) is an increasing (resp., decreasing) function, then

μ̃ν
t (η)/π

ξ
�(η) is also increasing (resp., decreasing) for t ≤ T and μν

t � μ̃ν
t (resp.,

μ̃ν
t � μν

t ). In addition, ∥∥μν
t − π

ξ
�

∥∥≤ ∥∥μ̃ν
t − π

ξ
�

∥∥.(2.9)

2.3. An improved path argument. Geometric techniques can prove very effec-
tive in getting upper bounds on the relaxation time and therefore on the mixing
time of a Markov chain [17, 18, 30, 46] (see also [34], Section 13.5). Let us recall
the basic principle.

Let (X(t))t=0,1,... be a discrete-time reversible Markov chain on a finite state
space �, with invariant measure π . For a, b ∈� such that the one-step transition
probability p(a, b) from a to b is nonzero, set Q(a,b)= π(a)p(a, b)=Q(b,a).
For each couple (c, d) ∈ �2, fix a path γ (c, d) = (x1, . . . , xn) in � with x1 = c,
xn = d and p(xi, xi+1) �= 0 and let |γ (c, d)| := n. Then the relaxation time of the
Markov chain is bounded as

TREL ≤ max
(a,b) : Q(a,b)�=0

1

Q(a,b)

∑
η,η′∈� :

(a,b)∈γ (η,η′)

∣∣γ (
η,η′

)∣∣π(η)π(
η′

)
.(2.10)

Here, (a, b) ∈ γ (η, η′) means that if γ (η, η′) = (x1, . . . , xn) then there exists i

such that a = xi , b = xi+1. The proof is simply an application of the Cauchy–
Schwarz inequality; see, for example, [42].

An application of this principle gives the following proposition.
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PROPOSITION 2.3. For the SOS dynamics in the �= {1, . . . ,L}×{1, . . . ,m},
m ≤ L, with floor at height zero, ceiling at n+ and b.c. ξ , one has for some
c= c(β)

TREL ≤ cL2m2n+ exp
(
7βmn+

)
(2.11)

and, thanks to (2.7), TMIX = exp(O(βLn+)) if L=m.

That (2.11) easily follows from (2.10) was observed in [37] in the case of the
Glauber dynamics of the Ising model (in this case one refers to the paths γ (η, η′) as
“canonical paths”). For SOS the proof is very similar and is given for completeness
in Section 5.1.

However, this upper bound is too rough for our purposes since we have n+ ≥
logL while we wish to get a mixing time upper bound which is exponential in L.
Therefore, a significant part of the present work is devoted to getting rid of the
nonphysical factor n+ in the argument of the exponential in the r.h.s. of (2.11).
Although this task may appear to be mainly of technical nature it actually requires
a much deeper understanding of the actual behavior of the dynamics compared to
that provided by canonical paths, and the support of new ideas.

One of the key ingredients we use is the following improved version of (2.10),
which we believe can be interesting in a more general context.

THEOREM 2.4. Let G⊂� and assume that, for some T > 0 and for every ini-
tial condition x, Px(X(T ) ∈G)≥ α with Px denoting the law of the chain starting
at x. Assume further that for every η,η′ in G there exists a path γ̃ (η, η′) as above
which stays in G and let

W(G) := max
a,b∈G

Q(a,b)�=0

1

Q(a,b)

∑
η,η′∈G :

(a,b)∈γ̃ (η,η′)

∣∣γ̃ (
η,η′

)∣∣π(η)π(
η′

)
.(2.12)

Then,

gap−1 ≤ 6

α

(
T 2

pmin
+ W(G)

α

)
(2.13)

with pmin :=min{p(σ,σ ′) > 0 :σ,σ ′ ∈�}.
This is clearly an improvement provided that α is bounded away from zero, that

W(G)�W(�) and that T is not too large (in simple words, we need that with
nonzero probability the chain enters “quickly” the good set G where canonical
paths work well).

In our SOS application, roughly speaking, we will choose G to be the set of con-
figurations such that |�L|−1 ∑

x∈�L
|ηx −H(L)| is upper bounded by a constant.

We will see that, irrespective of the starting configuration, at time T = exp(O(L))

the dynamics is in G with probability at least 1
2 . On the other hand, a minor mod-

ification of Proposition 2.3 will give W(G) = exp(O(βL)). Then, Theorem 2.4
allows us to improve the mixing time upper bound to TMIX = exp(O(βL)).
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3. Equilibrium results.

THEOREM 3.1. Let � ⊂ Z2 be a box of side-length L and let β ≥ 1. Set
H = � 1

4β logL�. There exist some absolute constants C,K > 0 (with K integer)
such that for any integer k ≥K ,

π0
�

(
#{v :ηv ≤H − k}> e−2βkL2)≤ exp

(−eβkL)
,(3.1)

π0
�

(
#{v :ηv ≥H + k}> e−2βkL2)

(3.2)
≤ exp

(−Ce−2βkL
(
1∧ e−2βkL log−8 L

))
.

(Notice that the bound on downward fluctuations improves with the size of
the deviation whereas the bound on upward fluctuations deteriorates with the dis-
tance.)

Recall that π0
� has a floor at 0 and a ceiling at height logL≤ n+ ≤ L (together

with zero boundary conditions). It will be convenient throughout this section to
work in the setting of a floor at 0 but no ceiling, where the corresponding measure
�0

� is asymptotically equal to π0
�.

LEMMA 3.2. There is an absolute constant c > 0 such that for any β ≥ 1 and
any subset of configurations A⊆ {0, . . . , n+}�,

�0
�(A)≤ π0

�(A)≤
(
1+ cL2e−2βn+)

�0
�(A).

The above lemma, which will be proved further on in this section, entitles us to
derive results on π0

� from �0
� at an asymptotically negligible cost.

The following notion of a contour and that of an h-contour, a level line at
height h, play a crucial role in our proofs.

DEFINITION 3.3. We let Z2∗ be the dual lattice of Z2 and we call a bond any
segment joining two neighboring sites in Z2∗. Two sites x, y in Z2 are said to be
separated by a bond e if their distance (in R2) from e is 1

2 . A pair of orthogonal
bonds which meet in a site x∗ ∈ Z2∗ is said to be a linked pair of bonds if both
bonds are on the same side of the forty-five degrees line across x∗. A geometric
contour (for short a contour in the sequel) is a sequence e0, . . . , en of bonds such
that:

(1) ei �= ej for i �= j , except for i = 0 and j = n where e0 = en;
(2) for every i, ei and ei+1 have a common vertex in Z2∗;
(3) if ei , ei+1, ej , ej+1 intersect at some x∗ ∈ Z2∗, then ei, ei+1 and ej , ej+1 are

linked pairs of bonds.
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We denote the length of a contour γ by |γ |, its interior (the sites in Z2 it surrounds)
by �γ and its interior area (the number of such sites) by |�γ |. Moreover, we let
�γ be the set of sites in Z2 such that either their distance (in R2) from γ is 1

2 , or
their distance from the set of vertices in Z2∗ where two nonlinked bonds of γ meet
equals 1/

√
2. Finally, we let �+

γ =�γ ∩�γ and �−
γ =�γ \�+

γ .

DEFINITION 3.4. Given a contour γ we say that γ is an h-contour for the
configuration η if

η��−γ ≤ h− 1, η��+γ ≥ h.

We will say that γ is a contour for the configuration η if there exists h such that
γ is a h-contour for η. Finally, Cγ,h will denote the event that γ is an h-contour.

To illustrate the above definitions with a simple example, consider the elemen-
tary contour given by the square of side 1 surrounding a site x ∈ Z2. In this case,
γ is an h-contour iff ηx ≥ h and ηy ≤ h− 1 for all y ∈ {x ± e1, x ± e2, x + e1 +
e2, x − e1 − e2}. In general, �+

γ (resp., �−
γ ) is the set of x ∈�γ (resp., x ∈�c

γ )

either at distance 1 from �c
γ (resp., �γ ) or at distance

√
2 from a vertex y ∈�c

γ

(resp., y ∈�γ ) in the south–west or north–east direction.

REMARK 3.5. As the reader may have noticed the definition of an h-contour
is asymmetric in the sense that we require the minimal height of the surface at the
inner boundary of γ , �+

γ , to be larger than the maximum height at the external
boundary. In a sense, this definition covers upward fluctuations of the surface. Of
course one could provide the reverse definition covering downward fluctuations.
In the sequel, the latter is not really needed thanks to monotonicity and symme-
try arguments. We also observe that, contrary to what happens in, for example,
Ising models, a geometric contour γ could be at the same time a h-contour and
a h′-contour with h �= h′. More generally two geometric contours γ, γ ′ could be
contours for the same surface with different height parameters even if γ ∩ γ ′ �=∅

(but one of them must be contained in the other).

The following estimates play a key role in the proof of Theorem 3.1.

PROPOSITION 3.6. There exists an absolute constant C0 > 0 such that for all
β ≥ 1 and h≥ 1,

π0
�(Cγ,h)≤ exp

(−β|γ | +C0|�γ |e−4βh)
.(3.3)

Moreover, for any family of h-contours {(γs, hs)}s∈S such that for all i ≥ 1⋃
s∈S

hs=i+1

�γs ⊆
⋃
s∈S
hs=i

�γs
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and �γs ∩�γs′ =∅ when hs = hs′ , s �= s′,we have

π0
�

( ⋂
s∈S

Cγs,hs

)
≤ exp

( ∑
s∈S

(−β|γs | +C0|�γs |e−4βhs
))
.(3.4)

As a step towards the proof of the above proposition, we consider the setting
of no floor and no ceiling, where the picture is simpler as there is no entropic
repulsion.

LEMMA 3.7. For any h-contour γ in any domain � with any boundary con-
dition ξ we have

π̂
ξ
�(Cγ,h)≤ exp

(−β|γ |).
Moreover, if h′ < h and γ, γ ′ are contours with �γ ⊆�γ ′ then

π̂
ξ
�(Cγ,h|Cγ ′,h′)≤ exp

(−β|γ |).(3.5)

PROOF. Define the map T = Tγ :Z�→ Z� by

(T η)v =
{
ηv − 1, v ∈�γ ,
ηv, otherwise.

(3.6)

If η has an h-contour at γ , then the difference along every edge in Z2 crossing γ

decreases by 1 so π̂
ξ
�(T η)= eβ|γ |π̂ ξ

�(η). Since T is a bijection it follows that∑
Cγ,h

π̂
ξ
�(η)= e−β|γ |

∑
T −1(Cγ,h)

π̂
ξ
�(T η)≤ e−β|γ |.

Equation (3.5) follows from the same argument by noting that if η ∈ Cγ,h ∩Cγ ′,h′
then Tγ η remains in Cγ ′,h′ . This completes the proof. �

REMARK 3.8. In the context of considering the interior of an h-contour γ

for possibly nested contours [such as the ones featured in equation (3.5)], a useful
observation is that

π0
�(η��γ

∈ ·|Cγ,h)= π
ξ
�γ

(·|η��+γ ≥ h)

for any boundary condition ξ , that is, at most h all along �−
γ . This follows from the

fact that conditioning on any fixed ξ ≤ h would contribute an equal pre-factor to all
configurations thanks to having η��+γ ≥ h, and as this includes all ξ ’s with η��−γ ≤
h− 1 this further includes Cγ,h. Moreover, the same holds when conditioning on
Cγ,h ∩E (instead of just Cγ,h) for an arbitrary event E which is only a function of
the configuration on (�γ )

c.
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(Note that the above remark similarly applies to � and π̂ by the same argu-
ment.)

A Peierls-type argument will transform the above lemma into the following
bound on upward (downward) fluctuations in the no floor, no ceiling setting.

PROPOSITION 3.9. There exists an absolute constant c > 0 such that for any
β ≥ 1, domain �, site v ∈� and height h≥ 0,

1
2e
−4βh ≤ π̂0

�(ηv ≥ h)≤ ce−4βh.

PROOF. Define the map S :Z�→ Z� by (Sη)u = ηu for u �= v and

(Sη)v =
{
ηv + h, ηv ≥ 0,
ηv − h, ηv < 0.

Observe that |(Sη)v| ≥ h and that since S changes the Hamiltonian by at most 4h,

π̂0
�(Sη)≥ e−4βhπ̂0

�(η).

Moreover, as S is injective, summing over η we have that

π̂0
�

(|ηv| ≥ h
)= ∑

η∈Z�

π̂0
�(Sη)≥ e−4βh

∑
η∈Z�

π̂0
�(η)= e−4βh.

Since by symmetry π̂0
�(ηv ≥ h)= π̂0

�(ηv ≤−h) the lower bound follows.
To get the upper bound, define a set of nested contours surrounding v as

A(h, v)= {
(γ1, . . . , γh) :v ∈�γh and �γi+1 ⊆�γi for all 1≤ i ≤ h− 1

}
and observe that, if η is such that ηv ≥ h, then necessarily there exists (γ1, . . . ,

γh) ∈A(h, v) such that η ∈⋂
1≤i≤h Cγi ,i .

Applying Lemma 3.7 iteratively (while bearing Remark 3.8 in mind), we now
obtain that for every (γ1, . . . , γh) ∈A(h, v),

π̂
ξ
�

( ⋂
1≤i≤h

Cγi ,i

)
≤ e−β

∑h
i=1 |γi |.(3.7)

Simple counting gives that the number of contours of length n starting from a
vertex is at most Rn, the number of self avoiding walks of length n. If such a path
surrounds v, then it must cross the horizontal line containing v to its right within
distance n so the number of γ with |γ | = n and v ∈�γ is at most nRn (with room
to spare). Hence

∑
γ : v∈�γ

|�γ |>2

e−β|γ |+6β ≤
∞∑
n=8

nRne
−βn+6β,
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which is uniformly bounded in β for any β ≥ 1 since the connective constant
μ2 = limn→∞R

1/n
n is known to satisfy μ2 < 2.68 < e. Hence, for some large

enough M , independent of β , ∑
γ : v∈�γ

|�γ |>M

e−β|γ | ≤ e−6β.(3.8)

Now define a collection of nested contours of area at least 2 and at most M as

AM(h, v)= {
(γ1, . . . , γh) ∈A(h, v) : 2≤ |�γi | ≤M for all 1≤ i ≤ h

}
.

We note that ∣∣AM(h, v)
∣∣≤ ∣∣AM(1, v)

∣∣M−1
(
h+M − 2
M − 2

)
(3.9)

≤ ∣∣AM(1, v)
∣∣M−1

(h+M)M−2

since, examining the way |�γi | decreases, there are at most M − 2 transitions of
|�γi |< |�γi−1 | and in each case the number of possible γi is at most |AM(1, v)|
with much room to spare.

For any (γ1, . . . , γh) ∈A(h, v), we can find 0≤ k ≤ l ≤ h such that |�γi |>M

for 1≤ i ≤ k, that (γk+1, . . . , γl) ∈AM(l− k, v) and |�γi | = 1 for l < i ≤ h. Then∑
(γ1,...,γh)∈A(h,v)

e−β
∑h

i=1 |γi |

= ∑
0≤k≤l≤h

∑
(γ1,...,γk)

|�γk
|>M

∑
(γk+1,...,γl)∈AM(l−k,v)

e−β
∑l

i=1 |γi |−4β(h−l)

≤ ∑
0≤k≤l≤h

∣∣AM(l − k, v)
∣∣e−6βl−4β(h−l)

≤ e−4βh
∑

0≤k≤l≤h

∣∣AM(1, v)
∣∣M−1

(l − k +M)M−2e−2βl

≤ ce−4βh,

where the first equality holds since |γi | = 4 when |�γi | = 1, the inequality in the
second line is by equation (3.8) and the fact that every contour with |�γ | ≥ 2
has |γ | ≥ 6, and where the transition in the third line is by (3.9). Combining with
equation (3.7) completes the proof. �

Proposition 3.9 allows us to readily infer Lemma 3.2.

PROOF OF LEMMA 3.2. One has

π0
�(A)=�0

�(A)
�0

�

Z0
�

,
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where �0
� denotes the partition function corresponding to �0

�. The fact that
�0

�(A) ≤ π0
�(A) follows immediately from �0

� ≥ Z0
�. To show that π0

�(A) ≤
(1+ cL2e−2βn+)�0

�(A), observe that

Z0
�

�0
�

=�0
�

(
η ≤ n+

)
,

so that

π0
�(A)=

�0
�(A)

1−�0
�(

⋃
v∈�{ηv > n+}) ≤

�0
�(A)

1−∑
v∈��0

�({ηv > n+}) .
Thanks to monotonicity and Proposition 3.9, for any v ∈� we have

�0
�

(
ηv > n+

)≤�
n+/2
�

(
ηv > n+

)≤ π̂0
�(ηv > n+/2)

π̂0
�(η ≥−n+/2)

≤ ce−2βn+

1− c|�|e−2βn+ ,

(where we took n+/2 to be an integer to simplify the exposition) as required. �

Having bounded the probability of exceeding a certain height in the no floor
setting, we can now quantify the entropic repulsion effect and derive an estimate
on π0

�(Cγ,h).

PROOF OF PROPOSITION 3.6. Thanks to Lemma 3.2, it suffices to prove the
analogous estimates for the measure � with no ceiling.

By Remark 3.8, the conditional distribution of η��γ
given Cγ,h is equal to

�h
�γ

(·|η��+γ ≥ h) which stochastically dominates �h
�γ

. Hence,

�0
�(η��γ

> 0|Cγ,h)≥�h
�γ

(η��γ
> 0)≥ ∏

v∈�γ

�h
�γ

(ηv > 0)

≥ ∏
v∈�γ

π̂h
�γ

(ηv > 0)≥
(

1

2
∨ (

1− ce−4βh))|�γ |
,

where the second inequality follows by the FKG inequality, the third follows by
monotonicity of removing the floor and the final inequality by symmetry and
Proposition 3.9. Therefore,

�0
�(η��γ

> 0|Cγ,h)≥ exp
(−2c|�γ |e−4βh)

,(3.10)

since 1
2 ∨ (1 − x) ≥ exp(−2x) for x ≥ 0. With Tγ defined as in (3.6), on the

event that γ is an h-contour and η(�γ ) > 0 we have T η ≥ 0 and �0
�(T η) =

eβ|γ |�0
�(η). It follows from this bijection that

1≥ ∑
η : η��γ

>0,

Cγ,h

�0
�(T η)= eβ|γ |�0

�(η��γ
> 0,Cγ,h)

(3.11)
≥ exp

(
β|γ | − 2c|�γ |e−4βh)

�0
�(Cγ,h)
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with the second inequality by (3.10). Rearranging this establishes (3.3). To ob-
tain (3.4) note first that the proof applies unchanged if hs = h for all s, that is,
when the family of disjoint contours is of the form {(γs, h)}s∈S , in this case yield-
ing

�0
�

( ⋂
s∈S

Cγs,h

)
≤ exp

( ∑
s∈S

(−β|γs | + 2c|�γs |e−4βh))
.

