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We characterize nondecreasing weight functions for which the associ-
ated one-dimensional vertex reinforced random walk (VRRW) localizes on 4
sites. A phase transition appears for weights of order n log logn: for weights
growing faster than this rate, the VRRW localizes almost surely on, at most,
4 sites, whereas for weights growing slower, the VRRW cannot localize on
less than 5 sites. When w is of order n log logn, the VRRW localizes almost
surely on either 4 or 5 sites, both events happening with positive probability.

1. Introduction. The model of the vertex reinforced random walk (VRRW)
was first introduced by Pemantle [9] in 1992. It describes a discrete random walk
X = (Xn,n ≥ 0) on a graph G, which jumps, at each unit of time n, from its actual
position toward a neighboring site y with probability proportional to w(Zn(y)),
where w : N → R

∗+ is some deterministic weight sequence and where Zn(y) is the
local time of the walk at site y and time n. Thus when w is nondecreasing, the
walk tends to favor sites it has already visited many times in the past.

A striking feature of the model is that, depending on the reinforcement
scheme w, it is possible for the walk to get “trapped” and visits only finitely many
sites, even on an infinite graph. In this case, we say that the walk localizes. This un-
usual behavior was first observed by Pemantle and Volkov [11] who proved that,
with positive probability, the VRRW on the integer lattice Z with linear weight
w(n) = cn + 1 visits only 5 sites infinitely often. This result was later completed
by Tarrès [14] (see also [15] for a more recent and concise proof) who showed that
localization of the walk on 5 sites occurs almost surely. More generally, Volkov
[16] and more recently Benaïm and Tarrès [2] proved that the linearly reinforced
VRRW localizes with positive probability on any graph with bounded degree. It
is conjectured that this localization happens, in fact, with probability 1. However,
this seems a very challenging question as it is usually difficult to prove almost sure
asymptotics for VRRW (let us note that, even in the one-dimensional case, Tarrès’s
proof of almost sure localization is quite elaborate).

A seemingly closely related model is the so-called edge reinforced random walk
(ERRW), introduced by Coppersmith and Diaconis [4] in 1987. The difference
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between VRRW and ERRW is only that the transition probabilities for ERRW
depend on the edge local time of the walk instead of the site local time. In the
one-dimensional case, Davis [5] proved that the ERRW with nondecreasing rein-
forcement weight function w is recurrent (i.e., the walk visits all sites infinitely
often almost surely) if and only if

∞∑
i=0

1

w(i)
= ∞.(1)

Otherwise, the walk ultimately localizes on two consecutive sites almost surely.
It may seem natural to expect a similar simple criterion for VRRW. However,

the picture turns out to be much more complicated than for ERRW because the
walk may localize on subgraphs of cardinality larger than 2. Only partial results
are currently available. For instance, when condition (1) fails and the sequence
(w(n), n ≥ 0) is nondecreasing, the VRRW also gets stuck on two consecutive
sites.2 However, when (1) holds, the walk may or may not localize depending
on the weight function w. In particular, it is conjectured that for reinforcements
w(n) ∼ nα , the walk is recurrent for α < 1 and localizes on 5 sites for α = 1.
In this direction, it is proved in [17] that when w(n) is of order nα with α < 1,
the VRRW cannot localize. When α < 1/2, this result was slightly refined by the
second author in [12], who proved that the process is either a.s. recurrent or a.s.
transient. Yet, a proof of the recurrence of the walk in this seemingly simple setting
is still missing.

On the other hand (apart from the linear case) not much is known about the
cardinality of the set of sites visited infinitely often when localization occurs and
(1) holds. The aim of this paper is to partially answer this question by investigating
under which conditions the VRRW ultimately localizes on less than 5 sites. In
order to do so, we shall associate to each weight function w a number αc(w) ∈
[0,∞] [the precise definition of αc(w) is given in the next section]. The main
result of the paper states that:

THEOREM 1.1. Assume that w is nondecreasing and that (1) holds. Denote
by R′ the set of sites which are visited infinitely often by the VRRW and by |R′| its
cardinality. Then, defining αc(w) as in (3), we have∣∣R′∣∣ = 4 with positive probability ⇐⇒ αc(w) < ∞,∣∣R′∣∣ = 4 almost surely ⇐⇒ αc(w) = 0,∣∣R′∣∣ equals 4 or 5 a.s., both events

occurring with positive probability
⇐⇒ αc(w) ∈ (0,∞).

2This result first appears at the end of [17]. However, there is a mistake in the original argument.
For the sake of completness, we give an other proof of this result (for nondecreasing weight se-
quences) in Proposition 4.1.
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It is easy to see that a VRRW can never localize on 3 sites (see Proposition 4.2),
and therefore Theorem 1.1 combined with criterion (1) for localization on two sites
covers all possible cases where a VRRW with nondecreasing weight localizes with
positive probability on less than 5 sites.

The last part of the theorem shows that the size of R′ can itself be random. Such
a result was already observed for graphs like Z

d , d ≥ 2 (for linear reinforcement)
where different nontrivial localization patterns may occur; see [2, 16]. Yet we find
this result more surprising in the one-dimensional setting since R′ is necessarily
an interval.

The parameter αc(w) can be explicitly calculated for a large class of weights w.
In particular, if w(n) ∼ n log logn, then αc(w) = 1.

PROPOSITION 1.2. For any nondecreasing weight function w such that (1)
holds:

w(n) � 3n log logn �⇒ αc(w) = 0,

w(n) 
 4n log logn �⇒ αc(w) ∈ (0,∞),

w(n) � n log logn �⇒ αc(w) = ∞.

Let us mention that, when αc(w) = ∞, Theorem 1.1 simply states that if the
walk localizes, |R′| ≥ 5 necessarily. In fact, it is proved in a forthcoming paper
[1] that there exist nondecreasing weight functions w for which the VRRW local-
izes almost surely on finite sets of arbitrarily large cardinality (this result is, in a
way, similar to those proved in [6, 7] for another related model of self-interacting
random walks).

The proof of Theorem 1.1 is based on two main techniques. First we use martin-
gales arguments which were introduced by Tarrès in [14, 15]. These martingales
have the advantage of taking into account the facts that, on each site, the pro-
cess is roughly governed by an urn process, but also the fact that all these urns
are strongly correlated. The second tool is a continuous time construction of the
VRRW, called Rubin’s construction, which was already used by Davis [5] for urn
processes, and by Sellke in [13] in the case of edge reinforcement. Tarrès intro-
duced in [15] a variant of this construction, which allows for powerful couplings
in the case of nondecreasing weights and which will be very useful in this study.

The remainder of the paper is organized as follows. In the next section we give
some simple results concerning w-urns processes which will play an important role
in the proof of the theorem. In Section 3, we recall some classical results concern-
ing VRRW. The proof of Theorem 1.1 is provided in Section 4. Finally we prove
Proposition 1.2 in the Appendix along with other technical lemmas concerning
properties of the critical parameter αc(w).

3We use the notation f � g, when f (n)/g(n) → ∞.
4We say that f 
 g when there exists a constant c > 0, such that c−1f (n) ≤ g(n) ≤ cf (n), for all

n large enough.
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2. w-urn processes.

2.1. Weight function w and the parameter αc. In the rest of the paper, we call
weight sequence w a sequence (w(n), n ≥ 0) of positive real numbers. It will be
convenient to extend w into a weight function w : R+ → R

∗+ by w(t) = w(�t�)
where �t� stands for the integer part of t . Then, given w, we set

W(t) :=
∫ t

0

1

w(u)
du.

When condition (1) holds, we have W(∞) = ∞, and W is an homeomorphism of
R+ whose inverse we denote by W−1. Then, for α > 0, we define the integral

Iα(w) :=
∫ ∞

0

dx

w(W−1(W(x) + α))
=

∫ ∞
0

w(W−1(y))

w(W−1(y + α))
dy.(2)

If furthermore we assume that w is nondecreasing, then α → Iα(w) is nonincreas-
ing, and we can define the critical parameter αc(w) by

αc(w) := inf
{
α ≥ 0 : Iα(w) < ∞} ∈ [0,∞](3)

with the convention that inf ∅ = ∞.

2.2. w-urn processes. A w-urn is a process (Rn,Bn)n≥0 defined on some
probability space (�, F ,P), such that for all n ≥ 0, Rn + Bn = n, Rn+1 ∈
{Rn,Rn + 1}, and

P{Rn+1 = Rn + 1|Rn} = w(Rn)

w(Rn) + w(Bn)
.

We call Rn (resp., Bn) the number of red (resp., blue) balls in the urn after the nth
draw. Set R∞ = limn→∞ Rn and B∞ = limn→∞ Bn.

Our interest toward w-urn processes comes from fact that if we consider a
VRRW on the finite set {−1,0,1} (i.e., the walk reflected at 1 and −1, see Sec-
tion 3.4), then joint local times of the walk at sites 1 and −1 and at time 2n is
exactly a w-urn process. The next proposition describes the asymptotic behavior
of such an urn. Several arguments used during the proof of the result below will
also play an important role when proving Theorem 1.1.

PROPOSITION 2.1. For any weight sequence w (not necessarily nondecreas-
ing), we have

∑
n≥0

1

w(n)
< +∞ ⇐⇒ R∞ < +∞ or B∞ < +∞ a.s.

The process M̂ = (M̂n, n ≥ 0) defined by M̂n := W(Rn)−W(Bn) is a martingale.
Moreover:
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(a) If
∑

n 1/w(n) = ∞ and
∑

n 1/w(n)2 < +∞, then M̂n converges a.s. to
some random variable M̂∞, which admits a symmetric density with unbounded
support.

(b) If
∑

n 1/w(n)2 = ∞ and infn w(n) > 0, then lim inf M̂n = −∞ and
lim sup M̂n = +∞ a.s.

