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THE PRECISE TAIL BEHAVIOR OF THE TOTAL PROGENY OF
A KILLED BRANCHING RANDOM WALK1

BY ELIE AÏDÉKON, YUEYUN HU AND OLIVIER ZINDY

Eindhoven University of Technology, Université Paris VI and Université
Paris XIII

Consider a branching random walk on the real line with a killing bar-
rier at zero: starting from a nonnegative point, particles reproduce and move
independently, but are killed when they touch the negative half-line. The
population of the killed branching random walk dies out almost surely in
both critical and subcritical cases, where by subcritical case we mean that
the rightmost particle of the branching random walk without killing has a
negative speed, and by critical case, when this speed is zero. We investigate
the total progeny of the killed branching random walk and give their pre-
cise tail distribution both in the critical and subcritical cases, which solves
an open problem of Aldous [Power laws and killed branching random walks,
http://www.stat.berkeley.edu/~aldous/Research/OP/brw.html].

1. Introduction. We consider a one-dimensional discrete-time branching ran-
dom walk V on the real line R. At the beginning, there is a single particle located
at the origin 0. Its children, who form the first generation, are positioned according
to a certain point process L on R. Each of the particles in the first generation inde-
pendently gives birth to new particles that are positioned (with respect to their birth
places) according to a point process with the same law as L ; they form the second
generation. And so on. For any n≥ 1, each particle at generation n produces new
particles independently of one another and of everything up to the nth generation.

Clearly, the particles of the branching random walk V form a Galton–Watson
tree, which we denote by T . Call ∅ the root. For every vertex u ∈ T , we denote
by |u| its generation (then |∅| = 0) and by (V (u), |u| = n) the positions of the
particles in the nth generation. Then L = ∑

|u|=1 δ{V (u)}. The tree T will encode
the genealogy of our branching random walk.

It will be more convenient to consider a branching random walk V starting
from an arbitrary x ∈ R [namely, V (∅)= x], whose law is denoted by Px and the
corresponding expectation by Ex . For simplification, we write P ≡ P0 and E ≡ E0.
Let ν := ∑

|u|=1 1 be the number of particles in the first generation, and denote by
ν(u) the number of children of u ∈ T .
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Assume that E[ν]> 1, namely the Galton–Watson tree T is supercritical. Then
the system survives with positive probability P(T = ∞) > 0. Let us define the
logarithmic generating function for the branching walk

ψ(t) := log E
[ ∑
|u|=1

etV (u)
]

∈ (−∞,+∞], t ∈ R.

We shall assume that ψ is finite on an open interval containing 0 and that
suppL ∩ (0,∞) �= ∅ [the later condition is to ensure that V can visit (0,∞)
with positive probability, otherwise the problem that we shall consider becomes of
a different nature]. Assume that there exists �∗ > 0 such that

ψ(�∗)= �∗ψ ′(�∗).(1.1)

We also assume that ψ is finite on an open set containing [0, �∗]. The condi-
tion (1.1) is not restrictive: For instance, if we denote by m∗ = esssup suppL ,
then (1.1) is satisfied if either m∗ = ∞ or m∗ <∞ and E

∑
|u|=1 1{V (u)=m∗} < 1;

see Jaffuel [18] for detailed discussions.
Recall that (Kingman [23], Hammersley [14], Biggins [7]) conditioned on {T =

∞},
lim
n→∞

1

n
max|u|=nV (u)=ψ

′(�∗) a.s.,(1.2)

where �∗ is given in (1.1). According to ψ ′(�∗) = 0 or ψ ′(�∗) < 0, we call the
case critical or subcritical. Conditioned on {T = ∞}, the rightmost particle in the
branching random walk without killing has a negative speed in the subcritical case,
while in the critical case it converges almost surely to −∞ in the logarithmical
scale; see [16] and [2] for the precise statement of the rate of almost sure conver-
gence.

We now place a killing barrier at zero: any particle which enters (−∞,0) is
removed and does not produce any offspring. Hence at every generation n ≥ 0,
only the particles that always stayed nonnegative up to time n survive. Denote by
Z the set of all surviving particles of the killed branching walk,

Z := {
u ∈ T :V (v)≥ 0,∀v ∈ [∅, u]},

where [∅, u] denotes the shortest path in the tree T from u to the root ∅. We are
interested in the total progeny

Z := #Z .

Then Z <∞, a.s., in both critical and subcritical cases. David Aldous made the
following conjecture:

CONJECTURE (Aldous [4]).

(i) (Critical case). If ψ ′(�∗)= 0, then E[Z]<∞ and E[Z logZ] = ∞.
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(ii) (Subcritical case). If ψ ′(�∗) < 0, then there exists some constant b > 1 such
that P(Z > n)= n−b+o(1) as n→ ∞.

Let us define an i.i.d. case when L is of the form L = ∑ν
i=1 δ{Xi} with (Xi)i≥1

a sequence of i.i.d. real-valued variables, independent of ν. There are several pre-
vious works on the critical and i.i.d. cases: when (Xi) are Bernoulli random vari-
ables, Pemantle [30] obtained the precise asymptotic of P(Z = n) as n → ∞,
where the key ingredient of his proof is the recursive structure of the system
inherited from the Bernoulli variables (Xi). For general random variables (Xi),
Addario-Berry and Broutin [1] recently confirmed Aldous’s conjecture (i). This
was improved later by Aïdékon [3] who proved that for a regular tree T (namely
when ν equals some integer), for any fixed x ≥ 0,

c1R(x)e
�∗x ≤ lim inf

n→∞ n(logn)2Px(Z > n)≤ lim sup
n→∞

n(logn)2Px(Z > n)

≤ c2R(x)e
�∗x,

where c2 > c1 > 0 are two constants, and R(x) is some renewal function which
will be defined later. For the continuous setting, the branching Brownian motion,
Maillard [28] solved the question by analytic tools, using link with the F-KPP
equation. Berestycki et al. [5] looked at the genealogy of the branching Brownian
motion with absorption in the near-critical case.