Now take a general family {(γs, hs)}s∈S satisfying the hypothesis of the lemma.
We proceed by induction over the levels of the contours from top to bottom.
If h+ = maxs hs , then conditioning on

⋂
s∈S : hs<h+ Cγs,hs does not affect the

conditional distribution of η(
⋃

s∈S : hs=h+ �γ ) given
⋂

s∈S : hs=h+ Cγs,h+ (as ex-
plained in Remark 3.8). Moreover, given that

⋂
s∈S Cγs,hs holds then Th+η ∈⋂

s∈S : hs<h+ Cγs,h, where Th+ denotes the composition of the Tγs ’s for all s such
that hs = h+, that is, reducing the height of every site in

⋃
s∈S : hs=h+ �γs by 1.

This implies that

�0
�

( ⋂
s∈S : hs=h+

Cγs,hs

∣∣∣ ⋂
s∈S : hs<h+

Cγs,hs

)

≤ exp
( ∑
s∈S : hs=h+

(−β|γs | + 2c|�γs |e−4βh+))
.

The proof is completed by induction. �

PROOF OF THEOREM 3.1, EQUATION (3.1). It suffices to prove the corre-
sponding bounds for �. Set h = H − k and Sh(η) = {v ∈ � :ηv = h}. For each
A⊆ Sh(η), we can define UA :�→� given by

(UAη)v =
{
ηv + 1, v /∈A,
0, v ∈A.

To measure the effect of UA on the Hamiltonian, observe that UA is equivalent to
incrementing each height by 1 followed by decreasing the sites in A by h+ 1. As
such, this operation increases the Hamiltonian by at most |∂�| + 4(h+ 1)|A| and
so altogether

�0
�(UAη)≥ exp

(−4βL− 4β(h+ 1)|A|)�0
�(η).

Hence, ∑
A⊆Sh(η)

�0
�(UAη)

≥ exp(−4βL)
(
1+ e−4β(h+1))|Sh(η)|�0

�(η)

≥ exp
(
−4βL+ 1

2
e−4β(h+1)∣∣Sh(η)

∣∣)�0
�(η),
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since e−4β(h+1) ≤ 1 and (1+ x) ≥ ex/2 for 0 ≤ x ≤ 1. By construction, we have
UAη �= UA′η for any A �= A′ with A,A′ ⊆ Sh(η). In addition, if A ⊆ Sh(η) and
A′ ⊆ Sh(η

′) for some η �= η′ then UAη �= UA′η′ (thanks to the fact that one can
recover A from UAη—the sites at level 0—then proceed to recover η). We can
therefore conclude that

1≥ ∑
η : |Sh(η)|≥e−2βkL2

∑
A⊆Sh(η)

�0
�(UAη)

≥ exp
(
−4βL+ 1

2
e−4β(h+1)e−2βkL2

)
�0

�

(∣∣Sh(η)
∣∣≥ e−2βkL2)

and so, for k ≥ 1

�0
�

(∣∣Sh(η)
∣∣≥ e−2βkL2)≤ exp

(
4βL− 1

2
e2βk−8βL

)

≤ 1

2
exp

(−eβkL)
,

where the last inequality holds for any k ≥ 12. A union bound over all k ≥ 12 now
holds at the cost of increasing the pre-factor of 1/2 to 1, as desired. �

PROOF OF THEOREM 3.1, EQUATION (3.2). As above, we prove the corre-
sponding bounds for � and the result for π will follow from Lemma 3.2. Let
μ2 < 2.68 be the connective constant in Z2 and set

h=H +
⌈

1

4β
log

(
C0

1− logμ2

)⌉
,

where C0 > 0 is the absolute constant from Proposition 3.6. By the isoperimetric
inequality in Z2, we have |�γ | ≤ (L/4)|γ | for any contour γ in an L×L box �.
Plugging these in (3.3) gives

�0
�(Cγ,h)≤ exp

(−β|γ | +C0(L/4)|γ |e−4βh)≤ exp
(−θ |γ |),(3.12)

where

θ = β − 1
4(1− logμ2)≥ 1− 1

4(1− logμ2) > logμ2

by our hypothesis that β ≥ 1.
Now define the random set A by

A =A (η)= {
γ :γ is an h-contour of η of length |γ | ≤ log2 L

}
and let A0 be the result of omitting nested contours from A :

A0 =A0(η)=A \ {ψ ∈A :�ψ ��γ for some γ ∈A }.
For any collection of contours A, let also

EA =
{∣∣∣∣ ⋃

γ∈A
{v ∈�γ :ηv ≥ h+ k}

∣∣∣∣ > 1

2
e−2βkL2

}
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and observe that EA = EA0 since
⋃{�γ :γ ∈ A } = ⋃{�γ :γ ∈ A0}. We thus

have

�0
�(EA )=∑

A0

�0
�(EA0 |A0 =A0)�

0
�(A0 =A0)

(3.13)

=∑
A0

�0
�

( ∑
γ∈A0

Xγ >
1

2
e−2βkL2|A0 =A0

)
�0

�(A0 =A0),

where

Xγ =
∑
v∈�γ

1ηv≥h+k.

Conditioned on A0 = A0, monotonicity enables us to increase the values along
�−

γ for every γ ∈ A0 to h − 1 while possibly only increasing the probability of
the event EA0 , and by doing so the variables {Xγ :γ ∈A0} become mutually in-
dependent.

Fix γ ∈ A0. If ηv ≥ h + k for some v ∈ �γ this gives rise to a sequence of
nested j -contours for j = h+ 1, . . . , h+ k surrounding v, and by Proposition 3.6
the probability for a given fixed such sequence ψ1, . . . ,ψk is at most

exp
(
−β ∑

j

(|ψj | +C0|�ψj
|e−4β(h+j))).

However, the fact that
∑

j |�ψj
|e−4β(h+j) = O(L−1 log4 L) shows that the area

term in this estimate is negligible, hence the same argument used for proving the
upper bound of Proposition 3.9 (in the no floor setting) yields that, for some abso-
lute c > 0 and every v ∈�γ ,

�0
�(ηv ≥ h+ k|Cγ,h)≤ c exp(−4βk).

In particular,

E�0
�(·|Cγ,h)

[Xγ ] ≤ |�γ |c exp(−4βk)

and so

E�0
�(·|

⋂
γ∈A0

Cγ,h)

[ ∑
γ∈A0

Xγ

]
≤ c exp(−4βk)

∑
γ∈A0

|�γ | ≤ c exp(−4βk)L2.

The variable Y =∑
γ∈A0

Xγ is therefore a sum of |A0| ≤ L2 independent vari-
ables, each of which respects the bound |Xγ | ≤ |�γ | ≤ log4 L with probability 1.
Since β ≥ 1, for any k ≥ 1

2 log(4c) we have E�0
�(·|

⋂
γ∈A0

Cγ,h)
[Y ] ≤ 1

4e
−2βkL2,

and applying Hoeffding–Azuma now gives

�0
�

(
Y ≥ 1

2e
−2βkL2|A0 =A0

)≤ exp
(− 1

32e
−4βkL2 log−8 L

)
.
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Together with (3.13) we finally get

�0
�(EA )≤ exp

(−e−4βkL2−o(1)).(3.14)

Having accounted for this probability in the inequality (3.2), we are left with the
problem of handling the contribution of long contours, namely those whose length
exceeds log2 L.

Set

B =B(η)= {
γ :γ is an h-contour of η of length |γ |> log2 L

}
.

We have shown in (3.12) that, for some θ ≥ θ0 with a fixed θ0 > logμ2 and any
given contour γ ,

�0
�(Cγ,h)≤ exp

(−θ |γ |).
By the same argument [appealing to Proposition 3.6, this time to the more gen-
eral bound (3.5)], if, for some m=m(L), one considers contours γ1, . . . , γm with
disjoint interiors {�γi }mi=1 and individual lengths all exceeding log2 L, then

�0
�

(
m⋂
i=1

Cγi ,h

)
≤ exp

(
−θ

m∑
i=1

|γi |
)
.

By enumerating over the length of each contour γi , then selecting its origin and
a self-avoiding path for it (the number of options for the latter being counted
by R|γi |), we see that

�0
�

(⋃
m

⋃
{γi}mi=1

m⋂
i=1

Cγi ,h

)
≤∑

m

m∏
i=1

∑
log2 L<|γi |≤L2

L2R|γi |e−θ |γi |.

The relation between θ and logμ2 suffices to eliminate R|γi | while still retaining a
factor of exp(−c∑

i |γi |) for some absolute c > 0. The fact that
∑

i |γi | is super-
logarithmic now eliminates the L2 pre-factor, as well as the additional enumeration
over m itself (another polynomial factor). Altogether,

�0
�

( ∑
γ∈B

|γ | ≥ 1

2
e−2βkL

)
≤ exp

(−ce−2βkL
)

for some absolute c > 0, and in particular [via the isoperimetric inequality |�γ | ≤
(L/4)|γ |]

�0
�

(∣∣∣∣ ⋃
γ∈B

{v ∈�γ :ηv ≥ h}
∣∣∣∣ > 1

8
e−2βkL2

)
(3.15)

≤ exp
(−ce−2βkL

)
.

Together with the aforementioned bound on �0
�(EA ), this completes the proof.

�
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4. Lower bounds on equilibration times.

4.1. Proof of Theorem 1: Lower bound on the mixing time. Set

h=H −K,

where K is the constant from Theorem 3.1, and define

B = {
η : #{x ∈�L :ηx ≥ h+ 1} ≥ 1

2L
2}
.

Note that, since exp(−2βK)≤ 1
2 , equation (3.1) of Theorem 3.1 implies that

π0
�(B)= 1− o(1).(4.1)

Hence, if τB denotes the hitting time of the set B, it will suffice to show that for
a sufficiently small constant c > 0

min
η

Pη(τB < ecL
)= o(1).(4.2)

For this purpose, we observe that B is an increasing event so that,

min
η

Pη(τB < ecL
)= P�

(
τB < ecL

)≤ Pν(τB < ecL
)

for any initial law ν.
We now choose ν as follows. Take δ ∈ (0, 1

4) to be a sufficiently small constant
so that in terms of the constant C0 from (3.3)

δ <

[
(β − logμ2)

4

C0
exp

(−4β(H − h+ 1)
)]2

,

where μ2 is the connective constant in Z2. Rearranging the above condition gives

λ := √δ(C0/4) exp
(
4β(H − h+ 1)

)
< β − logμ2.(4.3)

Then we take as starting law ν the conditional measure π0
�(·|A) where A is the

event that there exists no h-contour γ with area exceeding δL2, that is,

A= ⋂
γ : |�γ |>δL2

(Cγ,h)
c.

In the sequel, ∂A will denote the internal boundary of A defined by

∂A := {
η ∈A :p

(
η,η′

)
> 0 for some η′ /∈A

}
,

where p(·, ·) is the transition probability of the dynamics. Let τ∂A be the hitting
time of ∂A.

Notice that, up to time τ∂A, the Glauber dynamics started in A \ ∂A coincides
with the reflected Glauber dynamics in A whose reversible measure is precisely
ν ≡ π0

�(·|A). Therefore, a simple union bound over times t ∈ [0, ecL] gives that

Pν(τB < ecL
)≤ Pν(τ∂A < ecL

)+ Pν(τB < ecL ≤ τ∂A
)

(4.4)
≤ ecL

(
ν(∂A)+ ν(B)

)
.
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Define now

Ã= ⋂
γ : |�γ |>1/5δL2

(Cγ,h)
c.

Notice that ∂A⊂A \ Ã since at most four distinct h-contours can be combined by
the modification of a single site. Therefore,

ν(∂A)= π0
�(∂A)

π0
�(A)

≤ π0
�(A \ Ã)
π0
�(A)

.

We next claim that

π0
�(A \ Ã)
π0
�(A)

≤ e−c1L(4.5)

for some constant c1 = c1(β). Indeed, suppose that γ is a contour such that
|�γ |/L2 ∈ (1

5δ, δ). As in the proof of Proposition 3.6 [see formula (3.11)] and
with Tγ defined as in (3.6),

π0
�(A)≥

∑
η∈A,η��γ

>0

Cγ,h

π0
�(Tγ η)= eβ|γ |π0

�(η��γ
> 0|A,Cγ,h)π

0
�(A∩Cγ,h),

where we used the fact that Tγ η ∈A if η ∈A∩Cγ,h. Next, we observe that, thanks
to (3.10) (which holds with identical proof also for π0

�),

π0
�(η��γ

> 0|A,Cγ,h)= π0
�(η��γ

> 0|Cγ,h)≥ exp
(−2c|�γ |e−4βh)

to yield

π0
�(Cγ,h|A)≤ exp

(−β|γ | +C0|�γ | exp(−4βh)
)
.(4.6)

The isoperimetric inequality in Z2 gives that |�γ | ≤ |γ |2/16 for any γ , so that, by
the above choice of parameters, any contour γ with area less than δL2 satisfies

C0|�γ |e−4βh ≤ C0
(√

δL2
√
|γ |2/16

)( e4βH

e−4βL

)
e−4βh

≤√δ(C0/4)|γ |e4β(H−h+1)

= λ|γ |,
where λ is given by (4.3). Hence, the r.h.s. of (4.6) is smaller than e−(β−λ)|γ |.
A union bound over γ ’s with |�γ |> (δ/5)L2 then proves (4.5).

In conclusion, the first term in the r.h.s. of (4.4) is o(1) if c < c1. We now
examine the second term ν(B) and we proceed as in the proof of Theorem 3.1.
First, we claim that for any short h-contour γ and v ∈�γ , where “short” means
of length smaller than log2(L), we have

�0
�(ηv ≥ h+ 1|Cγ,h)≤ 1

4 .(4.7)
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Indeed, if A = {γ ′ :v ∈�γ ′ ⊆�γ } then an application of (3.5) from Lemma 3.7
shows that

π̂0
�(ηv ≥ h+ 1|Cγ,h)≤

∑
γ ′∈A

π̂0
�(Cγ ′,h+1|Cγ,h)≤

∑
γ ′∈A

e−β|γ ′| ≤ 1

8

for β large since, as usual, the number of contours γ ′ ∈A of length k is at most
kμk

2 (using the fact that each of these crosses the horizontal line to the right of v
within distance at most k). To transfer this estimate to the setting of a floor, observe
that by Remark 3.8,

�0
�(ηv ≥ h+ 1|Cγ,h)=

π̂0
�(ηv ≥ h+ 1, η��γ

≥ 0|Cγ,h)

π̂h
�γ

(η��γ
≥ 0|η��+γ ≥ h)

.(4.8)

We have just established that the numerator is at most 1/8, whereas by monotonic-
ity the denominator is at least

π̂h
�γ

(η��γ
≥ 0)= π̂0

�γ
(η��γ

≥−h)≥ 1− ce−4β(h+1)|�γ |
thanks to Proposition 3.9 (with the same constant c > 0 appearing there) and a
union bound over the sites of �γ . The fact that |�γ | ≤ |γ |2 = O(log4 L) shows
this last term is 1 − L−1+o(1), hence the effect of the denominator in (4.8) can
easily be countered by a factor of 2, thus establishing (4.7).

With inequality (4.7) available to us, the very same concentration argument
leading to (3.14) applies again here to imply that

�0
�

(∑′
γ

#{x ∈�γ :ηx ≥ h+ 1} ≥ 1

2
L2

)
≤ e−c2L

2−o(1)
(4.9)

for some constant c2 > 0, where the summation
∑′

γ is over every short h-con-
tour γ . Similarly, following the same steps leading to (3.15), we get that

�0
�

(∑′′
γ

#{x ∈�γ :ηx ≥ h+ 1} ≥ 1

2
L2

)
≤ e−c3L(4.10)

for a suitable c3 > 0, where
∑′′

γ sums over every long h-contour γ , that is, such
that |γ | ≥ (logL)2 [in this case, the analog of (3.12) for h-contours of area smaller
than δL2 holds if δ chosen small]. Finally, Lemma 3.2 translates the statements on
�0

� into the analogous bounds for π0
�. In conclusion the second term in the r.h.s.

of (4.4) is o(1) if c < min(c2, c3), as required.

4.2. Proof of Theorem 2: Lower bound on τa . Here we prove that P�(τa ≥
ecL

a
)→ 1 as L→∞ where, we recall,

�a = {
η such that #

{
x ∈�L :ηx ≥ aH(L)

}
> 9

10 |�L|}
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and τa is the hitting time of �a . We proceed as in the proof of (4.2) but now the
height h is chosen equal to aH(L)− 1, so that e−4βh ≤ exp(8β)L−a , and the set
A is defined by

A= ⋂
γ : |�γ |>δL2a

(Cγ,h)
c.

Here δ is a small constant such that, for |�γ | ≤ δL2a :

C0|�γ |e−4βh ≤ C0
(√

δL2a
√
|γ |2/16

)
e−4βh ≤ λ|γ |,

where λ is analogous to (4.3). As in (4.4), we get

Pν(τa < ecL
a )≤ Pν(τ∂A < ecL

a )+ Pν(τa < ecL
a ≤ τ∂A

)
(4.11)

≤ ecL
a (
ν(∂A)+ ν(�a)

)
.

Exactly the same arguments behind (4.5), (4.9) and (4.10) now show that the r.h.s.
of (4.11) is o(1).