PROOF. The first equivalence is well known (see, e.g., [10]) and follows im-
mediately from Rubin’s construction of the urn process, which we will recall be-
low. Let us note that we can rewrite M̂ in the form

M̂n =
n−1∑
k=0

(
1{the (k+1)th draw is Red}

w(Rk)
− 1{the (k+1)th draw is Blue}

w(Bk)

)
.

Therefore, M̂ is clearly a martingale. Let

Vn := ∑
k≤n

(M̂k+1 − M̂k)
2

= ∑
k≤n

(
1{the (k+1)th draw is Red}

w(Rk)2 + 1{the (k+1)th draw is Blue}
w(Bk)2

)
.

We have

E
[
M̂2

n

] = E[Vn−1] ≤ 2
∞∑

k=0

1

w(k)2 .

Thus, when assumption (a) holds, M̂ converges almost surely and in L2 toward
some random variable M̂∞. We now use Rubin’s construction to identify this limit:
let (ξn, n ≥ 0) and (ξ ′

n, n ≥ 0) be two sequences of independent exponential ran-
dom variables with mean 1. Define the random times tk = ξ0/w(0)+· · ·+ξk/w(k)

and t ′k = ξ ′
0/w(0) + · · · + ξ ′

k/w(k). We can construct the w-urn process (Rn,Bn)

from these two sequences by adding a red ball in the urn at each instant (tk)k≥0
and a blue ball at each instant (t ′k)k≥0 (see the Appendix in [5] for details). Using
this construction, we can rewrite M̂n in the form

M̂n =
Rn−1∑
k=0

1 − ξk

w(k)
−

Bn−1∑
k=0

1 − ξ ′
k

w(k)
+

Rn−1∑
k=0

ξk

w(k)
−

Bn−1∑
k=0

ξ ′
k

w(k)
.

Observe that, by construction, for any n,∣∣∣∣∣
Rn−1∑
k=0

ξk

w(k)
−

Bn−1∑
k=0

ξ ′
k

w(k)

∣∣∣∣∣ ≤ max
(

ξRn

w(Rn)
,

ξ ′
Bn

w(Bn)

)
.

Since a.s. Rn ∧ Bn → ∞, we deduce that the right-hand side above tends to 0 a.s.,
hence

M̂∞ =
∞∑

k=0

1 − ξk

w(k)
−

∞∑
k=0

1 − ξ ′
k

w(k)
.(4)
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Both sums on the right-hand side of the previous equation converge because they
have a finite second moment. Thus M̂∞ admits a symmetric density with un-
bounded support since the ξn’s and ξ ′

n’s are independent, and ξ0 has a nonvanishing
density on R+.

It remains to prove (b). Let us observe that, when infn w(n) > 0, the mar-
tingale M̂n has bounded increments. Using Theorem 2.14 in [8], it follows that
a.s. either M̂n converges or lim sup M̂n = +∞ and lim inf M̂n = −∞. Moreover,
when

∑
n 1/w(n)2 = ∞, we have limn→∞ Vn = ∞ a.s. Therefore, we can define

kn := inf{m :Vm ≥ n}, and Theorem 3.2 of [8] states that M̂kn/
√

n converges in
law toward a standard normal variable. In particular, M̂ cannot converge. This
completes the proof of the proposition. �

The next result illustrates how the parameter αc(w) of Theorem 1.1 naturally
appears in connection with w-urns.

COROLLARY 2.2. Consider a w-urn (Rn,Bn). Assume that w is nondecreas-
ing with

∑
n 1/w(n) = ∞ and

∑
n 1/w(n)2 < ∞ and set

YB :=
∞∑

k=0

1{the (k+1)th draw is Blue}
w(k)

, YR :=
∞∑

k=0

1{the (k+1)th draw is Red}
w(k)

.

Then we have:

(i) If αc(w) = 0 then, a.s., min(YB,YR) < ∞.
(ii) If αc(w) ∈ (0,∞) then P{min(YB,YR) < ∞} ∈ (0,1).

(iii) If αc(w) = ∞ then, a.s., min(YB,YR) = ∞.

PROOF. According to Proposition 2.1, W(Rn) − W(Bn) converges to some
random variable M̂∞ with a symmetric density and unbounded support. Let δ =
|M̂∞|/2. On the event {M̂∞ > 0}, we have, for n large enough,

W(n) ≥ W(Rn) ≥ W(Bn) + δ,

which yields, for some (random but finite) constant c,

YB ≤ c

∞∑
k=0

1{the (k+1)th draw is Blue}
w(W−1(W(Bk) + δ))

=
∞∑

k=0

c

w(W−1(W(k) + δ))
.

Thus, by symmetry and using P{M̂∞ = 0} = 0, we get, a.s.,

min
(
YB,YR) ≤

∞∑
k=0

c

w(W−1(W(k) + δ))
.

This proves (i) and also that P{min(YB,YR) < ∞} > 0 whenever αc(w) ∈ (0,∞).
Conversely, set δ′ = 2|M̂∞|. On the event {M̂∞ ≥ 0}, we have, for n large enough,

n = Bn + Rn ≤ Bn + W−1(
W(Bn) + δ′) ≤ Rn + W−1(

W(Rn) + δ′).
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This gives

YB ≥ c

∞∑
k=0

1{the (k+1)th draw is Blue}
w(Bk + W−1(W(Bk) + δ′))

=
∞∑

k=0

c

w(k + W−1(W(k) + δ′))
,

and the same bound also holds for YR . Therefore, by symmetry, we get, a.s.,

min
(
YB,YR) ≥

∞∑
k=0

c

w(k + W−1(W(k) + δ′))
.

We conclude the proof using Lemma A.6 of the Appendix which insures that the
sum above is infinite when δ′ < αc(w). �

3. Vertex reinforced random walk.

3.1. The VRRW. In the remainder of the paper, given the weight sequence w,
(Xn,n ≥ 0) will denote a nearest neighbor random walk on the integer lattice Z,
starting from X0 = 0 with transition probabilities given by

P{Xn+1 = x ± 1|Fn} = w(Zn(x ± 1))

w(Zn(x + 1)) + w(Zn(x − 1))
,(5)

where (Fn, n ≥ 0) is the natural filtration σ(X0, . . . ,Xn), and Zn(y) stands, up to
a constant, for the local time of X at site y and at time n,

Zn(y) := z0(y) +
n∑

k=0

1{Xk=y}.

We call the sequence C := (z0(y), y ∈ Z) the initial local time configuration. We
say that X is a VRRW when it starts from the trivial configuration C0 := (0,0, . . .).
However, it will sometimes be convenient to consider the walk starting from some
other configuration C . In that case, we shall mention it explicitly and emphasize
this fact by calling X a C -VRRW.

In the rest of this section, we collect some important results concerning the
VRRW which we will use during the proof of Theorem 1.1 in Section 4. For addi-
tional details, we refer the reader to [5, 10, 13–15] and the references therein.

3.2. The martingales Mn(x). For x ∈ Z, define Z∞(x) := limn→∞ Zn(x). Re-
call that R′ stands for the set of sites visited infinitely often by the walk,

R′ := {
x ∈ Z :Z∞(x) = ∞}

.

The following quantities will be of interest:

Y±
n (x) :=

n−1∑
k=0

1{Xk=x and Xk+1=x±1}
w(Zk(x ± 1))

(6)
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and

Mn(x) := Y+
n (x) − Y−

n (x).

It is a basic observation due to Tarrès [14, 15] that (Mn(x), n ≥ 1) is a martingale
for each x ∈ Z. Moreover, if

∞∑
n=0

1

w(n)2 < ∞,(7)

then these martingales are bounded in L2, and thus converge a.s. and in L2 toward

M∞(x) := lim
n→∞Mn(x).

We will also consider the (possibly infinite) limits

Y±∞(x) := lim
n→∞Y±

n (x).

From the definition of Y±, we directly obtain the identity

Y+
n (x − 1) + Y−

n (x + 1) = W
(
Zn(x)

) − W(1)1{x=0},(8)

which holds for all x ∈ Z and all n ≥ 0. In particular, we get

W
(
Zn(x + 2)

) − W
(
Zn(x)

) = Y−
n (x + 3) − Y+

n (x − 1) + Mn(x + 1)

+ W(1)(1{x=−2} − 1{x=0}).
More generally, if we now consider a C -VRRW starting from some arbitrary initial
local time configuration C , then Mn(x) is still a martingale, and the equation above
takes the form

W
(
Zn(x + 2)

) − W
(
Zn(x)

)
(9)

= Y−
n (x + 3) − Y+

n (x − 1) + Mn(x + 1) + c(x, C),

where c(x, C) is some constant depending only on x and on the configuration C .

3.3. Time-line construction of the VRRW. We now describe a method to con-
struct the VRRW for a collection of exponential random variables which is in a
way similar to Rubin’s algorithm for w-urns. This construction was introduced
by Tarrès in [15] and may be seen as a variant for the VRRW of the continuous
time construction previously described by Sellke in [13] for edge reinforced ran-
dom walks. One of the main advantages of this construction is that it enables us to
create nontrivial coupling between VRRWs. Let us fix a sequence

ξ := (
ξ±
n (y), n ≥ 0, y ∈ Z

) ∈ R
N+

of positive real numbers. The value ξ−
n (y) [resp., ξ+

n (y)] will be related to the
duration of a clock attached to the oriented edge (y, y − 1) [resp., (y, y + 1)].
Given this sequence, we create a deterministic, integer valued, continuous-time
process (X̃(t), t ≥ 0) in the following way:
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• Set X̃(0) = 0, and attach two clocks to the oriented edges (0,−1) and (0,1)

ringing, respectively, at times ξ−
0 (0)/w(0) and ξ+

0 (0)/w(0).
• When the first clock rings at time τ1 := ξ+

0 (0)/w(0) ∧ ξ−
0 (0)/w(0), stop both

clocks, and set X̃(τ1) = ±1 depending on which clock rung first. (If both clocks
ring at the same time, we decide that X̃ stays at 0 forever.)

