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COMBINATORIAL APPROACH TO THE INTERPOLATION
METHOD AND SCALING LIMITS IN SPARSE RANDOM GRAPHS

BY MOHSEN BAYATI1, DAVID GAMARNIK2 AND PRASAD TETALI3

Stanford Univeristy, MIT and Georgia Tech

We establish the existence of free energy limits for several combinato-
rial models on Erdös–Rényi graph G(N, �cN�) and random r-regular graph
G(N, r). For a variety of models, including independent sets, MAX-CUT,
coloring and K-SAT, we prove that the free energy both at a positive and zero
temperature, appropriately rescaled, converges to a limit as the size of the
underlying graph diverges to infinity. In the zero temperature case, this is in-
terpreted as the existence of the scaling limit for the corresponding combina-
torial optimization problem. For example, as a special case we prove that the
size of a largest independent set in these graphs, normalized by the number of
nodes converges to a limit w.h.p. This resolves an open problem which was
proposed by Aldous (Some open problems) as one of his six favorite open
problems. It was also mentioned as an open problem in several other places:
Conjecture 2.20 in Wormald [In Surveys in Combinatorics, 1999 (Canter-
bury) (1999) 239–298 Cambridge Univ. Press]; Bollobás and Riordan [Ran-
dom Structures Algorithms 39 (2011) 1–38]; Janson and Thomason [Combin.
Probab. Comput. 17 (2008) 259–264] and Aldous and Steele [In Probability
on Discrete Structures (2004) 1–72 Springer].

Our approach is based on extending and simplifying the interpolation
method of Guerra and Toninelli [Comm. Math. Phys. 230 (2002) 71–79] and
Franz and Leone [J. Stat. Phys. 111 (2003) 535–564]. Among other appli-
cations, this method was used to prove the existence of free energy limits
for Viana–Bray and K-SAT models on Erdös–Rényi graphs. The case of
zero temperature was treated by taking limits of positive temperature mod-
els. We provide instead a simpler combinatorial approach and work with
the zero temperature case (optimization) directly both in the case of Erdös–
Rényi graph G(N, �cN�) and random regular graph G(N, r). In addition we
establish the large deviations principle for the satisfiability property of the
constraint satisfaction problems, coloring, K-SAT and NAE-K-SAT, for the
G(N, �cN�) random graph model.

1. Introduction. Consider two random graph models on nodes [N ] � {1, . . . ,

N}, the Erdös–Rényi graph G(N,M) and the random r-regular graph G(N, r).
The first model is obtained by generating M edges of the N(N − 1)/2 possible
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edges uniformly at random without replacement. Specifically, assume M = �cN�
where c > 0 is a constant (does not grow with N ). The second model G(N, r) is
a graph chosen uniformly at random from the space of all r-regular graphs on N

nodes, where the integer r is a fixed integer constant. Consider the size |IN | of a
largest independent set IN ⊂ [N ] in G(N, �cN�) or G(N, r). It is straightforward
to see that |IN | grows linearly with N . It was conjectured in several papers includ-
ing Conjecture 2.20 in [8, 22, 28], as well as [25] and [3], that |IN |/N converges in
probability as N → ∞. Additionally, this problem was listed by Aldous as one of
his six favorite open problems [2]. (For a new collection of Aldous’s favorite open
problems, see [1].) The fact that the actual value of |IN | concentrates around its
mean follows from a standard Azuma-type inequality. However, a real challenge
is to show that the expected value of |IN | normalized by N does not fluctuate for
large N .

This conjecture is in fact just one of a family of similar conjectures. Con-
sider, for example, the random MAX-K-SAT problem—the problem of finding
the largest number of satisfiable clauses of size K in a uniformly random instance
of a K-SAT problem on N variables with cN clauses. This problem can be viewed
as an optimization problem over a sparse random hypergraph. A straightforward
argument shows that asymptotically as N → ∞, at least 1 − 2−K fraction of the
clauses can be satisfied with high probability (w.h.p.). Indeed any random assign-
ment of variables satisfies each clause with probability 1−2−K . It was conjectured
in [10] that the proportion of the largest number of satisfiable clauses has a limit
w.h.p. as N → ∞. As another example, consider the problem of partial q-coloring
of a graph: finding a q-coloring of nodes which maximizes the total number of
properly colored edges. It is natural to conjecture again that value of this maxi-
mum has a scaling limit w.h.p. (though we are not aware of any papers explicitly
stating this conjecture).

Recently a powerful rigorous statistical physics method was introduced by
Guerra and Toninelli [23] and further developed by Franz and Leone [16], Franz,
Leone and Toninelli [17], Panchenko and Talagrand [27] and Montanari [26] in
the context of the theory of spin glasses. The method is based on an ingenious in-
terpolation between a random hypergraph model on N nodes on the one hand, and
a disjoint union of random hypergraph models on N1 and N2 nodes, on the other
hand, where N = N1 +N2. Using this method it is possible to show for certain spin
glass models on random hypergraphs, that when one considers the expected log-
partition function, the derivative of the interpolation function has a definite sign at
every value of the interpolation parameter. As a result the expected log-partition
function of the N -node model is larger (or smaller depending on the details of the
model) than the sum of the corresponding expected log-partition functions on N1
and N2-node models. This super(sub)-additivity property is used to argue the ex-
istence of the (thermodynamic) limit of the expected log-partition function scaled
by N . From this property the existence of the scaling limits for the ground states
(optimization problems described above) can also be shown by taking a limit as
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positive temperature approaches zero temperature. In [16], the method was used to
prove the scaling limit of log-partition functions corresponding to random K-SAT
model for even K , and also for the so-called Viana–Bray models with random
symmetric Hamiltonian functions. The case of odd K was apparently resolved
later using the same method [18].

Results and technical contributions. The goal of the present work is to simplify
and extend the applicability of the interpolation method, and we do this in several
important ways. First, we extend the interpolation method to a variety of models on
Erdös–Rényi graphs not considered before. Specifically, we consider independent
set, MAX-CUT, Ising, graph coloring (henceforth referred to as coloring), K-SAT
and Not-All-Equal K-SAT (NAE-K-SAT) models. The coloring model, in partic-
ular, is of special interest as it is the first nonbinary model to which interpolation
method is applied.

Second, we provide a simpler and a more combinatorial interpolation scheme
as well as analysis. Moreover, we treat the zero temperature case (optimization
problem) directly and separately from the case of the log-partition function, and
again the analysis turns out to be substantially simpler. As a result, we prove the
existence of the limit of the appropriately rescaled value of the optimization prob-
lems in these models, including the independent set problem, thus resolving the
open problem stated earlier.

Third, we extend the above results to the case of random regular graphs (and hy-
pergraph ensembles, depending on the model). The case of random regular graphs
has been considered before by Franz, Leone and Toninelli [17] for the K-SAT
and Viana–Bray models with an even number of variables per clause, and Monta-
nari [26] in the context of bounds on the performance of low density parity check
(LDPC) codes. In fact, both papers consider general degree distribution models.
The second of these papers introduces a multi-phase interpolation scheme. In this
paper we consider a modification of the interpolation scheme used in [17] and
apply it to the same six models we are focusing in the case of Erdös–Rényi graph.

Finally, we prove the large deviation principle for the satisfiability property
for coloring, K-SAT and NAE-K-SAT models on Erdös–Rényi graph in the fol-
lowing sense. A well-known satisfiability conjecture [19] states that for each of
these models there exists a (model dependent) critical value c∗ such that for ev-
ery ε > 0, when the number of edges (or clauses for a SAT-type problem) is at
most (c∗ − ε)N , the model is colorable (satisfiable) w.h.p., and when it is at least
(c∗ + ε)N , it is not colorable (not satisfiable) w.h.p. as N → ∞. Friedgut [19]
came close to proving this conjecture by showing that these models exhibit sharp
phase transition: there exists a sequence c∗

N such that for every ε, the model is
colorable (satisfiable) w.h.p. as N → ∞ when the number of edges (clauses) is
at most (c∗

N − ε)N , and is not colorable (satisfiable) w.h.p. when the number of
edges (clauses) is at least (c∗

N + ε)N . It is also reasonable to conjecture (which in
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fact is known to be true in the case K = 2), that not only the satisfiability conjec-
ture is valid, but, moreover, the probability of satisfiability p(c,N) decays to zero
exponentially fast when c > c∗.

In this paper we show that for these three models, namely coloring, K-SAT
and NAE-K-SAT, the limit r(c) � limN→∞ N−1 logp(c,N) exists for every c.
Namely, while we do not prove the satisfiability conjecture and the exponential rate
of convergence to zero of the satisfiability probability above the critical threshold,
we do prove that if the convergence to zero occurs exponentially fast, it does so at a
well-defined rate r(c). Assuming the validity of the satisfiability conjecture and the
exponential rate of decay to zero above c∗, our result implies that r(c) = 0 when
c < c∗ and r(c) < 0 when c > c∗. Moreover, we show that our results would imply
the satisfiability conjecture, if one could strengthen Friedgut’s result as follows:
for every ε > 0, p(c∗

N + ε,N) converges to zero exponentially fast, where c∗
N is

the same sequence as in Friedgut’s theorem.

Organization of the paper. The remainder of the paper is organized as follows. In
the following section we introduce the sparse random (Erdös–Rényi) and random
regular (hyper)-graphs and introduce various combinatorial models of interest. Our
main results are stated in Section 3. The proofs for the case of Erdös–Rényi graphs
are presented in Section 4 for results related to combinatorial optimization, and in
Section 5 for results related to the log-partition function. The proofs of results for
random regular graphs are presented in Section 6. Several auxiliary technical re-
sults are established in the Appendices A and B. In particular we state and prove a
simple modification of a classical super-additivity theorem: if a sequence is nearly
super-additive, it has a limit after an appropriate normalization.

Notations. We close this section with several notational conventions. R(R+)

denotes the set of (nonnegative) real values, and Z(Z+) denotes the set of (non-
negative) integer values. The log function is assumed to be with a natural base. As
before, [N ] denotes the set of integers {1, . . . ,N}. O(·) stands for standard order
of magnitude notation. Specifically, given two positive functions f (N), g(N) de-
fined on N ∈ Z+, f = O(g) means supN f (N)/g(N) < ∞. Also f = o(g) means
limN→∞ f (N)/g(N) = 0. Throughout the paper, we treat [N ] as a set of nodes,
and we consider splitting this into two sets of nodes, namely [N1] = {1, . . . ,N1}
and {N1 + 1, . . . ,N}. For symmetry, with some abuse of notation, it is convenient
to denote the second set by [N2] where N2 = N − N1. � denotes the set-theoretic
symmetric difference. Bi(N, θ) denotes the binomial distribution with N trials
and success probability θ . Pois(c) denotes a Poisson distribution with parameter c,
d= stands for equality in distribution. A sequence of random variables XN is said to
converge to a random variable X with high probability (w.h.p.) if for every ε > 0,
limN→∞ P(|XN − X| > ε) = 0. This is the usual convergence in probability.
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2. Sparse random hypergraphs. Given a set of nodes [N ] and a positive in-
teger K , a directed hyperedge is any ordered set of nodes (i1, . . . , iK) ∈ [N ]K .
An undirected hyperedge is an unordered set of K not necessarily distinct nodes
i1, . . . , iK ∈ [N ]. A directed (undirected) K-uniform hypergraph on the node set
[N ] is a pair ([N ],E), where E is a set of directed (undirected) K-hyperedges
E = {e1, . . . , e|E|}. Here uniformity corresponds to the fact that every hyperedge
has precisely K nodes. A hypergraph is called simple if the nodes within each
hyperedge em,1 ≤ m ≤ |E|, are distinct and all the hyperedges are distinct. A (di-
rected or undirected) hypergraph is called r-regular if each node i ∈ [N ] appears
in exactly r hyperedges. The necessary condition for such a hypergraph to exist
is Nr/K ∈ Z+. A degree �i = �i(G) of a node i is the number of hyperedges
containing i. A (partial) matching is a set of hyperedges such that each node be-
longs to at most one hyperedge. A matching is perfect if every node of the graph
belongs to exactly one hyperedge. In this paper we use the terms hypergraph and
graph (hyperedge and edge) interchangeably.