5. A bound using paths and flows.

5.1. Proof of Proposition 2.3. Let � := {1, . . . ,L} × {1, . . . ,m} and � :=
��,n+ . We introduce the canonical paths γ (η, η′) from η to η′ for every η,η′ ∈�.
Define the diagonal lines in �L = {1, . . . ,L}2

Ri = {x ∈�L :x2 = x1 +L− i}, i = 1, . . . ,2L− 1(5.1)

and let R denote the collection of the Ri . Number the sites in � following the lines
R1, . . . ,R2L−1, so that each line is read from southwest to northeast; at each site
x move straight from ηx to η′x by taking |ηx − η′x | unit steps. Note that since all
heights satisfy 0≤ ηx ≤ n+ one has |γ | ≤ |�|n+. If e= (σ, σ x∗,±) is an edge of a
path, with x∗ ∈Ri∗ , define A as the set of x ∈� such that x < x∗ and B the set of
x > x∗ (w.r.t. to the order introduced above). Here σx∗,± denotes the configuration
which coincides with σ except that the height at x∗ is changed by ±1. Then by
direct inspection one finds that for any η,η′ ∈� such that γ (η, η′) � e:

π(η)π
(
η′

)≤ π(σ)π
(
σ ∗

)
exp

(
6β

∑
x∈Ri∗∩�

∣∣ηx − η′x
∣∣),(5.2)

where σ satisfies σA = η′A, σB = ηB , while σ ∗ is the configuration obtained by
setting σ ∗A = ηA, σ ∗B = η′B . Here σx∗ and σ ∗x∗ = σx∗ ± 1 are assigned according to
the choice of e. The crucial observation is that, given e, the map from (η, η′) [such
that e ∈ γ (η, η′)] to (σ, σ ∗) is an injective one. In particular, this implies:

1

π(σ)

∑
η,η′∈�

∣∣γ (
η,η′

)∣∣π(η)π(
η′

)
1e∈γ ≤ |�|n+ exp

(
6βn+m

)
.(5.3)
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Note also that the inverse of the smallest nonzero one-step transition probability for
our chain is |�| exp(4βn+). We apply then (2.10) to obtain that the inverse spectral
gap of the SOS dynamics is upper bounded by c|�|2n+ exp (7βn+m) and (2.11)
follows.

5.2. Proof of Theorem 2.4. For every ξ , ξ ′ ∈ �, let γ1 be a path of length T

starting at ξ and let γ2 be a path of length T starting at ξ ′. Write η,η′ for the
corresponding endpoints. Let γc be a path from η to η′ (to be specified below)
which depends only on η, η′ and not on γ1, γ2. Call γ the concatenation of γ1, γc,
γ̄2, where γ̄2 is the path γ2, inverted in time. Note that γ connects ξ to ξ ′. If η,
η′ ∈G, then we let γc be the path γ̃ (η, η′) which appears in the statement of the
theorem (recall that it stays in the set G) and define

a(γ )= π(ξ)Pξ (γ1)

Pξ (X(T ) ∈G)

π(ξ ′)Pξ ′(γ2)

Pξ ′(X(T ) ∈G)
.

Otherwise, set a(γ )= 0 and we do not need to specify γc in this case. Here Pξ (γ1)

is the probability that the process (X(t))t started at ξ follows exactly γ1 up to
time T , and similar for Pξ ′(γ2). Note that for fixed ξ , ξ ′ ∈ �,

∑
γ : ξ∼ξ ′ a(γ ) =

π(ξ)π(ξ ′) where the sum is over η, η′, γ1, γ2 for fixed ξ , ξ ′.
Therefore, viewing the path γ as a collection of oriented edges e = (σ, σ ′) and

letting ∇ef = f (σ)− f (σ ′), we have

Var(f )= 1

2

∑
ξ,ξ ′

π(ξ)π
(
ξ ′

)(
f (ξ)− f

(
ξ ′

))2

(5.4)

= 1

2

∑
ξ,ξ ′

∑
γ : ξ∼ξ ′

a(γ )

(∑
e∈γ

∇ef

)2

≤ 3

2

∑
ξ,ξ ′

∑
γ : ξ∼ξ ′

a(γ )
(
Aγ (f )+Bγ (f )

)
,(5.5)

where

Aγ (f )= |γ1|
∑
e∈γ1

(∇ef )
2 + |γ2|

∑
e∈γ2

(∇ef )
2,

Bγ (f )= |γ̃ |
∑
e∈γ̃

(∇ef )
2

and in the inequality we used Cauchy–Schwarz. Now we use the fact that the
Dirichlet form which appears in the definition (2.5) of the spectral gap can be
written as

E(f ) := π0
�

(
f (I − P)f

)= 1

2

∑
e=(σ,σ ′)

π(σ )p
(
σ,σ ′

)
(∇ef )

2.
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Recall that pmin denotes the smallest nonzero one-step transition probability, and
observe that∑

ξ,ξ ′

∑
γ : ξ∼ξ ′

a(γ )Aγ (f )

= 2
∑
ξ

∑
γ1

|γ1| π(ξ)Pξ (γ1)

Pξ (X(T ) ∈G)

∑
e∈γ1

(∇ef )
2

≤ 4
T

αpmin
E(f ) sup

e=(σ,σ ′)
(
π(σ)−1)∑

ξ

∑
γ1

π(ξ)Pξ (γ1)1e∈γ1,

where we used the fact that |γ1| = T .
Let P denote the law of the stationary process (started at equilibrium π ). From

a union bound, one has∑
ξ

∑
γ1

π(ξ)Pξ (γ1)1e∈γ1 = P
(∃t ∈ [0, T ] :X(t)= σ,X(t + 1)= σ ′

)≤ T π(σ).

It then follows that

∑
ξ,ξ ′

∑
γ : ξ∼ξ ′

a(γ )Aγ (f )≤ 4
T 2

αpmin
E(f ).

As for the second term in (5.5), using stationarity of π one has that the sum of
π(ξ)Pξ (γ1) over all ξ and paths γ1 of length T which connect ξ to η gives π(η),
so that [with the definition (2.12)]∑

ξ,ξ ′

∑
γ : ξ∼ξ ′

a(γ )Bγ (f )

≤ 2

α2

1

2

∑
e=(σ,σ ′)

(∇ef )
2π(σ)p

(
σ,σ ′

) ∑
η,η′∈G

|γ̃ (η, η′)|π(η)π(η′)
π(σ )p(σ,σ ′)

1e∈γ̃ (η,η′)

≤ 2

α2W(G)E(f ).

Going back to (5.5) and to the definition of spectral gap one immediately
gets (2.13).

6. Upper bounds on equilibration times.

6.1. Proof of Theorem 2: Upper bound on τa assuming Theorem 1. Here we
prove that P�(τa ≤ ec

′La
)→ 1 as L→∞ assuming TMIX ≤ ecL. The latter esti-

mate will be proven afterwards. Let us partition the box �L into nonoverlapping
squares Qi of side CLa with C = exp(4βK) where K is the constant appearing in
Theorem 3.1. By monotonicity the Glauber dynamics is higher than the auxiliary
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dynamics in which each square Qi evolves independently from the others with 0
boundary conditions on ∂Qi . Using the assumption TMIX ≤ ecL and independence,
it is standard to check that the mixing time of this auxiliary dynamics is not larger
than e2cLa

and therefore, at time T = e3cLa
, all the squares Qi are close to their

equilibrium (in total variation) with an exponentially small error. Theorem 3.1 im-
plies that in each of them the density of vertices higher than

H
(
CLa)−K = aH(L)

is larger than 1− ε(β) with probability exponentially close to one. In conclusion,
apart from an exponentially small error, P�(τa > e3cLa

) is bounded by the prob-
ability that for some i the square Qi has a density less that 1− ε(β) of vertices
higher than H(CLa)−K . Thus, a union bound suffices to conclude the proof.

6.2. Proof of TMIX ≤ ecL for n+ = logL. To prove the upper bound on TMIX
in Theorem 1, the crucial point is to give the proof for n+ = logL, so we assume
this is the case in this section. The general case logL ≤ n+ ≤ L can be then de-
duced via very soft arguments; see Section 6.3 below.

For reasons that will be clear later, first of all we modify the SOS model by con-
sidering the Boltzmann factor exp[−βHξ

�L
+ f ] instead of exp[−βHξ

�L
], where

f is the external field term

f = 1

L

∑
y∈�L

fy with fy =
n+−H∑
j=1

fy,j :=
n+−H∑
j=1

cj1ηy≤H+j(6.1)

with H = H(L) defined in (1.3) and cj = exp(−βj). One changes the partition
function accordingly. We call πξ,f

�L
the corresponding equilibrium measure with

ceiling at n+ = logL and floor at 0. Moreover, we will consider the Glauber (heat
bath) dynamics associated to π

ξ,f
�L

.

REMARK 6.1. Note that, if the b.c. are zero then the extra term f in (6.1) will
not drastically change the global equilibrium properties, since it tends to depress
the heights that exceed the level H (and having ηx ≥H + 1 is already an unlikely
event, for β large). More precisely, f equals the constant (|�L|/L)∑

j cj plus a
(negative) random term which one could prove, by refining the estimates of Sec-
tion 3, to be of order L× exp(−cβ) for a typical configuration (and therefore not
extensive in the area of �L).

The reason for modifying the equilibrium measure in such a peculiar way is
explained after Theorem 6.12.

LEMMA 6.2. The ratio � of the mixing time of the original system over the
mixing time of the system modified as in (6.1) satisfies for L large

e−L ≤�≤ eL.(6.2)
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PROOF. Going back to the definition (2.5) of the spectral gap, it is easy to see
that the ratio �̃ of relaxation times satisfies

e−4|f |∞ ≤ �̃≤ e4|f |∞

with f as in (6.1); see, for example, [34], Lemma 13.22, for such standard compar-
ison bounds. Note that |f |∞ =O(Le−β) if β is large enough. Then (6.2) follows
from the comparison (2.7). �

Therefore, it is enough to prove Theorem 1 for this modified model. We denote
its mixing time as TMIX(L). It is important to realize that the Glauber dynamics for
this modified SOS model is still monotone (in the sense of Section 2.2) and that
the FKG inequalities are still valid. This is because f is the sum of functions of a
single height ηx . Therefore, we can apply all the monotonicity arguments we need
(including the Peres–Winkler censoring inequality, Theorem 2.2).

DEFINITION 6.3. For k ∈ N and a,A > 0, we define the inductive statement
Fk :=Fk,a,A: for every L the mixing time satisfies

TMIX(L)≤ LaeAL log(k)(L),

where log(k)(x) := max(1, log(log · · · (x))) and log(log · · · (x)) is the logarithm
iterated k times.

THEOREM 6.4. Fix β ≥ β0 for some large enough constant β0, and n+ =
logL. Then Fk ⇒ Fk+1 provided that a = 4 and A = Cβ for some sufficiently
large C.

PROOF OF THEOREM 1 GIVEN THEOREM 6.4. For k = 1, the statement F1
follows at once from the “canonical paths argument”, Proposition 2.3 (with a = 3
and A = bβ , b some explicit constant). Notice that Proposition 2.3 applies with
no change to the modified model with the external field. Then, apply the theorem
until log(k)(L)= 1. At that point we get the desired exponential mixing time upper
bound. �

For the proof of Theorem 6.4, we need some notation. Recall the definition (5.1)
of the diagonal lines Ri . Define G+

� ⊂�L as the set of configurations η such that,
for every R ∈R, ∑

x∈R
[ηx −H ]+ ≤ L�

(with [x]+ = max(x,0)), G−
� ⊂ �L as the set of configurations η such that, for

every R ∈R, ∑
x∈R

[H − ηx]+ ≤ L�
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and finally G� ⊂�L as the set of configurations η such that, for every R ∈R,∑
x∈R

|H − ηx | ≤ L�.(6.3)

Let also

�(k,L) := B log(k)(L)+ 1

4β
logA(6.4)

with B a constant to be chosen sufficiently large (independently of β) later, see
discussion after (6.7) and (6.20).

LEMMA 6.5. Assume Fk with a = 4 and A= 40Bβ and take T1 > e2L. Then

P
(
η�(T1) ∈G−

�(k+1,L)

)≥ 3
4 .

LEMMA 6.6. Assume Fk with a = 4 and A= 40Bβ and take T2 > eBβL with
the same B as in (6.4). Then

P
(
η�(T2) ∈G+

�(∞,L)

)≥ 3
4 .

Note that �(∞,L)= B + 1/(4β) logA is just a large constant. We will actually
see that, in both lemmas, the constant 3

4 can be replaced by 1− o(1) where o(1)
vanishes for L→∞. We refer to Sections 6.4 and 6.5 below for the proof of
Lemmas 6.5 and 6.6, respectively.

PROOF OF THEOREM 6.4 GIVEN LEMMAS 6.5 AND 6.6. Thanks to mono-
tonicity, to Lemmas 6.5 and 6.6, and the fact that G+

�(∞,L) ⊂G+
�(k+1,L), we can set

T all :=max(e2L, eBβL) and obtain that

min
ζ

P
(
ηζ

(
T all) ∈G2�(k+1,L)

)≥ 1
2 .(6.5)

This is based on the fact that, if η1 ≤ η ≤ η2 and η1 ∈G−
� , η

2 ∈G+
�′ then η ∈G�+�′ .

Just write

|ηx −H | = [ηx −H ]+ + [H − ηx]+ ≤ [
η2
x −H

]+ + [
H − η1

x

]+
.

At this point, we need the following consequence of Theorem 2.4.

PROPOSITION 6.7. Let α, � > 0 and T be such that P(ηζ (T ) ∈G�) ≥ α for
all initial configurations ζ . Then there exists a constant c= c(α,β) such that

TREL(L)≤ c
[
exp (15β�L)+L5βT 2]

.(6.6)
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PROOF. Theorem 2.4 gives

TREL ≤ 6

α

(
T 2

pmin
+ W(G�)

α

)
,

where in the definition of W(G�) we choose the canonical paths introduced in
Section 5.1. We know that the inverse of the minimal transition probability pmin is
of order |�L| exp(4βn+). Also, from the proof of Proposition 2.3 and the definition
(6.3) of G�, we see easily that W(G�)≤ exp(15β�L) and then the claim follows.

�

Proposition 6.7 [applied with T = T all, � replaced by 2�(k+1,L) and recalling
that n+ = logL], together with (6.5) and (2.7), implies that

TMIX(L)≤ c′(β)L3(
L5β(

T all)2 + e30BβL log(k+1)(L)+8L logA)
.(6.7)

If one chooses A = 40Bβ (and B large but independent of k,β), then the r.h.s.
of (6.7) is smaller than L4 exp(AL log(k+1)(L)) for every L and the claim follows.

�

6.3. Proof of TMIX ≤ ecL for logL ≤ n+ ≤ L. Once we have the statement
for n+ = logL, proving it for logL≤ n+ ≤ L is quite easy, so we only sketch the
main steps. Thanks to (2.8), it is enough to prove that∥∥μ�t − π

∥∥≤ L−4,(6.8) ∥∥μ�t − π
∥∥≤ L−4(6.9)

for some t = exp(O(βL)). Here we write π instead of π0
� for simplicity. We first

note that, if π, π̃ are the equilibria with ceiling at n+ > logL and at logL, respec-
tively, then

‖π − π̃‖ ≤L−c0(β)(6.10)

with c0(β) that diverges as β→∞. Indeed, to feel the ceiling there must be some
x such that ηx ≥ logL and this has probability at most c|�L| exp(−2β logL). This
can be seen as follows. By monotonicity lift the b.c. from 0 to (logL)/2. In this
situation, the probability that the SOS interface reaches either height 0 or logL
is O(|�L|e−2β logL), as follows from Proposition 3.9 and a union bound, cf. the
proof of Lemma 3.2.

As for (6.8), from Theorem 2.2 (applied with k = 1, t1 = t , V1 =�L, a1 = 0,
b1 = logL) we have ‖μ�t − π‖ ≤ ‖μ̃�t − π‖, with μ̃t the law of the evolution η̃(t)

with ceiling at logL. Since we proved in Section 6.2 that the mixing time of the
dynamics η̃(t) is exp(O(βL)), if t = exp(cβL) with c large one gets from (2.4)
that ‖μ̃�t − π̃‖ = o(L−4) and therefore ‖μ̃�t − π‖ = O(L−c0(β))+ ‖μ̃�t − π̃‖ =
o(L−4) if β is large enough.
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As for (6.9), assume for definiteness that n+ is a multiple of logL and let

hi = n+ − i − 1

2
logL, i = 1, . . . ,M := 2n+

logL
− 1.

Let us apply Theorem 2.2 with k = M , Vi = �L, ti = i exp(cβL) with c large
enough, bi = hi and ai = hi − logL. Let us also call Ui the event that ai ≤ ηx ≤
ai + 1

2 logL for all x ∈�L. Note that, for the associated modified dynamics η̃(t),
in the time interval 0 < t ≤ t1 = exp(cβL) the floor is at height a1 = n+ − logL
and the ceiling at height b1 = n+. Therefore, if c is chosen large enough, at
time exp(cβL) the system is within variation distance say e−L from the equi-
librium with such floor/ceiling and in particular, except with probability smaller
than L−c0(β), the configuration is in U1 [the proof of this is very similar to the
proof of (6.10) above]. If η̃(t1) ∈ U1, then in the second time-lag {t1 + 1, . . . , t2}
the situation is similar, except that the floor is now at a2 and the ceiling is at b2
(note that if instead η̃(t1) /∈ U1 then some heights are frozen forever to values
larger than a1 + 1

2 logL and the dynamics η̃(t) will not approach equilibrium).
The argument is repeated M times with the result that (via a union bound on i),
at time tM = exp(O(βL)), the variation distance from equilibrium is smaller than
ML−c0(β)�L−4 and the proof is concluded.

6.4. Rising from the floor: Proof of Lemma 6.5. We will make a union bound
on Ri ∈R, that is, on i = 1, . . . ,2L− 1. We want to upper bound

P

( ∑
x∈Ri

[
H − η�x (T1)

]+ ≥ L�(k + 1,L)
)
.(6.11)

READER’S GUIDE 6.8. In principle, the argument is very simple. Around
every point x ∈ Ri one would like to consider a square Qx of side Lk :=
L/(A log(k)(L)). By monotonicity, the quantity [H − η�x (T1)]+ appearing in
(6.15) gets larger if we fix to 0 the heights on ∂Qx . From the assumption Fk ,
we know that the mixing time in Qx , with zero b.c. on ∂Qx , is of order
exp(ALk log(k)(Lk)) ≈ exp(L) � T1 ≈ exp(2L). Thus, at time T1 the dynam-
ics in Qx is essentially at equilibrium (w.r.t. zero b.c. on ∂Qx), so that ηx ∼
1/(4β) logLk ≈H − (1/4β) log(k+1)(L) w.h.p. By taking the constant B appear-
ing in (6.4) large enough, we can make �(k + 1,L)# (1/4β) log(k+1)(L). As a
consequence, the event in (6.11) describes a very unlikely deviation.

In practice, the proof is considerably more involved, in particular because the
size of the squares Qx has to be chosen as a function of x [cf. (6.16)] in order to
guarantee that Qx is fully contained in the original domain �L.