Assume that we have constructed X̃ up to some time t > 0 at which time the
process makes a right jump from some site x − 1 to x. Denote by k the number of
jumps from x to x − 1 and by m the number of visits to x − 1 before time t . We
follow the procedure below:

• Start a new clock attached to the oriented edge (x, x − 1), which will ring after
a time ξ−

k (x)/w(m).
• If the process already visited x some time in the past, restart the clock attached

to the oriented edge (x, x + 1) which had previously been stopped when the
process last left site x. Otherwise, start the first clock for this edge which will
ring at time ξ+

0 (x)/w(0).
• As soon as one of these two clocks rings, stop both of them and let the process

jump along the edge corresponding to the clock which rung first. (If both clocks
ring at the same time, we decide that X̃ stays in x forever.)

We use a similar rule when the process makes a left jump from some site x to
x − 1, see Figure 1. We say that this construction fails if at some time, two clocks
ring simultaneously. Let now τi stand for the time of the ith jump of X̃ (with the
convention τ0 = 0 and τn+1 = τn if X̃ does not move after time τn) and define the
discrete time process X = (Xn,n ≥ 0) by

Xn := X̃(τn).

FIG. 1. Illustration of the time-line construction.
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It is an elementary observation that if we now choose the ξ±
n (y) to be independent

exponential random variables with mean 1, then the construction does not fail with
probability 1 and the resulting process X is a VRRW with weight w.

REMARK 3.1. For the sake of clarity, we only describe the construction for
the VRRW starting from the trivial configuration C0. However, it is clear that we
can do a similar construction for any C -VRRW by simply replacing the duration
of the clocks ξ±

k (x)/w(m) with ξ±
k (x)/w(z0(x ± 1) + m).

A remarkable feature of this construction comes from the fact that we can si-
multaneously create a family (X̃(u), u ≥ 0) of processes with nice monotonicity
properties with respect to the u parameter. To this end, define, for x ∈ Z,

Hx := ((
ξ±
n (y), n ≥ 0, y �= x

)
,
(
ξ−
n (x), n ≥ 0

)
,
(
ξ+
n (x), n ≥ 1

)) ∈ R
N+.

Then, given Hx together with a real number u > 0, the pair (Hx, u) defines
a deterministic process X(u) = (X

(u)
n , n ≥ 0) using the construction above with

ξ+
0 (x) = u. The following lemma is easily obtained by induction.

LEMMA 3.2 (Tarrès [15]). Suppose that w is nondecreasing. Fix Hx and 0 <

u ≤ u′ and assume that the construction for X(u) and X(u′) both succeed. Given
y ∈ Z and k ≥ 1, denote by σ (resp., σ ′) the time when X(u) (resp., X(u′)) visits y

for the kth time. If σ and σ ′ are both finite, then

Z(u)
σ (y + 1) ≥ Z

(u′)
σ ′ (y + 1) and Z(u)

σ (y − 1) ≤ Z
(u′)
σ ′ (y − 1),

N(u)
σ (y, y + 1) ≥ N

(u′)
σ ′ (y, y + 1) and N(u)

σ (y, y − 1) ≤ N
(u′)
σ ′ (y, y − 1),

where Z
(s)
n stands the local time of X(s), and N

(s)
n (y, y ± 1) denotes the number of

jumps from y to y ± 1 up to time n. Moreover, denote by θ± (resp., θ ′±) the time
when X(u) (resp., X(u′)) jumps for the kth time from y to y ± 1. If these quantities
are finite, then

Y
(u)+
θ+ (y) ≤ Y

(u′)+
θ ′+ (y) and Y

(u)−
θ− (y) ≥ Y

(u′)−
θ ′− (y),

where Y (s)± is defined as in (6) for the process X(s).

The combination of the time-line construction of the walk from i.i.d. exponen-
tial random variables together with Lemma 3.2 yields a simple proof of the fol-
lowing key result concerning the localization of the VRRW:

LEMMA 3.3 (Tarrès [15]). Assume that w is nondecreasing and that
∑

n 1/

w(n)2 is finite. Then, for any x ∈ Z, a.s.,{
Y+∞(x) < ∞} = {

Y−∞(x) < ∞} = {
Z∞(x − 1) < ∞} ∪ {

Z∞(x + 1) < ∞}
.
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PROOF. This result is proved in [15] only for linear reinforcements w, but the
same arguments apply, in fact, for any nondecreasing weight function. However,
since some details are omitted in [15], for the sake of completeness, we provide
here a detailed proof (differing in some aspects from the original one). The first
equality {Y+∞(x) < ∞} = {Y−∞(x) < ∞} follows from the fact that the martingale
Mn(x) converges a.s. to some finite limit when

∑
n 1/w(n)2 is finite. Concerning

the second equality, the inclusion{
Y+∞(x) < ∞} = {

Y−∞(x) < ∞} ⊃ {
Z∞(x − 1) < ∞} ∪ {

Z∞(x + 1) < ∞}
is straightforward (one of the sums Y±∞ has only a finite number of terms). We use
the time-line construction of the VRRW X from the sequence (ξ±

n (y), n ≥ 0, y ∈
Z) to prove the converse inclusion. Denote by Nk(x, x ± 1) the number of jumps
of X from x to x ± 1 before time k, and set

T ±
x := ∑

k≥0

1{Xk=x,Xk+1=x±1}ξ±
Nk(x,x±1)(x)

w(Zk(x ± 1))
.

Thus, T ±
x represents the total time consumed by the clocks attached to oriented

edge (x, x ± 1). We claim that{
Y+∞(x) < ∞} ∩ {

Z∞(x − 1) = ∞} ∩ {
Z∞(x + 1) = ∞}

(10)
⊂ {

T +
x = T −

x < ∞}
.

We prove the result for x < 0 (the proof for x > 0 and x = 0 are similar). Let θk

denote the time of the kth jump from site x + 1 to x, and let ik be the local time at
site x + 1 and at time θk . With this notation, on the event {Z∞(x + 1) = ∞}, we
can write

T +
x = ∑

k≥1

ξ+
k−1(x)

1{θk<∞}
w(ik)

and Y+∞(x) = ∑
k≥1

1{θk<∞}
w(ik)

.

Define now

T +
n (x) :=

n−1∑
k=1

(
ξ+
k−1(x) − 1

)1{θk<∞}
w(ik)

.

Recall that (Fn, n ≥ 0) stands for the natural filtration of X and notice that ik is
Fθk

-measurable whereas ξ+
k−1(x) is independent of Fθk

. Thus, (T +
n (x), n ≥ 1) is

a Fθn -martingale. Moreover, using that w(ik) ≥ w(k) for all k ≥ 1, it follows that
the L2-norm of this martingale is bounded by

∑
k≥0 w(k)−2 < ∞. In particular,

this implies that Y+∞(x) is finite if and only if T +
x is finite. It is also clear from

the construction of the time-line process that, on the event {Z∞(x − 1) = ∞} ∩
{Z∞(x + 1) = ∞}, we have T +

x = T −
x . Thus we have established (10).

It remains to prove that the event

Ex := {
T +

x = T −
x < ∞} ∩ {

Z∞(x − 1) = ∞} ∩ {
Z∞(x + 1) = ∞}
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has probability 0. Recall the notation

Hx := ((
ξ±
n (y), n ≥ 0

)
y �=x,

(
ξ−
n (x), n ≥ 0

)
,
(
ξ+
n (x), n ≥ 1

)) ∈ R
N+

and denote by μ the product measure on R
N+ under which Hx is a collection of i.i.d.

exponential random variables with mean 1. Given ξ+
0 (x), the pair (Hx, ξ

+
0 (x)) de-

fines the (deterministic) process X = X(Hx, ξ
+
0 (x)) via the time-line construction

and X under the product law P := μ × Exp(1) is a VRRW.
Let us note that, for μ-a.e. realization of Hx , the set of values of ξ+

0 (x) such
that the time-line construction fails is countable hence has zero Lebesgue measure.
Moreover, Lemma 3.2 implies that, for any (Hx, u) and (Hx, u

′) in Ex with u′ > u,
we have

T +
x

(
Hx, u

′) > T +
x (Hx, u) and T −

x

(
Hx, u

′) ≤ T −
x (Hx, u).

Thus, for any Hx , there is at most one value of ξ+
0 (x) such that (Hx, ξ

+
0 (x)) ∈ Ex .

This yields

P{Ex} = Eμ

(∫ ∞
0

e−u1{(Hx,u)∈Ex} du

)
= Eμ(0) = 0. �

A weaker statement can also be obtained when the assumptions of Lemma 3.3
do not hold.

LEMMA 3.4. For any weight sequence w and for any x ∈ Z, we have a.s.{
Z∞(x − 1) < ∞} ∪ {

Z∞(x + 1) < ∞} ⊂ {
Y+∞(x) < ∞} ∩ {

Y−∞(x) < ∞}
.

PROOF. By symmetry, we can assume without loss of generality that Z∞(x −
1) < ∞. On the one hand, Y−∞(x) is finite since it is a sum with a finite number
of terms. On the other hand, the conditional Borel–Cantelli lemma implies that
Y+∞(x) < ∞; apply, for instance, the theorem of [3] with the sequence 1{Xk=x−1}.