In this paper, we aim at the exact tail behavior of Z both in critical and subcrit-
ical cases and for a general point process L .

Before the statement of our result, we remark that in the subcritical case
(ψ ′(�∗) < 0), there are two real numbers �− and �+ such that 0< �− < �∗ < �+
and

ψ(�−)=ψ(�+)= 0,

[the existence of �+ follows from the assumption that suppL ∩ (0,∞) �= ∅].
In the critical case, we suppose that

E
[
ν1+δ∗]<∞, sup

θ∈[−δ∗,�∗+δ∗]
ψ(θ) <∞ for some δ∗ > 0.(1.3)

In the subcritical case, we suppose that

E
[( ∑

|u|=1

(
1 + e�−V (u)))�+/�−+δ∗]

<∞, sup
θ∈[−δ∗,�++δ∗]

ψ(θ) <∞,(1.4)

for some δ∗ > 0. In both cases, we always assume that there is no lattice that
supports L almost surely.

Our result on the total progeny reads as follows.
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THEOREM 1 (Tail of the total progeny). Assume (1.1) and that

E
[
να

]
<∞ for some

⎧⎨⎩
α > 2, in the critical case;

α > 2
�+
�−
, in the subcritical case.(1.5)

(i) (Critical case). If ψ ′(�∗) = 0 and (1.3) holds, then there exists a constant
ccrit > 0 such that for any x ≥ 0,

Px(Z > n)∼ ccritR(x)e
�∗x 1

n(logn)2
, n→ ∞,

where R(x) is a renewal function defined in (5.20).
(ii) (Subcritical case). If ψ ′(�∗) < 0 and (1.4) holds, then there exists a con-

stant csub > 0 such that for any x ≥ 0,

Px(Z > n)∼ csubR(x)e
�+xn−�+/�−, n→ ∞,

where R(x) is a renewal function defined in (5.20).

The values of ccrit and csub are given in Lemma 2. Let us make some remarks
on the assumptions (1.3) and (1.4).

REMARK 1 (I.i.d. case). If L = ∑ν
i=1 δ{Xi} with (Xi)i≥1 a sequence of i.i.d.

real-valued variables, independent of ν, then (1.3) holds if and only if for some
δ > 0, E[ν1+δ]<∞ and supθ∈[−δ,�∗+δ] E[eθX1]<∞ while (1.4) holds if and only
if E[ν�+/�−+δ]<∞ and supθ∈[−δ,�++δ] E[eθX1]<∞ for some δ > 0.

REMARK 2. By Hölder’s inequality, elementary computations show that (1.3)
is equivalent to E[(∑|u|=1(1 + e�∗V (u)))1+δ]<∞ and supθ∈[−δ,�∗+δ]ψ(θ) <∞,
for some δ > 0.

To explain the strategy of the proof of Theorem 1, we introduce at first some
notation: for any vertex u ∈ T and a ∈ R, we define

τ+
a (u) := inf

{
0 ≤ k ≤ |u| :V (uk) > a

}
,(1.6)

τ−
a (u) := inf

{
0 ≤ k ≤ |u| :V (uk) < a

}
,(1.7)

with convention inf ∅ := ∞ and for n ≥ 1 and for any |u| = n, we write {u0 =
∅, u1, . . . , un} = [∅, u] the shortest path from the root ∅ to u (uk is the ancestor
of kth generation of u).

By using these notation, the total progeny set Z of the killed branching random
walk can be represented as follows:

Z = {
u ∈ T : τ−

0 (u) > |u|}.
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FIG. 1. The set L[a].

For a ≤ x, we define L[a] as the set of individuals of the (nonkilled) branching
random walk which lie below a for its first time (see Figure 1):

L[a] := {
u ∈ T : |u| = τ−

a (u)
}
, a ≤ x.(1.8)

Since the whole system goes to −∞, L[a] is well defined. In particular, L[0] is
the set of leaves of the progeny of the killed branching walk. As an application of
a general fact for a wide class of graphs, we can compare the set of leaves L[0]
with Z . Then it is enough to investigate the tail asymptotics of #L[0].

To state the result for #L[0], we shall need an auxiliary random walk S, under
a probability Q, which are defined, respectively, in (5.17) and in (5.16) with the
parameter there � = �∗ in the critical case, and � = �+ in the subcritical case.
We mention that under Q, the random walk S is recurrent in the critical case and
transient in the subcritical case. Let us also consider the renewal function R(x) as-
sociated to S [see (5.20)] and τ−

0 the first time when S becomes negative; see (5.8).
For notational simplification, let us write Q[ξ ] for the expectation of ξ under Q.
Then we have the following theorem.

THEOREM 2 (Tail of the number of leaves). Assume (1.1).