Set σx := 1
4β logd(x), where d(x) is the L1 distance of x from the boundary

of �L. One has [
H − η�x (T1)

]+ ≤ [
σx − η�x (T1)

]+ + |σx −H |.(6.12)
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Now, there exists C1 such that for every Ri ∈R one has

∑
x∈Ri

|σx −H | ≤ C1

β
L.(6.13)

By the way, this is the reason why we defined the lines Ri as in (5.1): if Ri were
parallel to the coordinate axes and too close to the boundary of �L, then (6.13)
would be false. To prove (6.13), suppose without loss of generality that the diago-
nal line under consideration is Ri with i ≤ L, so that |Ri | = i. One has

∑
x∈Ri

|σx −H | = iH − ∑
x∈Ri

σx ≤ 1

4β
i

(
logL− 1

i

∑
x∈Ri

logd(x)
)
.(6.14)

If i is even

∑
x∈Ri

logd(x)= 2
i/2∑
k=1

logk = i log i +O(i)

and a similar argument takes care of the case where i is odd. Therefore,

∑
x∈Ri

|σx −H | ≤ 1

4β
L

[
i

L
log(L/i)+C′ i

L

]
≤ C′′L

β

for some constants C′,C′′ > 0 independent of i, β,L.
Let us go back to estimating (6.11). It is clear that the x such that d(x) ≤

L/ logL can give altogether a contribution to
∑

x[σx − η�x (T1)]+ which is at most
O(L). Then, let R̃i be the subset of Ri such that d(x) > L/ logL. We can conclude
that it is enough to estimate

P

( ∑
x∈R̃i

[
σx − η�x (T1)

]+ ≥ L
(
�(k + 1,L)−C′′′

))

(6.15)

≤ P

( ∑
x∈R̃i

[
σx − η�x (T1)

]+ ≥ |R̃i |
2

�(k + 1,L)
)
.

Now for every x ∈ R̃i define a (diagonal) interval Ix ⊂ Ri , centered at x and of
length

|Ix | = 1

2
min

(
d(x),

L

A log(k)(L)

)
.(6.16)

Note that the minimal |Ix | is of order L/ logL and the maximal one is at most
L/(2A log(k)(L)) [it can be much shorter if |Ri | � L/ log(k)(L)]. Note that con-
dition (6.16) guarantees that around each Ix one can place a square Qx of side
mx = 2|Ix | and fully contained in �L. Considering all the possible i ≤ L and
the different intervals Ix, x ∈ R̃i , the number of such intervals is trivially smaller
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than |�L|. Therefore, observing that R̃i can be covered by (possibly overlapping)
such intervals Ix of total length at most (3/2)|R̃i |, it is enough to prove

P

( ∑
y∈Ix

[
σy − η�y (T1)

]+ ≥ |Ix |
3

�(k + 1,L)
)
≤L−3(6.17)

for every such interval and then apply a union bound to get that the r.h.s. of (6.15)
is o(1/L), so that after summing over the index of Ri the probability in (6.11) is
still o(1).

It is easy but crucial to check that∑
y∈Ix

[
σy − η�y (T1)

]+
(6.18)

≤ ∑
y∈Ix

[
H(mx)− η�y (T1)

]+ + c

β
|Ix |(logA+ log(k+1)(L)

)
,

where of course, as in (1.3), H(mx)= 1/(4β) logmx is just the typical equilibrium
height of the SOS interface in the center of the square Qx with zero boundary
conditions on ∂Qx (here, for lightness of notation, we forget the integer part in the
definition of H ). Indeed, since mx ≤ d(x)/2 one has for y ∈ Ix∣∣σy −H(mx)

∣∣= 1

4β

(
logd(y)− log(mx)

)
.(6.19)

If min(d(x),L/A log(k)(L))= d(x), then the r.h.s. of (6.19) is upper bounded by
a constant. In the opposite case, it is bounded by

1

4β

[
logL− log

(
L

A log(k)(L)

)]
≤ 1

4β

(
logA+ log(k+1)(L)

)
and (6.18) follows. Therefore, it is enough to bound

P

( ∑
y∈Ix

[
H(mx)− η�y (T1)

]+ ≥C0|Ix |
)
≤ L−3(6.20)

for all such intervals, for some C0 independent of β . We can assume that C0 is
large [just choose B large in (6.4)].

Monotonicity implies that if we let evolve only the heights inside Qx with 0-b.c.
on ∂Qx , then the random configuration obtained at time T1 is stochastically lower
than the configuration obtained via the true evolution (where all the heights are
updated). Again by monotonicity [the event in (6.20) being decreasing] we can
lower the ceiling in the box Qx from height n+ = logL to height logmx and also
replace the pre-factor (1/L) with (1/mx) in front of the fields fy, y ∈Qx in (6.1):
the dynamics thus obtained (that we simply call “the auxiliary dynamics”) gets
stochastically lower. The reason is that the fields fy are decreasing functions of η,
which tend to “push down” the interface, and 1/mx > 1/L, so that exp((1/L −
1/mx)fy) is an increasing function.
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Since we are assuming that Fk holds (with a = 4), the mixing time of the aux-
iliary dynamics in Qx (with 0-b.c. on ∂Qx ) is at most

m4
x exp

(
Amx log(k)(mx)

)≤ L4 exp(L).

As a consequence, using (2.4), at time T1 = e2L the law of the auxiliary dynamics
is within variation distance exp(−eL/2) from its invariant measure, call it πQx ,

which is nothing but a space translation of π
0,f
�mx

, where we recall that, for a

generic L, π0,f
�L

is the equilibrium measure in �L with the field f , the floor/ceiling
constraints 0 ≤ η ≤ logL and b.c. at zero. For simplicity, for the rest of this sub-
section, we shift the square �L so that its center coincides with the origin of Z2.

In conclusion,

P

( ∑
y∈Ix

[
H(mx)− η�y (T1)

]+ ≥ C0|Ix |
)

≤ e−eL/2 + π
0,f
�mx

(∑
y∈I

[
H(mx)− ηy

]+ ≥ C0|I |
)

and I is a diagonal segment of cardinality |I | = |Ix | =mx/2, centered at the origin
of Z2. Thus, we need the following equilibrium estimate.

LEMMA 6.9. For any m, if I is a diagonal segment of length |I | =m/2 cen-
tered at the origin of Z2, then:

π
0,f
�m

(B) := π
0,f
�m

(∑
y∈I

[
H(m)− ηy

]+ ≥ C0|I |
)
≤ c exp(−βm/c),(6.21)

where c > 0 is a constant and �m denotes the side-m square centered at the origin.

This will then be applied with m ranging from order L/ logL to order
L/ log(k)(L) so in all cases the r.h.s. is much smaller than L−3 and, putting ev-
erything together, the inequality (6.20) and therefore the claim of Lemma 6.5
follows.

PROOF OF LEMMA 6.9. Suppose this is true for the model without the field f ,
that is, for the standard SOS measure π0

�m
of (2.2). Then, the same estimate follows

(for β large, with c replaced by c/2) for π0,f
�m

. This is so because, uniformly,

1

m

∑
y∈�m

fy ≤ c′me−β/c′

for some c′ independent of β . To show that π0
�m

(B) is small, one first proves that

π̂
H(m)
�m

(B)≤ exp
(−(C0/4)βm

)
(6.22)
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say for every |I | of size between 1
2m and 2

3m, where we recall from Section 2.1
that π̂H(m)

�m
is the SOS measure without floor/ceiling and boundary conditions at

height H(m). This is based on Peierls-type arguments and the proof is relegated to
Appendix D.

We conclude the proof of Lemma 6.9 assuming (6.22). Define �i , i =
1, . . . ,m/2− 1 to be the boundary of the square of side m− 2i centered at zero.
Let Ei be the event

Ei =
{ ∑
x∈�i

[
H(m)− ηx

]+ ≥ δm

}
(6.23)

for some δ to be chosen small later. Suppose that at least one of the Ei, i ≤m/10
is not realized, and let j be the smallest such i. In that case, we look at the
π0
�m

-probability of B, conditionally on the configuration of η on �j . For all
x ∈�j , if ηx > H(m) we can lower it to H(m) by monotonicity (the event B is
decreasing). If instead ηx <H(m), we still change ηx by brute force to H(m): the
price to pay is that in the final estimate we get a multiplicative error

exp
(
cβ

∑
x∈�j

[
H(m)− ηx

]+)
≤ ecβδm

for some explicit c (independent of β and δ). What we get is that, condition-
ally on j ≤ m/10 being the smallest index such that Ej is not realized, the
π0
�m

-probability of B is upper bounded by

ecβδmπ̂
H(m)
�m−2j

(B|0≤ η ≤ logm)≤ ecβδmπ̂
H(m)
�m−2j

(B|η ≤ logm),(6.24)

where the inequality is just monotonicity. Notice that π̂H(m)
�m−2j

(η ≤ logm) is large
(say, larger than 1/2, cf. Proposition 3.9). Then, we can apply (6.22), since the
interval I we are looking at is of length m/2, so that certainly 1

2(m− 2j)≤ |I | ≤
2
3(m− 2j) and we get that the r.h.s. of (6.24) is upper bounded by

exp
(
cβδm− (C0/4)β(m− 2j)

)
.

At this point it is enough to choose δ small enough, for instance, δ = C0/(20c), to
conclude (recall that j ≤m/10).

Next, we have to show that

π0
�m

(m/10⋂
i=1

Ei

)
(6.25)

is very small. Indeed, that event implies that∑
x∈�m

[
H(m)− ηx

]+ ≥ δm2/10= C0m
2/(200c).(6.26)
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Write ∑
x∈�m

[
H(m)− ηx

]+ =∑
k>0

kNk,(6.27)

where Nk is the number of points where [H(m)− ηx]+ = k. From Theorem 3.1,
we know that there exists some integer K such that Nk ≤ m2e−2βk , except with
probability exp(−m exp(βk)), for k ≥ K . Then, except with probability of order
exp(−cβm) one has

∑
k≥1 kNk < C0m

2/(200c) if C0 is chosen large enough [re-
call that, as discussed after (6.20), we can assume that C0 is large]. �

6.5. Falling down from the ceiling: Proof of Lemma 6.6. This is the part which
requires the more subtle equilibrium estimates. Let T2 = exp(cβL) where c will
be determined along the proof. We want to prove that

P
(
η�(T2) ∈G+

�(∞,L)

)
> 3

4 .(6.28)

We recall that �(∞,L)= B + 1/(4β) logA is a constant that we can assume to be
large. For simplicity, we write � instead of �(∞,L).

READER’S GUIDE 6.10. Ideally the proof would work as follows. At equi-
librium, the event G+

� has probability almost 1, see Lemma 6.11 below (since G+
�

is decreasing, in Lemma 6.11 we lift the boundary conditions on ∂�L from 0 to
H ′ =H + 1, the reason for the “+1” being that, in this way, for β large the floor
has little influence on the interface at the typical height H ′.) It is therefore suffi-
cient to prove that at time T2 the dynamics (with b.c. 0) is close to equilibrium. For
this purpose we will apply Theorem 2.2 (which is allowed since we start from the
maximal configuration �) with the following censoring schedule.

Cover �L with overlapping, parallel rectangles Vi , i ≤ M = O(logL), or-
dered from left to right, with longer vertical side L and shorter horizontal side
(L/(logL)) and such that Vi ∩ Vi+1 is a rectangle L× (L/(2 logL)). Now con-
sider the “bricks” Bi which have base Vi and height n+ = logL.

We first let B1 evolve for a time t1 = exp((c/2)βL). This is the SOS dynamics
with b.c. 0 on the left, top and bottom boundary of V1, and with b.c. n+ on the
right boundary. As we justify below, we can pretend that at time t1, the system
in B1 has reached its own equilibrium. This equilibrium, restricted say to the left
half of B1, should be extremely close to the true equilibrium in �L with 0 b.c.
This can be justified as follows. The b.c. around V1 impose the presence of open
contours at heights 1, . . . , n+, with endpoints at the endpoints of the r.h.s. of V1.
These contours behave roughly like random walks and will stay within distance
say L1/2+ε from the r.h.s. of V1 and only with tiny probability will intersect the
left half of V1.

Next, we let B2 evolve for the same amount of time t1, after which a similar ar-
gument shows that the “true equilibrium” is reached in the left half of V2, that is, on
the right half of V1, and so on. When the M th block has been updated, the system
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should be very close to equilibrium everywhere. In practice, there are two major
obstructions that prevent this strategy from being implemented directly and which
cause much technical pain. The first has to do with the presence of the floor con-
straint at zero and will be discussed in greater detail in the Reader’s Guide 6.13 be-
low. The second difficulty can be understood in the following simplified situation.

Take the SOS in a L × m rectangle R, with
√
L� m� L (for us, R would

be V1 so that m = L/ logL) with b.c. 1 on one of the size-L sides and b.c. 0 ev-
erywhere else, without any floor/ceiling. There is an open 1-contour joining the
endpoints of the side with 1 b.c. The probability of such contour γ can be shown,
via cluster expansion, to be proportional to exp(−β|γ | +�R(γ )) where the “dec-
oration” term �R(γ ) is of order |γ | times a constant which is small with β . In
absence of decorations, γ would behave as a random walk and it would be very
unlikely that it reaches distance #√

L from the side with 1-b.c. In presence of
the decorations, this might in principle fail. Indeed, the decorations depend also
on how close the contour is to the boundary of R (see Appendix A), and this could
induce a pinning effect of the contour on the size-L side with 0-b.c. The way out
we found to exclude this scenario is a series of monotonicity arguments which in
practice boil down to transforming R into a rectangle with both sides of order L.
In this situation, since the side with 1-b.c. is very far from the opposite side, the
“pinning effect” can be shown not to occur.

To prove (6.28) we couple η�(T2) with a suitable equilibrium distribution as fol-
lows. Let � be the 2L×L rectangle obtained by attaching a square of side L to the

left of the original square �L. Let πH ′,f
� denote the SOS equilibrium distribution

in � with boundary conditions H ′ :=H + 1. Such equilibrium measure contains
the field f , cf. (6.1) (where the sum now is over y ∈� and the pre-factor is still
1/L) and floor/ceiling constraints 0≤ η ≤ n+. One has the following lemma.

LEMMA 6.11. If � is large enough, then

lim
L→∞π

H ′,f
�

(
η ∈G+

�

)= 1.(6.29)

The proof is deferred to Appendix D.
Therefore, using that the event G+

� is decreasing, (6.28) follows if we prove
that there exists a coupling of (η, η�(T2)), where η is the restriction to �L of the

configuration distributed according to π
H ′,f
� , such that

P
(
η�(T2)≤ η

)= 1+ o(1).(6.30)

To this end, we will apply Theorem 2.2 with exactly the censoring described above.
We first let evolve the system in B1 for a time-lag t1, with n+ b.c. on the r.h.s.
of V1 and 0 b.c. elsewhere. Then we let evolve the system in B2, for another time-
lag t1. For B2 we have the maximal b.c. n+ on the right boundary, zero b.c. on
top and bottom and the b.c. on the left boundary is given by the configuration,
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say τ1, inherited from the previous evolution on B1. We repeat this procedure for
the other bricks Bi , i < M , with maximal b.c. on the right boundary, zero b.c. on
top and bottom and the b.c. τi−1 on the left boundary; the final brick BM , unlike
the previous ones, has a zero b.c. on the right boundary as well as on the top and
bottom boundaries, and b.c. τM−1 on the left boundary.

We let η̃ denote the configuration at the end of the above described procedure.
Note that altogether the time spent is Mt1 ≤ T2 = exp(cβL). Theorem 2.2 implies
that we can couple η̃ and η�(T2) in such a way that P(η�(T2) ≤ η̃) = 1. Thus, it
remains to prove that (6.30) is satisfied with η̃ replacing η�(T2).

The mixing time of a brick is bounded above by exp((c/4)βL), for a suitable
choice of c > 0, see Proposition 2.3. Therefore, after time t1 the chain is extremely
close to its equilibrium in B1 with the given boundary conditions. Up to a global
error term of order e−L we can thus assume that after each updating of a brick,
the corresponding random variable is given exactly by the equilibrium distribution
on that brick with the prescribed boundary conditions [see equation (2.4)]. Let η̃i
denote the configuration after the updating of brick Bi , restricted to the left half of
the brick, that is, the brick with basis V ′

i := Vi∩(Vi+1)
c. Thus, using monotonicity,

it is sufficient to exhibit a coupling such that

P(η̃i ≤ ηi, i = 1, . . . ,M − 1)= 1+ o(1),(6.31)

where ηi denotes the configuration η with distribution π
H ′,f
� , restricted to V ′

i .
To prove the latter estimate, we proceed as follows. Let V i denote the portion

of �L covered by rectangles V1, . . . , Vi , and set V0 := V ′
1. For i = 0, . . . ,M , call

�i the rectangle obtained by attaching a square of side L to the left of V i (this cor-
responds to the “rectangle enlarging procedure” outlined above), and let ξ denote
the b.c. equal to:

ξx =
{
n+, if x belongs to the right boundary of �i ,
H ′, otherwise.

(6.32)

Since V ′
i ⊂�i−1, by monotonicity and a repeated application of the DLR property

for the measure πH ′,f
� , we see that the desired claim (6.31) is a consequence of the

next equilibrium result.

THEOREM 6.12. For every C > 0, there exists β0 such that for all β ≥ β0, for
all i = 1, . . . ,M , ∥∥πξ,f

�i − π
H ′,f
�

∥∥
�i−1 ≤ L−C,(6.33)

where ‖ · ‖�i denotes total variation of the marginal on �i .

READER’S GUIDE 6.13. We now explain why (6.33) should be true and why
we crucially need the field f , which is absent in the standard SOS measure (2.2).
For simplicity, suppose that the boundary height ξ at the right vertical side of �i is
H ′ +1 instead of n+ = logL. There is an open (H ′ +1)-contour with endpoints at
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the endpoints of the side with b.c. H ′ + 1. The probability that this contour equals
γ should be approximately given by the product of three factors:

(i) the factor exp(−β(|γ | −L)) (the minimal length of the open contour is L
and one pays for the excess length);

(ii) a factor exp(+a(β)A(γ )/L) [with A(γ ) the area to the right of the con-
tour]; this is due to the entropic repulsion and a(β) should be approximately
a(β)= exp(−4×2×β), where the factor 2 is due to the fact that H ′ + 1−H = 2;

(iii) exp(−b(β)A(γ )/L) where b(β) is approximately given (for β large) by
b(β)= c2(β)= exp(−2β) which appears in (6.1).

Therefore, if β is large the third term beats the second one and one pays both ex-
cess length and excess area, and it should be very unlikely that the contour reaches
distance L/(logL)#√

L from the right rectangle side to which it is attached. We
will find this probability to be roughly as small as exp(−cL/(logL)2), as would
be the case for a random walk. Once we know the contour γ does not go much
farther than

√
L away from the side of the rectangle, a suitable coupling argument

will prove the theorem; see Section 7.1. Remark that without the Hamiltonian mod-
ification (6.1) (i.e., with fy ≡ 0) the area gain kills the length penalization, and the
contour would indeed invade the rectangle �i .