�

3.4. VRRW restricted to a finite set. In the sequel, it will be convenient to
consider the vertex reinforced random walk restricted to some interval [[a, b]] :=
{x ∈ Z :a ≤ x ≤ b} for some a ≤ 0 ≤ b, that is, a walk with the same transition
probabilities (5) as the VRRW X on Z except at the boundary sites a and b where
it is reflected. We shall use the notation X̄ to denote this reflected process. We
also add a bar to denote all the quantities Z̄, Ȳ±, M̄, . . . related with the reflected
process X̄.

REMARK 3.5. Let us emphasize the fact that, for x ∈ ]]a, b[[, the processes
M̄n(x) := Ȳ+

n (x)− Ȳ−
n (x) are still martingales, which are bounded in L2 when (7)

holds. In particular, Lemma 3.3 still holds for the reflected random walk for all site
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x ∈ ]]a, b[[. However, M̄n(a) and M̄n(b) are not martingales anymore. In particular,
Ȳ+∞(a) or Ȳ−∞(b) can be infinite whereas Ȳ−∞(a) and Ȳ+∞(b) are, by construction,
always equal to 0.

We can construct the VRRW X̄ restricted to the interval [[a, b]] using the same
time-line construction used for X, choosing again the random variables ξ±

k (x)

independent and exponentially distributed except for the two boundary r.v. ξ−
0 (a)

and ξ+
0 (b) which are now chosen equal to ∞ (this prevents the walk from ever

jumping from a to a − 1 or from b to b + 1). Let us note that this construction
depends only upon (ξ±

n (x), n ≥ 0, x ∈ ]]a, b[[).
Let X̄′ denote another VRRW restricted to [[a, b′]] ⊃ [[a, b]] for some b′ ≥ b.

Using the time-line construction for X̄ and X̄′ with the same random variables
ξ±
k (x), except for ξ+

0 (b), we directly deduce from Lemma 3.2 a monotonicity re-
sult between the local time processes of X and X′.

LEMMA 3.6. Assume that w is nondecreasing. Fix z ∈ [[a, b]] and k ≥ 1, let
σ,σ ′ be the times when X̄, X̄′ visit z for the kth time. On the event {σ < ∞ and
σ ′ < ∞}, we have a.s.

Z̄σ (z + 1) ≤ Z̄′
σ ′(z + 1) and Z̄σ (z − 1) ≥ Z̄′

σ ′(z − 1),

N̄σ (z, z + 1) ≤ N̄ ′
σ ′(z, z + 1) and N̄σ (z, z − 1) ≥ N̄ ′

σ ′(z, z − 1),

where N and N ′ are defined as in Lemma 3.2 for X̄ and X̄′. Moreover, if we denote
by θ± (resp., θ ′±) the time when X̄ (resp., X̄′) jump for the kth time from z to z±1,
then, on the event of these quantities being finite, we have, a.s.,

Ȳ+
θ+(z) ≥ Ȳ ′+

θ ′+(z) and Ȳ−
θ−(z) ≤ Ȳ ′−

θ ′−(z).

We conclude this section with a simple lemma we will repeatedly invoke to
reduce the study of the localization properties of the VRRW X on Z to those of
the VRRW X̄ restricted to a finite set.

LEMMA 3.7. For N > 0, let X̄ be a VRRW on [[0,N]] and define the events

E = {
Ȳ+∞(0) < ∞} ∩ {

Ȳ−∞(N) < ∞}
,

E ′ = E ∩ {X̄ visits all sites of [[0,N]] i.o.}.
(i) If E (resp., E ′) has positive probability, then the VRRW on Z has positive

probability to localize on a subset of length at most (resp., equal to) N + 1.
(ii) Reciprocally, if the VRRW on Z has positive probability to localize on a

subset of length at most (resp., exactly) N + 1, then there exists some initial local
time configuration C such that, for the C -VRRW on [[0,N]], the event E (resp., E ′)
has positive probability.
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PROOF. Define a sequence (χn)n≥0 of random variables which are, condition-
ally on X̄, independent with law

P{χn = 1|X̄} = 1 − P{χn = 0|X̄} = w(0)1{X̄n=0}
w(0) + w(Z̄n(1))

+ w(0)1{X̄n=N}
w(0) + w(Z̄n(N − 1))

.

The Borel–Cantelli lemma applied to the sequence (χn) yields

E ⊂
{∑

χn < ∞
}
.(11)

Let us also note that if P{∑χn < ∞} > 0, then necessarily P{∑χn = 0} > 0 since
we just need to change a finite number of χn. Moreover, it is clear that we can
construct a VRRW X on Z and a reflected random walk X̄ on [[0,N]] on the same
probability space in such way that X and X̄ coincide on the event {∑χn = 0}.
Therefore, if P{E } > 0, it follows from (11) that the VRRW X on Z localizes on
[[0,N]] with positive probability. Moreover, if P{E ′} > 0, we find that

P

{{∑
χn = 0

}
∩ {

X̄ visits all sites of [[0,N]] i.o.
}}

> 0,

which implies that, with positive probability, X visits every site of [[0,N]] i.o.
without ever exiting the interval.

Reciprocally, if the VRRW on Z has positive probability to localize on some
interval [[x, x + N ]], then, clearly, there exists some initial local time configuration
C on Z such that the C -VRRW on Z has positive probability never to exit the
interval [[0,N]]. On this event, the C -VRRW on Z and the restricted C -VRRW on
[[0,N]] coincide. We complete the proof using Lemma 3.4 which implies that, on
this event, Y+∞(0) and Y−∞(N) are both finite. �

4. Proof of Theorem 1.1. We split the proof of the theorem into several
propositions. We start with two elementary observations:

PROPOSITION 4.1. Let w be a weight sequence.

• If
∑

1/w(k) = ∞, then we have a.s. |R′| �= 2.
• Conversely, if the sum above is finite and the weight sequence w is nondecreas-

ing, then a.s. |R′| = 2.

PROOF. Assume that
∑

1/w(k) = ∞, and consider the reflected VRRW X̄ on
[[0,1]] starting from some initial configuration C . We have

Ȳ+∞(0) = ∑
k≥0

1{X̄k+1=1}
w(Z̄k(1))

=
∞∑

i=Z̄0(1)

1

w(i)
= ∞.

Thus, Lemma 3.7 implies that P{|R′| = 2} = 0.
Reciprocally, if w is nondecreasing and

∑
1/w(k) < ∞, then

∑
1/w(k)2 < ∞,

and we can invoke Lemma 3.3 to conclude. �
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PROPOSITION 4.2. For any weight sequence w, we have a.s. |R′| �= 3.

PROOF. Consider the reflected VRRW X̄ on [[0,2]] starting from some initial
configuration C . We distinguish two cases:

• If
∑

1/w(n) < ∞, then Rubin’s construction at site 1 implies that either 0 or 2
is visited only finitely many times (notice that we do not require here w to be
monotonic).

• If
∑

1/w(n) = ∞, then we have

Ȳ+∞(0) + Ȳ−∞(2) = ∑
k≥0

1{X̄k+1=1}
w(Z̄k(1))

=
∞∑

i=Z̄0(1)

1

w(i)
= ∞.

Thus, in both cases, Lemma 3.7 implies that P{|R′| = 3} = 0. �

REMARK 4.3. Let us note that the result above does not hold for edge-
reinforced random walks: if, for instance, w(n) = 1 when n is even and w(n) = n2

when n is odd, then R′ = {−1,0,1} a.s.; see Sellke [13].

In the rest of the paper, given two sequences (un)n≥1 and (vn)n≥1, we shall use
Tarrès’s notation [14, 15] and write un ≡ vn, when (un − vn)n≥1 is a converging
sequence.

LEMMA 4.4. Assume that w is nondecreasing. Then

∣∣R′∣∣ = 4 with positive probability �⇒ ∑
n≥0

1

w(n)2 < ∞.

PROOF. Assume that
∑

1/w(n)2 = ∞. Let X̄ be a VRRW on [[0,3]] starting
from some initial configuration C . Recall that (9) states that

W
(
Z̄n(2)

) − W
(
Z̄n(0)

) = Ȳ−
n (3) − Ȳ+

n (−1) + M̄n(1) + c
(12)

= Ȳ−
n (3) + M̄n(1) + c,

where c is some constant depending on the initial configuration C . Assume now
that Ȳ−∞(3) is finite, and let us prove that necessarily Ȳ+∞(0) = ∞. Equation (12)
becomes

W
(
Z̄n(2)

) − W
(
Z̄n(0)

) ≡ M̄n(1).(13)

According to Theorem 2.14 of [8], either M̄n(1) converges or lim sup M̄n(1) =
− lim inf M̄n(1) = ∞. On one hand, remark that

∑
n≥0

(
M̄n+1(1) − M̄n(1)

)2 ≥ ∑
n≥0

1{X̄n=0}
w(Z̄n(0))2

.
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Hence, on the event {Z̄∞(0) = ∞}, we have lim sup M̄n = − lim inf M̄n =
∞. On the other hand, by periodicity, Z̄∞(2) ∨ Z̄∞(0) = ∞. Recalling that
limx→∞ W(x) = ∞, we deduce, using (13) that {M̄n(1) converges} ⊂ {Z̄∞(2) =
∞} ∩ {Z̄∞(0) = ∞}. Therefore, a.s.,

lim inf
n

M̄n(1) = −∞ and lim sup
n

M̄n(1) = +∞.