(i) (Critical case). If ψ ′(�∗)= 0 and (1.3) holds, then for any x ≥ 0, we have
when n→ ∞

Px
(
#L[0]> n) ∼ c′critR(x)e

�∗x 1

n(logn)2
,

where c′crit := Q[e−�∗Sτ−0 ] − 1.
(ii) (Subcritical case). if ψ ′(�∗) < 0 and (1.4) holds, then we have for any x ≥ 0

when n→ ∞,

Px
(
#L[0]> n) ∼ c′subR(x)e

�+xn−�+/�−

for some constant c′sub > 0.
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We stress that Q, S and R(·) depend on the parameter � = �∗ (critical case) or
� = �+ (subcritical case). If

∑
|u|=1(1 + e�−V (u)) has some larger moments, then

we can give, as in the critical case (i), a probabilistic interpretation of the constant
c′sub in the subcritical case.

LEMMA 1. Under (1.1) with ψ ′(�∗) < 0 and (1.4). Let us assume furthermore
that

E
[( ∑

|u|=1

(
1 + e�−V (u)))�+/�−+1+δ]

<∞ for some δ > 0,(1.9)

then

c′sub = c�−
(
c∗sub

)�+/�−Q
(
τ−

0 = ∞)
,

where c�− and c∗sub are given, respectively, by (8.18) and Lemma 21 [Q(τ−
0 =

∞) > 0 since the random walk S under Q drifts to ∞].

The next lemma establishes the relation between #L[0] and the total progeny
Z = #Z . Recall that E[ν]> 1.

LEMMA 2. Assume (1.5). Then Theorem 2 implies Theorem 1 with:

(i) in the critical case: ccrit = (E[ν] − 1)−1c′crit;
(ii) in the subcritical case: csub = (E[ν] − 1)−�+/�−c′sub.

The above lemma will be proven in Section 3, and the rest of this paper is
devoted to the proof of Theorem 2. To this end, we shall investigate the maximum
of the killed branching random walk and its progeny. Define for any L> 0,

H(L) := ∑
u

1{τ−
0 (u)>τ

+
L (u)=|u|} = #H (L), L > 0,(1.10)

where

H (L) := {
u ∈ T : τ−

0 (u) > τ
+
L (u)= |u|}(1.11)

denotes the set of particles of the branching random walk on [0,L] with two killing
barriers which were absorbed at level L [then H (L)⊂ Z ]. Finally, we define

Z[0,L] := ∑
u

1{τ−
0 (u)=|u|<τ+

L (u)}, L > 0,(1.12)

the number of particles (leaves) which touch 0 before L; see Figure 2.
The following result may have independent interest: The first two parts give a

precise estimate on the probability that a level t is reached by the killed branching
random walk. In the third part, conditioning on the event that the level t is reached,
we establish the convergence in distribution of the overshoots at level t seen as a
random point process.
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FIG. 2. The set H (L).

THEOREM 3. Assume (1.1).

(i) Assuming ψ ′(�∗)= 0 (critical case) and (1.3), we have

Px
(
H(t) > 0

) ∼ Q[�−1]
CR

R(x)e�∗x e
−�∗t

t
, t → ∞,

where Q is defined in (5.16), the random variable � is given in (6.27) with �= �∗
and CR > 0 is a constant given in (5.21).

(ii) Assuming ψ ′(�∗) < 0 (subcritical case) and (1.4), we have

Px
(
H(t) > 0

) ∼ Q[�−1]
CR

R(x)e�+xe−�+t , t → ∞,
where Q is defined in (5.16), the random variable � is given in (6.27) with �= �+
and CR > 0 is a constant given in (5.21).

(iii) In both cases and under Px(·|H(t) > 0), the point process μt :=∑
u∈H (t) δ{V (u)−t} converges in distribution toward a point process μ̂∞ on (0,∞),

where μ̂∞ is distributed as μ∞ under the probability measure �−1

Q[�−1] ·Q, with μ∞
defined in (6.26).

The Yaglom-type result of Theorem 3 plays a crucial role in the proof of Theo-
rem 2. Loosely speaking, to make the total progeny Z (or the set of leaves L[0]) as
large as possible, the branching walk will reach some level L as high as possible,
and the main contribution to #L[0] comes from the descendants of those particles
which have hit L. We control the contribution from the other particles by com-
puting the moments of Z[0,L] which are the most technical parts in the proof of
Theorem 2.

In the computations of moments of Z[0,L], we have to distinguish the contri-
butions of good particles from bad particles. By good particle, we mean that its
children do not make extraordinary jumps [and the number of its children is not
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too big; see (7.1) and (8.4) for the precise definitions]. To describe separately the
numbers of good and bad particles in Z[0,L], we shall modify the Yaglom-type
result Theorem 3(iii) as follows.

Denote by 
f the set of σ -finite measures on R. For any individual u �= ∅, let
←
u be the parent of u and define

�V (u) := V (u)− V (←u ).
Let us fix a measurable function B :
f → R+ and write by a slight abuse of

notation

B(u)≡ B

( ∑
←
v=←

u ,v �=u
δ{�V (v)}

)
∀u ∈ T \ {∅},

and B(u)= 0 if u does not have any brothers. We assume some integrability: there
exists some δ1 > 0 such that

E
[ ∑
|u|=1

(
1 + 1{�=�∗}

∣∣V (u)∣∣)e�V (u)B(u)δ1]<∞,(1.13)

where �= �∗ if ψ ′(�∗)= 0 and �= �+ if ψ ′(�∗) < 0. For the function B appear-
ing in this paper, for instance, B(θ) := ( 1

λ

∫
(1 + e�x)θ(dx))2 in the critical case

and B(θ) := ( 1
λ

∫
θ(dx)(1 + e�−x))1/�− in the subcritical case (see Sections 7 and

8 where the constant λ is introduced) for θ ∈ 
f , (1.13) will always be a conse-
quence of (1.3) or (1.4) by taking a sufficiently small δ1.