In order to address a variety of models in a unified way, we introduce two ran-
dom directed hypergraph models, namely the Erdös–Rényi random graph model
G(N,M),M ∈ Z+, and the random regular graph G(N, r), r ∈ Z+. These two
graph models, each consisting of N nodes, are described as follows. The first
G(N,M,K) is obtained by selecting M directed hyperedges uniformly at ran-
dom with replacement from the space of all [N ]K hyperedges. A variant of this is
the simple Erdös–Rényi graph also denoted for convenience by G(N,M), which is
obtained by selecting M edges uniformly at random without replacement from the
set of all undirected hyperedges each consisting of distinct K nodes. In this paper
we will consider exclusively the case when M = �cN�, and c is a positive constant
which does not grow with N . In this case the probability distribution of the degree
of a typical node is Pois(cK) + O(1/N). For this reason we will also call it a
sparse random Erdös–Rényi graph. Often a sparse random Erdös–Rényi graph is
defined by including each hyperedge in [N ]K into the hypergraph with probability
c/NK−1, and not including it with the remaining probability 1 − c/NK−1. The
equivalence of two models is described using the notion of contiguity and is well
described in a variety of books, for example, [4, 24].

The second model G(N, r,K) is defined to be an r-regular directed K-uniform
hypergraph generated uniformly at random from the space of all such graphs. We
assume Nr/K ∈ Z+, so that the set of such graphs is nonempty. A simple (di-
rected or undirected) version of G(N, r,K) is defined similarly. In this paper we
consider exclusively the case when r is a constant (as a function of N ), and we call
G(N, r,K) a sparse random regular graph.

REMARK 1. The reason for considering the more general case of hypergraphs
is to capture combinatorial models with hyperedges. For example, in the case of
K-SAT each clause contains K ≥ 2 distinct nodes that can be considered as a
hyperedge on K nodes (more detail is provided below).
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REMARK 2. In all models studied in this paper, except for K-SAT and NAE-
K-SAT, K satisfies K = 2. Therefore, to simplify the notation we drop the refer-
ence to K and throughout the paper use the shorter notation G(N,M) and G(N, r)

for the two random graph models.

From nonsimple to simple graphs. While it is common to work with simple
hypergraphs, for our purpose it is more convenient to establish results for directed
nonsimple hypergraphs first. It is well known, however, that both G(N,M) and
G(N, r) graphs are simple with probability which remains at least a constant as
N → ∞, as long as c, r,K are constants. Since we prove statements which hold
w.h.p., our results have immediate ramification for simple Erdös–Rényi and regular
graphs.

It will be useful to recall the so-called configuration method of constructing the
random regular graph [5, 6, 20]. Each node i is associated with r nodes denoted
by j i

1, . . . , j
i
r . We obtain a new set of Nr nodes. Consider the K-uniform perfect

matching e1, . . . , eNr/K generated uniformly at random on this set of nodes. From
this set of edges we generate a graph on the original N nodes by projecting each
edge to its representative. Namely an edge (i1, . . . , iK) is created if and only if
there is an edge of the form (j

i1
k1

, . . . , j
iK
kK

) for some k1, . . . , kK ∈ [r]. The resulting
graph is a random r-regular (not necessarily simple) graph, which we again denote
by G(N, r). From now on when we talk about configuration graph, we have in
mind the graph just described on Nr nodes. It is known [24] that with probability
bounded away from zero as N → ∞ the resulting graph is in fact simple.

Given a hypergraph G = ([N ],E), we will consider a variety of combinato-
rial structures on G, which can be defined in a unified way using the notion of
a Markov random field (MRF). The MRF is a hypergraph G together with an
alphabet χ = {0,1, . . . , q − 1}, denoted by [q−], and a set of node and edge
potentials Hi, i ∈ [N ],He, e ∈ E. A node potential is a function Hi : [q−] → R,
and an edge potential is a function He : [q−]K → {−∞} ∪ R. Given a MRF
(G, [q−],Hi,He, i ∈ [N ], e ∈ E) and any x ∈ [q−]N , let

H(x) = ∑
i∈[N]

Hi(xi) + ∑
e∈E

He(xe), H(G) = sup
x∈[q−]N

H(x),

where xe = (xi, i ∈ e). Namely, H(x) is the value associated with a chosen assign-
ment x, and H is the optimal value, or the groundstate in the statistical physics
terminology. In many cases the node and edge potentials will be random functions
generated i.i.d.; see examples below.

Associated with a MRF is the Gibbs probability measure μG on the set of node
values [q−]N defined as follows. Fix a parameter λ > 0, and assign the probability
mass μG(x) = λH(x)/ZG to every assignment x ∈ [q−]N , where ZG = ∑

x λH(x)
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is the normalizing partition function. Observe that limλ→∞(logλ)−1 logZG =
H(G). Sometimes one considers λ = exp(1/T ) where T is temperature. The case
T = 0, namely λ = ∞ then corresponds to the zero temperature regime, or equiv-
alently the optimization (groundstate) problem. We distinguish this with a positive
temperature case, namely λ < ∞.

We will consider in this paper a variety of MRF defined on sparse random
graphs G(N, �cN�) and G(N, r). (In the statistical physics literature xi are called
spin values, and the corresponding MRF is called a diluted spin glass model.) We
now describe some examples of concrete and well-known MRF and show that they
fit the framework described above.

Independent set. K = 2 and q = 2. Define Hi(1) = 1,Hi(0) = 0 for all i ∈ [N].
Define He(1,1) = −∞,He(1,0) = He(0,1) = He(0,0) = 0 for every edge e =
(i1, i2). Then for every vector x ∈ {0,1}N we have H(x) = −∞ if there exists
an edge ej = (i1, i2) such that xi1 = xi2 = 1 and H(x) = |{i :xi = 1}|, otherwise.
Equivalently, H(x) takes finite value only on x corresponding to independent sets,
and in this case it is the cardinality of the independent set. H(G) is the cardinality
of a largest independent set. Note that one can have many independent sets with
cardinality H(G).

MAX-CUT. K = 2 and q = 2. Define Hi(0) = Hi(1) = 0. Define He(1,1) =
He(0,0) = 0,He(1,0) = He(0,1) = 1. Every vector x ∈ {0,1}N partitions nodes
into two subsets of nodes taking values 0 and 1, respectively. H(x) is the number
of edges between the two subsets. H(G) is the largest such number, also called
maximum cut size. A more general case of this model is q-coloring; see below.

Anti-ferromagnetic Ising model. K = 2 and q = 2. Fix β > 0,B ∈ R. De-
fine Hi(0) = −B,Hi(1) = B . Define He(1,1) = He(0,0) = −β,He(1,0) =
He(0,1) = β . It is more common to use alphabet {−1,1} instead of {0,1} for this
model. We use the latter for consistency with the remaining models. The parame-
ter B , when it is nonzero represents the presence of an external magnetic field.

q-coloring K = 2 and q is arbitrary. Hi(x) = 0,∀x ∈ [q−] and He(x, y) = 0
if x = y and He(x, y) = 1 otherwise. Therefore for every x ∈ [q−]N,H(x) is the
number of properly colored edges, and H(G) is the maximum number of properly
colored edges.

Random K-SAT. K ≥ 2 is arbitrary, q = 2. Hi = 0 for all i ∈ [N]. The edge po-
tentials He are defined as follows. For each edge e ∈ E generate ae = (a1, . . . , aK)

uniformly at random from {0,1}K , independently for all edges. For each edge e

set He(a1, . . . , aK) = 0 and He(x) = 1 for all other x = (x1, . . . , xK). Then for ev-
ery x ∈ {0,1}N,H(x) is the number of satisfied clauses (hyperedges), and H(G)
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is the largest number of satisfiable clauses. Often this model is called (random)
MAX-K-SAT model. We drop the MAX prefix in the notation.

NAE-K-SAT (Not-All-Equal-K-SAT). The setting is as above except now we set
He(a1, . . . , aK) = He(1 − a1, . . . ,1 − aK) = 0 and He(x) = 1 for all other x for
each e.

It is for the K-SAT and NAE-K-SAT models that considering directed, as op-
posed to undirected, hypergraphs is convenient, as for these models the order of
nodes in edges matters. For the remaining models, however, this is not the case.

In several examples considered above we have had only two possible values
for the edge potential He and one value for the node potential. Specifically, for the
cases of coloring, K-SAT and NAE-K-SAT problems, He took only values 0 and 1.
It makes sense to call instances of such problems “satisfiable” if H(G) = |E|;
namely every edge potential takes value 1. In the combinatorial optimization ter-
minology this corresponds to finding a proper coloring, a satisfying assignment and
a NAE satisfying assignment, respectively. We let p(N,M) = P(H(G(N,M)) =
M) denote the probability of satisfiability when the underlying graph is the Erdös–
Rényi graph G(N,M). We also let p(N, r) = P(H(G(N, r)) = rNK−1) denote
the satisfiability probability for a random regular graph G(N, r).

3. Main results. We now state our main results. Our first set of results con-
cerns the Erdös–Rényi graph G(N, �cN�).

THEOREM 1. For every c > 0, and for every one of the six models described
in Section 2, there exists (model dependent) H(c) such that

lim
N→∞N−1H

(
G

(
N, �cN�)) = H(c),(1)

w.h.p. Moreover, H(c) is a Lipschitz continuous function with Lipschitz constant 1.
It is a nondecreasing function of c for MAX-CUT, coloring, K-SAT and NAE-K-SAT
models, and is a nonincreasing function of c for the independent set model.

Also for every c > 0 there exists p(c) such that

lim
N→∞N−1 logp

(
N, �cN�) = p(c)(2)

for coloring, K-SAT and NAE-K-SAT models.

As a corollary, one obtains the following variant of the satisfiability conjecture.

COROLLARY 1. For coloring, K-SAT and NAE-K-SAT models, there exists a
critical value c∗

H such that H(c) = c when c < c∗
H and H(c) < c when c > c∗

H .
Similarly, there exists c∗

p , such that p(c) = 0 when c < c∗
p and p(c) < 0 when

c > c∗
p .
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Namely, there exists a threshold value c∗ such that if c < c∗ there exists w.h.p.
as N → ∞ a nearly satisfiable assignment [assignment satisfying all but o(N)

clauses], and if c > c∗, then w.h.p. as N → ∞, every assignment violates linearly
in N many clauses. The interpretation for coloring is similar. The result above was
established earlier by the second author for randomly generated linear program-
ming problems, using the local weak convergence and martingale techniques [21].
It would be interesting to see if the same result is obtainable using the interpolation
method.