In particular, there exists a.s. arbitrarily large integers n, such that W(Z̄n(0)) ≥
W(Z̄n(2))+ 1. Pick such an n, and let m be the largest integer smaller than n such
that W(Z̄m(0)) ≤ W(Z̄m(2)). For k ∈ (m,n], we have Z̄k(0) ≥ Z̄k(2) and hence

Z̄k(1) ≤ Z̄k(0) + Z̄k(2) + Z̄0(1) ≤ 3Z̄k(0),

assuming that n is large enough. Since w is nondecreasing, we get

∑
k∈(m,n]

1{X̄k=0}
w(Z̄k(1))

≥ ∑
k∈(m,n]

1{X̄k=0}
w(3Z̄k(0))

=
Z̄n(0)∑

i=Z̄m(0)+1

1

w(3i)

≥ 1

3

{
W

(
Z̄n(0)

) − W
(
Z̄m(0) + 1

)} ≥ 1

4
.

As this holds for infinitely many n, we deduce that a.s.

Ȳ+∞(0) = ∑
k

1{X̄k=0}
w(Z̄k(1))

= ∞.

We conclude by using Lemma 3.7. �

Let us note that Lemma 4.4 together with Lemma A.3 of the Appendix imply
that, for any nondecreasing weight sequence w, we have

P
{∣∣R′∣∣ = 4

}
> 0 or αc(w) < ∞ �⇒ ∑

n

1

w(n)2 < ∞.

Hence, when proving Theorem 1.1, we can assume, without loss of generality,
that

∑
n 1/w(n)2 < ∞. In particular, the martingales introduced in Section 3.2

converge a.s. and in L2.

PROPOSITION 4.5. Assume that w is nondecreasing and that (1) holds. We
have

|R′| = 4 with positive probability ⇐⇒ αc(w) < ∞.

PROOF. Let us first suppose that |R′| = 4 with positive probability. Thus, ac-
cording to Lemma 3.7, there exists some initial local time configuration C such



LOCALIZATION ON 4 SITES FOR VRRW 543

that, for the C -VRRW X̄ on [[0,3]], the event E := {Ȳ+∞(0) < ∞} ∩ {Ȳ−∞(3) < ∞}
has positive probability. Using (9), we find that

W
(
Z̄n(2)

) − W
(
Z̄n(0)

) = Ȳ−
n (3) − Ȳ+

n (−1) + M̄n(1) + C,

W
(
Z̄n(3)

) − W
(
Z̄n(1)

) = Ȳ−
n (4) − Ȳ+

n (0) + M̄n(2) + C′.

As we already noticed, we can assume without loss of generality that
∑

1/w(n)2 <

∞ so the martingales M̄n(1) and M̄n(2) converge. Hence, there exist finite random
variables α,β , such that, on the event E ,

W
(
Z̄n(1)

) − W
(
Z̄n(3)

) = α + o(1),
(14)

W
(
Z̄n(2)

) − W
(
Z̄n(0)

) = β + o(1).

For n large enough, this yields

max
(
Z̄n(1), Z̄n(2)

) ≤ W−1(
W

(
max

(
Z̄n(0), Z̄n(3)

)) + γ
)

with γ := |α| + |β| + 1. Hence we have

Ȳ+∞(0) + Ȳ−∞(3) = ∑
k≥0

( 1{X̄k=0}
w(Z̄k(1))

+ 1{X̄k=3}
w(Z̄k(2))

)

≥ ∑
k≥0

1{X̄k∈{0,3}}
w(max(Z̄k(1), Z̄k(2)))

≥ c
∑
k≥0

1{X̄k∈{0,3}}
w(W−1(W(max(Z̄k(0), Z̄k(3))) + γ ))

≥ c
∑
k≥0

1

w(W−1(W(k) + γ ))
.

Therefore, on the event E , we have Iγ (w) < ∞. This shows that αc(w) < ∞.
We now prove the converse implication. Let us assume that Iδ(w) < ∞ for some

δ > 0. In particular,
∑

n 1/w(n)2 < ∞; cf. Lemma A.3. In view of Lemma 3.7,
we will show that, for the reflected VRRW X̄ on [[0,3]], the event {Ȳ+∞(0) <

∞} ∩ {Ȳ−∞(3) < ∞} has positive probability. This will insure that the VRRW on
Z localizes with positive probability on a subset of size less or equal to 4 which
will complete the proof of the proposition since localization on 2 or 3 sites is not
possible with our assumptions on w.

We use the time-line construction. As explained in the previous section we can
construct X̄ from a sequence (ξ±

n (y), n ≥ 0, y ∈ {1,2}) of independent exponential
random variables with mean 1. Observe that the sequences (ξ±

n (1)/w(n), n ≥ 0)

define a w-urn process via Rubin’s construction (choosing + for the red balls).
Let M̂∞(1) denote the limit of this urn defined as in Proposition 2.1. Then, we
have M̂∞(1) ≥ δ + 1 with positive probability. Recall the definition of YR given
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in Corollary 2.2 and note that, on the event {M̂∞(1) ≥ δ + 1}, the random variable
YR is finite. Besides, using Lemma 3.6 to compare X̄ with the walk restricted on
[[0,2]] (which correspond to the urn process above), we get

Ȳ+∞(0) ≤ YR < ∞ on the event
{
M̂∞(1) ≥ δ + 1

}
.

By symmetry, considering the limit M̂∞(2) of the urn process (ξ±
n (2)/w(n), n ≥

0), we also find that

Ȳ−∞(3) < ∞ on the event
{
M̂∞(2) ≤ −δ − 1

}
.

The random variables M̂∞(1) and M̂∞(2) being independent, we conclude that
{Ȳ+∞(0) < ∞} ∩ {Ȳ−∞(3) < ∞} has positive probability. �

PROPOSITION 4.6. Assume that w is nondecreasing and that (1) holds. We
have

αc(w) ∈ (0,∞) �⇒ ∣∣R′∣∣ = 5 with positive probability.

PROOF. Assume that αc(w) ∈ (0,∞). In particular, we have
∑

n 1/w(n)2 <

∞. Since the walks associated with a weight w and any nonzero multiple of w

have the same law, we will assume without loss of generality that w(0) ≥ 1. Let X̄

denote the VRRW reflected on [[0,4]]. Let us prove that, with positive probability,
Ȳ+∞(0) and Ȳ−∞(4) are both finite, and X̄ visits all sites of [[0,4]] infinitely often.

We use again the time-line representation explained in Section 3, except that
we will change the construction slightly for the transition at site 2. Recall that
according to the original construction, when the process jumps for the kth time
from 1 (resp., 3) to 2 and has made m visits to 1 (resp., 3) before time t , then
we attached to the oriented edge (2,1) [resp., (2,3)] a clock which rings after
time ξ−

k (2)/w(m) [resp., ξ+
k (2)/w(m)]. In our new construction, we choose to

attach instead a clock which rings after time ξ−
m (2)/w(m) [resp., ξ+

m (2)/w(m)].
The random variables (ξ±

k (2), k ≥ 0) being i.i.d., this modification does not change
the law of X̄; some random variables ξ±

k (2) are simply never used.
Fix some 0 < ε < 1, and consider the two w-urn processes u1 := (ξ±

n (1)/w(n),
n ≥ 0), and u3 := (ξ±

n (3)/w(n), n ≥ 0). Since Ȳ+∞(0) is stochastically smaller than
it would be for the process reflected in [[0,2]], using similar arguments as in the
proof of Proposition 4.5, we see that there exists a set E1 ⊂ (R2+)N, such that
the event E1 := {u1 ∈ E1} has positive probability and on which Ȳ+∞(0) ≤ ε3. By
symmetry, there exists a set E2, such that E2 := {u3 ∈ E2} has positive probability
and on which Ȳ−∞(4) ≤ ε3. By independence of the urns u1 and u3, the event E1 ∩
E2 also has positive probability. In view of Lemma 3.7, it remains to prove that, on
this event, X̄ visits all the sites of [[0,4]] infinitely often with positive probability.
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We now consider the urn process u2 := (ξ±
n (2)/w(n), n ≥ 0). Recall that, ac-

cording to (4), we may express the limit M̂∞(2) of this urn in the form

M̂∞(2) = ∑
n≥0

(
1 − ξ+

n (2)

w(n)

)
− ∑

n≥0

(
1 − ξ−

n (2)

w(n)

)
.(15)

Similarly, it is not difficult to check that we can also express the limit of the mar-
tingale M̄∞(2) := limn→∞(Ȳ+

n (2) − Ȳ−
n (2)) in the form

M̄∞(2) = ∑
n≥0

(1 − ξ+
cn

(2)

w(cn)

)
− ∑

n≥0

(1 − ξ−
dn

(2)

w(dn)

)
,(16)

where (cn, n ≥ 0) and (dn, n ≥ 0) are the increasing (random) sequences such
that Ȳ+

n (2) = ∑
ck≤n 1/w(ck) and Ȳ−

n (2) = ∑
dk≤n 1/w(dk). The idea now is to

compare M̄∞(2) and M̂∞(2) and prove that, on the event E1 ∩ E2 their values are
close. Then we will use the fact that M̂∞(2) has a density to deduce that M̄∞(2)

can be smaller than αc(w).
Subtracting (16) from (15), we find that

M̂∞(2) − M̄∞(2) = ∑
n≥0

(1 − ξ+
in

(2)

w(in)

)
+ ∑

n≥0

(1 − ξ−
jn

(2)

w(jn)

)
,

where (in, n ≥ 0) and (jn, n ≥ 0) are the complementary sequences of (cn, n ≥ 0)

and (dn, n ≥ 0). Moreover, using relation (8), we have

Ȳ+∞(0) = ∑
n

1

w(jn)
and Ȳ−∞(4) = ∑

n

1

w(in)
.

But, using similar arguments as in the proof of (10), we obtain

E

[(∑
n≥0

1 − ξ+
in

(2)

w(in)

)2∣∣∣E1 ∩ E2

]
= E

[∑
n≥0

1

w(in)2

∣∣∣E1 ∩ E2

]

≤ 1

w(0)
E

[∑
n≥0

1

w(in)

∣∣∣E1 ∩ E2

]

≤ E
[
Ȳ−∞(4)|E1 ∩ E2

] ≤ ε3.

