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BROWNIAN EARTHWORM1

BY KRZYSZTOF BURDZY, ZHEN-QING CHEN AND SOUMIK PAL

University of Washington

We prove that the distance between two reflected Brownian motions,
driven by the same white noise, outside a sphere in a 3-dimensional flat torus
does not converge to 0, a.s., if the radius of the sphere is sufficiently small,
relative to the size of the torus.

1. Introduction. This article is partly motivated by a natural phenomenon.
We would like to analyze the effect of a randomly moving earthworm on the soil.
The soil is pushed aside by the earthworm. What is the asymptotic distribution of
soil particles when time goes to infinity? Is the soil compacted, or are soil particles
more or less evenly spread over the region, especially when the earthworm is small
compared to the size of the region? The answer seems to depend on the shape of the
earthworm; for example, we believe that the soil is compacted if the “earthworm”
is cubical. In our toy model, the earthworm is represented by a sphere following a
Brownian path. We conjecture that in this model, the soil particles will be more or
less evenly spread over the region. Our rigorous results in this paper partly justify
these heuristic claims. We will next state the model in rigorous terms and then
present a theorem and some conjectures. We will also briefly review related results.
The earthworm picture will be mathematically interpreted after Conjecture 1.6.

Let T1 be the flat d-dimensional torus with side length 2, that is, T1 is the cube
{(x1, . . . , xd) ∈ R

d : |xk| ≤ 1 for k = 1, . . . , d}, with the opposite sides identified in
the usual way. Let B(x, r) denote the open ball with center x and radius r . For
0 < r < 1, let D = T1 \ B(0, r). Let n(x) denote the unit inward normal vector at
x ∈ ∂D = ∂B(0, r). Let B be a standard d-dimensional Brownian motion, x0, y0 ∈
D, x0 �= y0 and consider the following Skorokhod equations:

Xt = x0 + Bt +
∫ t

0
n(Xs) dLX

s for t ≥ 0,(1.1)

Yt = y0 + Bt +
∫ t

0
n(Ys) dLY

s for t ≥ 0.(1.2)

Here LX is the local time of X on ∂D. In other words, LX is a nonde-
creasing continuous process which does not increase when X is in D, that is,
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0 1D(Xt) dLX

t = 0, a.s. Equation (1.1) has a unique pathwise solution (X,LX)

such that Xt ∈ D for all t ≥ 0; see [11]. The reflected Brownian motion X is a
strong Markov process. The same remarks apply to (1.2), so (X,Y ) is also strong
Markov. Note that on any time interval (s, t) such that Xu ∈ D and Yu ∈ D for all
u ∈ (s, t), we have Xu − Yu = Xs − Ys for all u ∈ (s, t).

For x, y ∈ T1, we use dist(x, y) to denote the geodesic distance between x and y

in the torus T1.

THEOREM 1.1. When the dimension d = 3, there is r0 > 0 such that for every
r ≤ r0 and every x0 �= y0, we have lim supt→∞ dist(Xt , Yt ) > 0, a.s.

An analogous problem was considered in [5] for planar domains D. It was
proved that if D is a bounded domain with a smooth boundary and at most one
hole, then limt→∞ dist(Xt , Yt ) = 0, a.s. It is not known whether there exists a
two-dimensional domain D such that we have lim supt→∞ dist(Xt , Yt ) > 0 with
positive probability.

Note that by the pathwise uniqueness of the solutions to (1.1)–(1.2), 0 is an ab-
sorbing state for the distance process dist(Xt , Yt ); that is, if dist(Xt0, Yt0) = 0, then
dist(Xt , Yt ) = 0 for all t ≥ t0. Theorem 1.1 says that dist(Xt , Yt ) never enters the
absorbing state 0 nor converges to 0 as t → ∞. Since D is compact, this suggests
that dist(Xt , Yt ) fluctuates and is a “recurrent” process. We suspect that (Xt , Yt )

has a stationary probability distribution but this does not follow from recurrence
alone. Hence, we propose the following

CONJECTURE 1.2. When the dimension d = 3, there is r0 > 0 such that for
r ≤ r0 the process (X,Y ) has a stationary distribution Q which does not charge
the diagonal {(x, x) :x ∈ D}. There is only one stationary distribution for (X,Y )

which does not charge the diagonal.

Since (1.1)–(1.2) have a unique pathwise solution, if x0 = y0, then Xt = Yt

for all t ≥ 0, a.s. It follows that (X,Y ) has a unique stationary distribution Q′
supported on the diagonal, characterized by the fact that the distribution of X under
Q′ is uniform in D.

Our state space D for reflected Brownian motion is a subset of a torus because
three-dimensional Brownian motion is transient so the result analogous to Theo-
rem 1.1 for the complement of a ball in R

3 is not interesting. Moreover, the bound-
ary of D has no other component besides ∂B(0, r) so the relative position of X and
Y is determined solely by the interaction of the processes with ∂B(0, r).

PROBLEM 1.3. Is Theorem 1.1 valid when the dimension d = 2?

The reader may find it paradoxical that we can prove Theorem 1.1 in 3 di-
mensions, but the analogous result in 2 dimensions is stated as an open problem.
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The reason is that the proof depends in a crucial way on the sign of a certain
“Lyapunov exponent” λ∗

ρ = 1 + λρ where ρ := 1/r and λρ is defined in Theo-
rem 3.1(ii) relative to the domain D. We prove in Lemma 3.2 that λ∗

ρ is positive
for D if d = 3 and ρ is large. In the 2-dimensional case, the analogous expo-
nent is equal to 0 [5], Proposition 2.3, and this critical value makes the problem
harder. We could have defined the domain D as T1 \ A, with A being not nec-
essarily a ball. It is easy to see that for many sets A, for example, those that are
bounded, smooth and close to a polyhedron, λ∗ is negative. It was shown in [5] that
in 2-dimensional space, negative λ∗ implies that limt→∞ dist(Xt , Yt ) = 0, a.s. In
such a case, (X,Y ) does not have a stationary distribution with some mass outside
the diagonal. It is not known whether there is a 2-dimensional domain, bounded
or unbounded, with positive λ∗. This is related to another open problem that we
have already mentioned—it is not known whether there exists a two-dimensional
domain D such that lim supt→∞ dist(Xt , Yt ) > 0 with positive probability. Theo-
rem 1.1 shows that this is the case for a subset of a three-dimensional torus. We
believe that the theorem also holds in some bounded subsets of R

3, but we will
not provide a rigorous proof. We make this claim more precise in the following
conjecture.

CONJECTURE 1.4. Suppose that B(xj , r) ⊂ B(0,1) for j = 1, . . . , k, and let
D1 = B(0,1) \⋃k

j=1 B(xj , r) ⊂ R
3. If k is sufficiently large and (min1≤j≤k(1 −

|xj |) + min1≤i<j≤k |xi − xj |)/r is sufficiently large, then Theorem 1.1 holds
for D1.

Suppose that Conjecture 1.2 is true, that is, for some r0 > 0 and all r ≤ r0, the
process (X,Y ) has a stationary distribution Q which does not charge the diagonal.
This stationary measure Q depends on r , the radius of the ball deleted from the
torus T1, so we can write Qr to emphasize this dependence.

CONJECTURE 1.5. The measures Qr converge to the uniform probability dis-
tribution on (T1)

2 as r → 0.

Next, we consider the flow Xx
t of reflected Brownian motions, defined for x ∈ D

by

Xx
t = x + Bt +

∫ t

0
n
(
Xx

s

)
dLx

s for t ≥ 0.(1.3)

Here Lx is the local time of Xx on ∂D. Equation (1.3) have unique pathwise solu-
tions (Xx,Lx) for all x simultaneously because the construction of the solution to
the Skorokhod equation given in [11] is deterministic. Let |A| denote the Lebesgue
measure of a set A and Qr,t (A) = |{x ∈ D :Xx

t ∈ A}|. We note that Qr,t is a ran-
dom measure. For the definitions of a random measure and weak convergence of
random measures, see, for example, [10]; we will not review these notions here as
they are not used in the core of our paper.
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CONJECTURE 1.6. The measures Qr,t converge to a random measure Qr on
T1 \ B(0, r) when t → ∞, in the sense of weak convergence of random measures.
Random measures Qr converge weakly to the uniform measure on T1 when r → 0,
in probability.

In the context of (1.3), the earthworm picture is obtained by interpreting
B(0, r) − Bt as a Brownian earthworm and Xx

t − Bt as the location of a displaced
soil particle.

For an extensive review of related results, see [4]. Some of those results will
be recalled in Section 2.4. The present article is, philosophically speaking, a mir-
ror image of [5]. That article analyzed domains where dist(Xt , Yt ) converged to 0,
while the present article analyzes domains where the opposite is true. It was proved
in [8, 9] that, under mild technical assumptions on the domain, reflected Brow-
nian motions X and Y do not coalesce in a finite time. A series of papers by
Pilipenko [13, 14, 16] discuss stochastic flows of reflected processes. The arti-
cle [15] is posted on Math ArXiv; it is a review and discussion of Pilipenko’s
previously published results.

We will now outline the idea of the proof of our main result, Theorem 1.1.
When the distance between the two solutions to the Skorokhod problem X and
Y is small, it changes in two distinct ways. It increases at a rate proportional to
the local time spent by the processes on ∂D, due to the fact that ∂D is curved
and, therefore, the directions in which X and Y are pushed are slightly differ-
ent. The distance between the two processes has negative jumps at the ends of
excursions of X and Y from ∂D because the difference between the two pro-
cesses is not (approximately) parallel to ∂D at the ends of excursions; hence the
local time push has a different effect on the two trajectories. A discrete version
of these ideas is expressed in a formal way in (2.3) below. The origin of these
ideas goes back at least to the paper by Airault [1]. The continuous rate of in-
crease of the distance between X and Y is greater than the combined effect of
negative jumps over long periods of time, on average, for the domain D—this is
the main estimate of this paper, derived in Section 3. The main body of the paper
is devoted to detailed arguments showing that all modes of behavior of the two
processes not captured by the above description but theoretically possible (such
as coupling of the two processes at a finite time) have negligibly small probabil-
ity.

The rest of the paper is organized as follows. Section 2 is a review of known
results needed in this paper, including a review of excursion theory in Section 2.3,
some technical estimates from [4, 6] in Section 2.4 and preliminary analysis of
the coupling. The paper is based in an essential way on the exact and explicit
evaluation of the Lyapunov exponent λρ . The calculation is presented in Section 3.
The proof of Theorem 1.1 is given in Section 4; it consists of several lemmas.
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2. Preliminaries.

2.1. General. For a process Z, a set A and a point a in the state space of Z,
let T Z

A = inf{t ≥ 0 :Zt ∈ A}, T Z
a = inf{t ≥ 0 :Zt = a} and τZ

A = inf{t ≥ 0 :Zt /∈
A}. By the Brownian scaling, if {Xt ; t ≥ 0} is the reflecting Brownian motion on
T1 \ B(0, r) driven by Brownian motion Bt , then {r−1Xr2t ; t ≥ 0} is the reflecting
Brownian motion on (r−1

T1) \ B(0,1) driven by Brownian motion r−1Br2t . For
notational convenience, throughout the remaining part of this paper, we fix ρ =
1/r > 1 and take Tρ to be the flat 3-dimensional torus with side length 2ρ > 2,
that is, Tρ is the cube {(x1, x2, x3) ∈ R

3 : |xk| ≤ ρ, k = 1,2,3}, with the opposites
sides identified in the usual way, and let D = Tρ \ B(0,1).

2.2. Linear structure in torus. In Section 1, we used notation normally re-
served for elements of linear spaces, such as vector sum (e.g., Xs − Ys ) and norm
(e.g., |Xt − Yt |). We will now make this convention precise. Note that the torus
Tρ can be represented as the quotient (R/(2ρZ))3. For x ∈ Tρ , let Ax denote the
set of all points in R

3 which correspond to x. For x, y ∈ Tρ , we choose x1 ∈ Ax

and y1 ∈ Ay with the minimal distance |x1 − y1| among all such pairs. Then we let
x − y = x1 − y1 and dist(x, y) = |x − y| = |x1 − y1|.

2.3. Review of excursion theory. This section contains a brief review of excur-
sion theory needed in this paper. See, for example, [12] for the foundations of the
theory in the abstract setting and [3] for the special case of excursions of Brownian
motion. Although Burdzy [3] does not discuss reflected Brownian motion, all re-
sults we need from his book readily apply in the present context. We will use two
different, but closely related, “exit systems.” The first one, presented below, is a
simple exit system representing excursions of a single reflected Brownian motion
from ∂D. The second exit system encodes the information about both processes
X and Y , but it is essentially equivalent to the first exit system. We will introduce
and use the second exit system in step 2.3 of the proof of Lemma 4.2. Our review
applies to general domains D with smooth boundaries, but we will assume that D

is the torus with the unit ball removed, as in Section 2.1.
Let P

x0 denote the distribution of the process X defined by (1.1), and let E
x0 be

the corresponding expectation. Let P
x
D denote the distribution of Brownian motion

starting from x ∈ D and killed upon exiting D.
An “exit system” for excursions of the reflected Brownian motion X from ∂D

is a pair (L∗
t ,H

x) consisting of a positive continuous additive functional L∗
t of X

and a family of “excursion laws” {Hx}x∈∂D . Let � denote the “cemetery” point
outside D, and let C be the space of all functions f : [0,∞) → D ∪ {�} which are
continuous and take values in D on some interval [0, ζ ), and are equal to � on
[ζ,∞). For x ∈ ∂D, the excursion law Hx is a σ -finite (positive) measure on C ,
such that the canonical process is strong Markov on (t0,∞), for every t0 > 0, with
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the transition probabilities P
�
D . Moreover, Hx gives zero mass to paths which do

not start from x. We will be concerned only with the “standard” excursion laws;
see Definition 3.2 of [3]. For every x ∈ ∂D there exists a unique standard excursion
law Hx in D, up to a multiplicative constant.

Excursions of X from ∂D will be denoted e or es , that is, if s < u, Xs,Xu ∈ ∂D,
and Xt /∈ ∂D for t ∈ (s, u), then es = {es(t) = Xt+s, t ∈ [0, u−s)} and ζ(es) = u−
s. By convention, es(t) = � for t ≥ ζ(es), so et ≡ � if inf{s > t :Xs ∈ ∂D} = t .

Let σt = inf{s ≥ 0 :L∗
s ≥ t} and Eu = {es : s < σu}. Let I be the set of left end-

points of all connected components of (0,∞) \ {t ≥ 0 :Xt ∈ ∂D}. The following is
a special case of the exit system formula of [12]. For every x ∈ D, every bounded
predictable process Vt and every universally measurable function f : C → [0,∞)

that vanishes on excursions et identically equal to �, we have

E
x

[∑
t∈I

Vt · f (et )

]
= E

x
∫ ∞

0
VσsH

X(σs)(f ) ds

(2.1)
= E

x
∫ ∞

0
VtH

Xt (f ) dL∗
t .

Here and elsewhere Hx(f ) = ∫C f dHx . Intuitively speaking, (2.1) says that the
right continuous version Et+ of the process of excursions is a Poisson point process
on the local time scale with variable intensity H

�
(f ).

The normalization of the exit system is somewhat arbitrary. For example, if
(L∗

t ,H
x) is an exit system, and c ∈ (0,∞) is a constant, then (cL∗

t , (1/c)Hx) is
also an exit system. One can even make c dependent on x ∈ ∂D. Theorem 7.2
of [3] shows how to choose a “canonical” exit system; that theorem is stated for
the usual planar Brownian motion, but it is easy to check that both the statement
and the proof apply to the reflected Brownian motion. According to that result, we
can take L∗

t to be the continuous additive functional whose Revuz measure is a
constant multiple of the surface area measure dx on ∂D and Hx ’s to be standard
excursion laws normalized so that

Hx(A) = lim
δ↓0

1

δ
P

x+δn(x)
D (A)(2.2)

for any event A in a σ -field generated by the process on an interval [t0,∞), for
any t0 > 0. The Revuz measure of LX is the measure dx/(2|D|) on ∂D, that is,
if the initial distribution of X is the uniform probability measure μ on D, then
E

μ
∫ 1

0 1A(Xs) dLX
s = ∫A dx/(2|D|) for any Borel set A ⊂ ∂D. It has been shown

in [5] that L∗
t = LX

t .

2.4. Differentiability of stochastic flow of reflected Brownian motions. It was
proved in [2, 4, 15], in somewhat different settings, that the stochastic flow of re-
flected Brownian motions is differentiable in the initial condition. We will use this
result, and we will also need a key estimate from [4] that was partly developed
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in [6]. First, we will recall some notation from [4]. The notation may seem some-
what awkward in the present context because it was developed for complicated
arguments. We leave most of this notation unchanged to help the reader consult
the results in [4].

We consider ∂D to be a smooth, properly embedded, orientable hypersurface
(i.e., submanifold of codimension 1) in R

3, endowed with a smooth unit normal
inward vector field n. We consider ∂D as a Riemannian manifold with the in-
duced metric. We use the notation 〈·, ·〉 for both the Euclidean inner product on
R

3 and its restriction to the tangent space Tx∂D for any x ∈ ∂D, and | · | for
the associated norm. For any x ∈ ∂D, let πx : R3 → Tx∂D denote the orthogo-
nal projection onto the tangent space Tx∂D, so πxz = z − 〈z,n(x)〉n(x), and let
S(x): Tx∂D → Tx ∂D denote the shape operator (also known as the Weingarten
map), which is the symmetric linear endomorphism of Tx∂D associated with the
second fundamental form. It is characterized by S(x)v = −∂vn(x) for v ∈ Tx∂D,
where ∂v denotes the ordinary Euclidean directional derivative in the direction of v.