Define for u ∈ T ,

βL(u) := inf
{
1 ≤ j ≤ |u| :B(uj ) > e

L−V (uj−1)
}
, L > 0,(1.14)

with the convention that inf ∅ = ∞. We consider

HB(L) := {
u ∈ T : τ−

0 (u) > τ
+
L (u)= |u|, βL(u)= ∞}

.

In other words, HB(L) only contains those particles u in H (L) such that
B(uj ), j ≤ |u|, are not very large. Obviously, HB ≡ H if B = 0. We get an
extension of Theorem 3(iii) as follows:

PROPOSITION 1. Assume (1.13) and the hypothesis of Theorem 3. Under
Px(·|H(t) > 0), the point process μB,t := ∑

u∈HB(t)
δ{V (u)−t} converges in dis-

tribution toward a point process μ̂B,∞ on (0,∞), where μ̂B,∞ is distributed as

μB,∞ under the probability measure �−1

Q[�−1] · Q, with μB,∞ defined in (6.24).

To prove Theorems 2, 3 and Proposition 1, we shall develop a spinal decomposi-
tion for the killed branching random walk up to some stopping lines. Viewed from
the stopping lines, the branching walk on the spine behaves as a two-dimensional
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Markov chain: The first coordinate is a real-valued random walk (sometimes con-
ditioned to stay positive) until some first passage times, and the second coordinate
takes values in the space of point measures, whose laws we shall describe through
a family of Palm measures. As the parameter of the stopping lines goes to infinity,
we shall also need some accurate estimates on the real-valued random walk and
establish a convergence in law for the time-reversal random walk, in both transient
and recurrent cases.

The rest of this paper is organized as follows:

• Section 2: we explain the main ideas in the proofs of Theorems 2 and 3.
• Section 3: we prove Lemma 2. Then the rest of this paper is devoted to the proofs

of Theorems 2, 3, Lemma 1 and Proposition 1.
• Section 4: we collect several preliminary results on the one-dimensional real-

valued random walk, both in recurrent and transient cases; in particular, we
establish a result of convergence in law for a time reversal random walk. The
proofs of these results are postponed in Section 9.

• Section 5: we develop the spinal decompositions for the killed and nonkilled
branching random walks, which are the main theoretical tools in the proofs.

• Section 6: by admitting three technical lemmas (whose proofs are postponed in
Section 9), we prove Theorem 3 and Proposition 1.

• Sections 7 and 8: based on Theorem 3 and Proposition 1, we prove Theorem 2
in the critical and subcritical cases, respectively. We also prove Lemma 1 in this
section.

• Section 9 contains the proofs of the technical lemmas stated in Sections 4 and 6.

Throughout this paper, we adopt the following notation: For a point process�=∑m
i=1 δ{xi}, we write 〈f,�〉 = ∑m

i=1 f (xi). Unless stated otherwise, we denote by
c or c′ (possibly with some subscript) some unimportant positive constants whose
values may change from one paragraph to another, and by f (t)∼ g(t) as t → t0 ∈
[0,∞] if limt→t0

f (t)
g(t)

= 1; We also write E[X,A] ≡ E[X1A] when A is an event

and E[X]k = E[Xk] �= (E[X])k when X does not have a short expression.

2. Heuristics in the proofs of Theorems 2 and 3. For brevity, we consider
x = 0 in both Theorems 2 and 3.

2.1. Sketch of the proof of Theorem 2. To make #L[0] ≥ n very large, the
killed branching random walk needs to hit a high level, say L. Recalling (1.10),
(1.11) and (1.12), we have

#L[0] = Z[0,L] +∑
u

1{τ−
0 (u)=|u|>τ+

L (u)}.

Observe that in the above sum over u (if such u exists), the particle u must be a
descendant of some v ∈ H (L). Let us order the set of particles in H (L) (possibly
empty) in an arbitrary way: H (L)= {v(i),1 ≤ i ≤H(L)}. Denote by #L(i)[0] the
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number of descendants of v(i) which are absorbed at 0 (namely the number of the
leaves of the subtree rooted at v(i)). Then we have

#L[0] = Z[0,L] +
H(L)∑
i=1

#L(i)[0].

The proof of Theorem 2 is divided into three main steps:

(1) With a suitable choice of L = L(n), we show that Z[0,L] is negligible in
the event {#L[0]> n}, which will be a consequence of Lemmas 13 and 14 in the
critical case and of Lemmas 19, 20 in the subcritical case. The proof of this fact
relies on the computations of the moments of Z[0,L] by distinguishing the good
and the bad particles. A particle is either good or bad; see (7.1) and (8.4) for the
precise definitions in both critical and subcritical cases. Roughly saying, a particle
is called bad if one of its ancestors makes an extraordinary large jump. The bad
particles are few and it is enough to compute the first moment to control their
contributions to #L[0], whereas for the good particles we need to control their
higher moments. The computations of moments are technical and follow from the
change of probabilities (spinal decomposition) and the estimates for random walks
presented in Section 4.