Can one use Corollary 1 to prove the satisfiability conjecture in the precise
sense? The answer would be affirmative, provided that a stronger version of
Friedgut’s result [19] on the sharp thresholds for satisfiability properties holds.

CONJECTURE 1. For the coloring, K-SAT and NAE-K-SAT models there ex-
ists a sequence M∗

N such that for every ε > 0 there exists γ = γ (ε) such that
limN→∞ p(N, �(1 − ε)M∗

N�) = 1 and p(N, �(1 + ε)M∗
N�) = O(exp(−γN)), for

all N .

In contrast, Friedgut’s sharp phase transition result [19] replaces the second part
of this conjecture with (a weaker) statement limN→∞ p(N, �(1 + ε)M∗

N�) = 0.
Thus, we conjecture that beyond the phase transition region M∗

N , not only is the
model not satisfiable w.h.p., but in fact the probability of satisfiability converges
to zero exponentially fast. The import of this (admittedly bold) statement is as
follows:

Conjecture 1 together with Theorem 1 implies the satisfiability conjecture. In-
deed, it suffices to show that c∗

h is the satisfiability threshold. We already know
that for every ε > 0, p(N, �(1 + ε)c∗

hN) → 0, since H((1 + ε)c∗
h) < (1 + ε)c∗

h.
Now, for the other part it suffices to show that lim infN M∗

N/N → c∗
h. Suppose not,

namely there exists ε > 0 and a sequence Nk such that (M∗
Nk

/Nk) + ε < c∗
h for

all k. Then (M∗
Nk

/Nk) + ε/2 < c∗
h − ε/2, implying that

H(G(Nk, �M∗
Nk

+ (ε/2)Nk�))
M∗

Nk
+ (ε/2)Nk

→ 1,(3)

w.h.p. by Corollary 1. On the other hand, since M∗
N grows at most linearly with N ,

we may say M∗
Nk

+ (ε/2)Nk ≥ (1 + ε′)M∗
Nk

, for some ε′ > 0 for all k. By Conjec-
ture 1, this implies that p(Nk, �M∗

Nk
+ (ε/2)Nk�) → 0 exponentially fast in Nk .

This in turn means that there exists a sufficiently small δ > 0 such that the dele-
tion of every δNk edges (clauses) keeps the instance unsatisfiable w.h.p. Namely,
H(G(Nk, �M∗

Nk
+ (ε/2)Nk�)) ≤ M∗

Nk
+ (ε/2)Nk − δNk , w.h.p. as k → ∞, which

contradicts (3).
Let us now state our results for the existence of the scaling limit for the log-

partition functions.
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THEOREM 2. For every c > 0,1 ≤ λ < ∞, and for every one of the models
described in Section 2, there exists (model dependent) z(c) such that

lim
N→∞N−1 logZ

(
G

(
N, �cN�)) = z(c),(4)

w.h.p., where z(c) is a Lipschitz continuous function of c. Moreover, z(c) is nonde-
creasing for MAX-CUT, coloring, K-SAT and NAE-K-SAT models, and is a nonin-
creasing function of c for the independent set model.

REMARK 3. The case λ = 1 is actually not interesting as it corresponds to
no interactions between the nodes leading to Z(G) = ∏

i∈[N] λ
∑

x∈[q−] Hi(x). In this
case the limit of N−1 logZ(G(N, �cN�)) exists trivially when node potentials Hi

are i.i.d. For independent set, our proof holds for λ < 1 as well. But, unfortunately
our proof does not seem to extend to the case λ < 1 in the other models. For
the Ising model this corresponds to the ferromagnetic case and the existence of
the limit was established in [13] using a local analysis technique. The usage of
local techniques is also discussed in [14] and [15]. Finally, we remark that the
proof assumes the finiteness of λ. In fact, Coja-Oghlan observed [9] that if the
above theorem could suitably be extended (addressing the case of when the number
of solutions might be zero), to include the case of λ = ∞, then the satisfiability
conjecture would follow.

We now turn to our results on random regular graphs.

THEOREM 3. For every r ∈ Z+, and for all of the models described in the
previous section, there exists (model dependent) H(r) such that

lim
N→∞,N∈r−1KZ+

N−1H
(
G(N, r)

) = H(r) w.h.p.

Note, that in the statement of the theorem we take limits along subsequence N

such that NrK−1 is an integer, so that the resulting random hypergraph is well-
defined. Unlike the case of Erdös–Rényi graph, we were unable to prove the exis-
tence of the large deviation rate

lim
N→∞,N∈r−1KZ+

N−1 logp(N, r)

for the coloring, K-SAT and NAE-K-SAT problems and leave those as open ques-
tions.

Finally, we state our results for the log-partition function limits for random reg-
ular graphs.

THEOREM 4. For every r ∈ Z+,1 ≤ λ < ∞, and for every one of the six mod-
els described in the previous section, there exists (model dependent) z(r) such that
w.h.p., we have

lim
N→∞N−1 logZ

(
G(N, r)

) = z(r).(5)
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4. Proofs: Optimization problems in Erdös–Rényi graphs. The following
simple observation will be useful throughout the paper. Given two hypergraphs
Gi = ([N ],Ei), i = 1,2 on the same set of nodes [N ] for each one of the six
models in Section 2, ∣∣H(G1) − H(G2)

∣∣ = L|E1�E2|,(6)

where we can take L = 1 for all the models except Ising, and we can take L = β

for the Ising model. This follows from the fact that adding (deleting) an edge to
(from) a graph changes the value of H by at most 1 for all models except for the
Ising model, where the constant is β .

Our main technical result leading to the proof of Theorem 1 is as follows.

THEOREM 5. For every 1 ≤ N1,N2 ≤ N − 1 such that N1 + N2 = N , and all
models

E
[
H

(
G

(
N, �cN�))] ≥ E

[
H

(
G(N1, M1)

)] + E
[
H

(
G(N2, M2)

)]
,(7)

where M1
d= Bi(�cN�,N1/N) and M2 � �cN� − M1

d= Bi(�cN�,N2/N).
Additionally, for the same choice of Mj as above and for coloring, K-SAT and

NAE-K-SAT models,

p
(
N, �cN�) ≥ P

(
H

(
G(N1, M1) ⊕ G(N2, M2)

) = M1 + M2
)
,(8)

and G1 ⊕ G2 denotes a disjoint union of graphs G1,G2.

REMARK 4. The event H(G(N1, M1) ⊕ G(N2, M2)) = M1 + M2 consid-
ered above corresponds to the event that both random graphs are satisfiable (col-
orable) instances. The randomness of choices of edges within each graph is as-
sumed to be independent, but the number of edges Mj are dependent since they
sum to �cN�. Because of this coupling, it is not the case that

P
(
H

(
G(N1, M1) ⊕ G(N2, M2)

) = M1 + M2
)

= P
(
H

(
G(N1, M1)

) = M1
)
P

(
H

(
G(N2, M2)

) = M2
)
.

Let us first show that Theorem 5 implies Theorem 1.

PROOF OF THEOREM 1. Since Mj have binomial distribution, we have
E[|Mj − �cNj�|] = O(

√
N). This together with observation (6) and Theorem 5

implies

E
[
H

(
G

(
N, �cN�))] ≥ E

[
H

(
G

(
N1, �cN1�))] + E

[
H

(
G

(
N2, �cN2�))] − O(

√
N).

Namely the sequence E[H(G(N, �cN�))] is “nearly” super-additive, short of the
O(

√
N) correction term. Now we use Proposition 5 in Appendix B for the case
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α = 1/2 to conclude that the limit limN→∞ N−1
E[H(G(N, �cN�))] � H(c) ex-

ists.
Showing that this also implies convergence of H(G(N, �cN�))/N to H(c)

w.h.p. can be done using standard concentration results [24], and we skip the de-
tails. It remains to show that H(c) is a nondecreasing continuous function for
MAX-CUT, coloring, K-SAT and NAE-K-SAT problems and is nonincreasing for
the independent set problem. For the MAX-CUT, coloring, K-SAT and NAE-K-
SAT problems, we have

E
[
H

(
G(N,M1)

)] ≤ E
[
H

(
G(N,M2)

)]
,

when M1 ≤ M2; adding hyperedges can only increase the objective value since the
edge potentials are nonnegative. For the Independent set problem on the contrary

E
[
H

(
G(N,M1)

)] ≥ E
[
H

(
G(N,M2)

)]
holds. The Lipschitz continuity follows from (6) which implies∣∣E[

H
(
G(N,M1)

)] − E
[
H

(
G(N,M2)

)]∣∣ = L|M1 − M2|
with L = β for the Ising model, and L = 1 for the remaining models. This con-
cludes the proof of (1).

We now turn to the proof of (2) and use (8) for this goal. Our main goal is
establishing the following superadditivity property:

PROPOSITION 1. There exist 0 < α < 1 such that for all N1,N2 such that
N = N1 + N2

logp
(
N, �cN�) ≥ logp

(
N1, �cN1�) + logp

(
N2, �cN2�) − O

(
Nα)

.(9)

PROOF OF PROPOSITION 1. Fix any 1/2 < ν < 1. First we assume N1 ≤ Nν .
Let Mj be as in Theorem 5. We have

P
(
H

(
G(N1, M1) ⊕ G(N2, M2)

) = M1 + M2
)

≥ p
(
N2, �cN2�)p(

N1, �cN� − �cN2�)P(
M2 = �cN2�).

We have

P
(

M2 = �cN2�) =
( �cN�

�cN2�
)

(N2/N)�cN2�(N1/N)�cN�−�cN2�.

From our assumption N1 ≤ Nν it follows that

(N2/N)�cN2� ≥ (
1 − Nν−1)O(N) = exp

(−O
(
Nν))

,

(N1/N)�cN�−�cN2� ≥ (1/N)O(N1) ≥ exp
(−O

(
Nν logN

))
.

It then follows

P
(

M2 = �cN2�) ≥ exp
(−O

(
Nν logN

))
.
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Now we claim the following crude bound for every deterministic m and every one
of the three models under the consideration.

p(N,m + 1) ≥ O(1/N)p(N,m).

Indeed, for the K-SAT model, conditional on the event that H(G(N,m)) = m, the
probability that H(G(N,m + 1)) = m + 1 is at least 1 − 1/2K . We obtain thus a
bound which is even stronger than claimed,

p(N,m + 1) ≥ (
1 − 1/2K)

p(N,m) = O
(
p(N,m)

)
.

The proof for the NAE-K-SAT is similar. For the coloring problem observe that this
conditional probability is at least (1 − 1/N)(2(N − 1)/N2) = O(1/N) since with
probability 1 − 1/N the new edge chooses different nodes, and with probability at
least 2(N − 1)/N2 the new edge does not violate a given coloring (with equality
achieved only when q = 2, and two coloring classes having cardinalities 1 and
N − 1). The claim follows.

Now since �cN� − �cN2� ≤ �cN1� + 1, the claim implies

p
(
N1, �cN� − �cN2�) ≥ O(1/N)p

(
N1, �cN1�).