Using Chebyshev’s inequality, we deduce

P
{∣∣M̂∞(2) − M̄∞(2)

∣∣ ≥ 2ε|E1 ∩ E2
} ≤ ε.

Recalling that M̂∞(2) has a density with support on the whole of R (cf. Proposi-
tion 2.1), we can pick η > 0 such that P{|M̂∞(2)| ≤ η} = 2ε. This yields

P
{∣∣M̄∞(2)

∣∣ ≥ η + 2ε|E1 ∩ E2
} ≤ 1 − 2ε + ε ≤ 1 − ε,
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so the set E3 := E1 ∩ E2 ∩{|M̄∞(2))| ≤ η + 2ε} has positive probability. Moreover,
we have

W
(
Z̄n(1)

) − W
(
Z̄n(3)

) = Ȳ+
n (0) − Ȳ−

n (4) − M̄n(2)

and therefore, for all n large enough, on E3,

Z̄n(2) ≤ Z̄n(1) + Z̄n(3) ≤ Z̄n(1) + W−1(
W

(
Z̄n(1)

) + η + 4ε
)
.

Choosing ε small enough such that δ := η + 4ε < αc(w), we obtain for N large,

Ȳ+∞(1) ≥ ∑
n≥N

1{X̄n=1,X̄n+1=2}
w(Z̄n(1) + W−1(W(Z̄n(1)) + δ))

≥ ∑
n≥N

1

w(n + W−1(W(n) + δ))
− ∑

n≥N

1{X̄n=1,X̄n+1=0}
w(Z̄n(1))

≥ ∑
n≥N

1

w(n + W−1(W(n) + δ))
− Ȳ+∞(0).

It follows from Lemma A.6 of the Appendix that Ȳ+∞(1) is infinite on E3. By sym-
metry, we also have Ȳ−∞(3) = ∞ on E3. Therefore, according to Lemma 3.3, on
E3, the VRRW on [[0,4]] visits every site infinitely often. This concludes the proof
of the proposition. �

PROPOSITION 4.7. Assume that w is nondecreasing and that (1) holds. Then

αc(w) < ∞ �⇒ ∣∣R′∣∣ ∈ {4,5} almost surely.

PROOF. We first argue that if αc(w) < ∞, then R′ is a.s. finite and nonempty.
Indeed, recalling Lemma 3.6, each time X visits a new site, say x > 0, as long as it
does not visit x + 2, the restriction of X to the set {x − 1, x, x + 1} can be coupled
with a w-urn process in such a way that it always makes fewer jumps to x + 1
than the urn process. Then Corollary 2.2 and Lemma 3.3 insure that X never visits
x + 2 with a positive probability uniformly bounded from below by a constant
depending only on this urn process (and therefore which does not depend on the
past trajectory of X before its first visit to x). It follows that a.s. lim supXn < ∞
and by symmetry lim infXn > −∞. Hence the walk localizes on a finite set almost
surely.

Let us now assume, by contradiction, that |R′| = N + 1 ≥ 6 with positive prob-
ability. Thus according to Lemma 3.7, there exists some initial local time configu-
ration C such that, for the C -VRRW X̄ on [[0,N]], the event

E := {
Ȳ+∞(0) + Ȳ−∞(N) < ∞} ∩ {X̄ visits 0 and N i.o.}
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has positive probability. Moreover, using (9), we have

W
(
Z̄n(2)

) − W
(
Z̄n(0)

) ≡ Ȳ−
n (3),

W
(
Z̄n(3)

) − W
(
Z̄n(1)

) ≡ Ȳ−
n (4) − Ȳ+

n (0).

On the event E , the quantity Ȳ+∞(0) is finite, whereas Ȳ−∞(3) and Ȳ−∞(4) are infinite
according to Lemma 3.3 since N ≥ 5. Thus, for all A > 0, the stopping time

TA := inf
{
n ≥ 0 : X̄n = 2,W

(
Z̄n(0)

) ≤ W
(
Z̄n(2)

) − A,

W
(
Z̄n(1)

) ≤ W
(
Z̄n(3)

) − A
}

is finite on E . We claim that

P
{
Ȳ+∞(1) = ∞|TA < ∞} → 0 as A → ∞.(17)

For the time being, assume that (17) holds. As before, Lemma 3.3 states that, on E ,
we have Ȳ+∞(1) = ∞. Thus, for all A > 0, we get

P{E } ≤ P
{{

Ȳ+∞(1) = ∞} ∩ {TA < ∞}} ≤ P
{
Ȳ+∞(1) = ∞|TA < ∞}

,

which yields P{E } = 0 and contradicts the initial assumption that the walk localizes
with positive probability on more than 5 sites.

It remains to prove (17). For A > 0, consider a process X̄A which is, up to
time TA, equal to the VRRW X̄ on [[0,N]] and which, after time TA, has the tran-
sition of the VRRW restricted on [[0,2]]. In view of Lemma 3.6, we can construct
X̄A together with X̄ in such way that, with obvious notation,

Ȳ+∞(0) ≤ Ȳ A,+∞ (0) and Ȳ+∞(1) ≤ Ȳ A,+∞ (1).

After time TA, the process X̄A is simply an urn process. Hence, using the same
arguments as in the proof of Proposition 2.1, for n ≥ TA, the process

M̂A
n := W

(
Z̄A

n (0)
) − W

(
Z̄A

n (2)
)

is a martingale with quadratic variation bounded by 2
∑

n 1/w(n)2. Noticing that,
by definition of TA, we have M̂A

TA
≤ −A, the maximal inequality for martingales

shows that, for any ε > 0, there exists a constant C > 0, such that for all A > 0,

P

{
sup
n≥TA

W
(
Z̄A

n (0)
) − W

(
Z̄A

n (2)
) ≥ −A + C

∣∣FTA

}
≤ ε.(18)

Moreover, for every odd integer n ≥ TA, we have X̄A
n = 1 from which we deduce

that, for all n ≥ TA,

Z̄A
n (1) ≥ Z̄A

n (2) + Z̄A
n (0) + Z̄A

TA
(1) − Z̄A

TA
(0) − Z̄A

TA
(2) ≥ Z̄A

n (2) − Z̄A
TA

(2).

On the event {supn≥TA
W(Z̄A

n (0)) − W(Z̄A
n (2)) < −A + C}, we get for n ≥ TA,

Z̄A
n (1) ≥ W−1(

W
(
Z̄A

n (0)
) + A − C

) − Z̄A
TA

(2).



548 A.-L. BASDEVANT, B. SCHAPIRA AND A. SINGH

This yields

Ȳ A,+∞ (0) = Ȳ
A,+
TA

(0) + ∑
n>TA

1{X̄A
n =0}

w(Z̄A
n (1))

≤ Ȳ
A,+
TA

(0) + ∑
n≥0

1

w(W−1(W(n) + A − C) − Z̄A
TA

(2))

with the convention w(x) = w(0) for x ≤ 0. Thus, according to Lemma A.5 of
the Appendix, for A > αc(w) + C, we have Ȳ A,+∞ (0) < ∞ on the event {TA <

∞} ∩ {supn≥TA
W(Z̄A

n (0)) − W(ZA
n (2)) < −A + C}. Using (18), we obtain

P
{
Ȳ A,+∞ (0) = ∞|TA < ∞} ≤ ε.(19)

We can now choose A0 > αc(w) + C and K > 0 such that

P
{
Ȳ A0,+∞ (0) ≥ K|TA0 < ∞} ≤ 2ε.

Notice that for A > A0, the random variable Ȳ A,+∞ (0) is stochastically dominated
by Ȳ

A0,+∞ (0) (this is again a consequence of Lemma 3.6 using the same time-line
construction for X̄A and X̄A0 ). Moreover, by hypothesis,

P{TA < ∞} ≥ P{E } := c > 0,

hence

∀A > A0 P
{
Ȳ A,+∞ (0) ≥ K|TA < ∞} ≤ 2ε/c.(20)

Finally, we consider a third process X̃A which coincides up to time TA with
X̄ and X̄A, and which, after time TA, has the transition of the VRRW restricted
on [[0,3]]. Again, we can construct these processes in such way that Ȳ A,+∞ (0)

stochastically dominates Ỹ A,+∞ (0). This domination implies that (20) also holds
with Ỹ A,+∞ (0) in place of Ȳ A,+∞ (0). Moreover,

M̃A
n (2) := W

(
Z̃A

n (3)
) − W

(
Z̃A

n (1)
) + Ỹ A,+

n (0), n ≥ TA,

is a martingale with bounded quadratic variation. As before, we deduce from the
maximal inequality for martingales, that, for some constant C′ > 0 depending only
on ε and the weight function w,

P

{
inf

n≥TA

M̃A
n (2) − M̃A

TA
(2) ≤ −C′∣∣FTA

}
≤ ε.

Using the facts that M̃A
TA

(2) ≥ A and that Ỹ A,+
n (0) ≥ K with probability smaller

than 2ε/c on the event {TA < ∞}, we obtain

P

{
inf

n≥TA

W
(
Z̃A

n (3)
) − W

(
Z̃A

n (1)
) ≤ −C′ − K + A

∣∣TA < ∞
}

≤ ε′
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with ε′ = ε(1 + 2/c). We now fix A large enough such that A − C′ − K > αc(w).
Using the trivial relation Z̃A

n (2) ≥ Z̃A
n (3) − Z̃A

TA
(3) for n ≥ TA, we deduce, in the

same way as for the proof of (19), that

P
{
Ỹ A,+∞ (1) = ∞|TA < ∞} ≤ ε′.