Recall that � is an extra “cemetery point” outside D, so that we can send
processes killed at a finite time to �. For s ≥ 0 such that Xs ∈ ∂D we let
ζ(es) = inf{t > 0 :Xs+t ∈ ∂D}. Here es is an excursion starting at time s, that
is, es = {es(t) = Xt+s, t ∈ [0, ζ(es))}. We let es(t) = � for t ≥ ζ(es), so et ≡ � if
ζ(es) = 0.

Let σX
t be the inverse of local time LX

t , that is, σX
t = inf{s ≥ 0 :LX

s ≥ t}, and
Eb = {es : s < σX

b }. For b, ε > 0, let {eu1, eu2, . . . , eum} be the set of all excursions
e ∈ Eb with |e(0) − e(ζ−)| ≥ ε. We assume that excursions are labeled so that
uk < uk+1 for all k, and we let �k = LX

uk
for k = 1, . . . ,m. We also let u0 = inf{t ≥

0 :Xt ∈ ∂D}, �0 = 0, �m+1 = b and ��k = �k+1 − �k . Let xk = euk
(ζ−) be the

right endpoint of excursion euk
for k = 1, . . . ,m and x0 = Xu0 .

For v0 ∈ R
3, let

vb = exp
(
��mS(xm)

)
πxm · · · exp

(
��1S(x1)

)
πx1 exp

(
��0S(x0)

)
πx0v0.(2.3)

Note that all concepts based on excursions euk
depend implicitly on ε > 0, which

is often suppressed in the notation. Let Aε
b denote the linear mapping v0 → vb.

It was proved in Theorem 3.2 in [6] that for every b > 0, a.s., the limit
Ab := limε→0 Aε

b exists and it is a linear mapping of rank 2. For any v0, with
probability 1, Aε

bv0 → Abv0 as ε → 0, uniformly in b on compact sets.
Recall the stochastic flow Xx

t of reflected Brownian motions defined in (1.3).
By Theorem 3.1 of [4], for every x ∈ D, b > 0 and compact set K ⊂ R

3, we have
a.s.,

lim
ε→0

sup
v∈K

∣∣(Xx+εv
σx

b
− Xx

σx
b

)
/ε − Abv

∣∣= 0,(2.4)

where σx
b = inf{t ≥ 0 :LXx

t ≥ b}. Informally speaking, the last formula says that
y → X

y

σx
b

is differentiable, that is, the stochastic flow X is differentiable in the
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space variable. Formula (2.3) represents a discrete approximation to the deriva-
tive Ab. According to that formula, the approximation to the derivative is a com-
position of two types of linear mappings. After the k-th excursion, the projection
on the tangent plane to ∂D at the endpoint of the kth excursion is added to the com-
position. Between excursions, the derivative expands or contracts (in the sense of
the exponential function of a linear mapping) at the rate proportional to the curva-
ture of ∂D at the point where the most recent excursion ended.

Consider some b > 0, and let σ∗ = inf{t ≥ 0 :LX
t ∨ LY

t ≥ b}. Thus defined σ∗ is
different from the random variable denoted by the same symbol in [4]. Article [4]
is concerned with a stochastic flow, and σ∗ denotes in that paper, roughly speaking,
the time when at least one of the local times corresponding to reflected Brownian
motions in the flow exceeds a certain level. The results and arguments given in [4]
can be applied in our paper with our definition of σ∗ because we are concerned
only with two reflected Brownian motions X and Y .

For ε∗ > 0, let

{et∗1 , et∗2 , . . . , et∗
m∗ } = {et ∈ Eb :

∣∣et (0) − et (ζ−)
∣∣≥ ε∗, t < σ∗

}
.(2.5)

These excursions are labeled so that t∗k < t∗k+1 for all k. We let �∗
k = LX

t∗k
for k =

1, . . . ,m∗. We also let t∗0 = inf{t ≥ 0 :Xt ∈ ∂D}, �∗
0 = 0, �∗

m∗+1 = LX
σ∗ and ��∗

k =
�∗
k+1 − �∗

k . Let x∗
k = et∗k (ζ−) for k = 1, . . . ,m∗, and x∗

0 = Xt∗0 . Let

Ik = exp
(
��∗

k S
(
x∗
k

))
πx∗

k
.

The arguments in [4] were given only for b = 1, but it is easy to see that they
apply equally to any fixed value of b > 0.

Let P
x0,y0 denote the distribution of the solution (X,Y ) to (1.1)–(1.2), and let

E
x0,y0 denote the corresponding expectation.
Fix an arbitrarily small c3 > 0. By (3.161) and (3.167) of [4], there exist

c4, c5, c6, ε0 > 0, β1 ∈ (1,4/3) and β2 ∈ (0,4/3−β1) such that if X0 = x, Y0 = y,
|x − y| = ε < ε0 and ε∗ = c4ε, then∣∣(Yσ∗ − Xσ∗) − Im∗ ◦ · · · ◦ I0(Y0 − X0)

∣∣≤ |�| + �,(2.6)

where |�| < c3ε, P
x,y-a.s., and

P
x,y(|�| > c5ε

β1
)≤ c6ε

β2 .(2.7)

The meaning of � and � is not important in the present paper. These random
variables arise in the decomposition of the difference on the left-hand side of (2.6).
The random variable � is “large” because it is bounded by a constant multiple of ε

to power 1; on the positive side, this bound is deterministic. The random variable
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� is “small” because it is (typically) smaller than εβ1 with β1 > 1, but this bound
does not hold with probability 1.

2.5. Some path properties of couplings. If no confusion may arise, x0 and y0
will be suppressed in the notation P

x0,y0 , E
x0,y0 and P

x0,y0 -a.s., and we will use
the notation “P,” “E” and “a.s.”

The next lemma says that if the two processes X and Y are close to each other
and almost parallel to ∂D then they will stay almost parallel to ∂D as long as they
do not move far away from the current position. The proof is based on an idea that
will be used several times in this article; see steps 2.1, 2.2, 2.4 and 2.6 of the proof
of Lemma 4.2. The argument is concerned with an interval where only one of the
processes can have some local time push. The analysis of the relative positions of
the two processes at the beginning and the end of the interval, and the direction
of the local time push, leads to a (desired) contradiction. The idea is graphically
illustrated in Figure 2 below (step 2.2 of the proof of Lemma 4.2) because that
implementation yields the most convincing picture.

LEMMA 2.1. Suppose that x1 ∈ ∂D, c1 ∈ (0,1/100), and let D1 =
D ∩ B(x1, c1/4). Assume that x0, y0 ∈ D1 and |〈x0 − y0,n(x1)〉| ≤ c1|x0 − y0|.
Let T1 = τX

D1
∧ τY

D1
. Suppose that X and Y solve (1.1)–(1.2) with X0 = x0 and

Y0 = y0. Then a.s., |〈Xt − Yt ,n(x1)〉| ≤ c1|Xt − Yt | for all t ≤ T1.

PROOF. Observe that for x2 ∈ ∂D ∩ D1 and y2 ∈ D1 we have 〈x2 −
y2,n(x1)〉 ≤ c1|x2 − y2|/2. Moreover, for any x3 ∈ ∂D ∩ D1, the angle between
n(x1) and n(x3) is less than c1/2 radians.

Assume that |〈Xt − Yt ,n(x1)〉| > c1|Xt − Yt | for some t ≤ T1. We will show
that this assumption leads to a contradiction. Let

T2 = inf
{
t ≥ 0 :

∣∣〈Xt − Yt ,n(x1)
〉∣∣> c1|Xt − Yt |}.

By assumption and the pathwise uniqueness of solutions to (1.1)–(1.2), T2 < T1
and |XT2 − YT2 | > 0. We have |〈XT2 − YT2,n(x1)〉| = c1|XT2 − YT2 | so at most
one of the points XT2 and YT2 belongs to the boundary of D. At least one of these
points belongs to ∂D because t → |〈Xt − Yt ,n(x1)〉|/|Xt − Yt | is constant over
intervals where neither X nor Y visit ∂D. Suppose without loss of generality that
XT2 ∈ ∂D. Then, by the opening remarks, 〈XT2 − YT2,n(x1)〉 ≤ c1|XT2 − YT2 |/2,
and therefore,

T2 = inf
{
t ≥ 0 :

〈
Xt − Yt ,n(x1)

〉
< −c1|Xt − Yt |}.(2.8)

In particular, 〈XT2 − YT2,n(x1)〉 = −c1|XT2 − YT2 |. Let

T3 = inf{s > T2 :Ys ∈ ∂D} ∧ T1.
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Then T2 < T3 and LY
T3

= LY
T2

. Hence, for t ∈ [T2, T3], we have

〈
Xt − Yt ,n(x1)

〉= 〈XT2 − YT2 +
∫ t

T2

n(Xs) dLX
s ,n(x1)

〉
≥ −c1|XT2 − YT2 | + c1

(
LX

t − LX
T2

)
≥ −c1|XT2 − YT2 | + c1

∣∣∣∣∫ t

T2

n(Xs) dLX
s

∣∣∣∣
≥ −c1

∣∣∣∣XT2 − YT2 +
∫ t

T2

n(Xs) dLX
s

∣∣∣∣
= −c1|Xt − Yt |,

contradicting the definition of T2 in view of (2.8). This completes the proof of the
lemma. �

LEMMA 2.2. If x, y ∈ D and x �= y, then P
x,y(Xt �= Yt , for every t ≥ 0) = 1.

PROOF. The proof of the lemma consists of two main steps. The first step uses
a result on differentiability of the stochastic flow of reflected Brownian motions.
According to this result, under some assumptions, the derivative of the stochastic
flow is a nontrivial linear mapping. Hence, different trajectories in the stochastic
flow do not collide. This argument applies directly only when the starting points of
X and Y are “almost parallel” to ∂D. The general case, presented in step 2 below,
is dealt with by reducing it to the first case at an appropriate stopping time.

Assume that for some distinct x, y ∈ D, Xt = Yt for some t < ∞, with positive
probability. A standard application of the strong Markov property shows that there
must exist r ∈ (0,1/200), x1 ∈ ∂D and y1 ∈ D such that if we write D1 = D ∩
B(x1, r/8) and T1 = τX

D1
∧ τY

D1
, then P

x1,y1(∃t ∈ [0, T1] :Xt = Yt ) > 0. Note that
necessarily y1 ∈ D1.

Step 1. Suppose that r ∈ (0,1/100), x1 ∈ ∂D, y1 ∈ D1 and x1 �= y1. In this step,
we will consider the case when |〈x1 − y1,n(x1)〉| ≤ (r/2)|x1 − y1|.

Let Kδ = (x1 + Tx1∂D) ∩ ∂B(x1, δ) and K0
δ = Tx1∂D ∩ ∂B(0, δ). Recall the

stochastic flow Xx
t of reflected Brownian motions defined in (1.3), and note that

(Xt , Yt ) = (X
x1
t ,X

y1
t ) under P

x1,y1 . Let σ̂b = inf{t ≥ 0 :LXx1
t ≥ b}. According to

Theorem 3.2 of [6] and its proof, for any fixed b > 0, Ab has rank 2. In fact, the
proof shows more than that, namely, P

x1 -a.s., infv∈K0
δ
|Ab(v)| > 0. This and (2.4)

imply that for any b > 0,

lim
δ→0

P
x1
(

inf
v∈K0

δ

∣∣Xx1+v
σ̂b

− X
x1
σ̂b

∣∣/|v| > 0
)

= 1.

Since the stochastic differential equation (1.1) has a unique strong solution, if
Xx

t = X
y
t for some t , then Xx

s = X
y
s for all s ≥ t , a.s. Hence, the last formula
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can be strengthened as follows:

lim
δ→0

P
x1
(

inf
v∈K0

δ

inf
0≤t≤σ̂b

∣∣Xx1+v
t − X

x1
t

∣∣/|v| > 0
)

= 1.

For every k ≥ 1 find δk > 0 such that

P
x1
(

inf
v∈K0

δk

inf
0≤t≤σ̂b

∣∣Xx1+v
t − X

x1
t

∣∣/|v| > 0
)

≥ 1 − 2−k.(2.9)

It follows from Lemmas 3.3 and 3.4 of [4] and their proofs that there exist
stopping times Sk such that Sk → ∞ as k → ∞, and |Xx

t − X
y
t | ≤ k|Xx

0 − X
y
0 |

for al x, y ∈ D and t ∈ [0, Sk], a.s. We can assume without loss of generality that
δk → 0 as k → ∞. We make δk > 0 smaller, if necessary, so that |Xx1

t −Xz
t | ≤ r/8,

for all k ≥ 1, z ∈ Kδk
and t ∈ [0, Sk], a.s. By passing to a subsequence, if necessary,

we may assume that

P(Sk > σ̂b) ≥ 1 − 2−k.(2.10)

If we let T2 = T1 ∧ σ̂b,

F 1
k = {∣∣Xx1

t − Xz
t

∣∣≤ r/8,∀z ∈ Kδk
, t ∈ [0, T2]},

F 2
k =
{

inf
v∈K0

δk

inf
0≤t≤T2

∣∣Xx1+v
t − X

x1
t

∣∣/|v| > 0
}
,

Fk = F 1
k ∩ F 2

k ,

then, by (2.9) and (2.10), P(Fk) ≥ 1 − 2−k+1.
We will argue that if Fk holds, then for all t ∈ [0, T2] and z ∈ Kδk

,∣∣〈Xt − Yt ,n(x1)
〉∣∣≤ (r/2)|Xt − Yt |,(2.11) ∣∣〈Xt − Xz

t ,n(x1)
〉∣∣≤ r

∣∣Xt − Xz
t

∣∣,(2.12) ∣∣〈Xz
t − Yt ,n(x1)

〉∣∣≤ r
∣∣Xz

t − Yt

∣∣.(2.13)

We obtain (2.11) from our assumption that |〈x1 − y1,n(x1)〉| ≤ (r/2)|x1 − y1|
and Lemma 2.1. If F 1

k holds, then Xz
t ∈ B(x1, r/4) for all t ∈ [0, T2] and z ∈ Kδk

.
Hence, (2.12) follows from Lemma 2.1 applied with c1 = r . The claim holds for all
z ∈ Kδk

simultaneously because Lemma 2.1 is deterministic. We can make δk > 0
smaller, if necessary, so that |〈z − y1,n(x1)〉| ≤ r|z − y1| for all k and all z ∈ Kδk

.
Once again, we apply Lemma 2.1 with c1 = r and conclude that (2.13) holds true.

Estimates (2.11)–(2.13) have the following topological consequences. Recall
that πx1z denotes the projection of z on Tx1∂D. Assuming that Fk holds and t ≤ T2,
the set �t = πx1{Xx

t , x ∈ Kδk
} is a closed loop that contains πx1Xt inside. When t

goes from 0 to T2, πx1Xt , πx1Yt and �t evolve continuously. If Xt = Yt for some
t ≤ T2, then we must have πx1Ys = πx1X

x
s for some k ≥ 1, x ∈ Kδk

and 0 ≤ s ≤ t .
This and (2.13) imply that Ys = Xx

s . Hence, Xt = Yt = Xx
t . But this means that
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F 2
k does not hold. Since P(Fk) ≥ 1 − 2−k+1, we conclude that the probability that

there exists t ∈ [0, T2] such that Xt = Yt is less than 2−k+1. Since k and b are
arbitrarily large, P

x1,y1(∃t ∈ [0, T1] :Xt = Yt ) = 0.
Step 2. Suppose that r ∈ (0,1/200), x1 ∈ ∂D, y1 ∈ D1 and x1 �= y1. In this step,

we no longer assume that |〈x1 − y1,n(x1)〉| ≤ (r/2)|x1 − y1|. Also, note that we
assume that r ∈ (0,1/200) while in step 1 we assumed that r ∈ (0,1/100).

Suppose that P
x1,y1(∃t ∈ [0, T1] :Yt = Xt) = p1 > 0. We will show that this

assumption leads to a contradiction. Let

A = {y ∈ D : |x1 − y| = |x1 − y1|, 〈x1 − y,n(x1)
〉= 〈x1 − y1,n(x1)

〉}
.

The set A is a circle, possibly with a zero radius. If the radius of A is 0, that is,
if A contains only y1, then x1 − y1 is parallel to n(x1). It is easy to see that for
any t0 > 0, with probability 1, there exists time t ∈ (0, t0 ∧ T1) such that Xt �= Yt ,
Xt ∈ ∂D, Xt −Yt is not parallel to n(Xt), and t is the terminal time of an excursion
of X from ∂D. Let Ur be the smallest such t greater than r > 0. We can apply the
strong Markov property at time Ur , for every rational time r > 0, and the result
proved below for the case when A does not reduce to a single point to show that X

and Y will not meet before T1.
Hence, we will assume from now on that the set A is a circle with a nonzero

radius. Choose n distinct points y1, . . . , yn in A, with n > 2/p1. Let T
yj

1 = τX
D1

∧
τX

yj

D1
. By our assumption and symmetry, P

x1,yj (∃t ∈ [0, T
yj

1 ] :Xt = X
yj

t ) = p1. It
follows that for some j �= k,

P
(∃t ∈ [0, T

yj

1

]
:Xt = X

yj

t , and ∃s ∈ [0, T
yk

1

]
:Xs = Xyk

s

)
> 0.