7. Proof of Theorem 6.12. The proof of Theorem 6.12 is based on the follow-
ing lemma. Fix i = 1, . . . ,M and set R := �i , R′ := �i−1, so that the rectangle
R \ R′ has horizontal length 2�, where � := L/(4 logL). Let also R′′ denote the
rectangle of points in R at distance at least � from the right boundary. Note that
R ⊃R′′ ⊃R′ and d(R \R′′,R′)= �, see Figure 3.

FIG. 3. Schematic drawing of the rectangles R, R′′ = R \ A0, R′ = R′′ \ A1. Here the contour
γ = γH ′+1 illustrates the event B in Lemma 7.1, while the chains Ci in Ai illustrate the verti-
cal crossings used in the proof of Theorem 6.12. The shaded region corresponds to Int(γ ), while
�(γ )=R \ Int(γ ). The boundary between A2 and A1 is ∂R′.
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Let γj (η), j =H ′+1, . . . , n+ denote the unique open j -contour in the rectangle
R enforced by the boundary conditions, attached to the right boundary.

LEMMA 7.1. Let B be the event that γH ′+1(η) does not intersect the rectan-
gle R′′. For every C > 0, �ξ,f

�i (Bc)=O(L−C) where �
ξ,f

�i is as in Notation 2.1
and ξ is as in (6.32).

We first show how to obtain Theorem 6.12 from the estimate in Lemma 7.1. The
proof of Lemma 7.1 is given in Section 7.2.

7.1. From Lemma 7.1 to Theorem 6.12.

READER’S GUIDE 7.2. Let us first give a rough sketch of the coupling ar-
gument to be used. By conditioning on the value γ of the contour γH ′+1 one
can roughly replace the measure π

ξ,f

�i appearing in Theorem 6.12 by the mea-

sure �H ′,f
�(γ ), where �(γ ) :=� \ Int(γ ) is the region to the left of γ . Strictly speak-

ing this is not true but we shall reduce to a similar situation by way of monotonicity
arguments. Also, thanks to the argument of Lemma 3.2, one can neglect the influ-

ence of the ceiling constraint. Thus, one essentially wants to couple �
H ′,f
�(γ ) and

�
H ′,f
� on the region �i−1 = R′. Thanks to Lemma 7.1, one can assume that the

rectangle A1 is contained in �(γ ). From the Markov property, it is sufficient to

couple �
H ′,f
�(γ ) and �

H ′,f
� on the interface separating the rectangles A1 and A2, see

Figure 3. Thus, the desired estimate would follow if one could exhibit a coupling
such that with large probability there exist chains C1,C2 of sites in the rectangles
A1, A2, respectively, where both configurations are at constant height H ′; see Fig-
ure 3. If there were no external fields and no wall constraint, this would be a simple
consequence of Lemma A.2 (recall that, for β large, the interface is rigid and there
is a density close to 1 of sites where the height equals the boundary height). How-
ever, due to the presence of the external fields and the floor at zero, establishing
this fact requires extra work. The idea here is to reduce the effective size of the
system by imposing boundary conditions H ′ on vertical crossings in the rectangle
A3, and in the rectangle A0. More precisely, let ρ,ρ1 denote two vertical cross-
ings in A3, and let ρ2 denote a vertical crossing in A0. Using monotonicity and the

estimate of Lemma C.1 of Appendix C, we replace �
H ′,f
�(γ ) by �

H ′,f
�(ρ,γ ) and �

H ′,f
�

by �
H ′,f
�(ρ1,ρ2)

, where �(ρ,γ ) is the region between the chains ρ and γ , while
�(ρ1, ρ2) denotes the region between the chain ρ1 and the chain ρ2. Once this
reduction has been achieved, the system is contained in the union of the four rect-
angles

⋃4
i=0 Ai , a L× 4� rectangle, and one can easily show that since � is much

smaller than L, and since H ′ = H + 1, the external field and the wall constraint
can be neglected; see the proof of Lemma 7.3 below. At this point, one can use
Lemma A.2 to obtain the existence of chains C1,C2 with the properties mentioned
above.
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We turn to the details of the proof. It is sufficient to couple π
ξ,f

�i and π
H ′,f
� on

∂R′, the set of points in R′ with a nearest neighbor in R \R′, that is,∥∥πξ,f

�i − π
H ′,f
�

∥∥
R′ =

∥∥πξ,f

�i − π
H ′,f
�

∥∥
∂R′ .

Note that, because π
ξ,f

�i has maximal b.c. n+ on a side of R and b.c. coinciding

with that of πH ′,f
� on the other sides, πξ,f

�i stochastically dominates πH ′,f
� on ∂R′

and therefore, by a union bound, one has

∥∥πξ,f

�i − π
H ′,f
�

∥∥
R′ ≤

∑
x∈∂R′

n+−1∑
v=0

[
π
ξ,f

�i (Ux,v)− π
H ′,f
� (Ux,v)

]
,(7.1)

where we define the events Ux,v := {ηx > v}. Next, we remove the ceiling con-

straint from the measures π
ξ,f

�i , π
H ′,f
� . Since Ux,v are monotone events, we

can estimate π
ξ,f

�i (Ux,v) ≤ �
ξ,f

�i (Ux,v). Moreover, as in Section 6.3, one has

π
H ′,f
� (Ux,v)=�

H ′,f
� (Ux,v)+O(L−C) where C is as large as we wish provided

β is sufficiently large.
Let5 μ̃γ denote the marginal on R′′ of �ξ,f

�i conditioned to have γH ′+1(η)= γ .
Let Int(γ ) denote all sites enclosed by the contour γ and the right boundary of R,
cf. Figure 3. Let �−

γ denote the set of sites x ∈R \ Int(γ ) that have either a nearest
neighbor in Int(γ ), or a site at distance

√
2 in Int(γ ) in either the south–west or

north–east direction. Since conditioning on γH ′+1(η)= γ forces all sites in �−
γ to

be at height ηx ≤H ′ (recall Definition 3.3 of an h-contour), by monotonicity one
has μ̃γ (Ux,v)≤ μγ (Ux,v) if μγ denotes the marginal on R′′ of �ξ,f

�i conditioned
to have height exactly H ′ on all sites x ∈�−

γ . Writing B for the event that γH ′+1(η)

does not intersect the rectangle R′′, one has, uniformly in x, v:

π
ξ,f

�i (Ux,v)− π
H ′,f
� (Ux,v)

(7.2)
≤ L−C +�

ξ,f

�i

(
Bc)+max

γ∈B μγ (Ux,v)−�
H ′,f
� (Ux,v).

Lemma 7.1 says that �
ξ,f

�i (Bc) = O(L−C), so that we are left with the upper

bound on μγ (Ux,v)−�
H ′,f
� (Ux,v) for γ ∈ B. We now implement the system re-

duction mentioned in the sketch of the proof above.
Let Ai , i = 0,1,2,3, denote the L × � rectangles in R depicted in Figure 3.

Write At
i , for the external top boundary of Ai , that is, the set of sites x /∈ R such

that x has a nearest neighbor on the top side of the rectangle Ai . Similarly, write Ab
i

5In the sequel of the proof, we introduce local notation for various conditional marginals of the

measures �ξ,f

�i , �H ′,f
� in order to keep formulas readable.
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for the external bottom boundary of Ai . Call E(Ai) the set of Z2-bonds e such that
e has at least one endpoint in Ai and at most one endpoint in At

i ∪Ab
i . A vertical

crossing in Ai is a connected set C ⊂ E(Ai) that connects At
i and Ab

i ; see Figure 3.
Let F− (resp., F+) denote the event that there exists a vertical crossing C in A3

such that ηx ≤H ′ for all x ∈ C (resp., a crossing C in A3 and a crossing C′ in A0
such that ηx ≥H ′, x ∈ C∪C′). On the event F− one may consider the leftmost ver-
tical crossing in A3 with the required property, where leftmost is defined according
to lexicographic order. From the Markov property of μγ , and using monotonicity,

μγ (Ux,v)≤ μγ (
Fc−

)+max
ρ

μγ,ρ(Ux,v),

where μγ,ρ stands for the measure μγ conditioned to have height H ′ on ρ, and ρ

ranges over all possible vertical crossings in A3. Similarly, on the event F+ denote
ρ1 (resp., ρ2) the rightmost (resp., leftmost) crossing in A0 (resp., A3) and write

�
H ′,f
� (Ux,v)≥ (

1−�
H ′,f
�

(
Fc+

))
min
ρ1,ρ2

Qρ1,ρ2(Ux,v)

(7.3)
≥ min

ρ1,ρ2
Qρ1,ρ2(Ux,v)−�

H ′,f
�

(
Fc+

)
,

where Qρ1,ρ2 stands for the measure �
H ′,f
� conditioned to have height H ′ on

ρ1, ρ2, and ρ1, ρ2 range over all possible vertical crossings in A0,A3. Altogether,

μγ (Ux,v)−�
H ′,f
� (Ux,v)

(7.4)
≤ μγ (

Fc−
)+�

H ′,f
�

(
Fc−

)+ max
ρ,ρ1,ρ2

∣∣μγ,ρ(Ux,v)−Qρ1,ρ2(Ux,v)
∣∣.

It follows from Lemma C.1 of Appendix C that μγ (Fc−) and �
H ′,f
� (Fc+) are

O(e−L1−ε
). Notice that μγ,ρ (resp., Qρ1,ρ2 ) are SOS measures with exactly H ′

b.c. around the domain whose boundary is determined by ρ (resp., ρ1) on the left
and by �−

γ (resp., ρ2) on the right. Such domain has (by construction) horizontal
size of order � and vertical size L. To simplify the notation, we shall write μγ ,Q
for μγ,ρ,Qρ1,ρ2 .

We now turn our attention to vertical crossings in the rectangles A1,A2. Con-
sider the independent coupling P of μγ ,Q on A1 ∪ A2. Writing (η, η′) for the
corresponding random variables, let Ai , i = 1,2 denote the event that there exists
a vertical crossing C in Ai such that ∇eη=∇eη

′ = 0 for all bonds e with both end-
points in C. Note that if C is a vertical crossing in Ai as above, then ηC = η′C =H ′,
because of the boundary conditions equal to H ′ on the top and bottom boundary
of Ai , i = 1,2. On the event A1 ∩ A2, one may consider the leftmost vertical
crossing C2 in A2 and the rightmost vertical crossing C1 in A1. From the Markov
property of the Gibbs measures μγ ,Q and the fact that Q(·|ηC1 = ηC2 =H ′) and
μγ (·|ηC1 = ηC2 =H ′) have the same marginal on ∂R′ (observe that ∂R′ is just at
the boundary between A1 and A2), one obtains that∣∣μγ (Ux,v)−Q(Ux,v)

∣∣≤ P
(
Ac

1
)+ P

(
Ac

2
)
.(7.5)
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We shall focus on the event Ac
1, since the event Ac

2 can be treated in the same
way. To estimate P(Ac

1), we use the fact (see, e.g., [29], Lemma 11.21) that nonex-
istence of a vertical crossing in A1 implies the existence of a horizontal dual cross-
ing in A1. More precisely, let Ar

1 denote the r.h.s. of A1, that is, the set of dual
bonds e′ such that e′ crosses an edge of the form e = (x, y) with x ∈ A1 and
y ∈ R \R′′. Similarly, let A�

1 denote the l.h.s. of A1. We say that a dual bond e′ is
in A1 if e′ crosses a bond e ∈ E(A1). Then, the event Ac

1 implies that there exists
a connected set D of dual bonds e′ in A1 which connects the lines Ar

1 and A�
1,

and such that for every e′ ∈ D either ∇e′η �= 0 or ∇e′η′ �= 0. Here we use the no-
tation ∇e′η := ∇eη if e′ is the dual bond that crosses e. Moreover, for a given D
as above, there must be a set V ⊂ D such that |V | ≥ |D|/2 and such that either
EV := {∇e′η �= 0 for all e′ ∈ V } or FV := {∇e′η′ �= 0 for all e′ ∈ V }. Thus, using
a union bound, one obtains

P
(
Ac

1
)≤∑

D

∑
V⊂D :

|V |≥|D|/2

(
μγ (EV )+Q(FV )

)
,(7.6)

where the first sum is over all connected sets of dual bonds D connecting
Ar

1 and A�
1 as above. We will need the following lemma.

LEMMA 7.3. There exist constants C,c,β0 > 0 independent of β such that,
for every set V of dual bonds in A with |V | ≥ �/2, one has for all β ≥ β0

max
{
μγ (EV ),Q(FV )

}≤ Ce−cβ|V |.(7.7)

Let us conclude the proof of Theorem 6.12 assuming for a moment the validity
of Lemma 7.3. From (7.6), summing over the possible (connected) sets D, and
using |D| ≥ �≥ L1−ε , for all ε > 0, if β ≥ β0:

P
(
Ac

1
) ≤ 2C

∑
k≥�

∑
D : |D|=k

∑
V⊂D :
|V |≥k/2

e−cβ|V |

≤ 2C
∑
k≥�

∑
D : |D|=k

2ke−cβk/2

≤ 2C
∑
k≥�

6ke−cβk/2(7.8)

≤ C′e−cβ�/4

=O
(
exp

(−L1−ε)).
Since the constants implied in (7.8) are uniform in x, v and the choice of γ ∈ B,
the claim of Theorem 6.12 follows from (7.2) and (7.1). It remains to prove

Lemma 7.3. This is where the reduction from μγ to μγ,ρ and �
H ′,f
� to Qρ1,ρ2

becomes important.
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PROOF OF LEMMA 7.3. We shall prove the bound concerning μγ = μγ,ρ

only, since the same proof works for Q = Qρ1,ρ2 . Consider the region �0 ⊂ R

delimited on the left by ρ and on the right by γ . Since ρ is a vertical crossing
in A3, one has A1 ⊂�0. A crucial fact is that |�0| ≤ 4L�. Let as usual π̂H ′

�0
denote

the SOS measure on �0 with boundary condition H ′ outside of �0, with no floor,
no ceiling and no external fields. From Lemma A.2 one has π̂H ′

�0
(EV ) ≤ e−β|V |/2

for any V . Thus, it suffices to show that

μγ (EV )≤ CeC�π̂H ′
�0

(EV )(7.9)

for some constant C independent of β . Note that the external fields contribute with
the term 0 ≤ 1

L

∑
x∈�0

fx ≤ C� to the Hamiltonian, and therefore, at the price of
a factor eC� we can remove all external fields in our measure μγ . Then

μγ (EV )≤ eC�
π̂H ′
�0

(EV )

π̂H ′
�0

(ηx ≥ 0 ∀x ∈�0)
.(7.10)

Next, from the FKG inequality, one has

π̂H ′
�0

(ηx ≥ 0 ∀x ∈�0)≥
∏
x∈�0

π̂H ′
�0

(ηx ≥ 0)≥ ∏
x∈�0

(
1−Ce−4βH ′)

,(7.11)

where we use the equilibrium estimate π̂H ′
�0

(ηx < 0)= π̂0
�0

(ηx > H ′)≤ Ce−4βH ′
;

see Proposition 3.9. Since e−4βH ′ = e−8β/L, one has∏
x∈�0

(
1−Ce−4βH ′)≥ C−1

1 e−C1�(7.12)

for a suitable constant C1 > 0. The desired conclusion follows from (7.10). This
ends the proof. �

7.2. Proof of Lemma 7.1.

READER’S GUIDE 7.4. Roughly speaking, the proof of Lemma 7.1 works as
follows. There are n+ − H ′ open contours attached to the r.h.s. of R (call it r)
and let γj , j ∈ {H ′ + 1, . . . , n+} denote the j -contour. First, one proves that the
n+-contour cannot reach distance say L/(logL)2 from r . For this, one lifts from
H ′ to n+ − 1 the b.c. around the three sides of R different from r (this is allowed
by monotonicity). This way, there is now a single open contour and the estimate
follows from Proposition B.1. Next, we want to prove that γn+−1 cannot reach
distance L/(logL)2 from γn+ , that is, distance 2L/(logL)2 from r . Morally the
proof works as for the previous case, except that now the b.c. n+ at r is replaced by
the b.c. n+ − 1 at γn+ . The argument is then repeated iteratively and the statement
of the lemma follows when j = H ′ + 1. In practice, there are many additional
difficulties, which is why the proof is so much involved. The main obstacles are
the following:
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(1) Proposition B.1 cannot be applied directly, because it holds when both the
floor constraint η ≥ 0 and the field f are absent. However, Proposition 7.7
will show that (morally) the field compensates the effect of the floor (which
would tend to push the contours away from r).

(2) Once γj is fixed, it is not true that the next contour (i.e., γj−1) sees boundary
conditions j − 1 in a new domain determined by γj . The point is that, from
definition of contours, we only know that the heights just to its left are at most
j − 1, not exactly j − 1. We will use monotonicity to be able to change to
j − 1-b.c.

(3) Applying Proposition B.1 as outlined above to estimate the probability of large
deviations of γj−1 given γj requires that the right boundary of the system (i.e.,
the configuration of γj ), where b.c. are j − 1, is not too wild. In practice,
one needs it to be a path connecting top and bottom of the rectangle R, with
transversal fluctuations at most of order say Lε for some small ε. We will
apply the results of Appendix C to infer that, indeed, to the left of γj and not
far away from it there is a chain of sites, with transversal fluctuations of the
required order, where heights are exactly j − 1.

We use a sort of induction on the index of the open contours γj , j ∈ {H ′ +
1, . . . , n+}, where n+ = logL. Let A0 denote the rightmost L× � rectangle inside
R as in Figure 3, and write A0 =⋃n+

j=H ′+1 Bj where Bj are nonoverlapping L×�0

rectangles, ordered from left to right, such that �0 = �/(n+−H ′)≈ L/(4(logL)2).
Every rectangle Bj is further divided into two nonoverlapping rectangles B1

j ,B
2
j ,

ordered from left to right, such that B1
j is a L × �1 rectangle with �1 = Lδ , for

some (arbitrarily) small δ > 0, and B2
j = Bj \B1

j is a L× �2 rectangle, with �2 =
�0 − �1 ∼ �0; see Figure 4.