We complete the proof of (17) by noticing that Ỹ A,+∞ (1) stochastically dominates
Ȳ+∞(1). �

LEMMA 4.8. Assume that w is nondecreasing and that
∑

n 1/w(n)2 < ∞. Fix
∞ ≤ a < 0 < b ≤ ∞ and let X̄ be a C -VRRW on [[a, b]] for some initial local time
configuration C . Set

δ := lim
n→∞W

(
Z̄n(1)

) − W
(
Z̄n(−1)

)
when the limit exists.

Then, for any δ0 ∈ R, we have

P
{{δ exists and equals δ0} ∩ {

Z̄∞(0) = ∞}} = 0.

PROOF. Since the weights w and λw (for λ > 0) define the same VRRW,
we assume, without loss of generality that w(Z0(1)) = 1. Recalling the time-line
construction described in Section 3, we create the C -VRRW X̄ on [[a, b]] from a
collection ((ξ±

n (y), n ≥ 0), y ∈ ]]a, b[[). Set

H := ((
ξ±
n (y), n ≥ 0, y �= 0

)
,
(
ξ−
n (0), n ≥ 0

)
,
(
ξ+
n (0), n ≥ 1

)) ∈ R
N+,

and let μ denote the product measure on R
N+ under which H is a collection of i.i.d.

exponential random variables with mean 1. Then, given H and some other variable
ξ+

0 (0), the pair (H, ξ+
0 (0)) defines a process X̄ = X̄(H, ξ+

0 (0)) via the time-line
construction which is a VRRW under the product probability P := μ × Exp(1).
For u > 0, define

Bu = {
H ∈ R

N+, δ(H, u) exists and equals δ0 and Z̄∞(0) = ∞}

and

B = {
(H, u) ∈ R

N+ × R+, H ∈ Bu

}
.

We will prove that, for almost every u > 0 and h > 0,

μ{Bu ∩ Bu+h} = 0.(21)

This equation implies that {u ∈ R
+,μ{Bu} > 0} has zero Lebesgue measure.

Hence

P
{{δ = δ0} ∩ {

Z̄∞(0) = ∞}} = P{B} =
∫ ∞

0
e−uμ{Bu}du = 0.
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It remains to prove (21). Given (H, u) such that Z̄∞(1) = Z∞(−1) = ∞, we can
define, as in the proof of Lemma 3.3, the increasing sequences (i±k , k ≥ 0) such
that, for all n ≥ 0,

Y±
n (0) = ∑

i±k ≤n

1

w(i±k )
.

For t > 0, define also

z±
t := inf

{
n :

∑
i±k ≤n

ξ±
k (0)

w(i±k )
> t

}
.(22)

Thus z±
t represents the local time at site ±1 when the clock process attached to

site 0 has consumed a time t . Hence, another way to define z±
t is to consider the

continuous-time process (X̃(s), s ≥ 0) associated with (H, u) via the time-line
construction (recall that X̄ is deduced from X̃ by a change of time). Defining

τt := inf
{
s > 0,

∫ s

0
1{X̃s=0} ds > t

}
,

we get that z±
t = Z̃τt (±1).

Let us notice that, on B, P-a.s., we have Z∞(−1) = Z∞(1) = ∞ so the se-
quences (i±k ) are well defined for all k ≥ 0. Moreover, on the event {Z∞(−1) =
Z∞(1) = ∞}, the total time consumed by the clock process at site 0 is infinite P-
a.s.; see the proof of Lemma 3.3. Hence, on B, the random variables z±

t are finite
for all t > 0, P-a.s. Define

δt := W
(
z+
t

) − W
(
z−
t

) = W
(
Z̃τt (1)

) − W
(
Z̃τt (−1)

)
.

By definition of δ, we get

lim
t→∞ δt = δ, P-a.s. on B.

Thus, for almost any u > 0 (with respect to the Lebesgue measure), we have

lim
t→∞ δt (H, u) = δ(H, u) for μ-a.e. H ∈ Bu.(23)

Now let u,h > 0 be fixed and such that (23) holds for u and u + h. Pick H ∈
Bu ∩ Bu+h. Lemma 3.2 implies that, for all k ≥ 0, we have

i+k (H, u + h) ≤ i+k (H, u) and i−k (H, u + h) ≥ i−k (H, u).

Recalling that w(Z̄0(1)) = w(i+0 ) = 1, we deduce from (22) that, for t > 0,

z+
t (H, u + h) ≤ z+

t−h(H, u) and z−
t (H, u + h) ≥ z−

t (H, u).
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This yields

δt (H, u) − δt (H, u + h) ≥ W
(
z+
t (H, u)

) − W
(
z+
t−h(H, u)

)

≥ ∑
z+
t−h≤k<z+

t

1

w(k)

≥ ∑
z+
t−h≤i+k <z+

t

1

w(i+k )
:= �+

u,h(t),

where z+
t−h, z

+
t and i+k stand for z+

t−h(H, u), z+
t (H, u) and i+k (H, u). In view

of (23), we deduce that, for almost every u,h > 0, we have

μ{Bu ∩ Bu+h} ≤ μ
{

Bu ∩
{
lim sup
t→∞

�+
u,h(t) = 0

}}
.

It remains to prove that the right-hand side in the previous inequality is equal to
zero. For H ∈ Bu, the quantity

h∗
t (H, u) := ∑

z+
t−h≤i+k <z+

t

ξ+
k (0)

w(i+k )

is well defined. Moreover, it is clear that

lim
t→∞h∗

t = h, μ-a.s. on Bu.(24)

On the other hand, we have

∣∣h∗
t − �+

u,h(t)
∣∣21Bu ≤ 2

( ∑
i+k ≥z+

t−h

1 − ξ+
k (0)

w(i+k )
1{θk<∞}

)2

+ 2
( ∑

i+k ≥z+
t

1 − ξ+
k (0)

w(i+k )
1{θk<∞}

)2

,

where θk denotes the time of the kth jump of X̄ from 1 to 0. Let (F̃t , t > 0) de-
note the natural filtration of the continuous time process X̃t (·, u). Using the same
argument as in the proof of (10), we find that

Eμ

[(
h∗

t − �+
u,h(t)

)21Bu |F̃τt−h

] ≤ 4Eμ

[ ∑
i+k ≥z+

t−h

1{θk<∞}
w(i+k )2

∣∣∣F̃τt−h

]

≤ ∑
k≥z+

t−h

4

w(k)2 .
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This yields

μ
{∣∣h∗

t − �+
u,h(t)

∣∣1Bu ≥ h/2|F̃τt−h

} ≤ 16

h2

∑
k≥z+

t−h

1

w(k)2 .

Hence, by monotone convergence,

lim
t→∞μ

{∣∣h∗
t − �+

u,h(t)
∣∣1Bu ≥ h/2

} = 0.(25)

Combining (24) and (25), we conclude that

lim
t→∞μ

{
Bu ∩ {

�+
u,h(t) ≤ h/4

}}

≤ lim
t→∞μ

{
Bu ∩ {∣∣h∗

t − �+
u,h(t)

∣∣ ≥ h/2
}} + lim

t→∞μ
{

Bu ∩ {
h∗

t ≤ 3h/4
}}

= 0,

which implies μ{Bu ∩ {lim supt→∞ �+
u,h(t) = 0}} = 0. �

We can now prove the last part of Theorem 1.1.

PROPOSITION 4.9. Assume that w is nondecreasing and that (1) holds. Then

αc(w) = 0 �⇒ ∣∣R′∣∣ �= 5 almost surely.

PROOF. Assume by contradiction that αc(w) = 0 and that |R′| = 5 holds with
positive probability. Thus there exists an initial local time configuration C such
that, for the C -VRRW X̄ on [[0,4]], the event

E := {
Ȳ+∞(0) + Ȳ−∞(4) < ∞} ∩ {X̄ visits 0 and 4 i.o.}

has positive probability. Moreover, equation (9) yields, for n ≥ 0,

W
(
Z̄n(1)

) − W
(
Z̄n(3)

) = Ȳ+
n (0) − M̄n(2) − Ȳ−

n (4) + c

for some constant c depending on the initial configuration. On the event E , each
term on the right-hand side of this equation converges to a limit, thus

lim
n→∞W

(
Z̄n(1)

) − W
(
Z̄n(3)

) = Ȳ+∞(0) − M̄∞(2) − Ȳ−∞(4) + c =: δ
exists and is finite. Moreover, Lemma 4.8 implies that P{{δ = 0} ∩ E } = 0. Let us
now prove that the event E ∩ {δ > 0} has probability 0 (the same result holds for
δ < 0 by symmetry). On this event, for n large enough, we get

W
(
Z̄n(1)

) ≥ W
(
Z̄n(3)

) + δ′(26)

with δ′ = δ/2. Besides, we have

W
(
Z̄n(2)

) − W
(
Z̄n(0)

) ≡ Ȳ−
n (3),

W
(
Z̄n(2)

) − W
(
Z̄n(4)

) ≡ Ȳ+
n (1).
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Since, on E , the quantities Ȳ−∞(3) and Ȳ+∞(1) are infinite (cf. Lemma 3.3), we
deduce that Z̄n(2) is larger than Z̄n(0) and Z̄n(4) for n large enough. Moreover,
by periodicity, the sum of these three quantities is, up to a constant, equal to n/2.
Thus, for n large enough, we obtain

3Z̄n(2) ≥ n

2
≥ Z̄n(1).

Using (26), we get, for n large enough, on the event E ∩ {δ > 0},
1{X̄n=3,X̄n+1=2}

w(Z̄n(2))
≤ 1{X̄n=3}

w(Z̄n(1)/3)
≤ 1{X̄n=3}

w(W−1(W(Z̄n(3)) + δ′)/3)
.