Combining our estimates we obtain

P
(
H

(
G(N1, M1) ⊕ G(N2, M2)

) = M1 + M2
)

≥ p
(
N1, �cN1�)p(

N2, �cN2�)O(1/N) exp
(−O

(
Nν logN

))
.

After taking logarithm of both sides we obtain (9) from (8).
The case N2 ≤ Nν is considered similarly. We now turn to a more difficult case

Nj > Nν, j = 1,2.
First we state the following lemma (proved in Appendix A) for the three models

of interest (coloring, K-SAT, NAE-K-SAT).

LEMMA 1. The following holds for coloring, K-SAT, NAE-K-SAT models for
all N,M,m and 0 < δ < 1/2:

p(N,M + m) ≥ δmp(N,M) − (2δ)M+1 exp
(
H(δ)N + o(N)

)
,(10)

where H(δ) = −δ log δ − (1 − δ) log(1 − δ) is the entropy function.

We now prove (2). Fix h ∈ (1/2, ν). We have from (8),

p
(
N, �cN�)

≥ P
(
H

(
G(N1, M1) ⊕ G(N2, M2)

) = M1 + M2
)

≥ ∑
cN1−Nh≤m1≤cN1+Nh,m2=�cN�−m1

p(N1,m1)p(N2,m2)P(M1 = m1).
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Note that cN1 − Nh ≤ m1 ≤ cN1 + Nh implies cN2 − Nh − 1 ≤ m2 ≤ cN2 + Nh.
Applying Lemma 1 we further obtain for the relevant range of mj that

p(Nj ,mj )

≥ δ(mj−�cNj �)+p
(
Nj, �cNj�) − (2δ)cNj exp

(
H(δ)Nj + o(Nj )

)
≥ δNh+1p

(
Nj, �cNj�) − (2δ)cNj exp

(
H(δ)Nj + o(Nj )

)
≥ δNh+1p

(
Nj, �cNj�)

(
1 − 2cNj δcNj−Nh−1

(
1 − 1

q

)−cNj

eH(δ)Nj+o(Nj )

)
,

where we have used a simple bound p(Nj , �cNj�) ≥ (1 − 1/q)cNj . Now let us
take δ so that

β(δ) �
(
2δ(1 − 1/q)

)−c exp
(
H(δ)

)
< 1.(11)

Then using the assumptions Nj ≥ Nν and h < ν we obtain

p(Nj ,mj ) ≥ δNh+1p
(
Nj, �cNj�)(1 − (

β(δ)
)O(Nν))

.

Combining we obtain

p
(
N, �cN�) ≥ P

(
cN1 − Nh ≤ M1 ≤ cN1 + Nh)

× ∏
j=1,2

δO(Nh)p
(
Nj, �cNj�)(1 − (

β(δ)
)O(Nν))

.

This implies

logp
(
N, �cN�) ≥ log P

(
cN1 − Nh ≤ M1 ≤ cN1 + Nh)

+ Nh log δ + ∑
j=1,2

logp
(
Nj, �cNj�)

+ log
(
1 − (

β(δ)
)O(Nν))

.

Since M1
d= Bi(�cN�,N1/N) and h > 1/2, then∣∣log P

(
cN1 − Nh ≤ M1 ≤ cN1 + Nh)∣∣ = o(1).

Since β(δ) < 1, then

log
(
1 − (

β(δ)
)O(Nν)) = O

((
β(δ)

)O(Nν)) = o
(
Nh)

,

where the last identity is of course a very crude estimate. Combining, we obtain

logp
(
N, �cN�) ≥ ∑

j=1,2

logp
(
Nj, �cNj�) + O

(
Nh)

.

The claim of Proposition 1 is established. �
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Part (2) of Theorem 1 then follows from this proposition and Proposition 5 from
Appendix B. �

We now turn to the proof of Theorem 5 and, in particular, introduce the interpo-
lation construction.

PROOF OF THEOREM 5. We begin by constructing a sequence of graphs
interpolating between G(N, �cN�) and a disjoint union of G(N1, M1) and
G(N2, �cN�− M1). Given N,N1,N2 s.t. N1 +N2 = N and any 0 ≤ r ≤ �cN�, let
G(N, �cN�, r) be the random graph on nodes [N ] obtained as follows. It contains
precisely �cN� hyperedges. The first r hyperedges e1, . . . , er are selected u.a.r.
from all the possible directed hyperedges [namely they are generated as hyper-
edges of G(N, �cN�)]. The remaining �cN� − r hyperedges er+1, . . . , e�cN� are
generated as follows. For each j = r + 1, . . . , �cN�, with probability N1/N , ej is
generated independently u.a.r. from all the possible hyperedges on nodes [N1], and
with probability N2/N , it is generated u.a.r. from all the possible hyperedges on
nodes [N2] (={N1 + 1, . . . ,N}). The choice of node and edge potentials Hv,He

is done exactly according to the corresponding model, as for the case of graphs
G(N, �cN�). Observe that when r = �cN�, G(N, �cN�, r) = G(N, �cN�), and
when r = 0, G(N, �cN�, r) is a disjoint union of graphs G(N1, M1),G(N2, M2),

conditioned on M1 + M2 = �cN�, where Mj
d= Bi(�cN�,Nj/N).

PROPOSITION 2. For every r = 1, . . . , �cN�,

E
[
H

(
G

(
N, �cN�, r))] ≥ E

[
H

(
G

(
N, �cN�, r − 1

))]
.

Also for coloring, K-SAT and NAE-K-SAT models,

P
(
H

(
G

(
N, �cN�, r)) = �cN�) ≥ P

(
H

(
G

(
N, �cN�, r − 1

)) = �cN�).
Let us first show how Theorem 5 follows from this proposition. Observe that for

a disjoint union of two deterministic graphs G = G1 +G2, with G = (V ,E),G1 =
(V1,E1),G2 = (V2,E2), we always have H(G) = H(G1) + H(G2). Claim (7)
then follows. Caim (8) follows immediately from the interpolation construction by
comparing the cases r = 0 and r = �cN�. �

PROOF OF PROPOSITION 2. Observe that G(N, �cN�, r −1) is obtained from
G(N, �cN�, r) by deleting a hyperedge chosen u.a.r. independently from r hyper-
edges e1, . . . , er and adding a hyperedge either to nodes [N1] or to [N2] with prob-
abilities N1/N and N2/N , respectively. Let G0 be the graph obtained after deleting
but before adding a hyperedge. For the case of K-SAT and NAE-K-SAT (two mod-
els with random edge potentials), assume that G0 also encodes the underlying edge
potentials of the instance. For the case of coloring, K-SAT, NAE-K-SAT, note that
the maximum value that H can achieve for the graph G0 is �cN�− 1 since exactly
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one hyperedge was deleted. We will establish a stronger result: conditional on any
realization of the graph G0 (and random potentials), we claim that

E
[
H

(
G

(
N, �cN�, r))|G0

] ≥ E
[
H

(
G

(
N, �cN�, r − 1

))|G0
]

(12)

and

P
(
H

(
G

(
N, �cN�, r)) = �cN�|G0

)
(13)

≥ P
(
H

(
G

(
N, �cN�, r − 1

)) = �cN�|G0
)

for coloring, K-SAT, NAE-K-SAT. Proposition then follows immediately from
these claims by averaging over G0. Observe that conditional on any realization
G0, G(N, �cN�, r) is obtained from G0 by adding a hyperedge to [N ] u.a.r. That
is the generation of this hyperedge is independent from the randomness of G0.
Similarly, conditional on any realization G0, G(N, �cN�, r − 1) is obtained from
G0 by adding a hyperedge to [N1] or [N2] u.a.r. with probabilities N1/N and
N2/N , respectively.

We now prove properties (12) and (13) for each of the six models.

Independent sets. Let O∗ ⊂ [N ] be the set of nodes which belong to every
largest independent set in G0. Namely if I ⊂ [N ] is an i.s. such that |I | = H(G0),
then O∗ ⊂ I . We note that O∗ can be empty. Then for every edge e = (i, k),
H(G0 + e) = H(G0) − 1 if i, k ∈ O∗ and H(G0 + e) = H(G0) if either i /∈ O∗ or
k /∈ O∗. Here G0 +e denotes a graph obtained from G0 by adding e. When the edge
e is generated u.a.r. from the all possible edges, we then obtain E[H(G0 +e)|G0]−
H(G0) = −(

|O∗|
N

)2. Therefore, E[H(G(N, �cN�, r))|G0] − H(G0) = −(
|O∗|
N

)2.
By a similar argument

E
[
H

(
G

(
N, �cN�, r − 1

))|G0
] − H(G0)

= −N1

N

( |O∗ ∩ [N1]|
N1

)2

− N2

N

( |O∗ ∩ [N2]|
N2

)2

≤ −
(

N1

N

|O∗ ∩ [N1]|
N1

+ N2

N

|O∗ ∩ [N2]|
N2

)2

= −
( |O∗|

N

)2

= E
[
H(G

(
N, �cN�, r)|G0

] − H(G0),

and (12) is established.

MAX-CUT. Given G0, let C∗ ⊂ {0,1}[N] be the set of optimal solutions. Namely
H(x) = H(G0),∀x ∈ C∗ and H(x) < H(G0) otherwise. Introduce an equivalency
relationship ∼ on [N ]. Given i, k ∈ [N ], define i ∼ k if for every x ∈ C∗, xi =
xk . Namely, in every optimal cut, nodes i and k have the same value. Let O∗

j ⊂
[N ],1 ≤ j ≤ J , be the corresponding equivalency classes. Given any edge e =



4096 M. BAYATI, D. GAMARNIK AND P. TETALI

(i, k), observe that H(G0 + e) = H(G0) if i ∼ k and H(G0 + e) = H(G0) + 1
otherwise. Thus

E
[
H(G

(
N, �cN�, r)|G0

] − H(G0) = 1 − ∑
1≤j≤J

( |O∗
j |

N

)2

and

E
[
H(G

(
N, �cN�, r − 1

)|G0
] − H(G0)

= 1 − N1

N

∑
1≤j≤J

( |O∗
j ∩ [N1]|

N1

)2

− N2

N

∑
1≤j≤J

( |O∗
j ∩ [N2]|

N2

)2

.

Using N1
N

(
|O∗

j ∩[N1]|
N1

)2 + N2
N

(
|O∗

j ∩[N2]|
N2

)2 ≥ (
|O∗

j |
N

)2 we obtain (12).

Ising. The proof is similar to the MAX-CUT problem but is more involved due
to the presence of the magnetic field B . The presence of the field means that we can
no longer say that H(G0 +e) = H(G0)+β or =H(G0). This issue is addressed by
looking at suboptimal solutions and the implied sequence of equivalence classes.
Thus let us define a sequence H0 > H1 > H2 · · · > HM and an integer M ≥ 0
as follows. Define H0 = H(G0). Assuming Hm−1 is defined, m ≥ 1, let Hm =
maxH(x) over all solutions x ∈ {0,1}N such that H(x) < Hm−1. Namely, Hm is
the next best solution after Hm−1. Define M to be the largest m such that Hm ≥
H(G0) − 2β . If this is not the case for all m, then we define M ≤ 2N to be the
total number of possible values H(x) (although typically the value of M will be
much smaller). Let Cm = {x :H(x) = Hm},0 ≤ m ≤ M , be the set of solutions
achieving value Hm. Observe that Cm are disjoint sets. For every m ≤ M define an
equivalency relationship as follows i

m∼ k for i, k ∈ [N ] if and only if xi = xk for
all x ∈ C0 ∪ · · · ∪ Cm. Namely, nodes i and k are m-equivalent if they take equal
values in every solution achieving value at least Hm. Let O∗

j,m be the corresponding
equivalency classes for 1 ≤ j ≤ Jm. Note that the partition O∗

j,m+1 of the nodes
[N ] is a refinement of the partition O∗

j,m.