Let us denote by Y1 ≈ Y2 when P(Y1 > n)∼ P(Y2 > n) as n→ ∞, where the
probability P may be P or Q whose choice will be fixed in the proof according to
the random variable Y1 or Y2. It follows that

#L[0] = Z[0,L] +
H(L)∑
i=1

#L(i)[0] ≈
H(L)∑
i=1

#L(i)[0].

Let Hg(L) be the number of some subset Hg(L) of good particles in H (L);
see (7.19) and (8.20). Denote by {u(j),1 ≤ j ≤Hg(L)} the set Hg(L). For nota-
tional brevity we continue to use the notation #L(j)[0] for the number of leaves of
the subtree rooted at u(j). Since bad particles in H (L) are negligible as those in
Z[0,L], we have

#L[0] ≈
H(L)∑
i=1

#L(i)[0] ≈
Hg(L)∑
j=1

#L(j)[0].

(2) Let us consider now the critical case. By a linear transform we may assume
that ρ∗ = 1. By Nerman [29], on {V (u(j))= y}, #L(j)[0] is of order e

y

y
as y→ ∞.

More precisely, if we denote by B(j) := e−V (u(j))V (u(j))#L(j)[0], then under P,
conditioning on {V (u(j)),1 ≤ j ≤H(L)} and letting n→ ∞ [hence L=L(n)→
∞], B(j) converges in law to c∗∂W(j)∞ where c∗ is some positive constant and
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∂W
(j)∞ , j ≥ 1, are independent copies of ∂W∞, and ∂W∞ is the limit of the so-

called derivative martingale in the critical case. Therefore,

#L[0] ≈
Hg(L)∑
j=1

eV (u
(j))

V (u(j))
B(j) ≈ c∗

Hg(L)∑
j=1

eV (u
(j))

V (u(j))
∂W(j)∞ .

Remark that V (u(j))∼ L. By Proposition 1, a modified version of Theorem 3,
under P and conditioning on {H(L) > 0},

Hg(L)∑
j=1

eV (u
(j))

V (u(j))
∂W(j)∞ ∼ eL

L

Hg(L)∑
j=1

eV (u
(j))−L∂W(j)∞ ≈ eL

L

ζ̂∑
i=1

exi ∂W(i)∞ ,

where
∑ζ̂
i=1 δ{xi} denotes some point process on (0,∞) defined under Q and in-

dependent of (∂W(i)∞ , i ≥ 1) which are i.i.d. and are distributed as ∂W∞ under P.
Then by letting L= logn+ log logn−A with a large A,

P
(
#L[0]> n) ∼ Q

(
ζ̂∑
i=1

exi ∂W(i)∞ >
eA

c∗

)
P
(
H(L) > 0

)
.

By Theorem 3(i), there exists some constant ĉ > 0 such that P(H(L) > 0) ∼
ĉ e

−L
L

∼ ĉ eA

n(logn)2
as n→ ∞. Then as n→ ∞,

n(logn)2P
(
#L[0]> n) ∼ ĉeAQ

(
ζ̂∑
i=1

exi ∂W(i)∞ >
eA

c∗

)
.(2.1)

Rigorously speaking, instead of the above equivalence as n→ ∞ in (2.1), we
have to deal with lim supn→∞ and lim infn→∞ on the left-hand side of (2.1), and
we get an upper bound and a lower bound on the right-hand side of (2.1) with an

extra term oA(1) which goes to 0 when A→ ∞. It turns out that
∑ζ̂
i=1 e

xi ∂W
(i)∞

has a Cauchy-law tail; see Lemma 17. (The point process ζ̂ may depend on some
parameter after the truncation argument.) Then by letting A→ ∞ on the right-
hand side of (2.1), we can obtain Theorem 2(i) for the critical case.

(3) The subcritical case in Theorem 2 will be proved in a similar way: By Ner-
man [29], if we denote by B(j) := #L(j)[0]e−�−V (u(j)), then under P, conditioning
on {V (u(j)),1 ≤ j ≤ H(L)} and letting L = L(n)→ ∞, B(j) converges in law
to c∗subM

(�−,j)∞ where c∗sub is some positive constant and M(�−,j)∞ , j ≥ 1, are inde-

pendent copies of M(�−)∞ , and M(�−)∞ is the limit of some positive martingale and
has a power-law tail; see (8.18). As in the critical case, we get that under P and
conditioning on {H(L) > 0},

#L[0] ≈
Hg(L)∑
j=1

e�−V (u(j))B(j) ≈ c∗sube
�−L

ζ̂∑
i=1

e�−xiM(�−,i)∞ ,
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with some point process
∑ζ̂
i=1 δ{xi} on (0,∞) (this point process has of course

nothing to do with that in the critical case). Under Q, (M(�−,i)∞ , i ≥ 1) are i.i.d.,

independent of
∑ζ̂
i=1 δ{xi} and distributed as M(�−)∞ under P. By Theorem 3(ii),

P(H(L) > 0) ∼ ĉsube
−�+L with some positive constant ĉsub. Let L := logn

�− − A
with a large A> 0. It follows that as n→ ∞,

n�+/�−P
(
#L[0]> n) ∼ n�+/�−Q

(
c∗sube

�−L
ζ̂∑
i=1

e�−xiM(�−,i)∞ > n

)
P
(
H(L) > 0

)

∼ ĉsube
�+AQ

(
ζ̂∑
i=1

e�−xiM(�−,i)∞ >
1

c∗sub
e�−A

)
,

yielding the part (ii) in Theorem 2 by letting A→ ∞.