If the event in the last formula holds, then for u = s∨ t we have X
yj
u = X

yk
u and u ≤

τX
D1

= τX
yj

D1
= τXyk

D1
. In other words, we have shown that if T

yj ,yk

1 = τX
yj

D1
∧ τXyk

D1
,

then P
yj ,yk (∃t ∈ [0, T

yj ,yk

1 ] :X
yj

t = X
yk
t ) > 0. We will prove that this leads to a

contradiction. If the processes Xyj and Xyk do not hit ∂D before T
yj ,yk

1 , then of
course they do not meet before T

yj ,yk

1 . If one of them hits ∂D before time T
yj ,yk

1 ,

then we can suppose without loss of generality that T3 := T X
yj

∂D ≤ T Xyk

∂D ∧ T
yj ,yk

1 .
Then |〈Xyj

T3
− X

yk

T3
,n(X

yj

T3
)〉| ≤ (r/4)|Xyj

T3
− X

yk

T3
|. Since T3 ≤ T

yj ,yk

1 , B(x1, r/8) ∈
B(X

yj

T3
, r/4). Let T4 = τX

yj

B(X
yj
T3

,r/4)
∧ τXyk

B(X
yj
T3

,r/4)
. By step 1, applied with 2r in place

of r , and the strong Markov property applied at T3,

P
yj ,yk
(∃t ∈ [0, T

yj ,yk

1

]
:X

yj

t = X
yk
t

) ≤ P
yj ,yk
(∃t ∈ [0, T4] :X

yj

t = X
yk
t

)
= P

yj ,yk
(∃t ∈ [T3, T4] :X

yj

t = X
yk
t

)= 0.

This contradicts our earlier assertion and finishes the proof. �

The next lemma is almost the same as a lemma that appeared in [5]. It says that
at the time when the local time reaches a fixed level, the difference between the
processes X and Y is very likely to be “almost parallel” to ∂D.
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LEMMA 2.3. For any b > 0 and β1 ∈ (0,1) there exist c0, β2, ε1 > 0 such that
if ε ≤ ε1, x, y ∈ D and |x − y| = ε, then

P
x,y

( |〈YσX
b

− XσX
b
,n(XσX

b
)〉|

|YσX
b

− XσX
b
| ≥ c0ε

β1

)
≤ εβ2 .(2.14)

PROOF. The proof is similar to the proof of Lemma 4.6 in [5], so we only
sketch the main ideas. The paper [5] is concerned with 2-dimensional domains,
but it is easy to see that the results from that paper that we use here apply to
multidimensional domains.

By Lemma 4.1(ii) of [5], P(LY
σX

b

≥ a) ≤ c1e
−c2a . Hence, for any β3 > 0 and

β4 > 0 depending on β3,

P
(
LY

σX
b

≥ β3| log ε|)≤ c1 exp
(−c2β3| log ε|)= c1ε

β4 .

If the event A1 := {LY
σX

b

≤ β3| log ε|} holds, then by Lemma 3.8 of [5],

sup
t∈[0,σX

b ]
|Xt − Yt | ≤ |X0 − Y0| exp

(
c4(1 + β3| log ε|))≤ c5ε

1−c4β3 = c5ε
1−β5,

where β5 is defined as c4β3. Choose β3 > 0 so small that β5 < β1, and we can find
β6 such that β1 < β6 < 1 − β5.

Let T1 = inf{t ≥ 0 :Xt ∈ ∂D} and {Vt ,0 ≤ t ≤ σX
b − T1} := {XσX

b −t ,0 ≤ t ≤
σX

b − T1}. If we condition on the values of XT1 and XσX
b

, the process V is a re-
flected Brownian motion in D starting from XσX

b
and conditioned to approach XT1

at its lifetime. It is easy to see that P(|XT1 − XσX
b
| ≤ εβ1) ≤ c6ε

β1 .

Suppose that the event A2 := {dist(XT1,XσX
b
) ≥ εβ1} holds. Conditionally on

this event, the probability that V does not spend at least εβ6 units of local time on
the boundary of ∂D before leaving the ball B(V0, ε

β1) is bounded by c7ε
β6−β1 . Let

A3 be the event that V spends εβ6 or more units of local time on the boundary of
∂D before leaving the ball B(V0, ε

β1). Let T2 = sup{t ≤ σX
b :Xt /∈ B(V0, ε

β1)}.
If A1 and A3 hold, then Y must hit ∂D at some time t ∈ [T2, σ

X
b ] because

εβ6 > c5ε
1−β5 for small ε; that is, the amount of push given to X exceeds the

maximum distance between the two processes. We also have XσX
b

∈ ∂D. The

maximum angle between normal vectors at points of ∂D ∩ B(V0, ε
β1) is less

than c8ε
β1 . A modification of Lemma 2.1 shows that |〈XσX

b
− YσX

b
,n(XσX

b
)〉| ≤

|XσX
b

− YσX
b
|c9ε

β1 . Recall that, by Lemma 2.2, |XσX
b

− YσX
b
| > 0, a.s. We have

shown that the complement of the event in (2.14) occurs if A1 ∩ A2 ∩ A3 holds.
Since P((A1 ∩ A2 ∩ A3)

c) ≤ c1ε
β4 + c6ε

β1 + c7ε
β6−β1 , the lemma follows. �
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3. The sign of the Lyapunov exponent. This section is devoted to the calcu-
lation of the “Lyapunov exponent” for the exterior of a three-dimensional ball. In
our model, the Lyapunov exponent is represented by 1 + λρ where λρ is defined
in Theorem 3.1(ii). This is a three-dimensional analogue of an exponent defined
in [5] for two-dimensional domains. The sign of this exponent—positive for the
domain D—has the fundamental importance for this article.

Recall that Hx is the excursion law for X in D, and πx denotes the projection on
the plane tangent to ∂D at x ∈ ∂D. For an excursion e and nonzero vector v ∈ R

3,
we let fv(e) = log |πe(ζ−)(v)|− log |v|. Note that fv(e) ≤ 0. Let D1 = R

3 \ B(0,1),
and let (L̂t , Ĥ

x) be the exit system for reflected Brownian motion X̂ in D1.

THEOREM 3.1. (i) For every x ∈ ∂D1 and v ∈ Tx∂D1, |v| > 0,

Ĥ x(fv(e)
)= √

2 − 1 − log(1 + √
2).

(ii) Let λρ(x,v) = Hx(fv(e)). We have uniformly in x ∈ ∂D and v ∈ Tx∂D,
|v| > 0,

lim
ρ→∞λρ(x,v) = lim

ρ→∞Hx(fv(e)
)= √

2 + log 2 − 2 − log(1 + √
2) ≈ −0.774013.

The actual value of the Lyapunov exponents comes from a computation pre-
sented in the Appendix, which leads to the following lemma.

LEMMA 3.2. We have∫ 2π

0

∫ π

0

1

16π

sinα

sin3(α/2)
log
(
sin2 β + cos2 β cos2 α

)1/2
dα dβ

(3.1)
= √

2 − 1 − log(1 + √
2)

and ∫ 2π

0

∫ π

0

1

4π
(sinα) log

(
sin2 β + cos2 β cos2 α

)1/2
dα dβ = log 2 − 1.(3.2)

PROOF OF THEOREM 3.1. (i) We will derive a formula for the expectation of
a random variable under the excursion law from the well-known formula for the
density of the harmonic measure.

Let τX
A = inf{t ≥ 0 :Xt /∈ A}. Recall that P

x
D1

denotes the distribution of Brow-

nian motion starting from x and killed at the time τX
D1

. Let μr denote the uni-
form probability distribution on the sphere B(0, r); we will abbreviate μ1 = μ. An
explicit formula for the harmonic measure in D1 is given in [17], Theorem 3.1,
page 102. That formula implies that

P
x
D1

(
X
(
τX
D1

−) ∈ dy
)= a(x)|x − y|−3μ(dy)(3.3)
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FIG. 1. The spherical coordinates α and β used in the derivation of length reduction of the vector v.

for x ∈ D1 and y ∈ ∂B(0,1), where a(x) is such that for x, y ∈ ∂B(0,1),

lim
δ↓0

P
x+δn(x)
D1

(X(τX
D1

−) ∈ dy)

2δ|x + δn(x) − y|−3μ(dy)
= 1.

We use this and (2.2) to see that for x, y ∈ B(0,1),

Ĥ x
D1

(
e(ζ−) ∈ dy

)= 2|x − y|−3μ(dy).(3.4)

Note that, by symmetry, Ĥ x(fv(e)) does not depend on x ∈ ∂D1 and v ∈
Tx∂D1, so we can fix arbitrarily x ∈ ∂D1 and v ∈ Tx∂D1 with |v| > 0. We will
express μ(dy) and fv(e) using spherical coordinates. Let α denote the angle be-
tween the radii of B(0,1) going from 0 to x and y in ∂B(0,1). Let M1 be the plane
that contains v and 0, and let M2 be the plane that contains 0, x and y. Let β be
the angle between M1 and M2; see Figure 1. The uniform probability measure on
the sphere ∂B(0,1) can be represented as

μ(dy) = (2π)−1 dβ(1/2) sinα dα.(3.5)

We have |x − y| = 2 sin(α/2), so (3.4)–(3.5) yield

Ĥ x
D1

(
e(ζ−) ∈ dy

)= 2
(
2 sin(α/2)

)−3
(2π)−1 dβ(1/2) sinα dα

(3.6)

= 1

16π

sinα

sin3(α/2)
dα dβ.

It is elementary (although somewhat tedious) to check that

|πy(v)|
|v| = (sin2 β + cos2 β cos2 α

)1/2
.
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If e(ζ−) = y, then

fv(e) = log
∣∣πe(ζ−)(v)

∣∣− log |v| = log
(
sin2 β + cos2 β cos2 α

)1/2
.(3.7)

We combine this formula with (3.6) to see that

Ĥ x
D1

(
fv(e)

)= ∫ 2π

0

∫ π

0

1

16π

sinα

sin3(α/2)
log
(
sin2 β + cos2 β cos2 α

)1/2
dα dβ.

Part (i) of the theorem follows from this formula and Lemma 3.2.
(ii) We will divide excursions into two families—these that return to ∂D rela-

tively soon, and those that travel far away from ∂D. The first part of the following
argument shows that the excursions which travel far away are likely to hit ∂D at
a random point distributed almost uniformly over ∂D. Excursions from ∂D which
do not travel far away contribute to the estimate about as much as excursions from
∂D1.

First, we will show that the harmonic measure in a spherical shell has a density
very close to a constant, under some assumptions. Let S(r,R) = B(0,R) \ B(0, r)

denote the spherical shell with center 0, inner radius r and outer radius R. Let
h(r,R;x, y) be the density of harmonic measure in S(r,R) restricted to ∂B(0, r);
more precisely, let

h(r,R;x, y) =
P

x
S(r,R)(XτX

S(r,R)
∈ dy)

μr(dy)

for x ∈ S(r,R) and y ∈ ∂B(0, r). For fixed r,R and y, the function x →
h(r,R;x, y) is harmonic in S(r,R). By the Harnack principle, there exists c1 >

0 such that for any positive harmonic function f in B(0,1), we have c1 <

f (v)/f (z) < 1/c1 for all v, z ∈ B(0,1/2). By scaling, for any r > 0 and for
any positive harmonic function f in B(0, r), we have c1 < f (v)/f (z) < 1/c1
for all v, z ∈ B(0, r/2). We can find a finite number N such that there exist
xk ∈ ∂B(0,2r), k = 1, . . . ,N , such that ∂B(0,2r) ⊂⋃1≤k≤N B(xk, r/2). Then the
standard chaining argument shows that for R ≥ 3r and every positive harmonic
function f in S(r,R), we have cN

1 < f (v)/f (z) < 1/cN
1 for all v, z ∈ B(0,2r).

Let c2 = cN
1 . Consider a large integer m. As a particular case of the last formula,

we obtain that

c2 < h
(
2k,2m;x, y

)
/h
(
2k,2m;v, y

)
< 1/c2(3.8)

for 0 ≤ k ≤ m − 2, y ∈ ∂B(0,2k) and x, v ∈ ∂B(0,2k+1). By the strong Markov
property for Brownian motion applied at the hitting time of ∂B(0,2k+1),

h
(
2k,2m;x, y

)= ∫
∂B(0,2k+1)

h
(
2k,2m;v, y

)
h
(
2k+1,2m;x, v

)
μ2k+1(dv)

for 0 ≤ k ≤ m − 3, y ∈ ∂B(0,2k) and x ∈ ∂B(0,2k+2). This, (3.8) and Lemma 6.1
of [7] imply, using the same argument as at the end of the proof of Theorem 6.1
in [7], that for any c3 < 1 arbitrarily close to 1 there exists m0 such that for m ≥ m0,

c3 < h
(
1,2m;x, y

)
/h
(
1,2m;v, y

)
< 1/c3
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for y ∈ ∂B(0,1) and x, v ∈ ∂B(0,2m−1). By applying a rotation, we obtain the
following variant of the above result. For any c3 < 1 arbitrarily close to 1 there
exists m0 such that for m ≥ m0,

c3 < h
(
1,2m;x, y

)
/h
(
1,2m;x, z

)
< 1/c3(3.9)

for y, z ∈ ∂B(0,1) and x ∈ ∂B(0,2m−1).
Suppose that ρ used in the definition of D satisfies 2m+1 ≤ ρ ≤ 2m+2 for some

m ≥ m0. Let

T1 = 0,

Uk = inf
{
t > Tk :Xt ∈ ∂S

(
1,2m)}, k ≥ 1,

Tk = inf
{
t > Uk−1 :Xt ∈ ∂B

(
0,2m−1)}, k ≥ 2.

Then for x ∈ ∂B(0,2m−1) and y ∈ ∂D = ∂B(0,1),

P
x
D(XT X

∂D
∈ dy) =

∞∑
k=1

P
x
D

(
XUk

∈ dy;XUj
∈ ∂B

(
0,2m), j < k

)

=
∞∑

k=1

E
x
D

(
P

XTk

S(1,2m)(XUk
∈ dy)1{XUj

∈∂B(0,2m),j<k}
)

=
∞∑

k=1

E
x
D

(
h
(
1,2m;XTk

, y
)
μ(dy)1{XUj

∈∂B(0,2m),j<k}
)
.

This and (3.9) imply that

c3 < P
x
D(XT X

∂D
∈ dy)/P

x
D(XT X

∂D
∈ dz) < 1/c3

for y, z ∈ ∂B(0,1) and x ∈ ∂B(0,2m−1). The last estimate and the strong Markov
property of excursion laws applied at the hitting time T∂B(0,2m−1) of ∂B(0,2m−1)

show that

c3 < Hx(e(ζ−) ∈ dy;T∂B(0,2m−1) < ζ
)

(3.10)
/Hx(e(ζ−) ∈ dz;T∂B(0,2m−1) < ζ

)
< 1/c3

for x, y, z ∈ ∂B(0,1). Informally speaking, for sufficiently large m (and ρ), the
density of Hx(e(ζ−) ∈ dy;T∂B(0,2m−1) < ζ ) is arbitrarily close to a constant
on ∂D.

The probability that 3-dimensional Brownian motion starting from x + δn(x),
x ∈ ∂B(0,1), will never return to ∂B(0,1) is equal to 1− (1+ δ)−1. This and (2.2)
imply that for any c4 > 0 there exists m1 such that for m ≥ m1 and x ∈ ∂D,

1 − c4 < Hx(T∂B(0,2m−1) < ζ ) < 1 + c4.
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It follows from this and (3.10) that for any c5 > 0 and sufficiently large ρ, we have
for x, y ∈ ∂D,

1 − c5 < Hx(e(ζ−) ∈ dy;T∂B(0,2m−1) < ζ
)
/μ(dy) < 1 + c5.(3.11)

We have by continuity of probability that

lim
m→∞Hx(e(ζ−) ∈ dy;T∂B(0,2m−1) > ζ

)= Ĥ x(e(ζ−) ∈ dy
)
.(3.12)

Note that the above limit is monotone.
We have

Hx(fv(e)
)= ∫

∂D

(
log
∣∣πy(v)

∣∣− log |v|)Hx(e(ζ−) ∈ dy
)

=
∫
∂D

(
log
∣∣πy(v)

∣∣− log |v|)Hx(e(ζ−) ∈ dy;T∂B(0,2m−1) > ζ
)

(3.13)

+
∫
∂D

(
log
∣∣πy(v)

∣∣− log |v|)Hx(e(ζ−) ∈ dy;T∂B(0,2m−1) < ζ
)
.

It follows from (3.12), monotone convergence theorem and part (i) of this theorem
that

lim
m→∞

∫
∂D

(
log
∣∣πy(v)

∣∣− log |v|)Hx(e(ζ−) ∈ dy;T∂B(0,2m−1) > ζ
)

=
∫
∂D

(
log
∣∣πy(v)

∣∣− log |v|)Ĥ x(e(ζ−) ∈ dy
)= Ĥ x(fv(e)

)
(3.14)

= √
2 − 1 − log(1 + √

2).

We combine (3.5), (3.7), (3.11) and Lemma 3.2 to obtain

lim
m→∞

∫
∂D

(
log
∣∣πy(v)

∣∣− log |v|)Hx(e(ζ−) ∈ dy;T∂B(0,2m−1) < ζ
)

=
∫
∂D

(
log
∣∣πy(v)

∣∣− log |v|)μ(dy)

=
∫ 2π

0

∫ π

0

1

4π
sinα log

(
sin2 β + cos2 β cos2 α

)1/2
dα dβ = log 2 − 1.