Define vertical crossings in a rectangle as in Section 7.1. For j ∈ {H ′ +
1, . . . , n+}, consider the event Bj that there exists a vertical crossing Cj in B1

j ,
such that ηx ≤ j − 1 for all x ∈ Cj . In particular, on BH ′+1, there exists a vertical
crossing CH ′+1 in A0 with ηx ≤H ′ for all x ∈ CH ′+1. Thus B ⊃ BH ′+1, and it will
be sufficient to estimate from above the probability �

ξ,f

�i (Bc
H ′+1). Clearly,

�
ξ,f

�i

(
Bc
H ′+1

)≤ n+∑
j=H ′+1

�
ξ,f

�i

(
Bc
j ∩Bj+1

)
,

where Bn++1 denotes the whole probability space. On the event Bj+1, let Cj+1

denote the rightmost vertical crossing C in B1
j+1 such that ηx ≤ j , x ∈ C. By con-

ditioning on the event {Cj+1 = ρj+1}, and using that the events Bc
j are increasing,

one has

�
ξ,f

�i

(
Bc
H ′+1

)≤ n+∑
j=H ′+1

max
ρj+1

μρj+1

(
Bc
j

)
,(7.13)
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FIG. 4. The rectangles B1
j , B2

j , with the associated vertical crossings ρj , for j = n+ − 1 and

j = n+.

where ρj+1 ranges over all possible vertical crossings in B1
j+1 (for j = n+, it is

understood that ρj+1 coincides with the right boundary of R), and μρj+1 stands for
the SOS Gibbs measure on the region �(j) ⊂R defined as the set of sites x ∈R to
the left of the crossing ρj+1, with

• boundary condition ηx = j for x ∈ ρj+1 and ηx = j − 1 on all other boundary
sites. Note that a portion of the boundary height has been lifted from H ′ to
j − 1 ≥ H ′. The advantage is that, this way, there is a unique open contour
under the measure μρj+1 , rather than j −H ′ of them;

• floor constraint ηx ≥ 0;
• external field

1

L

∑
x∈�(j)

fx,j−1−H ,(7.14)

where we recall that fx,j = exp(−βj)1ηx≤H+j , cf. (6.1). Note that the fields
in (6.1) with index different from j −1−H have been removed. This is allowed
since the function η 	→ fx,a(η) is decreasing. The effect of the field fx,a is to
depress the area of the (a + H + 1)-open contour and, since there is just one
open contour, we need only the term with a = j − 1−H .

Lemma 7.1 is then a consequence of (7.13) and the following claim.
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CLAIM 7.5. For j ≥H ′ + 1, uniformly in the vertical crossing ρj+1 in B1
j+1

and for every C > 0,

μρj+1

(
Bc
j

)=O
(
L−C

)
.(7.15)

Let γj denote the unique open j -contour for a configuration η in the ensemble
μρj+1 . By construction, γj is to the left of B2

j+1, and it may intersect the rectangle

B2
j or even B1

j . Let Ej denote the event that γj intersects B1
j . Conditionally on the

event Ec
j , the contour stays to the right of B1

j , and the estimate μρj+1(Bc
j |Ec

j ) =
O(exp(−Lδ)) follows from (C.2), which is applicable since the shorter side of R
is at most of length L. Thus the claim (and hence Lemma 7.1) follows once we
prove the following lemma.

LEMMA 7.6. For j ≥H ′ +1, uniformly in the vertical crossing ρj+1 in B1
j+1,

and for all C > 0:

μρj+1(Ej )=O
(
L−C

)
.(7.16)

We will actually give an upper bound of order exp(−L1−ε) for every ε > 0.

PROOF OF LEMMA 7.6. For this proof, the crossing ρj+1 in B1
j+1 is fixed,

and we simply write μ instead of μρj+1 . Fix a contour � and consider the event
γj = �. Set �+ = Int(�) ∩ �(j), and �− = �(j) \ �+, so that � is the set of
dual bonds separating �− and �+ within �(j) [with Int(�) defined a few lines
after (7.1)]. For any �, one may write

μ(γj = �)∝ e−β|�|Zj,�−Zj,�+ .(7.17)

Here, Zj,�− (resp., Zj,�+ ) is the partition function of the SOS model on �−
(resp., �+), with floor at height 0, field as in (7.14), b.c. j − 1 on ∂�− (resp., b.c.
j on ∂�+) and with the extra constraint that ηx ≤ j − 1 for all x ∈ �−

� (resp.,
ηx ≥ j for all x ∈ �+

� ), where �−
� (resp., �+

� ) is the set of x ∈ �− either at
distance 1 from �+ (resp., �−) or at distance

√
2 from a vertex y ∈ �+ (resp.,

y ∈�−) in the south west or north east direction. These constraints are imposed
by the definition of j -contour; see Definition 3.3.

Next, let Z0
�− (resp., Z0

�+ ) denote the partition function of the SOS model on
�− (resp., �+) with b.c. 0, no floor and no external fields, with the constraint that
ηx ≤ 0 for all x ∈�−

� (resp., ηx ≥ 0, x ∈�+
� ). Let ω−, ω+ be the corresponding

Gibbs measures. With these definitions, one rewrites (7.17) as

μ(γj = �)= 1

Z e−β|�|Z0
�−Z

0
�+

×ω−
(
e
(K/L)

∑
x∈�− 1ηx≤0;η ≥−(j − 1)

)
(7.18)

×ω+
(
e
(K/L)

∑
x∈�+ 1ηx≤−1;η ≥−j )

,

where Z is the normalization and K= cj−1−H = exp(−β(j − 1−H)), see (6.1).
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We first observe that the very same arguments of Proposition 3.9 proves that for
all x ∈�±,

ω±(ηx ≥ j)� e−4βj ,(7.19)

that is, C−1e−4βj ≤ ω±(ηx ≥ j)≤ Ce−4βj for some absolute constant C > 0. This
is possible thanks to the fact that even in the presence of the constraints on �±

� the
arguments of Lemma 3.7 can be used without modifications. Next, let π̂ stand
for the infinite volume limit of the SOS measure with zero boundary condition.
Proposition 3.9 implies that π̂(η0 ≥ j)� e−4βj . Moreover, we observe that there
exist constants c, t0 > 0 such that for any x ∈�± at distance at least t > t0 from
the boundary ∂�±, for any k:∣∣ω±(ηx ≥ k)− π̂(η0 ≥ k)

∣∣≤ e−ct .(7.20)

Let us prove (7.20) in the case x ∈ �−. The case x ∈ �+ is obtained with the
same argument. Thanks to the exponential decay of correlations for the 0-b.c. SOS
model at large β (see [8]), (7.20) is equivalent to the statement obtained by re-
placing π̂ by π̂0

�− . Observe that by monotonicity ω−(ηx ≥ k) ≤ π̂0
�−(ηx ≥ k).

Next, by the same argument of Lemma 3.7, the ω−-probability of a contour γ ,
is bounded above by e−β|γ |, and thus with probability at most e−ct there is no
chain C of heights all greater or equal to zero in a shell of width t/2 around
x, and at distance larger than t/2 from x. On the other hand, if E is the event
that such a chain exists then by monotonicity and decay of correlations one has
ω−(ηx ≥ k;E)≥ π̂0

�−(ηx ≥ k)+ e−ct . This proves (7.20).
We turn to a rough estimate that allows one to rule out very long contours.

Namely, if G denotes the event that |γj | ≤ L1+ε0 , then for all β large enough

μ(G)= 1−O
(
e−L1+ε0 )

.(7.21)

In what follows, we may fix ε0 > 0 as small as we wish. To prove (7.21), observe
that from a trivial bound on the external fields and the FKG property for ω± one
has

ω−
(
e
(K/L)

∑
x∈�− 1ηx≤0;η ≥−(j − 1)

)≥ ∏
x∈�−

ω−
(
ηx ≥−(j − 1)

)
.(7.22)

From (7.19)

ω−
(
ηx ≥−(j − 1)

)≥ (
1− ce−4β(j−1))≥ exp

(−c′/L)
,

since j ≥ H . Then (7.22) is bounded below by e−CL for some C > 0. The same
estimate holds for the last term in (7.18), and therefore one has

μ(γj = �)≤ ν(�)eCL(7.23)

for some constant C > 0, where ν is the probability measure on contours �

given by

ν(�)∝ e−β|�|Z0
�−Z

0
�+ .(7.24)
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Notice that ν is the distribution of the unique open contour of the SOS measure on
�− ∪�+ with no floor constraint, with Dobrushin boundary conditions, namely
with b.c. ηy = 0 or ηy = 1 depending on whether y has a nearest neighbor in �−
or in �+, respectively. It follows from (B.1) that ν(�) has the standard form

ν(�)∝ e−β|�|+�(�),

where the decoration term � satisfies |�(�)| ≤ ce−β |�|. The usual Peierls’ argu-
ment shows that

ν
(|γ | ≥ L1+ε0

)=O
(
e−L1+ε0 )

(7.25)

and (7.21) follows.
Thanks to (7.21), we can now restrict the summation in the normalization Z in

(7.18) to contours � ∈G. Define

�− := K
L
|�−|π̂(η0 > 0), �− := |�−|π̂(

η0 <−(j − 1)
)
,(7.26)

�+ := K
L
|�+|π̂(η0 ≤−1), q�+ := |�+|π̂(η0 <−j).(7.27)

PROPOSITION 7.7. There exists α < 1 such that for all � ∈ G one has the
expansions (with error terms uniform in � ∈G):

ω−
(
e
(K/L)

∑
x∈�− 1ηx≤0;η ≥−(j − 1)

)
(7.28)

= exp
(
K|�−|/L−�− −�− +O

(
Lα))

ω+
(
e
(K/L)

∑
x∈�+ 1ηx≤−1;η ≥−j )

(7.29)
= exp

(
�+ −�+ +O

(
Lα))

.

Let us conclude the proof of Lemma 7.6 assuming for the moment the validity
of Proposition 7.7. First, observe that the functions in (7.26) and (7.27) satisfy, for
some α < 1, uniformly in � ∈G:

−�− +�+ = K
L

(|�+| − |�−|)π̂(η0 > 0),(7.30)

�− +�+ = |�−|π̂(η0 ≥ j)+ |�+|π̂(η0 ≥ j + 1).(7.31)

From (7.28)–(7.31), setting |�(j)| = |�−| + |�+|, δk(β) = π̂(η0 ≥ k) and
δ̄k(β)=Lδk(β):

ω−
(
e
(K/L)

∑
x∈�− 1ηx≤0;η ≥−(j − 1)

)
ω+

(
e
(K/L)

∑
x∈�− 1ηx≤−1;η ≥−j )

= exp
( |�(j)|

L

(
K

(
1− δ1(β)

)− δ̄j (β)
)

+ |�+|
L

(
K

(−1+ 2δ1(β)
)+ δ̄j (β)− δ̄j+1(β)

)+O
(
Lα))

.
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Observe that

K= e−β(j−1−H)# e−4β(j−1−H) = Le−4β(j−1) � δ̄j−1(β).

Therefore, for large β one sees that

−K≤K
(−1+ 2δ1(β)

)+ δ̄j (β)− δ̄j+1(β)≤−K/2.

Since the term proportional to |�(j)| is independent of �, it plays no role in (7.18).
Therefore,

μ(Ej |G)≤ exp
(
O

(
Lα))×

∑
�∈Ej∩G ν(�) exp(−(K/2L)|�+|)∑

�∈G ν(�) exp(−(K/L)|�+|) ,(7.32)

where we recall that Ej is the event in (7.17), G the event in (7.21) and ν the
measure in (7.24). At this point an upper bound on μ(Ej |G) follows from (7.32)
by neglecting the negative exponent in the numerator and using Jensen’s inequality
for the denominator. Using also (7.25), this gives

μ(Ej |G)≤ ν(Ej ) exp
(K
L
ν
(|�+|)+O

(
Lα))

.(7.33)

It follows then from Proposition B.1 that for every β sufficiently large, for all
ε > 0, if L is large enough:

ν(Ej )≤ exp
(−L1−ε).(7.34)

Essentially, under ν the contour � behaves like a random walk and the event Ej

imposes a large deviation of order L/(logL)2 which is much larger than the typical
diffusive fluctuation

√
L. Moreover, again from Proposition B.1 one has

ν
(|�+|)=O

(
L(3/2)+ε).(7.35)

Then (7.33), (7.34) and (7.35) end the proof of Lemma 7.6. �

PROOF OF PROPOSITION 7.7. Let us start with the lower bounds. Using first
Jensen’s inequality and then the FKG property for ω− one has

ω−
(
e
(K/L)

∑
x∈�− 1ηx≤0;η ≥−(j − 1)

)
≥ exp

[K
L

∑
x∈�−

ω−
(
ηx ≤ 0|η ≥−(j − 1)

)]
ω−

(
η ≥−(j − 1)

)
(7.36)

≥ exp
[K
L
|�−| − �̃− − �̃−

]
,

where

�̃− := K
L

∑
x∈�−

ω−
(
ηx > 0|η ≥−(j − 1)

)
,

�̃− := −
∑
x∈�−

log
(
1−ω−

(
ηx <−(j − 1)

))
.
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Similarly,

ω+
(
e
(K/L)

∑
x∈�+ 1ηx≤−1;η ≥−j )≥ exp[�̃+ − �̃+],(7.37)

where

�̃+ := K
L

∑
x∈�+

ω+(ηx ≤−1|η ≥−j),

�̃+ := −
∑
x∈�+

log
(
1−ω+(ηx <−j)).

From (7.20) one sees that both |�− − �̃−| and |�+ − �̃+| are O(Lα), for some
α < 1, uniformly in � ∈G. Therefore, the lower bound in (7.28) follows once we
establish that on G

|�± − �̃±| =O
(
Lα)

(7.38)

for some α > 0. To prove (7.38), we use the following comparison estimate. Let us
consider the case |�+− �̃+|. By FKG, one has ω+(ηx ≤−1|η ≥−j)≤ ω+(ηx ≤
−1). On the other hand, whenever x ∈ �− is at distance at least Lδ , for some
δ > 0, from ∂�+, then we claim that

ω+(ηx ≤−1)≤ ω+(ηx ≤−1|η ≥−j)+O
(
Lα−1)

.(7.39)

These observations and (7.20) are sufficient to prove (7.38). In turn, (7.39) is a con-
sequence of the technique developed below, cf. the comment after (7.55).

To prove the upper bounds in (7.28) and (7.29), observe that from the FKG
property of ω± one has

ω−
(
e
(K/L)

∑
x∈�− 1ηx≤0;η ≥−(j − 1)

)
≤ ω−

(
e
(K/L)

∑
x∈�− 1ηx≤0

)
ω−

( ∏
x∈�−

1ηx≥−(j−1)

)
,

ω+
(
e
(K/L)

∑
x∈�+ 1ηx≤−1;η ≥−j )

≤ ω+
(
e
(K/L)

∑
x∈�+ 1ηx≤−1

)
ω+

( ∏
x∈�+

1ηx≥−j
)
.

Rewriting

ω−
(
e
(K/L)

∑
x∈�− 1ηx≤0

)= exp
(K
L
|�−|

)
ω−

( ∏
x∈�−

(1− ϕx)

)
,

where ϕx := 1 − e−(K/L)1ηx>0 , and setting ψx = 1ηx<−(j−1) the bound (7.28) is
then implied by

ω−
( ∏
x∈�−

(1− ϕx)

)
≤ exp

(−�− +O
(
Lα))

,(7.40)

ω−
( ∏
x∈�−

(1−ψx)

)
≤ exp

(−�− +O
(
Lα))

.(7.41)
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Similarly, the bound (7.29) is implied by

ω+
( ∏
x∈�+

(1− ϕ̄x)

)
≤ exp

(
�+ +O

(
Lα))

,(7.42)

ω+
( ∏
x∈�+

(1− ψ̄x)

)
≤ exp

(−�+ +O
(
Lα))

(7.43)

with the notation ϕ̄x := 1 − e(K/L)1ηx<0 , and ψ̄x = 1ηx<−j . Below, we estab-
lish (7.40)–(7.43) and (7.39). All these estimates can be achieved once one has an
approximate factorization of the measure ω+ on a mesoscopic scale Lu, u ∈ (0, 1

2).
To illustrate this point, consider the expression (7.40), and suppose the product is
confined to Qu, a square with side Lu, contained in �−. Then

ω−
( ∏
x∈Qu

(1− ϕx)

)
= ∑

A⊂Qu

(−1)|A|ω−
( ∏
x∈A

ϕx

)

= 1− ∑
x∈Qu

ω−(ϕx)+O

(∑
k≥2

(
L2u

k

)
L−k

)
(7.44)

≤ exp
(
−K
L

∑
x∈Qu

ω−(ηx > 0)+O
(
L2(2u−1))),

where we have separated the contributions of sets A with |A| ≤ 1 and |A| ≥ 2,
and used the fact that ϕx = K

L
1ηx>0 +O(L−2). In particular if one could factorize

(7.40) into a product of (7.44) over all Qu ⊂ �−, then the desired bound would
follow using also (7.20).

To implement this idea, we use the following geometric construction. Partition
Z2 into squares P with side r = Lu + 2Lδ , where 0 < δ < u < 1

2 (we assume for
simplicity that Lu,Lδ are both integers). Consider squares Q of side Lu centered
inside the squares P in such a way that each square Q is surrounded within P by
a shell of thickness Lδ , see Figure 5. Define the set S of dual bonds associated to a
nonzero height gradient, cf. Appendix A. The set S is decomposed into connected
components (clusters) S. We call I(δ) the collection of clusters S in S such that
|S| ≥ Lδ . Note that a cluster may have a nonempty interior.

Consider the set of sites V ⊂ �− defined as what remains after we remove
from �− all clusters S in I(δ) together with their interior. A square Q ⊂ V is
called good if the square P ⊃ Q has empty intersection with ∂�− ∪ I(δ); see
Figure 5. We write G for the collection of good squares Q. The crucial observation
is that if Q ∈ G, then there exists a circuit C of bonds of Z2 surrounding Q and
contained in the square P ⊃Q, such that ηC ≡ 0. To see this, observe that there
must be a circuit C of bonds surrounding Q such that gradients of η along the
circuit are 0, since otherwise there would be a path of dual bonds connecting Q

with P c with cross-gradients different from zero, and therefore a cluster S with
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FIG. 5. A drawing of the region �−. In the background the squares P (dashed lines). The clusters
inside represent the set I(δ) and the shaded squares are the set G of good squares Q.

size larger than Lδ intersecting P . Now, this implies that η is constant on C, and
this constant must be zero, since otherwise Q would belong to the interior of a
cluster S of size larger than Lδ because of the zero boundary condition on ∂�−.