2.2. Sketch of the proofs of Theorem 3 and Proposition 1. By the spine de-
composition (see Proposition 2), the process (Sk, k ≥ 0) formed by the positions
of the spine (ωk, k ≥ 0) is a random walk under the probability Q. Moreover S
has zero mean in the critical case and positive mean in the subcritical case. Let
τ+
t := inf{k ≥ 0 :Sk > t} and denote by T +

t := Sτ+
t

− t the overshoot. Then by the
spine decomposition,

μt :=
∑

u∈H (t)

δ{V (u)−t} = δ{T +
t } +

τ+
t∑
k=1

∑
u∈�k

μ
(u)
t ,(2.2)

where �k denotes the set of brothers of ωk at kth generation [see (5.4)], and the
point process μ(u)t is associated to the subtree T (u) (rooted at u) of T : μ(u)t :=∑
v∈T (u)∩H (t) δ{V (v)−t}.
Consider a new probability Q+ defined in (5.22). Under Q+, S is a random

walk conditioned on staying nonnegative. By (5.26), for any f a nonnegative mea-
surable function,

E
[
e−〈f,μt 〉1{H(t)>0}

] = Q+
[
e−〈f,μt 〉

M∗
Ct

]
∼ 1

CRR(t)
e−�tQ+

[
e−〈f,μt 〉∫

R
e�zμt (dz)

]
,

t → ∞,
where CR denotes some positive constant and R(t) and � are given in (6.4). There-
fore to prove Theorem 3, it is enough to check the convergence in law of the point
process μt under Q+.

To this end, we first check that in the sum
∑τ+

t

k=1 in (2.2), only those terms
with k near to τ+

t contribute (see Lemma 9 for the precise statement), and that
we may replace μ(u)t by μ̃(u)t a point process defined by some branching random
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walk starting from V (u) without killing at 0; see Lemma 10. Then by using the
convergence in law (Lemma 4) for the time reversal random walk combined with
the overshoot {T +

t , Sτ+
t

− Sτ+
t −k,1 ≤ k ≤ τ+

t }, we can obtain the convergence of

μt under Q+ and prove Theorem 3. Proposition 1 will be proved in a similar way.

3. From the number of leaves to the total progeny of the killed branching
walk: Proof of Lemma 2. We recall that our branching random walk starts from
x ≥ 0. We introduced for u ∈ T , τ−

a (u) := inf{0 ≤ k ≤ |u| :V (uk) < a} and

L[a] := {
u ∈ T : |u| = τ−

a (u)
}
, a ≤ x.

PROOF OF LEMMA 2. We equip the tree T with the lexicographical order. Let
Uk be the kth vertex for this order in the set Z of the living particles. It is well
defined until k = Z when all living particles have been explored. For k ∈ [1,Z],
we introduce

Yk := 1 +
k∑
i=1

(
ν(Ui)− 1

)
,

and we notice that YZ = #L[0]. (This can be easily checked by using an argument
of recurrence on the maximal generation of the individuals of Z .) We extend
the definition of Yk to k > Z, by Yk+1 := Yk + νk − 1 where νk is taken from a
family {νi, i ≥ 1} of i.i.d. random variables distributed as ν(∅) and independent
of our branching random walk. We claim that (Yk, k ≥ 1) is a random walk. To
see this, observe that we can construct the killed branching random walk in the
following way. Let (L (c)

i , i ≥ 1) be i.i.d. copies of L . At step 1, the root ∅ =:U1

located at x generates the point process L (c)
1 . If all the children are killed, we

stop the construction. Otherwise, we call U2 the first vertex for the lexicographical
order that is alive. Then, U2 generates the point process L (c)

2 , and we continue
similarly. The process that we get has the law of the killed branching random
walk. In particular, if ν(c)i denotes the number of points of L (c)

i , then (Yk, k ≥ 1)

has the law of (
∑k
i=1(ν

(c)
i − 1), k ≥ 1) which is a random walk by construction.

This proves the claim. We suppose that Theorem 2 holds and we want to deduce
Theorem 1. Let us look at the upper bound of Px(Z > n). Let m := E[ν]> 1 and
take ε ∈ (0,m− 1). We have

Px
(
#L[0] ≤ (m− 1 − ε)n,Z > n) = Px

(
YZ ≤ (m− 1 − ε)n,Z > n)

= ∑
k>n

Px
(
Yk ≤ (m− 1 − ε)n,Z = k)

≤ ∑
k>n

Px
(
Yk ≤ (m− 1 − ε)k),
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which is exponentially small by Cramér’s bound. By Theorem 2, Px(#L[0] > n)
decreases polynomially. Therefore,

Px(Z > n) ≤ Px
(
#L[0]> (m− 1 − ε)n)+ Px

(
#L[0] ≤ (m− 1 − ε)n,Z > n)

= Px
(
#L[0]> (m− 1 − ε)n)(1 + o(1)).

Letting n go to ∞, then ε→ 0 yields the upper bound. For the lower bound, we
take ε > 0, and we observe that

Px
(
#L[0]> (m− 1 + ε)n,Z ≤ n) = Px

(
YZ > (m− 1 + ε)n,Z ≤ n)

≤ Px
(

max
1≤k≤n

(
Yk − (m− 1)k

)
> εn

)
.