Part (ii) of the theorem follows from this formula, (3.13) and (3.14). �

4. Recurrence of synchronous couplings in 3-dimensional torus. The nat-
ural scale for our arguments is the combination of the local time scale and the
logarithmic scale. The reason is that when the “real” time reaches a fixed level,
the vector between X and Y is not parallel to ∂D in any reasonable sense. On the
contrary, when the local time reaches a fixed level, the vector between X and Y is
approximately parallel to ∂D, in a sense. The last observation is used repeatedly
in our arguments. The following definitions introduce the “local time scale.”
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Let σX
t = inf{s ≥ 0 :LX

s ≥ t}, σY
t = inf{s ≥ 0 :LY

s ≥ t} and σ ′
b = σX

b ∧ σY
b . The

random variable σ ′
b was denoted σ∗ in Section 2.4 for consistency with the notation

of [4]. The new notation, σ ′
b, is more appropriate for this paper. An alternative

formula is σ ′
b = inf{t ≥ 0 :LX

t ∨ LY
t ≥ b}. Let

σ ′
(k+1)b = inf

{
t ≥ σ ′

kb :
(
LX

t − LX
σ ′

kb

)∨ (LY
t − LY

σ ′
kb

)≥ b
}

for k ≥ 1. Note that, typically, σ ′
kb is not equal to inf{t ≥ 0 :LX

t ∨ LY
t ≥ kb}. Let

Rt = |Xt − Yt |, Mt = logRt, t ≥ 0,
(4.1)

Vk = Mσ ′
kb

, k = 0,1, . . . .

The following lemma shows that over a long time interval, the distance be-
tween X and Y is unlikely to decrease.

LEMMA 4.1. For any c0 > 0, β1 ∈ (0,1) and p < 1 there exist c1, b, ε1 > 0
such that if ε ≤ ε1, x0 ∈ ∂D, y0 ∈ D, |x0 − y0| = ε, X0 = x0, Y0 = y0 and

|〈y0 − x0,n(x0)〉|
|y0 − x0| ≤ c0ε

β1,(4.2)

then

P
x0,y0(V1 − V0 ≥ c1) ≥ p.

PROOF. It suffices to prove the lemma for c0 = 1. To see this, choose any
β∗

1 ∈ (0, β1) and note that c0ε
β1 ≤ εβ∗

1 for some ε∗ > 0 and all ε ∈ (0, ε∗). Hence,
if the lemma is proved for β∗

1 in place of β1, with 1 in place of c0 and for ε < ε1,
then it also holds for β1, c0 and ε < ε1 ∧ ε∗.

Step 1. In this step, the distance between X and Y is approximated by a sum of
increments related to excursions. The rate of increase (or decrease) of the distance
is expressed using excursion theory-based calculations from Section 3.

Recall the results from [4] reviewed in Section 2.4. Suppose that ε∗ > 0, x0 ∈
∂D, v ∈ Tx0∂D, |v| = 1, X0 = x0 and let eu be the first excursion of X from
∂D with |eu(0) − eu(ζ−)| ≥ ε∗. Let x1 = eu(ζ−) and α = 3/4. We will estimate
P

x0(|x0 − eu(0)| ≥ εα∗ ) and E
x0[| log |πx1v||1{|x0−eu(0)|≤εα∗ }].

Let U0 = ∅, U1 = B(x0, ε∗) ∩ ∂D, Uk = (B(x0, kε∗) \ B(x0, (k − 1)ε∗)) ∩ ∂D

for k ≥ 2 and T0 = 0. Set j0 = 1 and for k ≥ 0, set

Tk+1 = inf
{
t ≥ Tk :Xt ∈ ∂D \ (Ujk−1 ∪ Ujk

∪ Ujk+1)
}
,

jk+1 = min{i ≥ 0 :XTk+1 ∈ Ui}.
Recall that u denotes the starting time of the first excursion of X from ∂D with

|eu(0)−eu(ζ−)| ≥ ε∗. Let p1 be the probability that |x0 −eu(0)| < ε∗ and note that
p1 > 0. The strong Markov property applied at Tk shows that P

x0(u ≤ Tk+1 | u ≥
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Tk) ≥ p1. It follows that P
x0(u ≥ Tk) ≤ (1 − p1)

k . For the event {|x0 − eu(0)| ≥
εα∗ } to occur, we have to have u ≥ Tk with k ≥ εα∗ /(2ε∗). It follows that, setting
c1 = −(1/2) log(1 − p1) > 0,

P
x0
(∣∣x0 − eu(0)

∣∣≥ εα∗
)≤ (1 − p1)

εα∗ /(2ε∗) = exp
(−c1ε

α−1∗
)
.(4.3)

Let β = 5/8 and note that if |x1 − x0| ≤ ε
β∗ , then | log |πx1v|| ≤ c2ε

2β∗ . Hence,

E
x0
[∣∣log |πx1v|∣∣1{|x0−eu(0)|≤εα∗ }

]
= E

x0
[∣∣log |πx1v|∣∣1{|x0−eu(0)|≤εα∗ }1{|x1−x0|≤ε

β∗ }
]

(4.4)
+ E

x0
[∣∣log |πx1v|∣∣1{|x0−eu(0)|≤εα∗ }1{|x1−x0|≥ε

β∗ }
]

≤ c2ε
2β∗ + E

x0
[∣∣log |πx1v|∣∣1{|x0−eu(0)|≤εα∗ }1{|x1−x0|≥ε

β∗ }
]
.

It follows from (3.4) and (3.11) that for large ρ, small ε∗, |x1 − x0| ≥ ε
β∗ and

|x0 − x| ≤ εα∗ ,

Hx(e(ζ−) ∈ dx1)

Hx0(e(ζ−) ∈ dx1)
≤ |x − x1|−3

|x0 − x1|−3 ≤ (ε
β∗ − εα∗ )−3

ε
−3β∗

≤ 1 + 6εα−β∗ .(4.5)

Let c∗ = √
2+ log 2−2− log(1+√

2) ≈ −0.77 be the constant in the statement
of Theorem 3.1(ii). Theorem 3.1(ii), the exit system formula (2.1) and (4.5) imply
that for any c4 ∈ (−c∗,1) and c3 ∈ (0, c4 + c∗), all large ρ and small ε∗ > 0,

E
x0
[∣∣log |πx1v|∣∣1{|x0−eu(0)|≤εα∗ }1{|x1−x0|≥ε

β∗ }
]

= E
x0

HXu(
∣∣log |πe(ζ−)v|∣∣1{|x0−Xu|≤εα∗ }1{|e(ζ−)−x0|≥ε

β∗ })
HXu(1{|e(ζ−)−Xu|≥ε∗})

≤
(1 + 6ε

α−β∗ )Hx0(| log |πe(ζ−)v||1{|e(ζ−)−x0|≥ε
β∗ })

Hx0(1{|e(ζ−)−x0|≥ε∗})

≤ (1 + 6ε
α−β∗ )(c3 + |√2 + log 2 − 2 − log(1 + √

2)|)
Hx0(1{|e(ζ−)−x0|≥ε∗})

≤ c4/H
x0(1{|e(ζ−)−x0|≥ε∗}).

We combine the last estimate and (4.4) to obtain

E
x0
[∣∣log |πx1v|∣∣1{|x0−eu(0)|≤εα∗ }

]≤ c2ε
2β∗ + c4/H

x0(1{|e(ζ−)−x0|≥ε∗}).(4.6)

Recall the notation from the paragraph containing (2.5). Consider an arbitrary
v0 ∈ R

3. Since ∂D is a sphere with the unit radius, S(x) is the identity operator so
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Ik = exp(��∗
k)πx∗

k
and, therefore,

Im∗ ◦ · · · ◦ I0(v0) = exp
( ∑

0≤k≤m∗
��∗

k

)
πx∗

m∗ ◦ · · · ◦ πx∗
0
(v0)

= exp
(
�∗
m∗+1

)
πx∗

m∗ ◦ · · · ◦ πx∗
0
(v0)(4.7)

= exp
(
LX

σ ′
b

)
πx∗

m∗ ◦ · · · ◦ πx∗
0
(v0).

We will estimate the above quantity, starting with the composition of projection
operators. We have

log
∣∣πx∗

m∗ ◦ · · · ◦ πx∗
0
(v0)
∣∣

= ∑
1≤k≤m∗

(
log
∣∣πx∗

k
◦ · · · ◦ πx∗

0
(v0)
∣∣− log

∣∣πx∗
k−1

◦ · · · ◦ πx∗
0
(v0)
∣∣)(4.8)

+ log
∣∣πx∗

0
(v0)
∣∣.

By the strong Markov property applied at the excursion endpoint sk−1 := t∗k−1 +
ζ(et∗k−1

), the conditional distribution of

log
∣∣πx∗

k
◦ · · · ◦ πx∗

0
(v0)
∣∣− log

∣∣πx∗
k−1

◦ · · · ◦ πx∗
0
(v0)
∣∣

given Fsk−1 is the same as that of | log |πx1v||, introduced at the beginning of the
proof. Let

Fk = {∣∣x∗
k−1 − et∗k (0)

∣∣≤ εα∗
}
.

We see that the events Fk , k ≥ 1, are independent and so are the random variables∣∣log
∣∣πx∗

k
◦ · · · ◦ πx∗

0
(v0)
∣∣− log

∣∣πx∗
k−1

◦ · · · ◦ πx∗
0
(v0)
∣∣∣∣1Fk

.(4.9)

It follows from (4.6) that

E
x0
[∣∣log

∣∣πx∗
k
◦ · · · ◦ πx∗

0
(v0)
∣∣− log

∣∣πx∗
k−1

◦ · · · ◦ πx∗
0
(v0)
∣∣∣∣1Fk

| Fsk−1

]
≤ c2ε

2β∗ + c4/H
x0(1{|e(ζ−)−x0|≥ε∗}).

Thus the process

Nn = n
(
c2ε

2β∗ + c4/H
x0(1{|e(ζ−)−x0|≥ε∗})

)
− ∑

1≤k≤n

∣∣log
∣∣πx∗

k
◦ · · · ◦ πx∗

0
(v0)
∣∣− log

∣∣πx∗
k−1

◦ · · · ◦ πx∗
0
(v0)
∣∣∣∣1Fk

is a submartingale. By the optional stopping theorem, E
x0Nm∗ ≥ 0, so

E
x0

[ ∑
1≤k≤m∗

∣∣log
∣∣πx∗

k
◦ · · · ◦ πx∗

0
(v0)
∣∣− log

∣∣πx∗
k−1

◦ · · · ◦ πx∗
0
(v0)
∣∣∣∣1Fk

]
(4.10)

≤ E
x0m∗(c2ε

2β∗ + c4/H
x0(1{|e(ζ−)−x0|≥ε∗})

)
.
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Formula (3.4) implies that Hx0(1{|e(ζ−)−x0|≥ε∗}) ≤ c5/ε∗. It follows from the def-
inition of m∗ and the exit system formula (2.1) that m∗ has the Poisson distribu-
tion with the expected value bHx0(1{|e(ζ−)−x0|≥ε∗}). These observations and (4.10)
yield for some c6 > 0, any c7 ∈ (c4,1) and small ε∗,

E
x0

[ ∑
1≤k≤m∗

∣∣log
∣∣πx∗

k
◦ · · · ◦ πx∗

0
(v0)
∣∣− log

∣∣πx∗
k−1

◦ · · · ◦ πx∗
0
(v0)
∣∣∣∣ ∏

1≤j≤m∗
1Fj

]

≤ E
x0

[ ∑
1≤k≤m∗

∣∣log
∣∣πx∗

k
◦ · · · ◦ πx∗

0
(v0)
∣∣− log

∣∣πx∗
k−1

◦ · · · ◦ πx∗
0
(v0)
∣∣∣∣1Fk

]
(4.11)

≤ (c6ε
2β−1∗ + c4

)
b ≤ c7b.

In addition, since we are dealing with a sum of i.i.d. random variables given
in (4.9), and the sum has a Poisson number m∗ of terms with large mean, it is
easy to see that for any c8 ∈ (c7,1) and p2 > 0 there exist b1 and ε0 such that for
b ≥ b1 and ε∗ ≤ ε0,

P
x0

( ∑
1≤k≤m∗

∣∣log
∣∣πx∗

k
◦ · · · ◦ πx∗

0
(v0)
∣∣− log

∣∣πx∗
k−1

◦ · · · ◦ πx∗
0
(v0)
∣∣∣∣1Fk

(4.12)

≥ c8b

)
≤ p2.

A similar argument based on the strong Markov property applied at times sk and
the optional stopping theorem for submartingales, combined with (4.3), gives

P
x0

( ⋃
1≤k≤m∗

Fc
k

)
≤ E

x0m∗ exp
(−c1ε

α−1∗
)≤ c9b exp

(−c1ε
α−1∗
)
ε−1∗ .(4.13)

Step 2. We will use a result from a different paper to show that the discrete
approximation of the distance between X and Y employed in the previous step is
sufficiently accurate for our purposes.

Recall the notation from Section 2.4. We copy below (2.6)–(2.7) because these
estimates are crucial to the present argument. Fix an arbitrarily small c10 > 0.
There exist c11, c12, c13, ε0 > 0, β1 ∈ (1,4/3) and β2 ∈ (0,4/3 − β1) such that if
X0 = x, Y0 = y, |x − y| = ε < ε0 and ε∗ = c11ε, then∣∣(Yσ ′

b
− Xσ ′

b
) − Im∗ ◦ · · · ◦ I0(Y0 − X0)

∣∣≤ |�| + �,(4.14)

where |�| < c10ε, P
x,y -a.s., and

P
x,y(|�| > c12ε

β1
)≤ c13ε

β2 .(4.15)
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We have

log
∣∣πx∗

m∗ ◦ · · · ◦ πx∗
0
(Y0 − X0)

∣∣
= ∑

1≤k≤m∗

(
log
∣∣πx∗

k
◦ · · · ◦ πx∗

0
(Y0 − X0)

∣∣
(4.16)

− log
∣∣πx∗

k−1
◦ · · · ◦ πx∗

0
(Y0 − X0)

∣∣)
+ log

∣∣πx∗
0
(Y0 − X0)

∣∣.
Note that x∗

0 = x0. It follows from (4.2) that

log ε − log
∣∣πx∗

0
(Y0 − X0)

∣∣= log ε − log
∣∣πx0(y0 − x0)

∣∣≤ c14ε
2β1 .(4.17)

We combine this with (4.12), (4.13) and (4.16) to see that for any c15 ∈ (c7,1) and
p2 > 0, there exists b2 such that for any b ≥ b2, there exists ε1 > 0 such that for
ε ≤ ε1,

P
(∣∣log

∣∣πx∗
m∗ ◦ · · · ◦ πx∗

0
(Y0 − X0)

∣∣− log |Y0 − X0|
∣∣≥ c15b

)≤ p2.(4.18)

A special case of (4.7) is

Im∗ ◦ · · · ◦ I0(Y0 − X0) = exp
(
LX

σ ′
b

)
πx∗

m∗ ◦ · · · ◦ πx∗
0
(Y0 − X0).

This implies that

log
∣∣Im∗ ◦ · · · ◦ I0(Y0 − X0)

∣∣= LX
σ ′

b
+ log

∣∣πx∗
m∗ ◦ · · · ◦ πx∗

0
(Y0 − X0)

∣∣.
Recall that |X0 −Y0| = |x0 − y0| = ε. On the event {σ ′

b = σX
b } we have LX

σ ′
b
= b

so, in view of (4.17) and (4.18), for any c16 ∈ (c15,1), c17 = 1 − c16 > 0 and
p3 > 0, there exists b3 such that for any b ≥ b3, there exists ε2 > 0 such that for
ε ≤ ε2,

P
x0,y0
(
log
∣∣Im∗ ◦ · · · ◦ I0(Y0 − X0)

∣∣− b − log ε ≤ −c16b and σ ′
b = σX

b

)
= P

x0,y0
(
log
∣∣Im∗ ◦ · · · ◦ I0(Y0 − X0)

∣∣≤ (1 − c16)b + log ε

and σ ′
b = σX

b

)
(4.19)

= P
x0,y0
(∣∣Im∗ ◦ · · · ◦ I0(Y0 − X0)

∣∣ exp(c17b) and σ ′
b = σX

b

)
≤ p3.

Recall from (4.14) that we can assume that |�| ≤ c10ε, a.s. It follows from (4.15)
that for small ε, P(|�| ≥ c10ε) < p3. These remarks and (4.19) imply that

P
x,y(∣∣Im∗ ◦ · · · ◦ I0(Y0 − X0)

∣∣− |�| − |�| ≤ ε
(
exp(c17b) − 2c10

)
and σ ′

b = σX
b

)
≤ 2p3.
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We combine this estimate with (4.14) to see that

P
x0,y0
(∣∣(YσX

b
− XσX

b
)
∣∣≤ ε

(
exp(c17b) − 2c10

)
and σ ′

b = σX
b

)
(4.20)

= P
x0,y0
(∣∣(Yσ ′

b
− Xσ ′

b
)
∣∣≤ ε

(
exp(c17b) − 2c10

)
and σ ′

b = σX
b

)≤ 2p3.

We choose large b4 so that for b ≥ b4, c18 = c18(b) := exp(c17b) − 2c10 > 1. We
can now write (4.20) as

P
x0,y0
(∣∣(Yσ ′

b
− Xσ ′

b
)
∣∣≤ c18ε and σ ′

b = σX
b

)
(4.21)

= P
x0,y0
(∣∣(YσX

b
− XσX

b
)
∣∣≤ c18ε and σ ′

b = σX
b

)≤ 2p3.