Next, we estimate 1− ϕx ≤ 1 for all x which do not belong to some Q ∈ G =
G(I(δ)). Therefore, summing over all possible realizations W of I(δ):

ω−
( ∏
x∈�−

(1− ϕx)

)

≤∑
W

ω−
(
I(δ)=W

)
ω−

( ∏
Q∈G

∏
x∈Q

(1− ϕx)|I(δ)=W

)
(7.45)

≤∑
W

ω−
(
I(δ)=W

) ∏
Q∈G

sup
C

π̂0
C

( ∏
x∈Q

(1− ϕx)

)
,

where, for an arbitrary circuit C surrounding Q within the square P ⊃Q and with
a slight abuse of notation, we write π̂0

C for the SOS equilibrium measure on the
interior of the circuit C with zero boundary conditions (without floor, ceiling and
no fields). With the same argument of (7.44) one has, uniformly in C

π̂0
C

( ∏
x∈Q

(1− ϕx)

)
≤ exp

(
−K
L

∑
x∈Q

π̂0
C(ηx > 0)+O

(
L2(2u−1))).(7.46)

Let I(δ) = W be fixed. For any fixed square Q ∈ G, let Q′ ⊂ Q be the square
centered inside Q in such a way that Q′ is surrounded by a shell of thickness Lδ

within Q. Thus, if x ∈Q′, then x is at distance at least Lδ from C, and therefore
as in (7.20), for any p > 0, uniformly in C:

π̂0
C(ηx > 0)= π̂ (ηx > 0)+O

(
L−p

)
, x ∈Q′.(7.47)
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From (7.47),

π̂0
C

( ∏
x∈Q

(1− ϕx)

)
(7.48)

≤ exp
(
−K
L

∑
x∈Q′

π̂(ηx > 0)+O
(
L2(2u−1))+O

(
L−p+2u−1))

.

There are at most O(L2−2u) squares Q. Therefore, from (7.45) one obtains

ω−
( ∏
x∈�−

(1− ϕx)

)
(7.49)

≤∑
W

ω−
(
I(δ)=W

)
exp

(
−K
L

∑
Q∈G

∑
x∈Q′

π̂ (ηx > 0)+O
(
L2u)).

Next, we need to add back the contributions to the exponent in (7.49) from all
removed vertices, where each vertex contributes at most 1/L. The contribution
of a single removed shell P \Q′ is O(Lδ+u−1), and they are at most O(L2−2u),
so that all removed shells give at most O(L1+δ−u)=O(Lα) for α < 1 since u > δ.
To estimate the contribution from all other removed sites, we observe that a site
can be removed if it belongs to a square P that intersects either the boundary
∂�− or the clusters of I(δ), or if it belongs to the interior of a cluster of I(δ). If
A(I(δ)) denotes the total number of sites in the interior of the clusters S ∈ I(δ),
then these contribute at most KL−1 ×A(I(δ)). Moreover, one has at most L2u ×
|I(δ)| sites that can be removed from intersections with I(δ). These contribute at
most KL2u−1|I(δ)|. Finally, one estimates roughly by L2u|∂�−| =O(L2u+1+ε0)

the number of sites removed from squares intersecting ∂�−, since on the event G
one has |∂�−| =O(L1+ε0). Thus, the contribution from the boundary squares is
O(L2u+ε0)=O(Lα), if 2u+ ε0 < 1. Therefore, using K≤ 1:

K
L

∑
Q∈G

∑
x∈Q′

π̂(ηx > 0)

(7.50)
≥�− −L−1A

(
I(δ)

)−L2u−1∣∣I(δ)∣∣+O
(
Lα)

.

Thus, we have obtained

ω−
( ∏
x∈�−

(1− ϕx)

)
(7.51)

≤ exp
(−�− +O

(
Lα))

ω−
[
exp

(
L−1A

(
I(δ)

)+L2u−1∣∣I(δ)∣∣)].
If {Si}mi=1 denotes the collection of clusters of I(δ), with |I(δ)| =∑

i |Si |, then

A
(
I(δ)

)≤ 1

4

∑
i

|Si |2 ≤ 1

4

(∑
i

|Si |
)2

,(7.52)
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where the last bound follows from
∑

i x
2
i ≤ (

∑
i xi)

2 for all xi ≥ 0. Recalling
that |Si | ≥ Lδ for all i, using (A.2), letting m represent the number of clusters
S1, . . . , Sm, and summing over their starting points x1, . . . , xm, one has the esti-
mate

ω−
(∑

i

|Si | ≥ k

)
≤ ∑

m≥1

∑
x1,...,xm

∑
S1�x1

· · · ∑
Sm�xm

Ce−β(|S1|+···+|Sm|)/2χ(S1, . . . , Sm),

where χ(S1, . . . , Sm)= 1 if |Si | ≥ Lδ for all i = 1, . . . ,m and |S1|+· · ·+|Sm| ≥ k,
and χ(S1, . . . , Sm)= 0 otherwise. Therefore,

ω−
(∑

i

|Si | ≥ k

)
≤ Ce−βk/4

∑
m≥1

(∑
x

∑
S�x,|S|≥Lδ

e−β|S|/4
)m

≤ Ce−βk/4
∑
m≥1

L2m
( ∑
j≥Lδ

Cje−βj/4
)m

(7.53)

≤ e−βk/4

for any β large enough and for all L sufficiently large. From (7.52) and (7.53), one
has

ω−
(
A

(
I(δ)

)≥ �
)≤ ω−

(∑
i

|Si | ≥ 2
√
�

)
≤ e−β

√
�/2

for all � > 0 and therefore

ω−
[
exp

(
2L−1A

(
I(δ)

))]≤ L2∑
�=0

exp (2�/L− β
√
�/4)≤ L2 + 1,(7.54)

since 2�/L ≤ β
√
�/4, for β large and � ≤ L2. Using (7.54), a Cauchy–Schwarz

inequality and (7.53), it follows that

ω−
[
exp

(
L−1A

(
I(δ)

)+L2u−1∣∣I(δ)∣∣)]≤ CL≤ eO(Lα)(7.55)

for any α < 1. This ends the proof of (7.40). To prove (7.42) one repeats the same
argument with the region �− replaced by �+.

We turn to the proof of the estimates (7.41) and (7.43). A minor modification of
the same argument proves also the inequality (7.39). Here one has to replace the
expansion (7.46) by the following bound:

π̂0
C

( ∏
x∈Q

(1−ψx)

)
(7.56)

≤ exp
(
− ∑

x∈Q
π̂0
C(ψx)+O

(
L−(3/2)+2u+c(β))+O

(
L6u−3))

,
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where ψx = 1ηx≥j and c(β) > 0 can be made arbitrarily small by taking β large
enough. Once this estimate (together with the corresponding statement for ψ̄x =
1ηx>j ) is available, it is not hard to check that exactly the same arguments we used
to prove (7.40) and (7.42) allow one to conclude. Here the term KL−1π̂(ηx > 0)
appearing in (7.50) must be replaced by π̂(ηx ≥ j), which (thanks to j ≥H + 1)
is again less than L−1 for β large enough by (7.19). In particular, one can use the
argument in (7.54)–(7.55) to conclude as above.

It remains to prove (7.56). We cannot proceed as in (7.44) since ψx is not point-
wise O(1/L). From Bonferroni’s inequality (inclusion–exclusion principle), one
has

π̂0
C

( ∏
x∈Q

(1−ψx)

)
= ∑

A⊂Q
(−1)|A|π̂0

C

( ∏
x∈A

ψx

)
(7.57)

≤ 1− ∑
x∈Q

π̂0
C(ψx)+ 1

2

∑
x,y∈Q :
x �=y

π̂0
C(ψxψy).

Next, observe that∑
x,y∈Q :
x �=y

π̂0
C(ψxψy)

(7.58)

=
(∑
x∈Q

π̂0
C(ψx)

)2

+ ∑
x,y∈Q :
x �=y

π̂0
C(ψx;ψy)+O

(
L−2+2u),

where π̂0
C(ψx;ψy) := π̂0

C(ψxψy) − π̂0
C(ψx)π̂

0
C(ψy), and we use π̂0

C(ψx) =
O(1/L). We need the following bound. For some c(β)→ 0 as β→∞, one has∑

x,y∈Q :
x �=y

π̂0
C (ψx;ψy)=O

(
L−3/2+2u+c(β)).(7.59)

The bound (7.56) follows immediately from (7.57)–(7.59) and the fact that
(
∑

x∈Q π̂0
C(ψx))

3 =O(L6u−3).
To prove (7.59), first notice that by exponential decay of correlations [8]:

π̂0
C(ψx;ψy)≤ c1e

−c2|x−y|

for some constants c1, c2 > 0. Therefore (7.59) follows if we prove that for any
constant C > 0, ∑

0�=|y|≤C logL

π̂0
C(ψ0;ψy)=O

(
L−3/2+c(β)).

In particular, it suffices to show that uniformly in y �= 0:

π̂0
C(ψ0ψy)=O

(
L−3/2+c′(β))(7.60)
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for some constant c′(β)→ 0 as β→∞. The proof of (7.60) goes as follows. Let
Ek denote the event that there exists some k-contour γ that contains both 0, y.
Then Ek+1 ⊂Ek , k ≥ 1, and

π̂0
C(ψ0ψy)= π̂0

C
(
ψ0ψy;Ec

1
)+ j∑

k=1

π̂0
C
(
ψ0ψy;Ek ∩Ec

k+1
)+ π̂0

C(ψ0ψy;Ej+1).

Now, if ψ0ψy ∩ Ec
1 occurs, then there must be two separate families of nested

contours reaching level j , one around 0 and the other around y. By repeating the
argument in the proof of Proposition 3.9, one has

π̂0
C
(
ψ0ψy;Ec

1
)=O

(
e−8βj )=O

(
L−2)

.

If ψ0ψy ∩ Ek ∩ Ec
k+1 occurs, then there must be nested contours around 0 and

around y separately from level k + 1 to level j and there must be nested contours
from level 1 to level k comprising both 0 and y. In this case, the argument in the
proof of Proposition 3.9 yields

π̂0
C
(
ψ0ψy;Ek ∩Ec

k+1
)=O

(
e−8β(j−k)e−β(1−c(β))k�y

)
,

where �y denotes the length of the shortest contour comprising both 0, y and c(β)

decays as fast as 1/β . Since �y ≥ 6, the above expression is O(e−6β(1−c(β))j ) =
O(L−3/2+c′(β)) for every k ≤ j . Finally, the same argument shows that

π̂0
C(ψ0ψy;Ej+1)=O

(
e−6β(1−c(β))j )=O

(
L−3/2+c′(β)).

These estimates imply (7.60). This ends the proof of Proposition 7.7. �

8. Mixing time in absence of entropic repulsion: Proof of Theorem 3. Like
for Theorem 1, it is sufficient to give the proof when n+ = logL, the general case
following easily (one needs to generalize the approach of Section 6.3 in the obvi-
ous way). For simplicity of notations, we call the SOS equilibrium measure with
zero b.c. on ∂�L and floor/ceiling at ± logL simply π . Recall the definition (5.1)
of the diagonal lines Ri and define, for 1≤ j ≤N = (2L− 1)/L1/2+ε (assume for
simplicity that N and L1/2+ε are integers), the subset Wj of �L as

Wj =
⋃
i∈Ij

Ri, Ij =
{
j − 1

2
L1/2+ε < i ≤ j + 1

2
L1/2+ε

}
.

Note that Wj ∩Wj+1 is a roughly rectangular-shaped region of smaller side of
order L1/2+ε . Let also Sj denote the “brick” with horizontal projection Wj and
floor/ceiling at ± logL. From (2.8) and symmetry, we know that we have only to
show that ∥∥μ�T − π

∥∥≤ L−3(8.1)

with T = exp(cβL1/2+2ε) and some large constant c.
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The proof is somewhat similar (but definitely simpler) to that of Lemma 6.6,
so we will be very sketchy. The simplification is that, since the floor at − logL
has essentially no effect at equilibrium, it is not necessary to introduce the field
term (6.1) to compensate the entropic repulsion.

We apply Theorem 2.2 with the following censoring protocol. We let �T =
T/N and we let evolve first the brick S1 for a time-lag �T , then S2 for another
time-lag �T , and so on up to SN . From Proposition 2.3 (which is immediately
adapted to the case where � is not exactly a L×m rectangle but rather is included
in some, possibly tilted, L × m rectangle) we have that the mixing time in each
brick Sj , uniformly on the b.c. around it, is exp(O(βn+L1/2+ε)). Therefore, if c
in the definition of T is sufficiently large, we can assume (modulo a negligible
error term) that after the j th time-lag the j th brick is exactly at equilibrium, with
0 b.c. on ∂Wj ∩ ∂�L, b.c. n+ = logL on ∂Wj ∩Wj+1 and, on ∂Wj ∩Wj−1, a b.c.
determined by the result of the evolution in the (j − 1)th time-lag. Theorem 2.2
then guarantees that the l.h.s. of (8.1) is smaller than ‖μ̃�T −π‖, with μ̃�T the law at
time T of the censored dynamics. The inequality (8.1) then follows (via a repeated
application of DLR) provided that one proves that, if πj denotes the equilibrium
on Uj =W1 ∪ · · · ∪Wj with 0 b.c. on ∂Uj ∩ ∂�L and n+ b.c. on ∂Uj ∩Wj+1,
then

‖πj − π‖Uj−1 =O
(
L−4)

,(8.2)

that is, the marginals of the two measures on Uj−1 are very close.
In analogy with the way Theorem 6.12 follows from Lemma 7.1 (cf. Sec-

tion 7.1), to get (8.2) it is sufficient to prove that the open 1-contour does not
intersect Wj−1, except with probability O(L−C). In turn (and in analogy to how
Lemma 7.1 follows from Lemma 7.6), the desired upper bound on the deviation of
the 1-contour follows if we prove the following. Consider a diagonal line Ri , with
i ≥ L1/2+ε . Let �′ =⋃

a≤i Ra and let ρ be a chain of sites in �′, connecting two
adjacent sides of �L, and at distance at most Lε from Ri , see Figure 6.

FIG. 6. A drawing of the triangular region �′ and of the chain ρ.
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The chain ρ disconnects �L into two subsets and call �− the one containing
the Northwest corner of �L. Let π ′ be the SOS measure on �−, with 0 b.c. on
∂�− ∩ ∂�L and 1 b.c. on ρ. Then, the π ′-probability that the unique 1-contour
reaches distance L1/2+ε from ρ is smaller than any inverse power of L.

This is much easier to prove than the somewhat similar estimate of Lemma 7.6.
The reason is that, since the fields (6.1) are absent and the floor has a negligible
effect (recall that the floor was instead at height zero in Lemma 7.6), the desired
estimate follows directly from a suitable modification of Proposition B.1, where
the square QL is replaced by a triangular domain.

APPENDIX A: PEIERLS’ ESTIMATES AND
LOW-TEMPERATURE EXPANSION

Here we collect some rather standard facts concerning the low-temperature ex-
pansion of the SOS model. With a small abuse of notation let Z� be the partition
function corresponding to the measure π̂0

�. Following [8], Section 2, we will write
Z� as a sum over compatible cluster configurations.

DEFINITION A.1. A cluster X is a tuple (γ,h1, . . . , h|γ |), where γ is a finite
connected set of dual lattice bonds, and hi ∈ Z \ {0}. A cluster configuration is
a collection of clusters {X1, . . . ,Xm}.

Let �0
� be the set of height functions η ∈ ZZ2

with ηx = 0 for every x /∈ �.
Given η ∈ �0

� one can define the associated cluster configuration {X1, . . . ,Xm},
m = m(η), as follows. Fix an arbitrary orientation of the edges e = (x, y) of Z2.
Let S = S(η) be the collection of all dual edges e′ such that the gradient of η along
the edge e = (x, y) crossing e′ satisfies he := ηy − ηx �= 0. Let γ1, . . . , γm denote
the connected components of S . For each j = 1, . . . ,m let Xj = (γj , {he}) denote
the associated cluster, where {he} denotes the collection of gradients of η along
edges e that cross a dual edge e′ ∈ γj .

We define L(�)=⋃
η∈�0

�
{X1, . . . ,Xm} to be the collection of all possible clus-

ters. Two clusters X,X′ are called compatible, in symbols X ∼X′, iff γ ∪γ ′ is not
a connected set of dual edges, where γ, γ ′ denote the geometric part of X,X′, re-
spectively. Otherwise, X,X′ are said to be incompatible, in symbols X �X′. Also,
let D(�) denote the collection of all pairwise compatible cluster configurations,
that is, of configurations {X1, . . . ,Xm} with m ≥ 0, Xi ∈ L(�) for i = 1, . . . ,m
and Xi compatible with Xj for every i �= j . Then, one has

Z� =
∑

{X1,...,Xm}∈D(�)

m∏
j=1

ρ(Xj ), ρ(Xj )= exp
[
−β ∑

e

|he|
]
,(A.1)

where the sum over e extends over all |γj | edges e which cross a dual edge e′ ∈ γj .

A.1. Peierls’ estimate. As above, S denotes the random set of dual edges
crossing a nonzero gradient.
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LEMMA A.2. There exists β0 > 0 such that for all β ≥ β0, for all finite con-
nected �⊂ Z2, and all set V of dual edges,

π̂0
�(S ⊃ V )≤ e−(β−β0)|V |.(A.2)

PROOF. We suppose that V is connected, since the general case follows by
a standard generalization. Let e′ be a dual edge in V and let S0 denote the largest
connected component of S containing e′. Then

π̂0
�(V ⊂ S)≤ ∑

S : S⊃V
π̂0
�(S0 = S),

where the sum is over all connected sets S of dual edges, such that S ⊃ V . Any
η ∈�0

� such that S0 = S corresponds to a cluster configuration {XS,X1, . . . ,

Xm} ∈ D(�), where XS is a cluster of the form XS = (S,h1, . . . , h|S|). For
a fixed S one has

∑
h1 �=0,...,h|S| �=0 ρ(XS) ≤ (4e−β)|S|, if β ≥ log 2. Therefore, us-

ing (A.1), neglecting the constraints on XS , one has

π̂0
�(S0 = S)≤ (

4e−β
)|S|

.(A.3)

Summing over all S as above and estimating by C� the number of connected S � e′
with |S| = � gives

π̂0
�(V ⊂ S)≤ ∑

�≥|V |

(
4Ce−β

)� ≤ e−(β−β0)|V |.
�

A.2. Cluster expansion. We shall use a standard expansion for partition func-
tions, adapted from [19, 32]. For U a subset of the inner boundary of �, we write
Z�,U for the partition function with the sum over η restricted to those η ∈ �0

�
such that ηx ≥ 0 for all x ∈ U . One can write Z�,U similarly to (A.1): one de-
fines L(�,U) as the set of all possible clusters (arising from height configurations
respecting the positivity constraint in U ) and D(�,U) as the collection of all pair-
wise compatible cluster configurations, with the same notion of compatibility as
before. Then, one can check that (A.1) holds for Z�,U , just with D(�) replaced by
D(�,U). We emphasize that it is here that one uses that U is a subset of the inner
boundary of �: the identity would be false, for example, if U were the whole �.