Since αc(w) = 0, it follows from Lemma A.5 of the Appendix that Ȳ−∞(3) is finite
which contradicts the fact that X̄ visits all the sites of [[0,4]] infinitely often. �

Theorem 1.1 is now a consequence of Propositions 4.5, 4.6, 4.7 and 4.9. Let
us conclude this section by remarking that we can also describe the shape of the
asymptotic local time configuration when αc(w) < ∞. Indeed, collecting the re-
sults obtained during the proof of the theorem, it is not difficult to check (the details
being left out for the reader) that the asymptotic local time profile of the walk on
R′ at time n takes the following form:

In particular, when the walk localizes on 4 sites, only the two central sites are
visited a nonnegligible proportion of time [this follows from (30) of Lemma A.5
of the Appendix]. When the walk localizes on 5 sites, a more unusual behavior may
happen. If the weight function is regularly varying [e.g., w(n) ∼ n log logn], then,
again, the walk spends asymptotically all its time on two consecutive vertices,

lim
n→∞

Ln ∧ Rn

n
= 0 and lim

n→∞
Ln ∨ Rn

n
= 1

2
.

However, this result is not true for general weight functions. In fact, the ratio
Zn(y)/n of time spent at site y may not converge. For instance, considering the
weight sequence w0 of Remark A.4 of the Appendix, we find that when the walk
localizes on 5 sites,

lim inf
n→∞

Ln ∧ Rn

n
= 0 but lim sup

n→∞
Ln ∧ Rn

n
> 0.
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Finally, let us mention that the functions ε(n) and ε′(n) can also be explicitly
computed for particular weights sequences. For example, for w(n) = n log logn,
using (9) and similar arguments as in the proof of (10), we find that

W
(
ε(n)

) ≡ Y+
n (x + 1) ≡

n/2∑
k=0

pk

w(k)
and W

(
ε′(n)

) ≡ W(n/2) − W
(
ε(n)

)
,

where pk denotes the probability of the walk to jump to site x + 1 at its kth visit to
x + 2 (i.e., pk ∼ L2k/k). Thus, after some (rather tedious) calculations, we deduce
that, on the event δ := limn→∞ W(Rn) − W(Ln) ∈ (0,1), the asymptotic local
time profile on R′ takes the following form:

APPENDIX

PROPOSITION A.1. Let w and w̃ denote two nondecreasing weight func-
tions.

(a) For any λ > 0, we have αc(w) = λαc(λw) (scaling).
(b) If w ≤ w̃, then αc(w) ≥ αc(w̃) (monotonicity).
(c) If w ∼ w̃, then αc(w) = αc(w̃) (asymptotic equivalence).

PROOF. The scaling property (a) follows directly from the relation λIα(λw) =
Iλα(w). We now prove (b). For x ≥ 0 and α > 0, set u(x,α) := W−1(W(x) + α)

and define ũ(x,α) similarly for w̃. We have
∫ u(x,α)

x

1

w(t)
dt =

∫ ũ(x,α)

x

1

w̃(t)
dt = α.(27)

When w ≤ w̃, the equality above implies that u(x,α) ≤ ũ(x,α) for all x and all
α > 0. Since w is nondecreasing we get w(u(x,α)) ≤ w̃(ũ(x,α)), hence Iα(w) ≥
Iα(w̃). This establishes (b).

Suppose now that w and w̃ are two weight functions such that w(x) = w̃(x)

for all x larger than some x0. Then, in view of (27), we see that u(x,α) = ũ(x,α)

for all α > 0 and all x ≥ x0. Hence αc(w) = αc(w̃). This shows that αc(w) does
not depend upon the values taken by w on any compact interval [0, x0]. Thus (c)
follows directly from (a) and (b). �

REMARK A.2. Theorem 1.1 states that when αc(w) is finite and nonzero, the
walk localizes on either 4 or 5 sites. It would certainly be interesting to estimate the
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probability of each of these events. This seems a difficult question. Let us remark
that these probabilities are not (directly) related to αc(w). Indeed, for any λ > 1,
the weight functions w and λw define the same VRRW yet, αc(w) �= αc(λw).

PROOF OF PROPOSITION 1.2. We just need to check that αc(x log logx) = 1.
For x ≥ 1, set

w(x) := x
(
1 + L(logx)

)
,

where L denotes the Lambert function defined as the solution of L(x)eL(x) = x.
Then it follows from elementary calculation that

w(W−1(x))

w(W−1(x + α))
= xx(1 + logx)

(x + α)x+α(1 + log(x + α))
∼

x→∞
e−α

xα
.

Therefore αc(w) = 1. Using now the well-known equivalence L(x) ∼ log(x), we
conclude using (c) of Proposition A.1 that αc(x log logx) = 1. �

LEMMA A.3. Assume that w is nondecreasing. We have

lim inf
x→∞

w(x)

x
≥ 1

αc(w)
.

In particular, when αc(w) < ∞, then
∑

1/w(n)2 < ∞, and if αc(w) = 0, then w

has super-linear growth.

PROOF. In view of the scaling property λIα(λw) = Iλα(w), we just need to
prove that lim infw(x)/x < 1 implies I1(w) = ∞. Thus, let us assume that for
some ε > 0, there exist arbitrarily large x such that w(x)/x ≤ 1 − ε. Then, for
such an x and for y ≤ εx, we have, since w is nondecreasing,

W
(
y + (1 − ε)x

) − W(y) =
∫ y+(1−ε)x

y

dz

w(z)
≥ (1 − ε)x

w(x)
≥ 1,

which we can rewrite as

1

W−1(W(y) + 1)
≥ 1

y + (1 − ε)x
.

Thus ∫ εx

εx/2

1

w(W−1(W(y) + 1))
≥ ε

2 − ε
.(28)

Since there exist arbitrarily large x such that (28) holds, we conclude that I1(w) =
∞. �
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REMARK A.4. The previous lemma cannot be improved without additional
assumptions on w. Indeed, consider the weight function w0 defined by w0(x) =
(n!)2 for x ∈ [((n − 1)!)2, (n!)2), n ∈ N

∗. It is easily seen that

lim inf
x→∞

w0(x)

x
= 1 = 1

αc(w0)
.

This provides an example of a weight function which does not uniformly grow
faster than linearly and yet for which the VRRW localizes on 4 sites with positive
probability. On the other hand, if w is assumed to be regularly varying, then using
similar arguments to those in the proof above, one can check that the finiteness of
αc(w) implies lim∞ w(x)/x = ∞.

LEMMA A.5. Assume that w is nondecreasing and αc(w) < ∞, for any 0 <

δ < δ′, we have

lim inf
x→∞

W−1(W(x) + δ′)
W−1(W(x) + δ)

≥ e(δ′−δ)/(αc(w)).(29)

Furthermore, for δ > αc(w),

lim
x→∞

x

W−1(W(x) + δ)
= 0.(30)

As a consequence:

(a) For any δ > αc(w) and any c ∈ R,
∞∑
n

1

w(W−1(W(n) + δ) − c)
< ∞.

(b) If αc(w) = 0, then, for any δ, γ > 0,
∞∑
n

1

w(γW−1(W(n) + δ))
< ∞.

PROOF. Recall the notation u(x, δ) := W−1(W(x) + δ). We have
∫ u(x,δ′)

u(x,δ)

ds

w(s)
= δ′ − δ.

Using Lemma A.3 and the fact that u(x, δ) tends to infinity as x goes to infinity,
we get, for any α > αc(w),

lim inf
x→∞ log

(
u(x, δ′)
u(x, δ)

)
= lim inf

x→∞

∫ u(x,δ′)

u(x,δ)

ds

s
≥ lim

x→∞

∫ u(x,δ′)

u(x,δ)

ds

αw(s)
= δ′ − δ

α
,

which yields (29). Assertion (a) now follows from (29) noticing that, for αc(w) <

γ < δ, we have W−1(W(n) + δ) − c ≥ W−1(W(n) + γ ) for all n large enough.
The proof of assertion (b) is similar.
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It remains to prove (30). Let δ > αc(w) and pick ε > 0 small enough such that
αc(w) < δ − ε. Assume by contradiction that, for some A > 0, we can find x0
arbitrarily large such that u(x0, δ) ≤ Ax0. Then, for all x < x0,

ε =
∫ u(x,δ)

u(x,δ−ε)

dy

w(y)
≤

∫ Ax0

0

dy

w(u(x, δ − ε))
= Ax0

w(u(x, δ − ε))
,

which, in turn, implies ∫ x0

x0/2

dx

w(u(x, δ − ε))
≥ ε

2A

and contradicts the fact that Iδ−ε(w) < ∞. �

LEMMA A.6. Assume that w is nondecreasing. For any β < αc(w), we have
∞∑
n

1

w(n + W−1(W(n) + β))
= ∞.

PROOF. Choose α ∈ (β,αc(w)). Since w is nondecreasing, for any t ≥ 0 and
any m ≤ n, we have

u(n, t) − u(m, t) ≥ n − m.(31)

Assume now that, for some large n, we have n + u(n,β) ≥ u(n,α). Then, neces-
sarily, there exists k ∈ [u(n,β), u(n,α)], such that w(k) ≤ n/(α−β). In particular,
since w is nondecreasing, w(u(n,β)) ≤ n/(α − β). Moreover, using (31), we get
m + u(m,β) ≤ u(n,β) for all m ≤ n/2. Thus we also have w(m + u(m,β)) ≤
n/(α − β), for all m ≤ n/2. It follows that

n/2∑
m=n/4

1

w(m + u(m,β))
≥ α − β

4
.

Therefore if n+u(n,β) ≥ u(n,α), for infinitely many n, the desired result follows.
Conversely, if the inequality above holds only for finitely many n, then because w

is nondecreasing, the result follows as well from the fact that Iα(w) = ∞. �
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