Recall that x0 ∈ ∂D, y0 ∈ D, and let T ′ = inf{t ≥ 0 : |Xt | = |Yt |}. Note that the
distributions of {(Xt , Yt ), t ≥ T ′} and {(Yt ,Xt), t ≥ T ′} are symmetric. Moreover,
Yt /∈ ∂D for t < T ′ and, therefore, LY

T ′ = 0. It follows from this and (4.21) that

P
x0,y0
(∣∣(Yσ ′

b
− Xσ ′

b
)
∣∣≤ c18ε, T

′ ≤ σ ′
b and σ ′

b = σY
b

)
= P

x0,y0
(∣∣(Yσ ′

b
− Xσ ′

b
)
∣∣≤ c18ε, T

′ ≤ σ ′
b and σ ′

b = σX
b

)≤ 2p3

and

P
x0,y0
(∣∣(Yσ ′

b
− Xσ ′

b
)
∣∣≤ c18ε

)
≤ P

x0,y0
(∣∣(Yσ ′

b
− Xσ ′

b
)
∣∣≤ c18ε, and σ ′

b = σX
b

)
(4.22)

+ P
x0,y0
(∣∣(Yσ ′

b
− Xσ ′

b
)
∣∣≤ c18ε, T

′ ≤ σ ′
b and σ ′

b = σY
b

)≤ 4p3.

Let c19 = log c18 > 0. Then

P
x0,y0(V1 − V0 ≤ c19) = P

x0,y0
(
log
∣∣(Yσ ′

b
− Xσ ′

b
)
∣∣− log ε ≤ log c18

)≤ 4p3.

Since p3 > 0 is arbitrarily small and c19 > 0, the lemma is proved. �

The following lemma estimates the distribution of the increment of the loga-
rithm of the distance between X and Y . The assertion of the lemma has two parts.
One part says that the distribution is close to the distribution of an integrable ran-
dom variable. The other part shows the that error of approximation is small in an
appropriate sense. Recall notation from (4.1).

LEMMA 4.2. For any β1 ∈ (0,1/2) there exist β2, b, c1, ε1 > 0 and a cumu-
lative distribution function G : R → [0,1] satisfying

∫∞
−∞ |a|dG(a) < ∞ and such

that if ε ≤ ε1, x0 ∈ ∂D, y0 ∈ D, |x0 − y0| = ε, X0 = x0, Y0 = y0 and

|〈y0 − x0,n(x0)〉|
|y0 − x0| ≤ εβ1,(4.23)

then there exists an event F such that

P
x0,y0
(
Fc)≤ c1ε

β2,(4.24)

P
x0,y0
(|V1 − V0|1F ≤ a

)≤ G(a), a ∈ R.(4.25)
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PROOF. Step 1. This step is devoted to a review of upper bounds on the rate
of growth of the distance between X and Y . It also contains a list of definitions
(notation) used throughout the rest of the proof.

Fix b as in Lemma 4.1, some β3 and β4 such that β1 < β3 < β4 < 1/2, and
consider the condition

|〈y0 − x0,n(x0)〉|
|y0 − x0| ≤ c2ε

β4,(4.26)

where c2 = 200 · 2β4 . Note that c2ε
β4 < εβ1 for small ε > 0. It follows from (4.22)

that for some p1 ∈ (0,1), ε1 > 0 and c3 = c3(b) > 0, if |x0 − y0| = ε ≤ ε1 and
either (4.23) or (4.26) holds, then

P
x0,y0
(|Yσ ′

b
− Xσ ′

b
| ≤ c3ε

)≤ p1.(4.27)

Lemma 3.4 of [4] and its proof show that there exists c4 > 0 such that for all
x, y ∈ D and t ≥ 0, we have P

x,y -a.s.,

|Xt − Yt | ≤ exp
(
c4
(
LX

t + LY
t

))|x − y|.(4.28)

By the Markov property, for any fixed t, s ≥ 0, a.s.,

|Xt+s − Yt+s | ≤ exp
(
c4
(
LX

t+s − LX
t + LY

t+s − LY
t

))|Xt − Yt |.(4.29)

Since the last formula holds for all rational t, s ≥ 0 simultaneously, a.s., and X and
Y are continuous, the inequality actually holds for all random times t, s ≥ 0 (not
necessarily stopping times). We obtain from (4.28),

inf
0≤t≤σ ′

b

|Xt − Yt | ≥ exp(−2c4b)|Xσ ′
b
− Yσ ′

b
|.(4.30)

Let c5 = exp(2c4b) and c6 = c3c
−1
5 . It follows from (4.27) and (4.30) that

P
x0,y0
(

inf
0≤t≤σ ′

b

|Yt − Xt | ≤ c6ε
)

≤ p1,(4.31)

and for any random time T ∈ [0, σ ′
b],

sup
T ≤t≤σ ′

b

|Yt − Xt | ≤ c5|YT − XT |, P
x0,y0-a.s.(4.32)

In particular,

sup
0≤t≤σ ′

b

|Yt − Xt | ≤ c5ε, P
x0,y0-a.s.(4.33)

We set c7 = (−1 − 2c4b) ∧ log c6 and c8 = ec7 . Hence,

c8c5 ≤ exp(−1 − 2c4b + 2c4b) < 1/2.(4.34)

Obviously, (4.31) implies that, assuming that either (4.23) or (4.26) holds,

P
x0,y0
(

inf
0≤t≤σ ′

b

|Yt − Xt | ≤ c8ε
)

≤ p1.(4.35)
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Let U0 = 0 and

S1 = inf{t ≥ 0 :Mt − M0 ≤ c7} = inf
{
t ≥ 0 : |Xt − Yt | ≤ c8|X0 − Y0|}.

Here and later, inf ∅ = ∞. Note that at least one of the processes X and Y must
belong to ∂D at time S1. We proceed by induction. First assume that XSk

∈ ∂D.

Let zk ∈ ∂D be the point such that n(zk) = YSk
−XSk|YSk
−XSk

| , and for some c9 > 0 (to be

specified later) and k ≥ 1, let

Uk = inf{t ≥ Sk :Yt ∈ ∂D},
Sk = inf{t ≥ Uk−1 :Mt − MUk−1 ≤ c7}

= inf
{
t ≥ Uk−1 : |Xt − Yt | ≤ c8|XUk−1 − YUk−1 |

}
,

Fk = {Sk < σ ′
b

}
,

Gk = σ(Bt , t ≤ Uk),

Jk = n ∈ Z such that 2−n ≤ |XSk
− zk| < 2−n+1,

dk = |XUk−1 − YUk−1 |
(
hence, d0 = |X0 − Y0| = ε

)
,

Ik = {2−Jk ≥ d
β3
k

}
,

S∗
k = inf

{
t ≥ Sk : |Xt − XSk

| ≥ d
β4
k

}
,

Ck = {Uk ≤ S∗
k

}
,

Gk = {|XUk
− YUk

| ≥ c92−Jkdk

}
,

Kk =
{ |〈XUk

− YUk
,n(YUk

)〉|
|XUk

− YUk
| ≤ c2|XUk

− YUk
|β4

}
,

Ak = Fk ∩ Ik ∩ Ck ∩ Gk ∩ Kk,

A+
k = ⋂

j≤k

Aj .

If XSk
/∈ ∂D, then we must have YSk

∈ ∂D, and we apply all the above definitions
with the roles of X and Y interchanged. In the rest of the proof, we will discuss
only the case when XSk

∈ ∂D. Our arguments hold in the other case by symmetry.
Step 2. In this step we will prove that, for some c10, c11 < ∞, k ≥ 1 and m such

that 2−m ≥ d
β3
k , on A+

k−1,

P
(
Ac

k ∩ Fk | Gk−1
)≤ c10d

β3
k ,(4.36)

P
({Jk ≥ m} ∩ Fk | Gk−1

)≤ c112−m.(4.37)

Informally speaking, we will show that some events are unlikely. Given that they
do not happen, we will find good estimates for the distance between X and Y .
This step is subdivided into further substeps because we have to analyze several
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families of “unusual” events and show that they all have small probabilities. The
first substep will show that “long” excursions are unlikely.

Step 2.1. Let U ′
k = S∗

k ∧ Uk . Note that U ′
k = Uk on Ck and U ′

k = S∗
k on Cc

k . If
Fk holds, then dk ≤ c5ε, by (4.33). By the definition of Sk , |XSk

− YSk
| = c8dk ,

if Sk < ∞. We have assumed that XSk
∈ ∂D so dist(YSk

, ∂D) ≤ c8dk . We apply
Lemma 3.2 of [5] to the process Y at the stopping time Sk to see that for some
c12 > 0,

P
(|YSk

− YU ′
k
| ≥ d

β4
k /3
)≤ c12d

1−β4
k .(4.38)

We will show that if ε1 > 0 is sufficiently small and ε < ε1, then LX
U ′

k
− LX

Sk
≤

3(1 + c5)d
β4
k . Suppose that the last inequality does not hold, and let T ∗

k = inf{t ≥
Sk :LX

t − LX
Sk

= 3(1 + c5)d
β4
k }. Then by assumption we have T ∗

k ≤ U ′
k ≤ S∗

k . As-
suming that Fk holds and using (4.33),

|XSk
− YSk

| = c8dk ≤ c5ε.(4.39)

Hence, if ε is sufficiently small, then c8dk ≤ d
β4
k /3 and, therefore,

|XSk
− YSk

| ≤ d
β4
k /3.(4.40)

It follows from the definitions of Uk and U ′
k that LY

U ′
k
− LY

Sk
= 0. If ε is small then

dk is small and 3(1+c5)d
β4
k < b∧1/100. So the definition of T ∗

k , (4.40) and (4.28)
imply that

|XT ∗
k

− YT ∗
k
| ≤ c5d

β4
k .(4.41)

For all t ∈ [Sk, T
∗
k ] ⊂ [Sk, S

∗
k ] such that Xt ∈ ∂D, the angle between n(Xt) and

n(XSk
) is less than 2d

β4
k . It follows that the angle between

∫ T ∗
k

Sk
n(Xt) dLX

t and

n(XSk
) is also smaller than 2d

β4
k < 1/50. Moreover, the length of

∫ T ∗
k

Sk
n(Xt) dLX

t is

greater than 2(1 + c5)d
β4
k . Recall that Yt /∈ ∂D for t ∈ [Sk, T

∗
k ]. Thus∫ T ∗

k

Sk
n(Yt ) dLY

t = 0 and, therefore,

XT ∗
k

− YT ∗
k

= XSk
− YSk

+
∫ T ∗

k

Sk

n(Xt) dLX
t .

This relation, the fact that XSk
∈ ∂D, (4.40), (4.41) and our observations about the

direction and length of
∫ T ∗

k

Sk
n(Xt) dLX

t imply that YT ∗
k

must be at least (1 + c5)d
β4
k

units inside the ball B(0,1). This is impossible so the claim that LX
U ′

k
− LX

Sk
≤

3(1 + c5)d
β4
k is proved.

Recall that, assuming that Fk holds, c8dk ≤ c5ε. Hence, if ε1 > 0 is sufficiently
small and ε < ε1, then 3(1 + c5)d

β4
k < b. Since LX

U ′
k
− LX

Sk
≤ 3(1 + c5)d

β4
k , LY

U ′
k
−
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LY
Sk

= 0 and |XSk
− YSk

| = c8dk , we have by (4.29), for all t ∈ [Sk,U
′
k],

|Xt − Yt | ≤ c5c8dk < d
β4
k /3.(4.42)

In particular, |XU ′
k
− YU ′

k
| < d

β4
k /3. This, the definitions of S∗

k and U ′
k and (4.40)

imply that, assuming that Ck does not hold, |YSk
− YS∗

k
| = |YSk

− YU ′
k
| ≥ d

β4
k /3.

This and (4.38) imply that, on A+
k−1,

P
(
Cc

k ∩ Fk | Gk−1
)≤ c13d

1−β4
k .(4.43)

We record, for future reference, the following variants of (4.42). If Ck ∩ Fk

holds, then U ′
k = Uk and for any random time R ∈ [Sk,Uk] and all t ∈ [R,Uk],

|Xt − Yt | ≤ c5c8|XR − YR|.(4.44)

It follows from (4.29) that if Ck ∩ Fk holds, then for all t ∈ [Uk−1,Uk],
|Xt − Yt | ≤ c5|XUk−1 − YUk−1 | = c5dk.(4.45)

Since |XSk
− YSk

| = c8dk , if Fk holds, then we have by (4.29) and (4.34), for all
t ∈ [Sk, σ

′
b],

|Xt − Yt | ≤ c5c8dk < dk/2.(4.46)

Step 2.2. The intuitive meaning of the technical estimate in this step is that if the
vector between X and Y is close to the normal to ∂D, then Y must have traveled a
long distance since it last visited ∂D.

Assume that Fk holds. Let U∗
k = sup{t < Uk :Yt ∈ ∂D} and Ũk = Uk−1 ∨U∗

k . It
is easy to see that, a.s., U∗

k ≤ Ũk < Sk < Uk , for k ≥ 2. (We will limit our discus-
sion to the case k ≥ 2; the case k = 1 requires minor modifications so we omit the
proof.) Random times U∗

k and Uk are the endpoints of an excursion of Y from ∂D.

Suppose that Jk ≥ m and 2−m ≥ d
β3
k . By (4.32), dk ≤ c5ε so, assuming that ε1 > 0

is small and ε ≤ ε1, we have c8dk ≤ d
β3
k ≤ 2−m. We have |XSk

− zk| ≤ 2−m+1 and,
using (4.39),

|YSk
− zk| ≤ |XSk

− zk| + |XSk
− YSk

| ≤ 2−m+1 + c8dk ≤ 2−m+2.(4.47)

Suppose that supŨk≤t≤Sk,Xt∈∂D |Yt − zk| ≤ c14 := 1/400. We will show that this
assumption leads to a contradiction. The assumption and (4.33) imply that, for
small ε, supŨk≤t≤Sk,Xt∈∂D |Xt − zk| ≤ 2c14. This in turn implies that for all t ∈
[Ũk, Sk] such that Xt ∈ ∂D, the angle between n(Xt) and n(zk) is less than 4c14. It
follows that the angle between

∫ Sk

Ũk
n(Xt) dLX

t and n(zk) is also smaller than 4c14.

Note that Yt /∈ ∂D for t ∈ [Ũk, Sk] by the definition of Ũk . Thus
∫ Sk

Ũk
n(Yt ) dLY

t = 0
and, therefore,

XSk
− YSk

= XŨk
− YŨk

+
∫ Sk

Ũk

n(Xt) dLX
t .(4.48)
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FIG. 2. In analysis of possible locations of X and Y , we can ignore Brownian oscillations because
they are common to both X and Y and hence do not affect their relative position. Consider the case
Ũk = U∗

k . On the interval [U∗
k , Sk], only X gets “local time push” on ∂D because Y does not visit

∂D between these times. The direction of the push is always close to n(zk). The picture represents an
impossible configuration—it is impossible for XU∗

k
to be “above” YU∗

k
and for XSk

to be “below”

YSk
if X is pushed in the “upward” direction between times U∗

k and Sk .

Recall that XSk
− YSk

is a positive multiple of −n(zk) and XSk
∈ ∂D. Assume that

Kk−1 holds. If Ũk = U∗
k , then YŨk

∈ ∂D. Next consider the case Ũk > U∗
k . In this

case, XUk−1 ∈ ∂D and, assuming that ε > 0 is small, the vector YUk−1 −XUk−1 is al-
most orthogonal to n(XUk−1). More precisely, Kk−1 implies that dist(YUk−1, ∂D) ≤
2c2d

1+β4
k . These observations and the fact that the angle between

∫ Sk

Ũk
n(Xt) dLX

t

and n(zk) is smaller than 4c14 show that (4.48) cannot be true; see Figure 2.
This contradiction implies that supŨk≤t≤Sk,Xt∈∂D |Yt − zk| ≥ c14. We combine
this with (4.47) to see that supŨk≤t≤Sk,Xt∈∂D |Yt − YSk

| ≥ c15 := c14/2, for some
m1 and all m ≥ m1. Suppose that s1 is such that Ũk ≤ s1 ≤ Sk,Xs1 ∈ ∂D and
|Ys1 − YSk

| ≥ c15. Then either |YŨk
− YSk

| ≥ c15/2 or |YŨk
− Ys1 | ≥ c15/2. Since

XSk
∈ ∂D, it follows that there exists s2 such that Ũk ≤ s2 ≤ Sk,Xs2 ∈ ∂D and

|YŨk
− Ys2 | ≥ c15/2. We record this for future reference. There exists m1 such that

if m ≥ m1, Fk ∩ Kk−1 holds, Jk ≥ m and 2−m ≥ d
β3
k , then

sup
Ũk≤t≤Sk,Xt∈∂D

|Yt − YŨk
| ≥ c15/2.(4.49)

Step 2.3. We will show that if Y comes close to ∂D, then it is not likely to hit
∂D far from this point.

Assume that Ck ∩ Fk holds. Recall notation related to excursions from Sec-
tion 2.3. We will apply excursion theory to excursions of the Markov process
(Y,X) from ∂D×D. From the intuitive point of view, the exit system representing
these excursions is equivalent to the exit system for excursions of Y from ∂D. We
use the “richer” version of excursion theory so that we can discuss the relation-
ship of excursions of Y and the process X. We will use the same notation Hz for
excursion laws of the process (Y,X) as for excursion laws of the process Y since
the two families of excursion laws can be clearly identified with each other. All
estimates of Hz-measures of events given in this proof hold uniformly in z ∈ ∂D,
so we will write H · for such uniform bounds.
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Consider an arbitrary c16 ∈ (0, c15/2), and for the moment, consider dk a fixed
number. In the following definitions, e will represent excursions of the second
component of (X,Y ) from ∂D. Let

T = inf
{
t ≥ 0 : dist

(
e(t), ∂D

)≤ c5dk,
∣∣e(0) − e(t)

∣∣≥ c16,Xt ∈ ∂D
}
,

Ã =
{
T < ζ, sup

T <t<ζ

∣∣e(ζ−) − e(t)
∣∣≥ d

β4
k /4
}
.