LEMMA 2. Given an edge e = (i, k), the following holds:

H(G + e) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

H(G0) + β, if i
0�∼ k;

Hm+1 + β, if i
m∼ k, but i

m+1�∼ k, for some m ≤ M − 1;
H(G0) − β, if i

m∼ k for all m ≤ M .

PROOF. The case i
0�∼ k is straightforward. Suppose i

m∼ k, but i
m+1�∼ k for some

m ≤ M − 1. For every x ∈ ⋃
m′≤m Cm′ we have for some m′ ≤ m, HG0+e(x) =

Hm′ − β ≤ H0 − β . Now since i
m+1�∼ k there exists x ∈ Cm+1 such that xi �= xk ,
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implying HG0+e(x) = Hm+1 + β ≥ H0 − β , where the inequality follows since
m+1 ≤ M . Furthermore, for every x /∈ ⋃

m′≤m Cm′ we have HG0+e(x) ≤ HG0(x)+
β ≤ Hm+1 + β . We conclude that Hm+1 + β is the optimal solution in this case.

On the other hand, if i
m∼ k for all m ≤ M , then for all x ∈ ⋃

m≤M Cm,
HG0+e(x) ≤ H(G0)−β , with equality achieved for x ∈ C0. For all x /∈ ⋃

m≤M Cm,
we have HG0+e(x) ≤ HM+1 + β < H0 − β , and the assertion is established. Note
that if M = 2N , namely M + 1 is not defined, then

⋃
m≤M Cm is the entire space of

solutions {0,1}N , and the second part of the previous sentence is irrelevant. �

We now return to the proof of the proposition. Recall that if an edge e = (i, k) is

added uniformly at random then P(i
m∼ k) = ∑

1≤j≤Jm
(
|O∗

j,m|
N

)2. A similar assertion
holds for the case e is added uniformly at random to parts [Nl], l = 1,2, with
probabilities Nl/N , respectively. We obtain that

P
(
i

0�∼ k
) = 1 − ∑

1≤j≤J0

( |O∗
j,0|
N

)2

,

P
(
i

m∼ k, but i
m+1�∼ k

) = ∑
1≤j≤Jm

( |O∗
j,m|
N

)2

− ∑
1≤j≤Jm+1

( |O∗
j,m+1|
N

)2

,

P
(
i

m∼ k,∀m ≤ M
) = ∑

1≤j≤JM

( |O∗
j,M |
N

)2

.

Applying Lemma 2 we obtain

E
[
H

(
G

(
N, �cN�, r))|G0

]
= (H + β)

(
1 − ∑

1≤j≤Jm

( |O∗
j,0|
N

)2)

+
M−1∑
m=0

(Hm+1 + β)

( ∑
1≤j≤Jm

( |O∗
j,m|
N

)2

− ∑
1≤j≤Jm+1

( |O∗
j,m+1|
N

)2)

+ (H − β)
∑

1≤j≤JM

( |O∗
j,M |
N

)2

= H + β + ∑
0≤m≤M−1

(Hm+1 − Hm)
∑

1≤j≤Jm

( |O∗
j,m|
N

)2

+ (H − HM − 2β)
∑

1≤j≤JM

( |O∗
j,M |
N

)2

.
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By a similar argument and again using Lemma 2 we obtain

E
[
H

(
G

(
N, �cN�, r − 1

))|G0
]

= H + β + ∑
0≤m≤M−1

(Hm+1 − Hm)
∑

1≤j≤Jm

∑
l=1,2

Nl

N

( |O∗
j,m ∩ [Nl]|

Nl

)2

+ (H − HM − 2β)
∑

1≤j≤JM

∑
l=1,2

Nl

N

(
Nl

N

|O∗
j,M ∩ [Nl]|

Nl

)2

.

Recall, however, that Hm+1 − Hm < 0,m ≤ M − 1 and H − HM − 2β ≤ 0. Again
using the convexity of the g(x) = x2 function, we obtain the claim.

Coloring. Let C∗ ⊂ [q−]N be the set of optimal colorings. Namely H(x) =
H(G0),∀x ∈ C∗. Introduce an equivalency relationship ∼ on the set of nodes as
follows. Given i, k ∈ [N ], define i ∼ k if and only if xi = xk for every x ∈ C∗.
Namely, in every optimal coloring assignments, i and k receive the same color.
Then for every edge e, H(G0 + e) = H(G0) if i ∼ k and H(G0 + e) = H(G0)+ 1
otherwise. The remainder of the proof of (12) is similar to the one for MAX-CUT.

Now let us show (13). We fix graph G0. Notice that if G0 is not colorable, then
both probabilities in (13) are zero, since adding edges cannot turn an uncolorable
instance into the colorable one. Thus assume G0 is a colorable graph. Since it has
�cN� − 1 edges it means H(G0) = �cN� − 1. Let O∗

j ⊂ [N ],1 ≤ j ≤ J denote
the ∼ equivalence classes, defined by i ∼ k if and only if in every proper coloring
assignment i and k receive the same color. We obtain that

P
(
H

(
G

(
N, �cN�, r)) = �cN�|G0

) = 1 − ∑
1≤j≤J

( |O∗
j |

N

)2

.

Similarly,

P
(
H

(
G

(
N, �cN�, r − 1

)) = �cN�|G0
)

= 1 − N1

N

∑
1≤j≤J

( |O∗
j ∩ [N1]|

N1

)2

− N2

N

∑
1≤j≤J

( |O∗
j ∩ [N2]|

N2

)2

.

Relation (13) then again follows from convexity.

K-SAT. Let C∗ ⊂ {0,1}N be the set of optimal assignments. Define a node
i (variable xi) to be frozen if either xi = 0,∀x ∈ C∗ or xi = 1,∀x ∈ C∗.
Namely, in every optimal assignment the value of i is always the same. Let
O∗ be the set of frozen variables. Let e = (i1, . . . , iK) ⊂ [N ] be a hyperedge,
and let He : {0,1}K → {0,1} be the corresponding edge potential. Namely, for
some y1, . . . , yK ∈ {0,1},He(xi1, . . . , xik ) = 0 if xi1 = y1, . . . , xiK = yK and
He = 1 otherwise. Consider adding e with He to the graph G0. Note that if
e ∩ ([N ] \ O∗) �= ∅, then H(G0 + e) = H(G0) + 1, as in this case at least one
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variable in e is nonfrozen and can be adjusted to satisfy the clause. Otherwise,
suppose e ⊂ O∗, and let x∗

i1
, . . . , x∗

iK
∈ {0,1} be the corresponding frozen val-

ues of i1, . . . , iK . Then H(G0 + e) = H(G0) if x∗
i1

= y1, . . . , x
∗
iK

= yK , and
H(G0 + e) = H(G0) + 1 otherwise. Moreover, for the random choice of H , the
first event H(G0 + e) = H(G0) occurs with probability 1/2K . We conclude that

E
[
H

(
G

(
N, �cN�, r))|G0

] − H(G0) = 1 − 1

2K

( |O∗|
N

)K

and for every satisfiable instance G0 (namely H(G0) = �cN� − 1),

P
(
H

(
G

(
N, �cN�, r)) = �cN�|G0

) = 1 − 1

2K

( |O∗|
N

)K

.

Similarly,

E
[
H

(
G

(
N, �cN�, r − 1

))|G0,H0
] − H(G0)

= 1 − 1

2K

N1

N

( |O∗ ∩ [N1]|
N1

)K

− 1

2K

N2

N

( |O∗ ∩ [N2]|
N2

)K

and for every satisfiable instance G0,

P
(
H

(
G

(
N, �cN�, r − 1

)) = �cN�|G0
)

= 1 − 1

2K

N1

N

( |O∗ ∩ [N1]|
N1

)K

− 1

2K

N2

N

( |O∗ ∩ [N2]|
N2

)K

.

Using the convexity of the function xK on x ∈ [0,∞), we obtain the result.

NAE-K-SAT. The idea of the proof is similar and is based on the combination
of the notions of frozen variables and equivalency classes. Two nodes (variables)
i and k are defined to be equivalent i ∼ k if there do not exist two assignments x, x′
such that xi = x′

i , but xk �= x′
k , or vice verse, xi �= x′

i , but xk = x′
k . Namely, either

both nodes are frozen, or setting one of them determines the value for the other in
every optimal assignment. Let O∗

j ,1 ≤ j ≤ J , be the set of equivalence classes (the
set of frozen variables is one of O∗

j ). Let e = (i1, . . . , iK) ⊂ [N ] be a hyperedge

added to G0, and let He : {0,1}K → {0,1} be the corresponding edge potential.
We claim that if i1, . . . , iK are not all equivalent, then H(G + e) = H(G). Indeed,
suppose without the loss of generality that i1 �∼ i2 and x, x′ are two optimal solu-
tions such that xi1 = x′

i1
, xi2 �= x′

i2
. From the definition of NAE-K-SAT model, it

follows that at least one of the two solutions x and x′ satisfies He as well, and the
claim then follows. Thus, H(G + e) = H(G) only if i1, . . . , iK all belong to the
same equivalence class. Provided that this indeed occurs, it is easy to see that the
probability that H(G + e) = H(G) is 2/2K . The remainder of the proof is similar
to the one for the K-SAT model.

We have established (12) and (13). With this, the proof of Proposition 2 is com-
plete. �
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Finally we give a simple proof of Corollary 1.

PROOF OF COROLLARY 1. Define c∗
H = sup{c ≥ 0 :H(c) = c}. It suffices to

show that H(c) < c for all c > c∗
H . For every δ > 0 we can find c0 ∈ (c, c + δ)

such that H(c0) < c0. By Lipshitz continuity result of Theorem 1 it follows that
H(c) ≤ H(c0) + (c − c0) < c for all c > c0, and the assertion is established. �

5. Proofs: Log-partition function in Erdös–Rényi graphs. The following
property serves as an analogue of (6). Given two hypergraphs Gi = ([N ],Ei),
i = 1,2, on the same set of nodes [N ] for each one of the six models and each
finite λ, ∣∣logZ(G1) − logZ(G2)

∣∣ = O
(|E1�E2|).(14)

This follows from the fact that adding (deleting) a hyperedge to (from) a graph
results in multiplying or dividing the partition function by at most λ for all models
except for the Ising and Independent set models. For the Ising model the corre-
sponding value is λβ . To obtain a similar estimate for the independent set, note
that given a graph G and an edge e = (u, v) which is not in G, we have

Z(G) = ∑
e⊂I

λ|I | + ∑
e �⊂I

λ|I |,

where in both sums we only sum over independent sets of G. We claim that∑
e⊂I

λ|I | ≤ λ
∑
e �⊂I

λ|I |.