Let α > 2 in the critical case and α > 2�+/�− in the subcritical case. By Doob’s
Lp-inequality,

E
∣∣∣ max
1≤k≤n

(
Yk − (m− 1)k

)∣∣∣α ≤ αα

(α − 1)α
E
∣∣(Yn − (m− 1)n

)∣∣α,
which according to Theorem 2.10 in Petrov [31], page 62, is less than

c(α)nα/2−1E
n∑
i=1

|νi −m|α = c(α)nα/2E|ν −m|α,

with some constant c(α) > 0. It follows that

Px
(
#L[0]> (m− 1 + ε)n,Z ≤ n) ≤ c(α)E|ν −m|α

εα
n−α/2.

Therefore,

Px(Z > n)≥ Px
(
#L[0]> (m− 1 + ε)n)− c(α)E|ν −m|α

εα
n−α/2,

which proves the lower bound by taking n→ ∞ then ε→ 0. �

4. One-dimensional real-valued random walks. In this section we collect
some preliminary results for a one-dimensional random walk (Sn)n≥0 on some
probability space (
,F ,P). Most of the results in this section will be applied to
the random walk S defined in (5.17) under Q in Section 5. For the sake of clarity
of presentation, the technical proofs are postponed to Section 9.

4.1. Time-reversal random walks. Let ((Sn)n,Px) be a real-valued random
walk starting from x ∈ R. We write P = P0. Assume that E[S1] ≥ 0 and
E[|S1|3+δ] < ∞ for some δ > 0. In words, we consider random walks that do
not drift to −∞. Moreover we assume that the distribution of S1 is nonarithmetic.
Define

τ+
a := inf{k ≥ 0 :Sk > a}, τ−

a := inf{k ≥ 0 :Sk < a},(4.1)



3800 E. AÏDÉKON, Y. HU AND O. ZINDY

and the overshoot/undershoot

T +
a := Sτ+

a
− a > 0, T −

a := a − Sτ−
a
> 0.

Let R(·) be the renewal function of (Sn)n≥0 under P, that is, with τ ∗ := inf{j ≥
1 :Sj ≥ 0},

R(x) := E

[
τ∗−1∑
j=0

1{−x≤Sj }
]

∀x > 0,

and R(0)= 1.
Following [6], we introduce the law of the random walk conditioned to stay

nonnegative. To this aim, we see (Sn)n≥0 under Px as a Markov chain with tran-
sition function μ(y, dz) := P(y + S1 ∈ dz). We denote by P+

x the h-transform of
Px by the function R. That is, P+

x is a probability measure under which (Sn)n≥0
is a homogeneous Markov chain on the nonnegative real numbers, with transition
function

μR(y, dz) := R(z)

R(y)
μ(y, dz), y, z≥ 0.(4.2)

It is well known that P+-almost surely Sn → ∞ when n→ ∞. When (Sn)n≥0
drifts to ∞ (i.e., when E[S1]> 0), P+ is the law of the random walk conditioned
to stay nonnegative in the usual sense, that is, P

+(·)= P(·|S1 ≥ 0, . . . , Sn ≥ 0, . . .).
We denote by (σn,Hn)n≥0 the strict ascending ladder epochs and ladder heights

of S defined by (σ0,H0)= (0,0) and otherwise for n≥ 1 by

σn :=
{

min{k > σn−1 :Sk > Hn−1}, if σn−1 <∞,
∞, if σn−1 = ∞

and

Hn :=
{
Sσn, if σn <∞,
∞, if σn = ∞.

Some results from random walk theory are important in the proofs presented
here and recorded in the following lemma.

LEMMA 3. Assume that E[S1] ≥ 0, E[|S1|3+δ]<∞ for some δ > 0 and that
the distribution of S1 is nonarithmetic. Then:

(i) T +
t converges in law to a finite random variable when t tends to infinity.

(ii) (T +
t , t ≥ 0) is bounded in Lp for all 1<p < 1 + δ.

(iii) Sτ+
t
/t converges in probability to 1 when t tends to infinity.

(iv) • If E[S1] = 0, there exists a constant CR ∈ (0,∞) such that R(x)/x −→
CR when x→ ∞. In this case, CR = 1

E[T −
0 ] = 1

E[−S
τ
−
0

] .

• If E[S1]> 0, there exists a constant CR ∈ (0,∞) such that R(x)−→ CR
when x→ ∞. In this case, CR = 1

P(τ−
0 =∞) .
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(v) • If E[S1] = 0, then P(τ+
t < τ

−
0 )∼ 1

CRt
when t → ∞.

• If E[S1]> 0, then P(τ+
t < τ

−
0 )→ 1

CR
when t → ∞.