An application of Lemma 3.2 of [5] and (2.2) give

H ·(T < ζ) ≤ H ·( sup
0<t<ζ

∣∣e(t) − e(0)
∣∣≥ c16

)
≤ c17.(4.50)

Another application of Lemma 3.2 of [5] and the strong Markov property applied
at the stopping time T yield

H ·(Ã | T < ζ) = H ·( sup
T <t<ζ

∣∣e(ζ−) − e(t)
∣∣≥ d

β4
k /4 | T < ζ

)
≤ c18d

1−β4
k .

We combine this and (4.50) to see that

H ·(Ã) ≤ c19d
1−β4
k .(4.51)

Now we go back to the original definition of dk—we treat it again as a random
variable. Note that t → |Xt − Yt | is a predictable process, so

∑
k dk1t∈(Uk−1,Uk] is

a predictable process. This, (4.51) and the exit system formula (2.1) imply that the
probability that there exists an excursion of Y belonging to the set Ã and starting
in the time interval [Uk−1,Uk ∧ σ ′

b] is less than bc19d
1−β4
k .

Assume that Jk = m for some m ≥ m1 such that 2−m ≥ d
β3
k . Recall that we have

assumed that Ck ∩ Fk holds. Let

S1
k = inf

{
t ≥ Ũk :Xt ∈ ∂D, |Yt − YŨk

| ≥ c16
}
,

S+
k = inf

{
t ≥ S1

k : |Xt − XS1
k
| ≥ d

β4
k /2
}
,

C1
k = {Uk ≤ S+

k

}
.

Note that S1
k ≤ Sk ≤ Uk because of (4.49) (recall that c16 < c15/2). This implies

that S+
k ≤ S∗

k .
If (C1

k )c holds, then |XS+
k

− YS+
k
| ≤ c5dk , by (4.42), (4.45) and the fact that

S+
k ≤ S∗

k . Under the same assumptions, we also have |XS1
k
− YS1

k
| ≤ c5dk because

S1
k ≤ S+

k . Suppose that ε1 > 0 is so small that for ε < ε1 we have c5dk < d
β4
k /8.

Then |YS1
k
− YS+

k
| ≥ d

β4
k /4, by the definition of S+

k and the triangle inequality.

Suppose that Ũk = U∗
k . Since |YS1

k
− YS+

k
| ≥ d

β4
k /4, the excursion of Y starting

at U∗
k belongs to the set Ã. We have proved that the probability that there exists an
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excursion of Y belonging to the set Ã and starting in the time interval [Uk−1,Uk ∧
σ ′

b] is less than bc19d
1−β4
k . Thus, on A+

k−1,

P
({

Ũk = U∗
k

}∩ {Jk = m} ∩ (C1
k

)c ∩ Ck ∩ Fk | Gk−1
)≤ c19bd

1−β4
k .

Now suppose that Ũk = Uk−1. If we replace Ũk with Uk−1 in the definition of
S1

k , then this random time becomes a stopping time, and we can apply the strong
Markov property at such modified S1

k . By Lemma 3.2 of [5] and the strong Markov
property applied at the modified S1

k , the probability of {sups,t∈[S1
k ,Uk] |Ys − Yt | ≥

d
β4
k /4} is bounded by c20d

1−β4
k . Since (C1

k )c ∩ Ck ∩ Fk implies {|YS1
k

− YS+
k
| ≥

d
β4
k /4}, we obtain on A+

k−1,

P
({Ũk = Uk−1} ∩ {Jk = m} ∩ (C1

k

)c ∩ Ck ∩ Fk | Gk−1
)≤ c20d

1−β4
k .

Combining this with the previous case yields

P
({Jk = m} ∩ (C1

k

)c ∩ Ck ∩ Fk | Gk−1
)≤ c21d

1−β4
k .

If we apply this estimate with m defined by 2−m < d
β3
k ≤ 2−m+1, then we obtain,

on A+
k−1,

P
(
I c
k ∩ (C1

k

)c ∩ Ck ∩ Fk | Gk−1
)≤ c21d

1−β4
k .(4.52)

There is no b on the right-hand side of the last estimate because b was fixed, so it
can be absorbed into the constant c21. There will be some other places in the proof
where we absorb b into the constant.

Step 2.4. We will show that the process Y is unlikely to hit the boundary close
to the point where the normal vector is parallel to the original vector from X to Y ,
assuming that X is in ∂D at the initial time.

It is elementary to check that if v,w ∈ R
3 are nonzero vectors, then the angle

∠(−v,v − w) is greater than the angle ∠(v,w).
Suppose that the event {Jk = m} ∩ Ck ∩ C1

k ∩ Fk occurred for some m such

that 2−m ≥ d
β3
k . Note that S1

k ≤ Sk because of (4.49). Let αk be the angle between
XS1

k
− YS1

k
and XSk

− YSk
.

Suppose that αk > 16 · 2−Jk . We will show that this assumption leads to a con-
tradiction. For all t ∈ [S1

k , Sk] such that Xt ∈ ∂D, the angle between n(Xt) and

n(XSk
) is smaller than d

β4
k because C1

k holds so Sk ≤ Uk ≤ S+
k , and therefore, the

definition of S+
k implies that supt∈[S1

k ,Sk] |Xt − XS1
k
| ≤ d

β4
k /2. It follows that the

angle between
∫ Sk

S1
k

n(Xt) dLX
t and n(XSk

) is also smaller than d
β4
k . Since Jk = m,

the angle between n(zk) and n(XSk
) is smaller than or equal to 2−m+2. This is

equivalent to saying that the angle between YSk
− XSk

and n(XSk
) is smaller than

or equal to 2−m+2. It follows that the angle between
∫ Sk

S1
k

n(Xt) dLX
t and YSk

−XSk
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is smaller than 2−m+2 + d
β4
k ≤ 2−m+2 + d

β3
k ≤ 2−m+2 + 2−m < 2−m+3. Note that

Yt /∈ ∂D for t ∈ [S1
k , Sk]. Thus

∫ Sk

S1
k

n(Yt ) dLY
t = 0 and therefore,

XSk
− YSk

= XS1
k
− YS1

k
+
∫ Sk

S1
k

n(Xt) dLX
t .(4.53)

We will identify some elements of the above formula with vectors v and w
in the opening remark in this step, namely, v = XSk

− YSk
and w = XS1

k
−

YS1
k
. Then

∫ Sk

S1
k

n(Xt) dLX
t = v − w and αk = ∠(v,w) = ∠(XS1

k
− YS1

k
,XSk

−
YSk

) > 16 · 2−Jk = 2−m+4. This and the fact that ∠(−v,v − w) = ∠(YSk
−

XSk
,
∫ Sk

S1
k

n(Xt) dLX
t ) < 2−m+3 yield a contradiction. Hence we must have αk ≤

2−Jk+4 if {Jk = m} ∩ Ck ∩ C1
k ∩ Fk holds.

If C1
k occurred, then supS1

k≤t≤Uk
|Xt − XS1

k
| ≤ d

β4
k /2. Since Sk ∈ [S1

k ,Uk], it

follows that |XUk
− XSk

| ≤ d
β4
k . Recall that |XUk

− YUk
| ≤ c5dk by (4.32). This

implies that, for small ε1 > 0,

|YUk
− XSk

| ≤ |XUk
− XSk

| + |XUk
− YUk

| ≤ d
β4
k + c5dk ≤ 2d

β4
k .(4.54)

Let z1
k ∈ ∂D be defined by n(z1

k) = (YS1
k
− XS1

k
)/|YS1

k
− XS1

k
|. Since αk ≤ 2−Jk+4,

we have |zk −z1
k| ≤ c222−Jk = c222−m. We have assumed that 2−m ≥ d

β3
k , so (4.54)

implies that∣∣YUk
− z1

k

∣∣≤ |YUk
− XSk

| + |XSk
− zk| +

∣∣zk − z1
k

∣∣
≤ 2d

β4
k + 2−Jk+1 + c222−m = 2d

β4
k + 2−m+1 + c222−m ≤ c232−m.

We have shown that the event {Jk = m} ∩ Ck ∩ C1
k ∩ Fk implies{∣∣YUk

− z1
k

∣∣≤ c232−m}.(4.55)

Suppose that Ũk = U∗
k . In this case, we will estimate the probability of the

event in (4.55) using excursion theory. Recall the remarks and conventions from
the beginning of step 2.3. Let T 1 = inf{t ≥ 0 : |e(t) − e(0)| ≥ c16}, z2 ∈ ∂D be the
point such that n(z2) = (e(T 1) − XT 1)/|e(T 1) − XT 1 | and

Â = {e :T 1 < ζ,
∣∣e(ζ−) − z2∣∣≤ c232−m}.

The number of excursions starting before σ ′
b and such that T 1 < ζ is Poisson with

the mean bounded by c24b, by (2.1) and the right-hand side of (4.50). We can as-
sume that c16 > 0 is arbitrarily small. If c16 is sufficiently small, then it is easy to
see that the angle between e(T 1) − XT 1 and n(e(0)) must be bounded below by a
strictly positive constant, and therefore the distance between z2 and e(T 1) must be
bounded below by c25 > 0. By the strong Markov property applied at T 1, given the
values of e(T 1) and z2 and assuming that |e(T 1) − z2| ≥ c25, the probability that
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e(ζ−) ∈ B(z2, c232−m) is smaller than c262−m, by (3.3). Hence the expected num-
ber of excursions in Â starting before σ ′

b is bounded by c26b2−m. This implies that
the probability that such an excursion will occur is less than or equal to c26b2−m.
We have shown that {Jk = m} ∩ Ck ∩ C1

k ∩ Fk implies {|YUk
− z1

k| ≤ c232−m}, so
if {Ũk = U∗

k } ∩ {Jk = m} ∩ Ck ∩ C1
k ∩ Fk occurs, then the excursion of Y starting

at U∗
k belongs to Â. We conclude that, on A+

k−1,

P
({

Ũk = U∗
k

}∩ {Jk = m} ∩ Ck ∩ C1
k ∩ Fk | Gk−1

)≤ c26b2−m.(4.56)

Next suppose that {Ũk = Uk−1} ∩ Kk−1 holds. It is easy to see that if c16 >

0 is sufficiently small, then we can find ε1 > 0 such that for ε < ε1, the angle
between YS1

k
− XS1

k
and n(XS1

k
) is bounded below by a strictly positive constant.

Then the distance between z1
k and YS1

k
is bounded below by c26 > 0. By the strong

Markov property applied at S1
k , given the values of YS1

k
and z1

k and assuming that

|YS1
k
− z1

k| ≥ c26, the probability that YUk
∈ B(z1

k, c232−m) is smaller than c272−m,

by (3.3). We have shown that {Jk = m} ∩ Ck ∩ C1
k ∩ Fk implies {|YUk

− z1
k| ≤

c232−m} so, on A+
k−1,

P
({Ũk = Uk−1} ∩ {Jk = m} ∩ Ck ∩ C1

k ∩ Fk | Gk−1
)≤ c272−m.

We combine this with (4.56) to see that

P
({Jk = m} ∩ Ck ∩ C1

k ∩ Fk | Gk−1
)≤ c282−m.

Summing over m ≥ m′, we obtain, on A+
k−1,

P
({

Jk ≥ m′}∩ Ck ∩ C1
k ∩ Fk | Gk−1

)≤ c292−m′
.(4.57)

We combine (4.43), (4.52) and (4.57) to see that if 2−m ≥ d
β3
k , then on A+

k−1,

P
({Jk ≥ m} ∩ Fk | Gk−1

)≤ P
(
Cc

k ∩ Fk | Gk−1
)+ P

(
I c
k ∩ (C1

k

)c ∩ Ck ∩ Fk | Gk−1
)

+ P
({Jk ≥ m} ∩ Ck ∩ C1

k ∩ Fk | Gk−1
)

≤ c13d
1−β4
k + c21d

1−β4
k + c292−m ≤ c302−m;

that is, (4.37) holds.
The following follows from (4.57), with m′ defined by 2−m′−1 ≤ d

β3
k < 2−m′

.
We have on A+

k−1,

P
(
I c
k ∩ Ck ∩ C1

k ∩ Fk | Gk−1
)≤ c29d

β3
k .(4.58)

Step 2.5. We will show that the vector from X to Y is very likely to be almost
parallel to ∂D at the time Uk .
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Assume that Ck ∩ Fk holds. Let

Ŝ
j
k = inf

{
t ≥ Sk : |Xt − Yt | ≤ 2−j },

Û
j
k = inf

{
t ≥ Ŝ

j
k : |Xt − X

Ŝ
j
k

| ≥ 2−jβ4
}
,

Ĉ
j
k = {Uk ≤ Û

j
k

}
.

The following argument is very similar to that in step 2.1. By the definition of
Ŝ

j
k , for large j ,

|X
Ŝ

j
k

− Y
Ŝ

j
k

| = 2−j .(4.59)

Suppose that {Ŝj
k ≤ Uk} ∩ (Ĉ

j
k )c holds. Then X

Ŝ
j
k

∈ ∂D and dist(Y
Ŝ

j
k

, ∂D) ≤ 2−j .

By Lemma 3.2 of [5],

P

(
sup

Ŝ
j
k ≤t≤Uk

|Y
Ŝ

j
k

− Yt | ≥ 2−jβ4/3
)

≤ c312−j (1−β4).(4.60)

It follows from (4.44) that for all t ∈ [Ŝj
k ,Uk],

|Xt − Yt | ≤ c5|XŜ
j
k

− Y
Ŝ

j
k

|.(4.61)

In particular, for large j , |X
Û

j
k

− Y
Û

j
k

| ≤ c52−j < 2−jβ4/3. This, (4.59) and the

definitions of Ŝ
j
k and Ĉ

j
k imply that, assuming that Ĉ

j
k does not hold, |Y

Ŝ
j
k

−Y
Û

j
k

| ≥
2−jβ4/3. This and (4.60) imply that, on A+

k−1,

P
((

Ĉ
j
k

)c ∩ {Ŝj
k ≤ Uk

}∩ Ck ∩ Fk | Gk−1
)≤ c322−j (1−β4).(4.62)

Assume that Ĉ
j
k ∩ {Ŝj

k ≤ Uk} holds. Since X
Ŝ

j
k

∈ ∂D and YUk
∈ ∂D, there is

t ∈ [Ŝj
k ,Uk] such that dist(Xt , ∂D) = dist(Yt , ∂D). Let S̃

j
k be the smallest t ≥

Ŝ
j
k with this property. Let z̃ ∈ ∂D be the point closest to X

S̃
j
k

among all points

equidistant from X
S̃

j
k

and Y
S̃

j
k

. By the definition of Ĉ
j
k , for all t ∈ [Ŝj

k ,Uk], we have

|Xt − X
Ŝ

j
k

| ≤ 2−jβ4 . By (4.61), for all t ∈ [Ŝj
k ,Uk], we have |Xt − Yt | ≤ c52−j .

This implies that, for large j , |̃z − X
S̃

j
k

| = |̃z − Y
S̃

j
k

| ≤ 10 · 2−jβ4 . We also have for

t ∈ [S̃j
k ,Uk], |̃z − Xt | ≤ 20 · 2−jβ4 and |̃z − Yt | ≤ 20 · 2−jβ4 . Hence we can apply

Lemma 2.1 with c1/4 = 20 · 2−jβ4 at the stopping time S̃
j
k to see that∣∣〈XUk

− YUk
,n(̃z)〉∣∣≤ 80 · 2−jβ4 |XUk

− YUk
|.(4.63)

Since |̃z − YUk
| ≤ 20 · 2−jβ4 , the angle between n(̃z) and n(YUk

) is less than 40 ·
2−jβ4 for large j . This and (4.63) imply that, for large j ,∣∣〈XUk

− YUk
,n(YUk

)
〉∣∣≤ 200 · 2−jβ4 |XUk

− YUk
|.(4.64)
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Let j0 be the largest j such that Ŝ
j
k ≤ Uk . Then |XUk

− YUk
| ≥ 2−j0−1, and if the

event in (4.64) holds with j = j0, then the following event holds:

Kk =
{ |〈XUk

− YUk
,n(YUk

)〉|
|XUk

− YUk
| ≤ c2|XUk

− YUk
|β4

}
,

with c2 = 200 · 2β4 . It follows from the definitions of Sk and Ŝ
j
k that 2−j0 ≤ 2c8dk .

Thus

Kc
k ∩ Ck ∩ Fk ⊂ ⋃

j : 2−j≤2c8dk

(
Ĉ

j
k

)c ∩ {Ŝj
k ≤ Uk

}∩ Ck ∩ Fk.

This and (4.62) imply that, on A+
k−1,

P
(
Kc

k ∩ Ck ∩ Fk | Gk−1
)

≤ P

( ⋃
j : 2−j≤2c8dk

(
Ĉ

j
k

)c ∩ {Ŝj
k ≤ Uk

}∩ Ck ∩ Fk | Gk−1

)
(4.65)

≤ ∑
j : 2−j ≤2c8dk

c322−j (1−β4) ≤ c33d
1−β4
k .

Step 2.6. We will find a lower bound for the distance from X to Y at the time Uk .
Suppose that Ik ∩ Ck ∩ Fk holds. Recall that β4 > β3. Since Ik holds, we

have 2−Jk ≥ d
β3
k . Assume for now that d

β3
k ≤ η, where η > 0 is so small that

d
β4
k < (1/100) ∧ d

β3
k /(4π) ≤ (1/π)2−Jk−1. Since Ck is assumed to hold, we have

|Xt − XSk
| ≤ d

β4
k for all t ∈ [Sk,Uk] such that Xt ∈ ∂D, and therefore, for such t ,

the angle between n(Xt) and n(XSk
) is smaller than πd

β4
k . It follows that the

angle between
∫ Uk

Sk
n(Xt) dLX

t and n(XSk
) is also smaller than πd

β4
k . The angle

between n(XSk
) and n(zk) is greater than 2−Jk . This implies that the angle be-

tween
∫ Uk

Sk
n(Xt) dLX

t and YSk
− XSk

, which is the same as the angle between∫ Uk

Sk
n(Xt) dLX

t and n(zk), is greater than 2−Jk −πd
β4
k > 2−Jk −2−Jk−1 = 2−Jk−1.