LEMMA A.3. There exists β0 such that for all β ≥ β0, for all finite connected
�⊂ Z2 and any subset of its inner boundary U ⊂�,

logZ�,U =
∑
V⊂�

ϕU(V ),(A.4)

where the potentials ϕU(V ) satisfy

(i) ϕU(V )= 0 if V is not connected.
(ii) ϕU(V )= ϕ0(V ) if dist(V ,U) �= 0, for some shift invariant potential V 	→

ϕ0(V ), that is,

ϕ0(V )= ϕ0(V + x) ∀x ∈ Z2.
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(iii) There exists a constant β0 > 0 such that

sup
�⊃V

sup
U

∣∣ϕU(V )
∣∣≤ exp

(−(β − β0) d(V )
)
,

where d(V ) is the cardinality of the smallest connected set of bonds of Z2 contain-
ing all the boundary bonds of V (i.e., bonds connecting V to V c).

PROOF. We shall apply the main theorem from [32]. Following [32], we define
C as the set of all cluster configurations C that cannot be decomposed as C =
C1 ∪ C2 with two nonempty cluster configurations C1,C2 such that {X1,X2} is
compatible for every X1 ∈ C1 and X2 ∈ C2. For a cluster X = (γ,h1, . . . , h|γ |),
define the function a(X) = λ|X|, where λ > 0 is to be specified later and |X| :=∑|γ |

i=1 |hi |. Note that, for a fixed X = (γ,h1, . . . , h|γ |), one has∑
X′ : X′�X

e2λ|X′|ρ
(
X′)≤ ∑

γ ′ : γ∪γ ′ connected

c(β,λ)e−(β−2λ)|γ ′|

(A.5)
≤ c′(β,λ)|γ |,

where, for example, c(β,λ)= 2(1−e−(β−2λ))−1 and c′(β,λ)= 3e−(β−2λ)c(β,λ).
So if β ≥ 2λ+ 1, and λ is larger than some absolute value λ0, (A.5) implies∑

X′ : X′�X

e2λ|X′|ρ
(
X′)≤ a(X).(A.6)

Equation (A.6) corresponds to equation (1) in [32]. The main theorem there then
allows one to write

logZ�,U =
∑

C : C⊂L(�,U)

�(C)(A.7)

for a function � on cluster configurations satisfying �(C)= 0 if C /∈ C and∑
C : C�X

∣∣�(C)
∣∣ea(C) ≤ a(X)(A.8)

for every cluster X, where a(C) :=∑n
i=1 a(Xi) if C = {X1, . . . ,Xn} and the nota-

tion C �X indicates that Xi �X for some Xi ∈ C. The potentials � depend on U

but for lightness of notations we keep this implicit. Taking X to be the elementary
unit square cluster such that |X| = 4 in (A.8) one finds in particular that for every
cluster configuration C one has∣∣�(C)

∣∣≤ 4e−a(C).(A.9)

To write Z�,U as in (A.4), we follow [19], Section 3.9. For any cluster config-
uration C ∈ C, C = {X1, . . . ,Xn} with Xi = (γi, h1, . . . , h|γi |), write Cg for the
geometric part of C, that is, Cg = (γ1, . . . , γn). For any G := (γ1, . . . , γn), define

ψ(G)= ∑
C∈C : Cg=G

�(C).
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Using (A.9), if λ≥ λ0, one has∣∣ψ(G)
∣∣≤ 4e−(λ/2)

∑
i |γi |.(A.10)

Finally, set

ϕU(V )= ∑
G=(γ1,...,γn) :⋃

i Intγi=V

ψ(G).(A.11)

From (A.7), one obtains the expansion (A.4). The properties (i)–(ii)–(iii) follow as
in [19] from an explicit representation of the function �(C), and from the expo-
nential decay (A.10). �

A.3. Distribution of an open contour. Here we apply the expansion of
Lemma A.3 to derive an expression for the law of an open contour in the pres-
ence of a stepped boundary condition. Suppose a finite connected �⊂ Z2 is given
together with a boundary condition ξ with values in {0,1} and such that it induces
a unique open 1-contour γ . If γ = �, for some connected set of dual edges �, then
� is partitioned into two connected regions �+,�− separated by �. Moreover,

π̂
ξ
�(γ = �)∝ e−β|�|Z�−,�−� Z�+,�+� ,(A.12)

where �±
� are the sets defined after (7.17), and we use the notation Z�,U that was

introduced in Lemma A.3. By expanding the partition functions as in (A.4), and
retaining only terms depending on �, one finds that

π̂
ξ
�(γ = �)∝ exp

(−β|�| +��(�)
)
,(A.13)

where

��(�)=−
∑
V⊂�

V∩� �=∅

ϕ0(V )+ ∑
V⊂�+
V∩� �=∅

ϕ�+� (V )+ ∑
V⊂�−
V∩� �=∅

ϕ�−� (V ).

Here, the notation V ∩ � �=∅ simply means that V ∩ (�−
� ∪�+

� ) �=∅. It is con-
venient to rewrite this expansion in the form

��(�)=
∑
V⊂�

V∩� �=∅

φ(V ;�),(A.14)

where the “decorations” {φ(V ;�)}V⊂� satisfy (cf. Lemma A.3):

(i) φ(V ;�)= 0 if V is not connected.
(ii) φ is shift invariant in the sense that

φ(V ;�)= φ(V + x;� + x) ∀x ∈ Z2.

(iii) There exists a constant β0 > 0 such that

sup
�

∣∣φ(V ;�)∣∣≤ exp
(−(β − β0) d(V )

)
,
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where d(V ) is defined as in Lemma A.3.

It is standard to check that these properties imply the existence of β0 such that, for
any β ≥ β0 and any �≥ 1,∑

V�0
d(V )≥�

sup
�

∣∣φ(V ;�)∣∣≤ exp
(−(β − β0)�

)
.(A.15)

APPENDIX B: LARGE DEVIATIONS OF THE CONTOUR

We begin by fixing some notation. S= {1,2, . . . ,L}×Z will denote the infinite
vertical strip of width L. We denote by A,B the points of coordinates (1,0) and
(L,0), respectively. The L×L square with corners A,B,C,D, where C = (L,L)

and D = (1,L) will be denoted by QL. Next we fix an open contour �∗ inside QL

joining A with B with the property that �∗ stays above the line at zero height and
does not reach height Lδ , for some δ < 1/2 that in the applications will be taken
small. The region inside S above �∗ is denoted by � and we set Q=QL ∩�. We
let νQ be the law of the open 1-contour � joining A with B , for the SOS model
without floor/ceiling in Q, with 1 b.c. along �∗ and 0 b.c. otherwise. We know that
νQ can be written as

νQ(�)∝ exp
(−β|�| +�Q(�)

)
,(B.1)

where �Q is the function appearing in (A.14). Fix a ∈ (1/2,1) and � ∈
[La,L/ log(L)2] and define E� as the event that the path � reaches height � (note
that �# Lδ).

PROPOSITION B.1. Uniformly in �∗ as above, there exists β0 independent of
(�,L) such that, for all β > β0 and all L large enough

νQ(E�)≤ c′ exp
(−c�2/L

)
for some constants c, c′.

B.1. Proof of Proposition B.1. As a first preliminary step we remove the de-
pendence on the upper boundary of Q. Let ν� be the probability distribution on
contours in � joining A,B given by

ν�(�)∝ exp
(−β|�| +��(�)

)
.

CLAIM B.2. For any β large enough

νQ(E�)≤ 3ν�(E�)+ e−cL

for a suitable constant c= c(β).
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PROOF. Let G0 and G1 be the set of contours which stay below height L −
log(L)2 and height L, respectively. Then

νQ(E�)≤ ν�(χE�
χG0e

��(�))

ν�(χG0e
��(�))

+ ν�(χE�
(1− χG0)χG1e

��(�))

ν�(χG0e
��(�))

,(B.2)

where

��(�)=�Q(�)−��(�)

and the inequality sign comes from restricting the average in the denominator from
contours in G1 to contours G0. Since min�∈Gc

0
|�| −min�∈G0 |�| ≥ L, a standard

Peierls argument shows that

ν�
(
Gc

0
)≤ e−(β−β0)L

for some β0. Moreover, thanks to the exponential decay of the decorations (A.14),∣∣��(�)
∣∣≤ 1

2 ∀� ∈ G0

and ∣∣��(�)
∣∣≤ e−(β−β0)L ∀� ∈ G1.

Therefore, the first term in the r.h.s. of (B.2) is smaller than 3ν�(E�) while the
second one is bounded from above by e−cL for some constant c = c(β) diverging
as β→∞. �

Back to the proof of the proposition: since the event E� is increasing, we can
change the b.c. from 0 to 1 along the lateral sides of �, up to height (3/4)� [note
that in this situation the endpoints of � are shifted upward by (3/4)�]. We still
call ν� the measure of � in this situation. Again by FKG, we have

ν�(E�)≤ ν�(E�;G+)
ν�(G+)

,(B.3)

where G+ is the increasing event that � stays at distance at least Lε from �∗, for
some small but positive constant ε.

Thanks to the decay properties of the potentials φ(V ;�), for every � in G+ we
can replace �Q(�) with �S(�), up to a negligible error term. Then, the ratio (B.3)
equals

(
1+ o(1)

)νS(E�;G+)
νS(G+)

≤ (
1+ o(1)

) νS(E�)

νS(G+)
(B.4)

with νS the measure of the contour for SOS in the strip S, with 0 b.c. above A+
(0, (3/4)�),B + (0, (3/4)�) and 1 b.c. below it.

Note that, if the complementary event (G+)c happens, it means that the contour
� makes a downward deviation at least (1/2)� from its natural height (3/4)�.
Therefore, νS(G+)≥ 1− νS(E�). As a consequence, it suffices to prove:

CLAIM B.3. For any c > 0 and all β large enough depending on c, one has
νS(E�)≤ e−c�2/L.
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PROOF. By translation invariance, we can assume that the path � starts at
A= (1,0), ends at B = (L,0) and replace E� with E�/4. We would like to appeal
to the results of Section 4.15 in [19]. For this purpose we need to tackle the fact
that decorations touching the boundary of S may behave differently from decora-
tions inside S. We therefore introduce a third (!) probability measure on all paths
� between A and B (even those going outside S) denoted simply by P(·) and
corresponding to the weight e−β|�|+�Z2 (�) and we write

νS(� reaches height �/4)= E(� reaches height �/4;� ∈ S; e�S(�)−�Z2 (�))

E(� ∈ S; e�S(�)−�Z2 (�))
.

Using Section 4.15 of [19], we get that

P(� reaches height �/4)≤ e−c�2/L

for some constant c > 0. On the other hand, (A.15) implies that∣∣�Z2(�)−�S(�)
∣∣≤ e−(β−β0)

∣∣b ∈ � : dist
(
b,Sc

)≤ log(L)2∣∣,
which implies

E
(
e2|�

Z2 (�)−�S(�)|)≤ ec
′ log(L)2

for some constant c′, thanks to the large deviation results of Section 4.15 in [19].
Finally, thanks to (A.15) and Proposition 4.18 in [19], if C is the cigar-shaped
region with tips at A,B defined by

C =
{
(x1, x2) ∈R2 : |x2| ≤

(
x1(L− x1)

L

)1/2+κ}
,

E
(
� ∈ S; e�S(�)−�Z2 (�)

)≥ E
(
� ∈ C; e�S(�)−�Z2 (�)

)
≥ CP(� ∈ C)≥ e−c′′ log(L)2/κ

,

where the constant C is a deterministic lower bound on e�S(�)−�Z2 (�) for � ∈ C
obtained again using (A.15). �

APPENDIX C

Fix a ∈ (0,1). Let R be the intersection between Z2 and a L×La rectangle, not
necessarily parallel to the coordinate axes. Let �⊂ Z2 be such that � contains R
and is contained in some 2L× 2L square. A subset C = {x1, x2, . . . , xk} of R will
be called a spanning chain if

(i) d(xi, xi+1)= 1 for all i = 1, . . . , k− 1;
(ii) C connects the two shorter sides of R.

For a fixed n≥ 0 let F+ (F−) be the event that there exists a spanning chain where
the surface height is at least (at most) n.
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LEMMA C.1. For β large enough

�n
�

(
Fc+

)≤�
n,f
�

(
Fc+

)≤ e−cLa

.(C.1)

Assume moreover that �(�)e−4β(n+1) ≤ 1, where �(�) is the shortest side of the
smallest rectangle containing �. Then

�
n,f
�

(
Fc−

)≤�n
�

(
Fc−

)≤ e−cLa

.(C.2)

Here, as in (6.1), the field is f = 1
L

∑
y∈� fy .

PROOF OF LEMMA C.1. We first observe that F+(F−) is an increasing (de-
creasing) event and therefore the first inequalities in (C.1), (C.2) are trivial be-
cause the fields fy are decreasing functions. Again by monotonicity �

n,f
� (Fc+) is

bounded from above by the probability w.r.t. the SOS model π̂n,f
� without floor.

Moreover, Fc+(Fc−) occurs iff there exists a *-chain {y1, . . . , yn} connecting the
two long opposite sides of R and such that ηyi ≤ n−1 (ηyi ≥ n+1) for all i. In turn
that implies the existence of a (n− 1)-contour ((n+ 1)-contour) larger than La .

As in the proof of Lemma 3.7, we get that

π̂
n,f
�

(
γ is a (n− 1)-contour

)≤ e
−β|γ |+1/L

∑
x∈�γ

‖fx‖∞ ≤ e−β/2|γ |,
where in the last inequality we used ‖fx‖∞ ≤ e−cβ together with |�γ | ≤ 2L|γ |.
Simple counting of γ finishes the proof of (C.1).

Similarly, it follows from Proposition 3.6 that

�n
�

(
γ is a (n+ 1)-contour

)≤ e−β|γ |+Ce−4β(n+1)|�γ |.
Isoperimetry gives |�γ | ≤ �(�)|γ | which, combined with the assumption

�(�)e−4β(n+1) ≤ 1, implies

�n
�

(
γ is a (n+ 1)-contour

)≤ e−β/2|γ |

and the proof of (C.2) follows. �

APPENDIX D: PROOF OF INEQUALITIES (6.22) AND (6.29)

PROOF OF LEMMA 6.11. Fix � > 2. By removing the field f of (6.1), we
only increase the surface so to bound the probability of the decreasing event G+

�

we may work in the model πH ′
�L

, that is, the standard SOS model on �L with no
field and floor/ceiling at height 0/n+ = logL. If G+

� fails, then for some R ∈R we
can find contours {(γs, hs)}s∈S satisfying the hypothesis of Proposition 3.6 each
with |�γs ∩R| ≥ 1 and hs ≥H ′ + 1 such that

⋂
s∈S Cγs,h holds, and that∑

s∈S

|�γs ∩R| ≥ �L/2.(D.1)
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For a given ensemble of contours as above, define a sequence of subsets Wi ⊆� by

W0 =�,

Wi =
⋃

s∈S : hs=H ′+i
�γs for i = 1, . . . , n+ −H ′.

Let A denote the set of all possible such collections of contours {(γs, hs)}. For all
i ≥ 0, let

ai = |Wi ∩R|.
Let A('a) = A(a1, a2, . . . , an+−H ′) denote all collections of contours matching
a given sequence of ai ’s. Then (D.1) is equivalent to

∑
i≥1 ai ≥ �L/2. Since R is

a diagonal, |�γs ∩R| ≤ 1
4 |γs | and so

∑
s∈S

|γs | ≥ 4
n+−H ′∑
i=1

ai.(D.2)

For any W ⊆� let

B(W)= ∑
(γ ′1,γ ′2,...,γ ′m)

e−(β/4)|γ |,

where the sum is over all collections of edge-disjoint contours {γ ′i }, with pairwise
disjoint interiors {�γ ′i } all contained in W and with |�γ ′i ∩ R| ≥ 1 for all i. Any
such contour must have an edge adjacent to some v ∈W ∩R in the dual lattice Z2∗.
If e is an edge in the dual lattice Z2∗, then there are at most 3n contours γ of length
n containing e. Hence for large enough β ,

B(W)≤
(

1+
∞∑
n=4

3ne−(β/4)n

)4|W∩R|
≤ exp

(|W ∩R|),
since each contour must contain at least one edge adjacent to some v ∈W ∩R in
the dual lattice Z2∗, there are at most 4|W ∩ R| such edges and the contours are
edge-disjoint.

Now for {(γs, hs)}s∈S ∈A('a) by Proposition 3.6 we have that

πH ′
�L

( ⋂
s∈S

Cγs,hs

)
≤ exp

( ∑
s∈S

(−β|γs | +C0|�γs |e−4βhs
))

(D.3)
≤ exp

(
−3

4
β

∑
s∈S

|γs |
)

for any β ≥ C0 since e−4βhs ≤ e−4β(H+1) ≤ L−1 and |�γs | ≤ (L/4)|γs | for any
contour γs by the isoperimetric inequality in Z2. Substituting this expression, we
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have that ∑
{(γs ,hs)}s∈S ∈A('a)

πH ′
�L

( ⋂
s∈S

Cγs,hs

)

≤ ∑
{(γs ,hs)}s∈S ∈A('a)

exp
(
−3

4
β

∑
s∈S

|γs |
)

≤ exp

(
−2β

n+−H ′∑
i=1

ai

) ∑
{(γs ,hs)}s∈S ∈A('a)

exp
(
−(β/4)

∑
s∈S

|γs |
)
,

where the last inequality is by (D.2). This in turn is at most

exp

(
−2β

n+−H ′∑
i=1

ai

)
n+−H ′∏
i=1

B(Wi−1)≤ exp

(
−2β

n+−H ′∑
i=1

ai +
n+−H ′∑
i=1

ai−1

)

≤ exp
(
−3

4
β�L

)
.

The final inequality follows for large β since a0 = L. As there are at most
Ln+−H ′ ≤ LlogL choices for 'a = (a1, a2, . . . , an+−H ′), we have that

πH ′
�L

(
G+

�

)≥ 1−∑
'a

∑
{(γs ,hs)}s∈S ∈A('a)

πH ′
�L

( ⋂
s∈S

Cγs,hs

)

≥ 1−LlogL exp
(
−3

4
β�L

)

≥ 1− exp
(
−β

2
�L

)

for large β , as required. �

Equation (6.22) follows similarly with a simpler proof.
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