Indeed, for every independent set in G containing e = (u, v), delete node u. We
obtain a one-to-one mapping immediately leading to the inequality. Finally, we
obtain

Z(G) ≥ Z(G + e) = ∑
e �⊂I

λ|I | ≥ 1

1 + λ
Z(G),

where our claim was used in the second inequality. Assertion (14) then follows
after taking logarithms.

The analogue of Theorem 5 is the following result.

THEOREM 6. For every 1 ≤ N1,N2 ≤ N − 1 such that N1 + N2 = N and
every λ > 1,

E
[
logZ

(
G

(
N, �cN�))] ≥ E

[
logZ

(
G(N1, M1)

)] + E
[
logZ

(
G(N2, M2)

)]
,

where M1
d= Bi(�cN�,N1/N) and M2 � �cN� − M1

d= Bi(�cN�,N1/N).
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As before, we do not have independence of Mj , j = 1,2. Let us first show how
this result implies Theorem 2.

PROOF OF THEOREM 2. Since Mj have binomial distribution, using obser-
vation (14) and Theorem 6, we obtain

E
[
logZ

(
G

(
N, �cN�))]

≥ E
[
logZ

(
G

(
N1, �cN1�))] + E

[
Z

(
G

(
N2, �cN2�))] − O(

√
N).

Now we use Proposition 5 in Appendix B for the case α = 1/2 to conclude that
the limit

lim
N→∞N−1

E
[
logZ

(
G

(
N, �cN�))] � z(c)

exists. Showing that this also implies the convergence of N−1
E[logZ(G(N ,

�cN�))] to z(c) w.h.p. again is done using standard concentration results [24] by
applying property (14), and we skip the details. The proof of continuity and mono-
tonicity of z(c) for relevant models is similar to the one of H(c). �

Thus it remains to prove Theorem 6.

PROOF OF THEOREM 6. We construct an interpolating sequence of graphs
G(N, �cN�, r),0 ≤ r ≤ �cN� exactly as in the previous subsection. We now es-
tablish the following analogue of Proposition 2. �

PROPOSITION 3. For every r = 1, . . . , �cN�,

E
[
logZ

(
G

(
N, �cN�, r))] ≥ E

[
logZ

(
G

(
N, �cN�, r − 1

))]
.(15)

Let us first show how Theorem 6 follows from this proposition. Observe that for
disjoint union of two graphs G = G1 +G2, with G = (V ,E),G1 = (V1,E1),G2 =
(V2,E2), we always have logZ(G) = logZ(G1) + logZ(G2). Theorem 6 then
follows from Proposition 3.

PROOF OF PROPOSITION 3. Recall that G(N, �cN�, r − 1) is obtained from
G(N, �cN�, r) by deleting a hyperedge chosen u.a.r. independently from r hyper-
edges e1, . . . , er and adding a hyperedge e either to nodes [N1] or to nodes [N2]
with probabilities N1/N and N2/N , respectively. Let as before G0 be the graph
obtained after deleting but before adding a hyperedge, and let Z0 = Z0(G0) and
μ0 = μ0,G0 be the corresponding partition function and the Gibbs measure, respec-
tively. In the case of K-SAT and NAE-K-SAT models we assume that G0 encodes
the realizations of the random potentials as well. We now show that conditional on
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any realization of the graph G0,

E
[
logZ

(
G

(
N, �cN�, r))|G0

] ≥ E
[
logZ

(
G

(
N, �cN�, r − 1

))|G0
]
.(16)

The proof of (16) is done on a case-by-case basis, and it is very similar to the
proof of (12).

Independent sets. We have

E
[
logZ

(
G

(
N, �cN�, r))|G0

] − logZ0

= E

[
log

Z(G(N, �cN�, r))
Z0

∣∣∣G0

]

= E

[
log

∑
I λ|I | − ∑

I 1{e⊂I }λ|I |∑
I λ|I |

∣∣∣G0

]

= E
[
log

(
1 − μ0(e ⊂ I0)

)|G0
]
,

where the sums
∑

I are over independent sets only, and I0 denotes an inde-
pendent set chosen randomly according to μ0. Notice that since we are con-
ditioning on graph G0, the only randomness underlying the expectation opera-
tor is the randomness of the hyperedge e and the randomness of set I0. Note
that μ0(e ⊂ I0) < 1 since μ0(e �⊂ I0) ≥ μ0(I0 = ∅) > 0. Using the expansion
log(1 − x) = −∑

m≥1 xm/m,

E
[
logZ

(
G

(
N, �cN�, r))|G0

] − logZ0

= −E

[ ∞∑
k=1

μ0(e ⊂ I0)
k

k

∣∣∣G0

]

= −
∞∑

k=1

1

k
E

[ ∑
I 1,...,I k

1{e⊂⋂k
j=1 I j }

λ
∑k

j=1 |I j |

Zk
0

∣∣∣G0

]

= −
∞∑

k=1

1

k

∑
I 1,...,I k

λ
∑k

j=1 |I j |

Zk
0

E[1{e⊂⋂k
j=1 I j }|G0]

= −
∞∑

k=1

1

k

∑
I 1,...,I k

λ
∑k

j=1 |I j |

Zk
0

( |⋂k
j=1 I j |
N

)2

,

where the sum
∑

I 1,...,I k is again over independent subsets I 1, . . . , I k of G0 only,
and in the last equality we have used the fact that e is distributed u.a.r. Similar
calculation for logZ(G(N, �cN�, r − 1)) that is obtained by adding a hyperedge
to nodes [N1] with probability N1/N , or to nodes [N2] with probability N2/N ,
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gives

E
[
logZ

(
G

(
N, �cN�, r − 1

))|G0
] − logZ0

= −
∞∑

k=1

1

k

∑
I 1,...,I k

λ
∑k

j=1 |I j |

Zk
0

[
N1

N

( |⋂k
j=1 I j ∩ [N1]|

N1

)2

+ N2

N

( |⋂k
j=1 I j ∩ [N2]|

N2

)2]
.

Again using the convexity of f (x) = x2 we obtain

E
[
logZ

(
G

(
N, �cN�, r))|G0

] − logZ0

≥ E
[
logZ

(
G

(
N, �cN�, r − 1

))|G0
] − logZ0,

and (16) is established.

MAX-CUT. Similarly to the independent set model, if G(N, �cN�, r) is ob-
tained from G0 by adding an edge (i, j) where i, j are chosen uniformly at ran-
dom, we have

E
[
logZ

(
G

(
N, �cN�, r))|G0

] − logZ0

= E

[
log

Z(G(N, �cN�, r))
Z0

∣∣∣G0

]

= E

[
log

∑
x 1{xi=xj }λH(x) + λ

∑
x 1{xi �=xj }λH(x)∑

x λH(x)

∣∣∣G0

]

= logλ + E

[
log

(
1 −

(
1 − 1

λ

)
μ0(xi = xj )

)∣∣∣G0

]
.

Since λ > 1 we have 0 < (1 −λ−1)μ0(xi = xj ) < 1 (this is where the condition
λ > 1 is used), implying

E
[
logZ

(
G

(
N, �cN�, r))|G0

] − logZ0 − logλ

= −E

[ ∞∑
k=1

(1 − λ−1)kμ0(xi = xj )
k

k

∣∣∣G0

]

= −
∞∑

k=1

(1 − λ−1)k

k
E

[ ∑
x1,...,xk

λ
∑k

�=1 H(x�)

Zk
0

1{x�
i =x�

j ,∀�}
∣∣∣G0

]

= −
∞∑

k=1

(1 − λ−1)k

k

∑
x1,...,xk

λ
∑k

�=1 H(x�)

Zk
0

E[1{x�
i =x�

j ,∀�}|G0].

Now for every sequence of vectors x1, . . . , xk introduce equivalency classes on
[N ]. Given i, k ∈ [N ], say i ∼ k if x�

i = x�
k ,∀� = 1, . . . , k. Namely, in every one of
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the cuts defined by x�, � = 1, . . . , k, the nodes i and k belong to the same side of
the cut. Let Os,1 ≤ s ≤ J be the corresponding equivalency classes. For an edge
e = (i, j) generated u.a.r., observe that E[1{x�

i =x�
j ∀�}|G0] = ∑J

s=1(
|Os |
N

)2. Thus

E
[
logZ

(
G

(
N, �cN�, r))|G0

] − logZ0 − logλ

= −
∞∑

k=1

(1 − λ−1)k

k

∑
x1,...,xk

λ
∑k

�=1 H(�)

Zk
0

J∑
s=1

( |Os |
N

)2

and similarly,

E
[
logZ

(
G

(
N, �cN�, r − 1

))|G0
] − logZ0 − logλ

= −
∞∑

k=1

(1 − 1/λ)k

k

∑
x1,...,xk

λ
∑k

�=1 H(�)

Zk
0

×
J∑

s=1

(
N1

N

( |Os ∩ [N1]|
N1

)2

+ N2

N

( |Os ∩ [N2]|
N2

)2)
.

Using the convexity of the function f (x) = x2, we obtain (16).

Ising, coloring, K-SAT and NAE-K-SAT. The proofs of the remaining cases are
obtained similarly and are omitted. The condition λ > 1 is used to assert positivity
of 1 − λ−1 in the logarithm expansion. �

6. Proofs: Random regular graphs. For the proofs related to random reg-
ular graphs, we will need to work with random “nearly” regular graphs. For this
purpose, given N, r and K such that Nr/K is an integer and given any positive
integer T ≤ Nr/K , let G(N, r, T ) denote the graph obtained by creating a size T

partial matching on Nr nodes of the configuration model uniformly at random and
then projecting. For example, if T was Nr/K , then we would have obtained the
random regular graph G(N, r).

Our result leading to the proof of Theorem 3 is as follows.

THEOREM 7. For every N1,N2 such that N = N1 + N2 and N1r/K,N2r/K

are integers,

E
[
H

(
G(N, r)

)] ≥ E
[
H

(
G(N1, r)

)] + E
[
H

(
G(N2, r)

)] − O
(
N5/6)

.(17)

PROOF. Fix N1,N2 such that N1 + N2 = N and N1r/K , N2r/K are integers.
Let us first prove Theorem 7 for the simpler case minj=1,2 Nj < 40N5/6. In this
case starting from the graph G(N, r), we can obtain a disjoint union of graphs
G(Nj , r) via at most O(N5/6) hyperedge deletion and addition operations. Indeed,
suppose without the loss of generality that N1 < 40N5/6. Delete all the hyperedges
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inside [N1] as well as all the hyperedges connecting two parts. Then generate
a random graph G(N1, r) from scratch. Finally, complete a so-obtained partial
matching in the configuration model on [N2r] and project. The total number of
deleted and generated hyperedges is O(N5/6), and indeed we obtain a disjoint
union of graphs G(Nj , r), j = 1,2. Since the hyperedge deletion and generation
operation changes the value of H by at most O(N5/6), then the proof of (17)
follows.

Now, throughout the remainder of the section we assume minj=1,2 Nj ≥
40N5/6. Fix T = Nr/K −�(1/K)N2/3�, and consider the graph G(N, r, T ). Note
that Nr/K − T = O(N2/3).