Note that Yt /∈ ∂D for t ∈ [Sk,Uk] by the definition of Uk . Thus
∫ Uk

Sk
n(Yt ) dLY

t = 0
and, therefore,

XUk
− YUk

= XSk
− YSk

+
∫ Uk

Sk

n(Xt) dLX
t .(4.66)

If v,w ∈ R
3 are nonzero vectors and the angle ∠(v,w) is greater than α then the

length of v − w is at least |w| sinα. In view of (4.66), we can apply this observa-
tion to w = YSk

− XSk
and v = ∫ Uk

Sk
n(Xt) dLX

t , and conclude that |XUk
− YUk

| ≥
c342−Jk |XSk

− YSk
| = c342−Jkc8dk . We now specify the value of the constant in

the definition of Gk to be c9 = c34c8. With this definition of Gk , we see that we
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have shown that Gk holds. Hence, assuming that d
β4
k < (1/100) ∧ d

β3
k /(4π), we

have on A+
k−1,

P
(
Gc

k ∩ Ik ∩ Ck ∩ Fk | Gk−1
)= 0.(4.67)

Since inf{a ≥ 0 :aβ4 ≥ aβ3/(4π)} > 0 and the probability of any event is bounded
by 1, we have for some constant c35 < ∞, on the event {dβ4

k ≥ (1/100) ∧
d

β3
k /(4π)} ∩ A+

k−1,

P
(
Gc

k ∩ Ik ∩ Ck ∩ Fk | Gk−1
)≤ c35d

β3
k .(4.68)

In view of (4.67), we see that (4.68) holds on A+
k−1.

It follows from (4.43), (4.52), (4.58), (4.65) and (4.68) that on A+
k−1,

P
(
Ac

k ∩ Fk | Gk−1
)= P

((
I c
k ∪ Cc

k ∪ Gc
k ∪ Kc

k

)∩ Fk | Gk−1
)

≤ P
(
Cc

k ∩ Fk | Gk−1
)+ P

(
I c
k ∩ (C1

k

)c ∩ Ck ∩ Fk | Gk−1
)

+ P
(
I c
k ∩ C1

k ∩ Ck ∩ Fk | Gk−1
)+ P

(
Kc

k ∩ Ck ∩ Fk | Gk−1
)

+ P
(
Gc

k ∩ Ik ∩ Ck ∩ Fk | Gk−1
)

≤ c13d
1−β4
k + c21d

1−β4
k + c29d

β3
k + c33d

1−β4
k + c35d

β3
k

≤ c36d
β3
k .

This completes the proof of (4.36).
Step 3. The last step of the proof combines the estimates obtained above. Al-

though this part of the proof looks complicated, its beginning consists mostly of
elementary combinatorial arguments. The second part is a more or less straight-
forward translation of the earlier estimates into the language of distributions and
stochastic domination.

If Fk holds, then (4.46) shows that supt∈[Sk,σ
′
b] |Yt − Xt | < dk/2. It follows that

if Fk ∩ Fk+1 holds, then Uk ∈ [Sk, σ
′
b] and, therefore,

dk+1 = |XUk
− YUk

| ≤ sup
t∈[Sk,σ

′
b]

|Yt − Xt | < dk/2.

Hence if the event
⋂

j≤k−1 Fj occurred, then dk ≤ d02−k+1 = ε2−k+1. This, the
fact that A+

k−1 ⊂⋂j≤k−1 Fj and (4.36) imply that

P
(
Ac

k ∩ Fk ∩ A+
k−1

)≤ c10d
β3
k ≤ c10ε

β32−(k−1)β3 .(4.69)

Let

F = Fc
1 ∪

∞⋃
k=1

(
Fk ∩ Fc

k+1 ∩ A+
k

)
.
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If
⋂∞

k=1 Fk holds, then

lim inf
k→∞ |XUk

− YUk
| = lim inf

k→∞ dk−1 ≤ lim
k→∞ε2−k−2 = 0,(4.70)

so inf0≤t≤σ ′
b
|Xt − Yt | ≤ lim infk→∞ |XUk

− YUk
| = 0. The last event has probabil-

ity 0, according to Lemma 2.2, so P(
⋂∞

k=1 Fk) = 0. Since Fk+1 ⊂ Fk , there exists
at most one N1 such that Fc

N1
∪ FN1+1 fails (in other words, FN1 ∩ Fc

N1+1 holds).
We will write

⋂∞
k=1 Fk = {N1 = ∞} so P(N1 = ∞) = 0. There exists at most one

N2 such that Aj holds for all j < N2, and AN2 does not hold. Using these defini-
tions of N1 and N2, and (4.69), we obtain

P
(
Fc)= P

(
F1 ∩

∞⋂
k=1

(
Fc

k ∪ Fk+1 ∪ ⋃
j≤k

Ac
j

))

≤ P
(
F1 ∩ {N1 = ∞})+ P

( ∞⋂
k=1

(
Fc

k ∪ Fk+1 ∪ ⋃
j≤k

Ac
j

)
∩ {N1 < ∞}

)

= 0 + P

( ∞⋂
k=1

(
Fc

k ∪ Fk+1 ∪ ⋃
j≤k

Ac
j

)
∩ {N1 < ∞}

)

≤ P

( ∞⋃
n=1

((
Fc

n ∪ Fn+1 ∪ ⋃
j≤n

Ac
j

)
∩ {N1 = n}

))

= P

( ∞⋃
n=1

((⋃
j≤n

Ac
j

)
∩ {N1 = n}

))

= P

( ∞⋃
n=1

n⋃
m=1

((⋃
j≤m

Ac
j

)
∩ {N1 = n,N2 = m}

))

= P

( ∞⋃
m=1

((⋃
j≤m

Ac
j

)
∩ {N1 ≥ m,N2 = m}

))

≤ P

( ∞⋃
m=1

(
A+

m−1 ∩ Ac
m ∩ Fm

))

≤
∞∑

m=1

P
(
A+

m−1 ∩ Ac
m ∩ Fm

)

≤
∞∑

m=1

c10ε
β32−(m−1)β3 ≤ c37ε

β3 .

This proves (4.24).
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Since Fk+1 ⊂ Fk and (Fk+1 ∩ A+
k+1) ⊂ (Fk ∩ A+

k ), we have

F = Fc
1 ∪

∞⋃
n=1

(
Fn ∩ Fc

n+1 ∩ A+
n

)

= Fc
1 ∪

k−2⋃
n=1

(
Fn ∩ Fc

n+1 ∩ A+
n

)∪ (Fk−1 ∩ Fc
k ∩ A+

k−1

)

∪
∞⋃

n=k

(
Fn ∩ Fc

n+1 ∩ A+
n

)
(4.71)

⊂ Fc
1 ∪

k−2⋃
n=1

Fc
n+1 ∪ (Fk−1 ∩ Fc

k ∩ A+
k−1

)∪ ∞⋃
n=k

(
Fn ∩ A+

n

)
⊂ Fc

k−1 ∪ (Fk−1 ∩ Fc
k ∩ A+

k−1

)∪ (Fk ∩ A+
k

)
.

Let Tk = Uk ∧ σ ′
b. We make the following three claims:∣∣log |XTk
− YTk

| − log |XTk−1 − YTk−1 |
∣∣

(4.72) ⎧⎪⎨⎪⎩
= 0, if Fc

k−1 holds;

≤ c38 := c7 ∨ log c5, if Fk−1 ∩ Fc
k ∩ A+

k−1 holds;

≤ c39m, if {Jk = m} ∩ Fk ∩ A+
k holds.

The first claim follows from the definitions of Tk−1, Sk−1 and Fk−1. The second
claim follows from the definition of Sk and (4.32) applied with T = Uk−1. The last
claim follows from the fact that Gk ⊂ Ak .

If Ak holds, then Kk holds. Then condition (4.26) is satisfied with x0 = XUk

and y0 = YUk
. By the strong Markov property applied at the stopping time Uk , we

obtain a formula analogous to (4.35) which implies that

P
(
Fk ∩ A+

k | Gk−1
)≤ P(Fk | Gk−1) ≤ p1

on A+
k−1. By the repeated application of the strong Markov property at U1,U2, . . . ,

we obtain

P
(
Fk ∩ A+

k

)≤ pk
1.(4.73)

This and the second claim in (4.72) imply that

P
(∣∣log |XTk

− YTk
| − log |XTk−1 − YTk−1 |

∣∣1Fk−1∩Fc
k ∩A+

k−1
> c38

)= 0,(4.74)

P
(∣∣log |XTk

− YTk
| − log |XTk−1 − YTk−1 |

∣∣1Fk−1∩Fc
k ∩A+

k−1
∈ (0, c38])

(4.75)
≤ pk−1

1 ,

P
(∣∣log |XTk

− YTk
| − log |XTk−1 − YTk−1 |

∣∣1Fk−1∩Fc
k ∩A+

k−1
= 0
)

(4.76)
≥ 1 − pk−1

1 .
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Since D is bounded, there exists m0 > −∞ such that Jk ≥ m0, a.s. It follows
from (4.37) that on A+

k−1,

P
({Jk ≥ m} ∩ Fk ∩ Ak | Gk−1

)≤ c402−m,

so we obtain for m ≥ m0, using (4.73) and the third claim in (4.72),

P
(∣∣log |XTk

− YTk
| − log |XTk−1 − YTk−1 |

∣∣1{Jk=m}∩Fk∩A+
k

> c39m
)= 0,(4.77)

P
(∣∣log |XTk

− YTk
| − log |XTk−1 − YTk−1 |

∣∣1{Jk=m}∩Fk∩A+
k

∈ (0, c39m])
(4.78)

≤ pk−1
1 c402−m,

P
(∣∣log |XTk

− YTk
| − log |XTk−1 − YTk−1 |

∣∣1{Jk=m}∩Fk∩A+
k

= 0
)

(4.79)
≥ 1 − pk−1

1 c402−m.

Recall from the paragraph following (4.70) that only a finite number of events
Fk , k ≥ 1, hold, a.s. Hence, for some random k0 < ∞ and all k ≥ k0, we have
Uk = σ ′

b. It follows that Tn = Tk0 = σ ′
b for all n ≥ k0, and therefore,

|V1 − V0| =
∣∣∣∣∣

∞∑
k=1

log |XTk
− YTk

| − log |XTk−1 − YTk−1 |
∣∣∣∣∣.

This, (4.71) and the first claim in (4.72) imply that

|V1 − V0|1F =
∣∣∣∣∣

∞∑
k=1

log |XTk
− YTk

| − log |XTk−1 − YTk−1 |
∣∣∣∣∣1F

≤
∞∑

k=1

∣∣log |XTk
− YTk

| − log |XTk−1 − YTk−1 |
∣∣1Fc

k−1

+
∞∑

k=1

∣∣log |XTk
− YTk

| − log |XTk−1 − YTk−1 |
∣∣1Fk−1∩Fc

k ∩A+
k−1

(4.80)

+
∞∑

k=1

∣∣log |XTk
− YTk

| − log |XTk−1 − YTk−1 |
∣∣1Fk∩A+

k

=
∞∑

k=1

∣∣log |XTk
− YTk

| − log |XTk−1 − YTk−1 |
∣∣1Fk−1∩Fc

k ∩A+
k−1

+
∞∑

k=1

∑
m≥m0

∣∣log |XTk
− YTk

| − log |XTk−1 − YTk−1 |
∣∣1{Jk=m}∩Fk∩A+

k
.

Let k0 be such that pk−1
1 + pk−1

1
∑

m≥m0
c402−m ≤ 1 for k ≥ k0, and let m1 be

such that
∑

m≥m1
c402−m ≤ 1. Let q ′ ≥ 0 be such that q ′ +∑m≥m1

c402−m = 1,
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and let qk ≥ 0 be such that qk + pk−1
1 + pk−1

1
∑

m≥m0
c402−m = 1, for k ≥ k0. Let

Zk , k ≥ 1, be independent random variables with the following distributions; for
1 ≤ k ≤ k0 − 1,

Zk =
{

c38 + c39m1, with probability q ′;
c39m, with probability c402−m for m ≥ m1,

and for k ≥ k0,

Zk =
⎧⎪⎨⎪⎩

0, with probability qk;
c38, with probability pk−1

1 ;

c39m, with probability c40p
k−1
1 2−m for m ≥ m0.

By (4.74)–(4.76), (4.77)–(4.79) and (4.80), the random variable

|V1 − V0|1F =
∣∣∣∣∣

∞∑
k=1

log |XTk
− YTk

| − log |XTk−1 − YTk−1 |
∣∣∣∣∣1F

is stochastically dominated by Z∗ :=∑k≥1 Zk . We have

EZ∗ = ∑
1≤k≤k0−1

(
(c38 + c39m1)q

′ + ∑
m≥m1

c402−mc39m

)

+ ∑
k≥k0

(
qk · 0 + pk−1

1 c38 + pk−1
1

∑
m≥m0

c392−mc39m

)
< ∞.

If we take G(a) to be the cumulative distribution function of Z∗, then the last
estimate shows that (4.25) is satisfied. �

The next result is an elementary lemma involving distributions and expectations.
Recall the notation from (4.1).

LEMMA 4.3. For any c0 > 0, β1 ∈ (0,1/2) there exist β2, c1, c2, b, ε1 > 0
such that if ε ≤ ε1, x0 ∈ ∂D, y0 ∈ D, |x0 − y0| = ε, X0 = x0, Y0 = y0 and

|〈y0 − x0,n(x0)〉|
|y0 − x0| ≤ c0ε

β1,(4.81)

then there exists an event F such that

P
x0,y0
(
Fc)≤ c1ε

β2,(4.82)

E
x0,y0
[
(V1 − V0)1F

]≥ c2.(4.83)

PROOF. It suffices to prove the lemma for c0 = 1, by the same argument as
the one at the beginning of the proof of Lemma 4.1.

First we prove a general claim. Suppose that a cumulative distribution function
G : R → [0,1] satisfies

∫∞
−∞ |a|dG(a) < ∞. Then for every c3 > 0 there exists
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p1 > 0 such that if W is a random variable which satisfies P(|W | ≤ a) ≤ G(a) for
a ∈ R and P(W ≤ c3) ≤ p1, then EW ≥ c3/2. To see this, let a1 > −∞ be such
that
∫
(−∞,a1] |a|dG(a) < c3/8. We choose p1 > 0 so small that |a1|p1 < c3/8 and

c3(1 − p1) > 3c3/4. Then

EW ≥
∫
(−∞,a1]

a dG(a) − |a1|p1 + c3(1 − p1)

(4.84)
≥ −c3/8 − c3/8 + 3c3/4 = c3/2.

We will apply this observation to W = (V1 − V0)1F . By Lemma 4.2, there exists
an event F such that P(F c) ≤ εβ2 and P(|V1 − V0|1F ≤ a) ≤ G(a) for a ∈ R

for some G with
∫∞
−∞ |a|dG(a) < ∞. We can choose small ε1, c3 > 0 and apply

Lemma 4.1 to obtain

P
(
(V1 − V0)1F ≤ c3

)≤ P(V1 − V0 ≤ c3) + P
(
Fc)≤ p1/2 + εβ2 ≤ p1.

We now apply (4.84) to W = (V1 − V0)1F to see that E[(V1 − V0)1F ] ≥ c3/2. We
take c2 = c3/2 to finish the proof of the lemma. �

PROOF OF THEOREM 1.1. Step 1. In this step, we will define, using induction,
a pair of stochastic processes similar to X and Y on a sequence of random intervals.
At the end of each interval, we check whether the processes have a typical (and
desirable) behavior. If so, we let them continue according to the original stochastic
differential equations. Otherwise, we insert a jump which brings the processes to
a convenient position. We will later argue that the probability of inserting even
a single jump is very small. We note that this part of the proof could have been
presented in a different way. Instead of inserting jumps, we could have killed the
processes at the time when we insert the first jump. This would have made the first
step of the argument more natural, but it would make the remaining part of the
proof more awkward to present.

Recall that σ ′
b = σX

b ∧ σY
b and

σ ′
(k+1)b = inf

{
t ≥ σ ′

kb :
(
LX

t − LX
σ ′

kb

)∧ (LY
t − LY

σ ′
kb

)≥ b
}

for k ≥ 1. Fix c0, ε1, b,β1 > 0 and p < 1 such that Lemmas 2.3, 4.1 and 4.3 hold
with this choice of parameters. Below, the constant c0 will be denoted c2.

We will define processes X∗
t and Y ∗

t for t ≥ 0 in an inductive way. Let X∗
t = Xt

and Y ∗
t = Yt for t ∈ [0, σ ′

b). By Lemma 2.2, Yσ ′
b
�= Xσ ′

b
, P

x,y-a.s., for any x, y ∈ D

such that x �= y. Fix an arbitrary p1 > 0 and choose c1 > 0 such that

P
x,y(|Yσ ′

b
− Xσ ′

b
| ≤ c1

)
< p1.(4.85)

Let F1 = {|Yσ ′
b
−Xσ ′

b
| ≥ c1}. Recall from Section 2.4 that πx denotes the projection

on the plane tangent to ∂D at x ∈ ∂D. Suppose that σ ′
b = σX

b , recall c2 = c0 defined
above and let

A1 =
{ |〈Yσ ′

b
− Xσ ′

b
,n(Xσ ′

b
)〉|

|Yσ ′
b
− Xσ ′

b
| ≤ c2|Y0 − X0|β1

}
,
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Y ∗

σ ′
b
= Yσ ′

b
, if A1 ∩ F1 holds,

Y ∗
σ ′

b
= Xσ ′

b
+ πXσ ′

b

(Yσ ′
b− − Xσ ′

b
)

|Xσ ′
b
− Yσ ′

b
| ∨ c1

|πXσ ′
b

(Yσ ′
b
− Xσ ′

b
)| ,

otherwise.

(4.86)

Let {Y ∗
t , t ∈ [σ ′

b, σ
′
2b)} be the solution to (1.2) with the initial condition given

by (4.86) and driven by Brownian motion {Bt, t ∈ [σ ′
b, σ

′
2b)}. Let X∗

t = Xt for
t ∈ [σ ′

b, σ
′
2b). Note that, no matter which part of the definition (4.86) is applied, we

have |Y ∗
σ ′

b
− X∗

σ ′
b
| ≥ |Yσ ′

b
− Xσ ′

b
| and

|〈Y ∗
σ ′

b
− X∗

σ ′
b
,n(X∗

σ ′
b
)〉|

|Y ∗
σ ′

b
− X∗

σ ′
b
| ≤ c2|Y0 − X0|β1 .(4.87)

We have

E
x,y log

∣∣Y ∗
σ ′

b
− X∗

σ ′
b

∣∣≥ log c1 > −∞.(4.88)

If σ ′
b = σY

b , then we exchange the roles of X and Y in the above definitions.
The following formulas are a part of the inductive definition, to be continued

below. Let

σ ∗
0 = 0,

σ ∗
kb = inf

{
t ≥ σ ∗

(k−1)b :
(
LX∗

t − LX∗
σ ∗

(k−1)b

)∧ (LY ∗
t − LY ∗

σ ∗
(k−1)b

)≥ b
}
, k ≥ 1,

R∗
t = ∣∣X∗

t − Y ∗
t

∣∣, M∗
t = logR∗

t , t ≥ 0,

V ∗
k = M∗

σ ∗
kb

, k = 0,1, . . .

In view of (4.87), we can apply Lemma 4.3 to the process {(X∗
t , Y

∗
t ), t ∈ [σ ∗

b , σ ∗
2b)}

to conclude that there exist c3 > 0 and an event F2 ∈ σ(Bt , t ∈ [σ ∗
b ,∞)) such that,

on the event {R∗
σ ∗

b
≤ ε1},

P
(
Fc

2 | X∗
σ ∗

b
, Y ∗

σ ∗
b

)≤ (R∗
σ ∗

b

)β2,

E
[(

V ∗
2 − V ∗

1
)
1F2 | X∗

σ ∗
b
, Y ∗

σ ∗
b

]≥ c3.

We proceed with the inductive definition. Suppose that Fk , X∗
t and Y ∗

t are
already defined for some k ≥ 2 and t ∈ [0, σ ∗

kb). Suppose that σ ∗
kb = inf{t ≥

σ ∗
(k−1)b :LX∗

t − LX∗
σ ∗

(k−1)b
≥ b}, and let

Ak =
{ |〈Y ∗

σ ∗
kb− − X∗

σ ∗
kb−,n(X∗

σ ∗
kb−)〉|

|Y ∗
σ ∗

kb− − X∗
σ ∗

kb−| ≤ c2|Yσ ∗
(k−1)b

− Xσ ∗
(k−1)b

|β1

}
,
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Y ∗
σ ∗

kb
= Y ∗

σ ∗
kb−, on Ak ∩ Fk,

Y ∗
σ ∗

kb
= X∗

σ ∗
kb− + πX∗

σ∗
kb

−
(
Y ∗

σ ∗
kb− − X∗

σ ∗
kb−
)

×
|X∗

σ ∗
kb− − Y ∗

σ ∗
kb−| ∨ |X∗

σ ∗
(k−1)b

− Y ∗
σ ∗

(k−1)b
|

|πX∗
σ∗
kb

−(Y ∗
σ ∗

kb− − X∗
σ ∗

kb−)| , otherwise.

(4.89)

Let {(X∗
t , Y

∗
t ), t ∈ [σ ∗

kb, σ
∗
(k+1)b)} be the solution to (1.1)–(1.2) with the initial

conditions given by X∗
σ ∗

kb
= X∗

σ ∗
kb− and (4.89), and driven by Brownian motion

{Bt, t ∈ [σ ∗
kb, σ

∗
(k+1)b)}. No matter which part of the definition (4.89) is applied,

we have ∣∣Y ∗
σ ∗

kb
− X∗

σ ∗
kb

∣∣≥ ∣∣Y ∗
σ ∗

kb− − X∗
σ ∗

kb−
∣∣(4.90)

and

|〈Y ∗
σ ∗

kb
− X∗

σ ∗
kb

,n(X∗
σ ∗

kb
)〉|

|Y ∗
σ ∗

kb
− X∗

σ ∗
kb

| ≤ c2
∣∣Yσ ∗

(k−1)b
− X∗

σ ∗
(k−1)b

∣∣β1 .(4.91)

If σ ∗
kb = inf{t ≥ σ ∗

(k−1)b :LY ∗
t −LY ∗

σ ∗
(k−1)b

≥ b}, then we exchange the roles of X and

Y in the above definitions.
In view of (4.91), we can apply Lemma 4.3 to the process {(X∗

t , Y
∗
t ), t ∈

[σ ∗
kb, σ

∗
(k+1)b)} to conclude that there exists an event Fk+1 ∈ σ(Bt , t ∈ [σ ∗

kb,∞))

such that, on the event {R∗
σ ∗

kb
≤ ε1},

P
(
Fc

k+1 | X∗
σ ∗

kb
, Y ∗

σ ∗
kb

)≤ (R∗
σ ∗

kb

)β2,

(4.92)
E
[(

V ∗
k+1 − V ∗

k

)
1Fk+1 | X∗

σ ∗
kb

, Y ∗
σ ∗

kb

]≥ c3.

Step 2. We will show that the probability of the undesirable events Fc
k and Ac

k

is very small.
Definition (4.89) implies that on Fc

k+1, we have V ∗
k+1 ≥ V ∗

k . This and the strong
Markov property imply that on the event {R∗

σ ∗
kb

≤ ε1},
E
[
V ∗

k+1 − V ∗
k | σ ((X∗

t , Y
∗
t

)
, t ≤ σ ∗

kb

)]
= E
[
V ∗

k+1 − V ∗
k | X∗

σ ∗
kb

, Y ∗
σ ∗

kb

]
= E
[(

V ∗
k+1 − V ∗

k

)
1Fk+1 | X∗

σ ∗
kb

, Y ∗
σ ∗

kb

]
(4.93)

+ E
[(

V ∗
k+1 − V ∗

k

)
1Fc

k+1
| X∗

σ ∗
kb

, Y ∗
σ ∗

kb

]
≥ c3 + 0 = c3 > 0.

Let K1 = inf{k ≥ 1 : supt∈[σ ∗
kb,σ

∗
(k+1)b] R

∗
t ≥ ε1} and Ṽk = V ∗

k∧K1
. It follows from

the definition of V ∗
k ’s that all these random variables are bounded above by a finite
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constant because D has a finite diameter. The estimate (4.88) implies that EV ∗
1 >

−∞. It follows from this and (4.93) that E|Ṽk| < ∞ for all k and {Ṽk, k ≥ 1} is a
submartingale. Thus, Ṽk cannot converge to −∞ with positive probability.

For any fixed j , we will estimate the number of k such that Ṽk ∈ [j, j + 1].
Let c4 = supx,y∈D log |x − y| and note that c4 < ∞. We will argue that for any

c5 ∈ (−∞, c4), one can choose ε1 > 0 so small that if |x − y| ≤ ε1, then supk Ṽk ≤
c5, P

x,y -a.s. Let S = inf{t ≥ 0 :R∗
t ≥ ε1} and note that S ∈ [σ ∗

K1b
, σ ∗

(K1+1)b].
By (4.29) and the remark following it, for some c6 < ∞,

sup
t∈[0,σ ∗

(K1+1)b]
R∗

t ≤ ε1 exp
(
c6
(
LX∗

σ ∗
(K1+1)b

− LX∗
S + LY ∗

σ ∗
(K1+1)b

− LY ∗
S

))
≤ ε1 exp

(
c6(b + b)

)
.

It follows that, for small ε1, a.s.,

sup
k

Ṽk ≤ log ε1 + 2c6b ≤ c5.(4.94)

Consider any c5 ∈ (−∞, c4), assume that log ε1 + 2c6b ≤ c5 and fix an integer
j ≤ c5. Let U1 = 0 and

Ûk = inf
{
n ≥ Uk : Ṽn /∈ [j − 1, j + 2]}, k ≥ 1,

Uk = inf
{
n ≥ Ûk : Ṽn ∈ [j, j + 1]}, k ≥ 2,

K
j
2 = sup{k :Uk < ∞},

with the convention that inf ∅ = ∞. The random variable K
j
2 is bounded above by

the sum of the number of upcrossings of the interval [j − 1, j ] and the number of
downcrossings of the interval [j + 1, j + 2] by the process Ṽk . By the upcrossing
inequality, in view of (4.94),

EK
j
2 ≤ E

(
Ṽ∞ − (j − 1)

)+ + E
(
Ṽ∞ − (j + 1)

)+ + 1 ≤ 2(c5 − j + 2).(4.95)

Suppose that ṼUk
∈ [j, j + 1] for some k. Let k0 be the smallest integer greater

than 3/c7, where c7 has the same value as c1 in Lemma 4.1. Let p2 have the same
value as p in Lemma 4.1. We will apply Lemma 4.1 to estimate Ṽn+1 − Ṽn; this
can be done because of (4.90) and (4.91). By Lemma 4.1 and the strong Markov
property applied at the stopping times σ ∗

nb, n = Uk,Uk + 1, . . . , we see that for

c7,p2 > 0 as chosen above and p3 := p
k0+1
2 ,

P
(
Ṽn+1 − Ṽn ≥ c7, n = Uk,Uk + 1, . . . ,Uk + k0 | X∗

σ ∗
Ukb

, Y ∗
σ ∗

Ukb

)≥ p
k0+1
2 = p3.

If the event in the last formula occurs, then the process Ṽ will leave the interval
[j −1, j +2] in at most k0 +1 steps, so Ûk −Uk ≤ k0 +1 in this case. If the process
{Ṽm,m ≥ k} does not leave [j − 1, j + 2] in k0 + 1 steps, then we apply the same
argument again, this time using stopping times Uk + k0 + 1, . . . ,Uk + 2k0 + 1.
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By induction, the probability that the process {Ṽm,m ≥ k} does not leave [j −
1, j + 2] in r(k0 + 1) steps is at most (1 − p3)

r . It follows that (Ûk − Uk)/(k0 +
1) is majorized by a geometric random variable with mean 1/p3 and, therefore,
E[Ûk − Uk | X∗

σ ∗
Ukb

, Y ∗
σ ∗

Ukb
] ≤ (k0 + 1)/p3. Let K

j
3 be the number of k such that

Ṽk ∈ [j, j + 1]. We combine the last estimate with (4.95) to see that

EK
j
3 ≤ 2(c5 − j + 2)(k0 + 1)/p3.(4.96)

This, (4.85), (4.92) and (4.94) yield

P

(⋃
k≥1

Fc
k

)
≤ E

[∑
k≥1

1Fc
k

]
= E1Fc

1
+∑

k≥2

E1Fc
k

≤ p1 + ∑
j≤c5

E

[ ∑
k : Ṽk−1∈[j,j+1]

E
(
1Fc

k
| Ṽk−1 ∈ [j, j + 1])]

≤ p1 + ∑
j≤c5

E

[ ∑
k : Ṽk−1∈[j,j+1]

e(j+1)β2

]

≤ p1 + ∑
j≤c5

e(j+1)β22(c5 − j + 2)(k0 + 1)/p3.

By (4.96) and Lemma 2.3, for some β3 > 0,

P

(⋃
k≥1

Ac
k

)
≤ E

[∑
k≥1

1Ac
k

]
=∑

k≥1

E1Ac
k

= ∑
j≤c5

E

[ ∑
k : Ṽk−1∈[j,j+1]

E
(
1Ac

k
| Ṽk−1 ∈ [j, j + 1])]

≤ ∑
j≤c5

E

[ ∑
Ṽk−1∈[j,j+1]

e(j+1)β3

]

≤ ∑
j≤c5

e(j+1)β32(c5 − j + 2)(k0 + 1)/p3.

We combine the last two estimates to obtain

P

(⋃
k≥1

Ac
k ∪ Fc

k

)
(4.97)

≤ p1 + ∑
j≤c5

(
e(j+1)β2 + e(j+1)β3

)
2(c5 − j + 2)(k0 + 1)/p3.

Consider an arbitrarily small p4 > 0. The probability p1 in (4.85) may be chosen
to be smaller than p4/2. We make the sum in (4.97) smaller than p4/2 by taking
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c5 > −∞ sufficiently small. Then, assuming that log ε1 + 2c6b ≤ c5,

P

(⋃
k≥1

Ac
k ∪ Fc

k

)
≤ p4.(4.98)

Step 3. This step contains soft arguments translating estimates that show that
the distance between X and Y has a tendency to grow into a statement about the
almost sure behavior of the distance process.

Recall that Rt = |Xt − Yt | and let T R
a = inf{t ≥ 0 :Rt = a}. Recall that Ṽk does

not converge to −∞ at a finite or infinite time, a.s. If all events Ak ∩ Fk , k ≥ 1,
hold, then X∗

t = Xt and Y ∗
t = Yt for all t ≥ 0. This and (4.98) imply that for any

p4 > 0, there exists ε1 > 0 such that for any x, y ∈ D, x �= y, we have P
x,y(T R

ε1
<

T R
0 ) ≥ 1 − p4.

The process Rt is continuous for all t ≥ 0, a.s. because the processes Xt and Yt

are continuous.
Suppose that for some x �= y, p5 := P

x,y(T R
0 < ∞) > 0. We will show that this

assumption leads to a contradiction. For j ≥ 1, let Sj = inf{t ≥ 0 :Rt ≤ 2−j } and

Gj = {inf{t ≥ Sj :Rt = ε1} < inf{t ≥ Sj :Rt = 0}}.
Fix any j0 such that 0 < 2−j0 < R0 ∧ ε1. If T R

0 < ∞, then Sj < ∞ for all j ≥ j0.
It follows from the strong Markov property applied at Sj that P

x,y({Sj < ∞} ∩
Gj) ≥ p5(1 − p4) for j ≥ j0. Since {Sj+1 < ∞} ∩ Gj+1 ⊂ {Sj < ∞} ∩ Gj , we
have P

x,y(
⋂

j≥j0
({Sj < ∞} ∩ Gj)) ≥ p5(1 − p4) > 0. If the event

⋂
j≥j0

({Sj <

∞} ∩ Gj) holds, then R has a discontinuity at T R
0 . Since R is continuous a.s., we

have a contradiction which proves that for any x �= y, P
x,y(T R

0 < ∞) = 0.
Now suppose that p6 := P(limt→∞ Rt = 0) > 0. If limt→∞ Rt = 0, then Sj <

∞ for all j ≥ j0. We can argue as above to show that

P
x,y

({
lim

t→∞Rt = 0
}

∩ ⋂
j≥j0

({Sj < ∞} ∩ Gj

))≥ p6(1 − p4) > 0.

If the events {T R
0 < ∞}c and

⋂
j≥j0

({Sj < ∞} ∩ Gj) hold, then lim supt→∞ Rt >

0. Hence, P(limt→∞ Rt = 0 and lim supt→∞ Rt > 0) > 0. We have a contradic-
tion which proves that for any x �= y, P

x,y(limt→∞ Rt = 0) = 0. �

APPENDIX

PROOF OF LEMMA 3.2. We have∫ 2π

0
log
((

sin2 β + cos2 β cos2 α
)1/2)

dβ

=
∫ 2π

0
log
((

cos2 β + sin2 β cos2 α
)1/2)

dβ



4048 K. BURDZY, Z.-Q. CHEN AND S. PAL

=
∫ π

0

∫ cos2 α

1

sin2 β

cos2 β + u sin2 β
dudβ

=
∫ cos2 α

1

∫ ∞
−∞

1

1 − u

(
1

x2 + u
− 1

x2 + 1

)
dx du(x = cotβ)(A.1)

=
∫ cos2 α

1

1√
u(1 − u)

[
arctan

(
x√
u

)
− √

u arctan(x)

]∞
−∞

du

= π

∫ cos2 α

1

1√
u(1 + √

u)
du

= 2π log
(

1

2
+ 1

2
| cosα|

)
,

which implies∫ 2π

0

∫ π

0

1

4π
sinα log

((
sin2 β + cos2 β cos2 α

)1/2)
dα dβ

=
∫ π/2

0
sinα log

(
(1 + cosα)/2

)
dα

=
∫ 1

1/2
2 logy dy

(
y = (1 + cosα)/2

)
= log 2 − 1.

This proves (3.2).
We use (A.1) again to see that∫ 2π

0

∫ π

0

1

16π

sinα

sin3(α/2)
log
((

sin2 β + cos2 β cos2 α
)1/2)

dα dβ

= 1

4

∫ π

0

cos(α/2)

sin(α/2)2 log
(

1

2
+ 1

2
| cosα|

)
dα

=
∫ π/4

0

cosu

sin2 u
log(cosu)du +

∫ π/2

π/4

cosu

sin2 u
log(sinu)du(u = α/2)

= −
[

log(cosu)

sinu
+ log

(
1 + sinu

cosu

)]π/4

0
−
[

log(sinu)

sinu
+ 1

sinu

]π/2

π/4

= √
2 − 1 − log(1 + √

2).

This proves (3.1). �
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