We now describe an interpolation procedure which interpolates between
G(N, r, T ) and a union of certain two graphs on nodes [N1] and [N2], each of
which will be “nearly” regular. For every integer partition K = K1 + K2 such
that K1,K2 ≥ 1 let TK1,K2 ≤ T be the (random) number of hyperedges which
connect parts [N1] and [N2] in G(N, r, T ) and such that each connecting hy-
peredge has exactly Kj nodes in part [Njr] in the configuration model. Let
T0 = ∑

K1,K2≥1:K1+K2=K TK1,K2 . Observe that T0 ≤ minj=1,2(Nj r).
Define G(N,T ,0) = G(N, r, T ) and define G(N,T , t),1 ≤ t ≤ T1,K−1, recur-

sively as follows. Assuming G(N,T , t − 1) is already defined, consider the graph
G0 obtained from G(N,T , t − 1) by deleting a hyperedge connecting [N1] and
[N2] chosen uniformly at random from the collection of hyperedges which have
exactly 1 node in part [N1r] and K − 1 nodes in part [N2r] [from the remaining
T1,K−1 − (t − 1) such hyperedges]. Then we construct G(N,T , t) by adding a
hyperedge to the resulting graph as follows: with probability 1/K a hyperedge is
added to connect K isolated nodes chosen uniformly at random among the isolated
nodes from the set [N1r]. With the remaining probability (K − 1)/K a hyperedge
is added to connect K isolated nodes chosen uniformly at random among the iso-
lated nodes from the set [N2r]. It is possible that at some point there are no K

isolated nodes available in [Njr]. In this case we say that the interpolation proce-
dure fails. In fact we say that the interpolation procedure fails if in either of the
two parts the number of isolated nodes is strictly less than K , even if the attempt
was made to add a hyperedge to a part where there is no shortage of such nodes.

Thus we have defined an interpolation procedure for t ≤ T1,K−1. Assuming
that the procedure did not fail for t ≤ T1,K−1, we now define it for T1,K−1 + 1 ≤
t ≤ T2,K−2 analogously: we delete a randomly chosen hyperedge connecting two
parts such that the hyperedge has 2 nodes in part j = 1, and K − 2 nodes in part
j = 2. Then we add a hyperedge uniformly at random to part j = 1,2 to connect
K isolated nodes with probability 2/K and (K − 2)/K , respectively. The failure
of the interpolation is defined similarly as above. We continue this for all partitions
(K1,K2) until (K − 1,1), inclusive. For the (K1,K2) phase of the interpolation
procedure the probabilities are K1/K and K2/K , respectively.

The interpolation procedure is particularly easy to understand in the special
case K = 2. In this case T0 = T1,1, and there is only one phase in the interpolation
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procedure. In this phase every edge (which is simply a pair of nodes) connecting
sets [N1r] and [N2r] (if any exists) is deleted and replaces by an edge connecting
two isolated nodes in [N1r] with probability 1/2, or two isolated nodes in [N2r]
with probability 1/2 as well. One might note the difference of probabilities 1/2
and 1/2 for the case of regular graphs vs. Nj/N, j = 1,2, for the case of Erdös–
Rényi graph. The difference stems from the regularity assumption of the graph
G(N, r).

Let It be the event that the interpolation succeeds for the first t steps, and let
I � ⋂

t≤T0
It denote the event that the interpolation procedure succeeds for all

steps. For simplicity, even if the interpolation procedure fails in some step t ′, we
still define G(N,T , t), t ′ ≤ t ≤ T0 to be the same graph as the first graph at which
the interpolation procedure fails, G(N,T , t) = G(N,T , t ′). It will be also conve-
nient to define G(N,T , t) = G(N,T ,T0) for T0 ≤ t ≤ minj=1,2(Nj r), whether
the interpolation procedure fails or not. This is done in order to avoid dealing
with graphs observed at a random (T0) time, as opposed to the deterministic time
minj=1,2(Nj r).

Provided that the interpolation procedure succeeds, the graph G(N,T ,

minj=1,2 Njr) is a disjoint union of two graphs on [Nj ], j = 1,2, each “close”
to being an r-regular random graph, in some appropriate sense to be made precise
later.

Our next goal is establishing the following analogue of Proposition 2. As in pre-
vious sections, let G0 denote the graph obtained from G(N,T , t −1) after deleting
a hyperedge connecting two parts, but before a hyperedge is added to one of the
parts, namely, before creating G(N,T , t), conditioned on t ≤ T0 and the event that
the interpolation process succeeds till t − ⋂

t ′≤t It ′ . If, on the other hand the inter-
polation procedure fails before t , let G0 be the graph obtained at the last successful
interpolation step after the last hyperedge deletion. Let �i denotes the degree of
the node i ∈ [N ] in the graph G0, and let

Zj(t) �
∑

i∈[Nj ]
(r − �i)

denote the number of isolated nodes in the j th part of the configuration model for
G0 for j = 1,2.

PROPOSITION 4. For every t ≤ minj Nj r ,

E
[
H

(
G(N,T , t − 1)

)] ≥ E
[
H

(
G(N,T , t)

)] − O

(
E max

j=1,2

1

Zj(t)

)
.(18)

PROOF. The claim is trivial when T0 + 1 ≤ t , since the graph remains the
same. Notice also that

E
[
H

(
G(N,T , t − 1)

)|I c
t−1

] = E
[
H

(
G(N,T , t)

)|I c
t−1

]
,
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since the two graphs are identical, and thus the statement of the proposition holds.
Now we will condition on the event It . We now establish a stronger result.

Namely,

E
[
H

(
G(N,T , t − 1)

)|G0
] ≥ E

[
H

(
G(N,T , t)

)|G0
] − O

(
max
j=1,2

1

Zj(t)

)
.(19)

Observe that conditioned on obtaining graph G0, the graph G(N,T , t − 1) can be
recovered from G0 in distributional sense by adding a hyperedge connecting K1
isolated nodes from [N1r] to K2 isolated nodes from [N2r], all chosen uniformly
at random, and then projecting.

We now conduct model-dependent, case-by-case analysis.

Independent sets. In this case K = 2, and the only possibility is K1 = K2 = 1.
As in the previous section, O∗ again denote the set of nodes in [N ] which belong to
every largest independent set in G0. Then in the case of creating graph G(N,T , t −
1) from G0, the newly added edge e decreases H by one if both ends of e belong
to O∗, and leaves it the same otherwise. The first event occurs with probability∑

i1∈O∗∩[N1],i2∈O∗∩[N2](r − �i1)(r − �i2)∑
i1∈[N1],i2∈[N2](r − �i1)(r − �i2)

=
∑

i∈O∗∩[N1](r − �i)∑
i∈[N1](r − �i)

∑
i∈O∗∩[N2](r − �i)∑

i∈[N2](r − �i)
.

We now analyze the case of creating G(N,T , t). Conditioning on the event that e

was added to part [Njr], the value of H decreases by one if and only if both ends
of e fall into O∗ ∩ [Nj ]. This occurs with probability

(
∑

i∈[O∗∩Nj ](r − �i))
2 − ∑

i∈O∗∩[Nj ](r − �i)

(
∑

i∈[Nj ](r − �i))2 − ∑
i∈[Nj ](r − �i)

= (
∑

i∈[O∗∩Nj ](r − �i))
2

(
∑

i∈[Nj ](r − �i))2 − O

(
1∑

i∈[Nj ](r − �i)

)
.

Therefore, the value of H decreases by one with probability

1

2

∑
j=1,2

(
∑

i∈[O∗∩Nj ](r − �i))
2

(
∑

i∈[Nj ](r − �i))2 − O

(
max
j=1,2

1

Zj(t)

)

and stays the same with the remaining probability. Using the inequality (1/2)(x2 +
y2) ≥ xy, we obtain (19).

MAX-CUT, Ising, coloring. As in the proof of Theorem 1, we introduce equiv-
alence classes O∗

j ⊂ [N ],1 ≤ j ≤ J , on the graph G0. The rest of the proof is
almost identical to the one for the independent set model, and we skip the details.
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Notice that in all of these cases we have K = 2, and the interpolation phase has
only one stage corresponding to (K1,K2) = (1,1).

K-SAT. This is the first model for which K > 2. We fix K1,K2 ≥ 1 such that
K1 + K2 = K and further condition on the event that the graph G0 was created
in stage (K1,K2). As in the previous section, let O∗ be the set of frozen variables
in all optimal assignments of G0. Reasoning as in the previous section, when we
reconstruct graph G(N,T , t − 1) in the distributional sense by adding a random
hyperedge connecting K1 nodes in [N1r] with K2 nodes in [N2r], the probability
that the value of H remains the same (does not increase by one) is precisely

1

2K

[∑
i∈O∗∩[N1](r − �i)∑

i∈[N1](r − �i)

]K1[∑
i∈O∗∩[N2](r − �i)∑

i∈[N2](r − �i)

]K2

.(20)

Similarly, creating G(N,T , t) from G0 keeps the value of H the same with prob-
ability

1

2K

K1

K

[∑
i∈O∗∩[N1](r − �i)∑

i∈[N1](r − �i)

]K

+ 1

2K

K2

K

[∑
i∈O∗∩[N2](r − �i)∑

i∈[N2](r − �i)

]K

(21)

− O

(
max
j=1,2

1∑
i∈[Nj ](r − �i)

)
.

Applying Young’s inequality, namely that ab ≤ pa1/p + qb1/q for every a, b ≥ 0,
p + q = 1,p, q > 0, with the choice p = K1/K,q = K2/K ,

a =
[∑

i∈O∗∩[N1](r − �i)∑
i∈[N1](r − �i)

]K1

,

b =
[∑

i∈O∗∩[N2](r − �i)∑
i∈[N2](r − �i)

]K2

,

and canceling 1/2K on both sides, we obtain the result.

NAE-K-SAT. The proof is similar to the one for K-SAT and for NAE-K-SAT for
the G(N, �cN�) model. This completes the proof of the proposition. �

Our next step is to control the error term in (18).

LEMMA 3. The interpolation procedure succeeds (event I holds) with proba-
bility at least 1 − O(N exp(−Nδ)) for some δ > 0. Additionally,

E

[ ∑
1≤t≤T0

max
j=1,2

1

Zj(t)

]
= O

(
N2/5)

.(22)
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PROOF. Since G0 is obtained after deleting one hyperedge connecting two
parts, but before adding a new hyperedge, then Zj(t) ≥ 1. A crude bound
on the required expression is then E[T0] = O(minNj). We have E[Zj(0)] =
(Nj/N)N2/3 = Nj/N

1/3 ≥ 40N1/2 since the initial number of isolated nodes was
Nr/K − T = N2/3 and minj Nj ≥ 40N5/6. Moreover, using a crude concentra-
tion bound P(Zj (0) < (1/2)(Nj/N

1/3) + K) = O(exp(−Nδ1)) for some δ1 > 0.
Observe that Zj(t + 1) − Zj(t) = 0 with probability one if the interpolation pro-
cedure failed for some t ′ ≤ t . Otherwise, if t corresponds to phase (K1,K2), then
Zj(t + 1) − Zj(t) takes values −Kj + K with probability Kj/K and −Kj with
the remaining probability. This is because during the hyperedge deletion step,
Zj(t) decreases by Kj , and during the hyperedge addition step, it increases by
K or by zero with probabilities Kj/K and 1 − Kj/K , respectively. In particular,
E[Zj(t +1)−Zj(t)] = 0. The decision of whether to put the hyperedge into part 1
or 2 is made independently. Since t ≤ T0 ≤ Nj , we conclude that for each t ≤ T0

we have P(Zj (0) − Zj(t) > N
3/5
j ) = O(exp(−Nδ2)) for some δ2 > 0. Here any

choice of exponent strictly larger than 1/2 applies, but for our purposes 3/5 suf-
fices. It follows that Zj(t) ≥ (1/2)Nj/N

1/3 + K − N
3/5
j for all t with probability

1−O(Nj exp(−Nδ)) = 1−O(N exp(−Nδ)) for δ = min(δ1, δ2). The assumption
minNj ≥ 40N5/6 implies that a weaker bound minNj ≥ 321/2N5/6, which trans-

lates into (1/2)Nj/N
1/3 − N

3/5
j ≥ 0. Thus Zj(t) ≥ K for all t , with probability

1 − O(N exp(−Nδ)), and therefore the interpolation procedure succeeds.
Now ignoring term K in the expression (1/2)Nj/N

1/3 + K − N
3/5
j and using

T0 ≤ minj (Nj r), we obtain that with probability 1−O(N exp(−Nδ)), the expres-
sion inside the expectation on the left-hand side of (22) is at most

Njr

(1/2)NjN−1/3 − N
3/5
j

= N
2/5
j r

(1/2)N
2/5
j N−1/3 − 1

.

The numerator is at most N2/5r . Also the assumption minNj ≥ 40N5/6 implies
that the denominator is at least 1. We conclude that the expression inside the ex-
pectation is at most N2/5r with probability at least 1 − O(N exp(−Nδ)). Since
we also have T0 ≤ Nr w.p.1, then using a very crude estimate O(N exp(−Nδ)) =
O(N−3/5), and NN−3/5 = N2/5, we obtain the required result. �

As a corollary of Proposition 4 and Lemma 3 we obtain

COROLLARY 2.

E
[
H

(
G(N,T ,0)

)] ≥ E

[
H

(
G

(
N,T , min

j=1,2
Njr

))]
− O

(
N2/5)

.

Let us consider graph G(N,T ,T0). We further modify it by removing all hyper-
edges which connect two parts [Nj ] of the graph, if there are any such hyperedges
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left. Notice that if the event I occurs, namely the interpolation procedure succeeds,
no further hyperedges need to be removed. The resulting graph is a disjoint union
of graphs obtained on nodes [N1r] and [N2r] by adding a random size partial
matching uniformly at random. The actual size of these two matchings depends on
in the initial size of the partial matching within each part, and also on how many
of T0 hyperedges go into each part during the interpolation steps, and how many
were removed in the final part (if any). We now obtain bounds on the sizes of these
matchings.

Recall minj Nj ≥ 40N5/6. We showed in the proof of Lemma 3 that the inter-
polation procedure succeeds with probability O(N exp(−Nδ)) for some δ. This
coupled with the fact that w.p.1, the number of hyperedges removed in the fi-
nal stage is at most rN/K , gives us that the expected number of hyperedges re-
moved in the final stage is at most O(N2 exp(−Nδ)) which (as a very crude esti-
mate) is O(N2/3). Moreover, since the initial number of isolated nodes was N2/3,
and during the interpolation procedure the total number of isolated nodes in the
entire graph never increases, then the total number of isolated nodes before the
final removal of hyperedges in G(N,T ,T0) is at most N2/3. We conclude that
the expected number of isolated nodes in the end of the interpolation procedure
is O(N2/3). Then we can complete uniform random partial matchings on [Njr]
to a perfect uniform random matchings by adding at most that many hyperedges
in expectation. The objective value of H changes by at most that much as well.
The same applies to G(N, r, T )—we can complete the configuration model cor-
responding to this graph to a perfect matching on Nr nodes by adding at most
N2/3 hyperedges since Nr/K − T = O(N2/3). Coupled with Corollary 2 we then
obtain

E
[
H

(
G(N, r)

)] ≥ E
[
H

(
G(N1, r)

)] + E
[
H

(
G(N2, r)

)] − O
(
N2/3)

for the case minj Nj ≥ 40N5/6. This completes the proof of Theorem 7. �

PROOF OF THEOREM 3. The existence of the limit

lim
N→∞,N∈r−1KZ+

N−1
E

[
H

(
G(N, r)

)] = H(r)

follows immediately from Theorem 7 and Proposition 5 from Appendix B. Then
the convergence w.h.p.

lim
N→∞,N∈r−1KZ+

N−1H
(
G(N, r)

) = H(r)

follows once again using standard concentration results [24]. �

The proof of Theorem 4 uses the same interpolation as the one above, and the
proof itself mimics the one for Theorem 2. For this reason, we omit the details.
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APPENDIX A: PROOF OF LEMMA 1

We first assume K-SAT or NAE-K-SAT models. Let us show for these models
that there exists a constant ω ≥ 1/2 such that for every graph and potential realiza-
tion (G = (V ,E),H) such that the problem is satisfiable [namely H(G) = |E|], if
a randomly chosen hyperedge e is added with a potential chosen according to the
model, then

P
(
H(G + e) = |E| + 1

) ≥ ω.

In other words, if the current graph is satisfiable, the new graph obtained by adding
a random hyperedge remains satisfiable with probability at least ω. Indeed, for
example, for the case of K-SAT, if the instance is satisfiable and x is a satisfying
assignment, the added edge remains consistent with x with probability at least
ω � 1 − 1/2K > 1/2. For the case of NAE-K-SAT it is ω = 1 − 1/2K−1 ≥ 1/2.
We obtain that for every positive M,m and recalling assumption δ < 1/2,

p(N,M + m) ≥ ωmp(N,M) ≥ δmp(N,M),

and the assertion is established.
The proof for the case of coloring is more involved. Given 0 < δ < 1/2 we call

a graph G on N nodes δ-unusual if it is colorable, and in every coloring assign-
ment there exists a color class with size at least (1 − δ)N . Namely, for every color
assignment x such that H(x) = |E|, there exists k ∈ [q−] such that the cardinality
of the set {i ∈ [N ] :xi = k} is at least (1 − δ)N . We claim that

P
(
G(N,M) is δ-unusual

) ≤ (2δ)M exp
(
H(δ)N + o(N)

)
.(23)

The claim is shown using the first moment method—we will show that the ex-
pected number of graphs with such a property is at most the required quantity.
Indeed, given a subset C ⊂ [N ] such that |C| ≥ (1 − δ)N , the probability that the
graph G(N,M) has proper coloring with all nodes in C having the same color is
at most (1 − (1 − δ)2)M < (2δ)M , since we must have that no edge falls within the
class C. There are at most

( N
δN

) = exp(H(δ)N + o(N)) choices for the subset C.
The claim then follows.

Now observe that if a graph G = (V ,E) is colorable but not δ-unusual, then
adding a random edge e, we obtain P(H(G + e) = |E| + 1) ≥ δ(1 − δ). Namely,
in this case the probability goes down by at most a constant factor. We obtain

p(N,M + 1)

≥ P
(
H

(
G(N,M + 1) = M + 1

)|G(N,M) colorable, not δ-unusual
)

× P
(
G(N,M) colorable and not δ-unusual

)
≥ δ(1 − δ)P

(
G(N,M) colorable and not δ-unusual

)
≥ δ(1 − δ)P

(
G(N,M) colorable

) − δ(1 − δ)P
(
G(N,M) δ-unusual

)
≥ δ(1 − δ)p(N,M) − δP

(
G(N,M) δ-unusual

)
≥ δ(1 − δ)p(N,M) − δ(2δ)M exp

(
H(δ)N + o(N)

)
,
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using the earlier established claim. Iterating this inequality, we obtain for every
m ≥ 1,

p(N,M + m)

≥ δm(1 − δ)mp(N,M) − δ(2δ)M exp
(
H(δ)N + o(N)

) ∑
0≤j≤m−1

δm(1 − δ)m

≥ δm
P

(
H

(
G(N,M) = M

)) − (2δ)M+1 exp
(
H(δ)N + o(N)

)
,

where
∑

0≤j≤m δm(1 − δ)m ≤ 1/(1 − δ) < 2 is used in the last inequality. This
completes the proof of the lemma.

APPENDIX B: MODIFIED SUPER-ADDITIVITY THEOREM

To keep the proof of our main results self-contained, we state and prove the fol-
lowing proposition, used in proving several of the theorems presented in the earlier
sections. However, Béla Bollobás and Zoltan Füredi kindly pointed out to us that
the following proposition is a special case of a more general and classical theorem
of de Bruijn and Erdös (see Theorem 22 on page 161 in [12]), which uses a weaker
assumption on the additive term in the near super-additivity hypothesis; also see
[11] and the Bollobás–Riordan percolation book [7] for more recent applications
of this useful tool.

PROPOSITION 5. Given α ∈ (0,1), suppose a nonnegative sequence aN ,
N ≥ 1 satisfies

aN ≥ aN1 + aN2 − O
(
Nα)

(24)

for every N1,N2 s.t. N = N1 + N2. Then the limit limN→∞ aN

N
exists.

PROOF. It is convenient to define aN = a�N� for every real, but not necessarily
integer value N ≥ 1. It is then straightforward to check that property (24) holds
when extended to reals as well [thanks to the correction term O(Nα)]. Let

a∗ = lim sup
N→∞

aN

N
.

Fix ε > 0 and find k such that 1/k < ε ≤ 1/(k − 1). Find find N0 = N0(ε) such
that N−1

0 aN0 ≥ a∗ − ε, kαNα−1
0 < ε. Clearly, such N0 exists. Consider any N ≥

kN0. Find r such that kN02r ≤ N ≤ kN02r+1. Applying (24) iteratively with N1 =
N2 = N/2 we obtain

aN ≥ 2raN/2r − ∑
0≤l≤r−1

O

(
2l

(
N

2l

)α)

= 2raN/2r − O
(
2(1−α)rNα)

.
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Now let us find i such that (k + i)N0 ≤ N/2r ≤ (k + i + 1)N0. Note i ≤ k. Again
using (24) successively with N0 for N1 and N/2r , (N/2r )−N0, (N/2r )−2N0, . . .

for N2, we obtain

aN/2r ≥ (k + i)aN0 − O

(
k

(
N

2r

)α)

≥ (k + i)aN0 − O

(
k

(
N

2r

)α)
.

Combining, we obtain

aN ≥ 2r (k + i)aN0 − O
(
2(1−α)rNα) − O

(
k2r(1−α)Nα)

= 2r (k + i)aN0 − O
(
k2r(1−α)Nα)

.

Then
aN

N
≥ 2r (k + i)

2r (k + i + 1)

aN0

N0
− O

(
k2r(1−α)Nα−1)

≥
(

1 − 1

(k + i + 1)

)(
a∗ − ε

) − O
(
k2r(1−α)Nα−1)

≥ (1 − ε)
(
a∗ − ε

) − O
(
k2r(1−α)Nα−1)

,

where 1/k < ε is used in the last inequality. Now

k2r(1−α)Nα−1 ≤ k2r(1−α)(k2rN0
)α−1 = kαNα−1

0 < ε,

again by the choice of N0. We have obtained
aN

N
≥ (1 − ε)

(
a∗ − ε

) − ε

for all N ≥ N0k. Since ε was arbitrary the proof is complete. �
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