PROOF. Notice that T +
t is also the overshoot of the random walk (Hn) above

the level t . In the case E[S1] = 0, Doney [12] implies that H1 has a finite (2 + δ)-
moment which in view of Lorden [25], Theorem 3, applied to (Hn), implies that
(T +
t , t ≥ 0) is bounded in Lp for all 1< p < 1 + δ. In the case E[S1]> 0, again

by Lorden [25], Theorem 3, applied to (Sn), (T
+
t , t ≥ 0) is bounded in Lp for

all 1 < p < 2 + δ. This provides Part (ii) of the lemma. Moreover, we see that
in both cases, H1 = T +

0 has a finite expectation and obviously is nonarithmetic,
then a refinement of the renewal theorem gives part (i) of the lemma (Feller [13],
page 370, equation (4.10)). For both cases, part (iii) is a consequence of part (ii).
To show (iv), we recall the duality lemma (Feller [13], page 395),

R(x)= 1 +
∞∑
n=1

P
(
H−
n ≤ x), x > 0,

where (H−
n , n ≥ 0) denotes the (strict) ascending ladder heights of −S (in par-

ticular, H−
1 = T −

0 the undershoot at 0). In the case E[S1] = 0, part (iv) is a con-
sequence of the renewal theorem (see Feller [13], page 360) with CR = 1

E[T −
0 ] ,

while part (v) is obtained by applying the optional stopping theorem to the mar-
tingale (Sk,0 ≤ k ≤ τ+

t ∧ τ−
0 ) (the uniform integrability is guaranteed by (ii);

see [3], Lemma 2.2). In the case E[S1] > 0, parts (iv) and (v) follow from
the duality lemma, CR = E[τ ∗] = limx→∞R(x) = 1 + ∑∞

n=1 P(H−
n < ∞) =

1 +∑∞
n=1 P(τ−

0 <∞)n = 1
P(τ−

0 =∞) . �

We recall now Tanaka’s construction (see [33] and Figure 3) of the random walk
conditioned to stay positive. Let us recall that (σn,Hn)n≥0 are the strict ascending
ladder epochs and ladder heights of S, and let (wi)i≥1 be independent copies of

FIG. 3. Tanaka’s construction.
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the segment of the random walk (Sn)n≥0 up to time σ := σ1 viewed from (σ, Sσ )

in reversed time and reflected in the y-axis; that is, (wi)i≥0 are independent copies
of

(0, Sσ − Sσ−1, Sσ − Sσ−2, . . . , Sσ − S1, Sσ ).(4.3)

We write now wi = (wi(�);�= 0,1,2, . . . σ (i)) to identify the components of wi .
In [33], Tanaka shows that the random walk conditioned to stay positive can be
constructed by gluing the wi ’s together, each starting from the end of the previous
one. More formally, let (σ+

n ,H
+
n )n≥1 be the renewal process formed from the

independent random variables (σ (i),wi(σ (i))), that is,(
σ+
n ,H

+
n

) = (
σ (1) + · · · + σ (n),w1

(
σ (1)

)+ · · · +wn(σ (n))), n≥ 1.(4.4)

Then, Tanaka’s result says that the random walk conditioned to stay positive can
be constructed via the process (ζn)n≥0 given by

ζn =H+
k +wk+1

(
n− σ+

k

)
, σ+

k < n≤ σ+
k+1.(4.5)

Finally we introduce a process (Ŝn)n≥0 (obtained by modifying slightly the ran-
dom walk conditioned to stay positive) which will be the limit process that appears
in the following lemma. Let σ̃ := sup{n ≥ 1 : ζn = min1≤i≤n ζi} and observe that
σ̃ is almost surely finite since ζn → ∞. Then (Ŝn)n≥0 is defined by

E
[
F
(
(Ŝn)n≥0

)] = 1

E[H1]E
[
ζσ̃ F

(
(ζn)n≥0

)]
(4.6)

for any test function F . Observe that Tanaka’s construction implies E[ζσ̃ ] =
E[H1]. Moreover we introduce σ̂ := sup{n ≥ 1 : Ŝn = min1≤i≤n Ŝi} which is al-
most surely finite since Ŝn → ∞.

LEMMA 4. Assume that E[S1] ≥ 0, E[|S1|3+δ]<∞ for some δ > 0 and that
the distribution of S1 is nonarithmetic. Recall (4.1), and fix an arbitrary integer
K ≥ 1. Let F : R∗+ × RK+ → R be a bounded and measurable function. Suppose
that for any z ∈ R

K+ , the set {x ∈ R∗+ :F(·, z) is not continuous at x} is at most
countable [which may depend on z]. Then

(i)

lim
t→∞E

[
F
(
T +
t , (Sτ+

t
− Sτ+

t −j )1≤j≤K
)|τ+
t > K

] = E
[
F
(
UŜσ̂ , (Ŝj )1≤j≤K

)]
,

where (Ŝn)n≥0 is the process defined by (4.6) and U is a uniform random variable
on [0,1] independent of (Ŝn)n≥0.

(ii)

lim
t→∞E

+[F (T +
t , (Sτ+

t
− Sτ+

t −j )1≤j≤K
)|τ+
t > K

] = E
[
F
(
UŜσ̂ , (Ŝj )1≤j≤K

)]
,

where E
+ denotes the expectation with respect to the probability measure P+.
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As a consequence, under P(·|τ+
t > K) or under P+(·|τ+

t > K), the random vec-
tor (T +

t , (Sτ+
t

−Sτ+
t −j )1≤j≤K) converges in distribution toward (UŜσ̂ , (Ŝj )1≤j≤K)

when t → ∞. We also note that the conditioning with respect to the event
{τ+
t > K} is just technical since this event is asymptotically typical (indeed al-

most surely τ+
t → ∞ when t → ∞).

PROOF OF LEMMA 4. See Section 9. �

We end this subsection with an estimate on a random walk with positive drift:

LEMMA 5. Assume that E[S1]> 0, E[S2
1 ]<∞. Let (ai, Si − Si−1)i≥1 be an

i.i.d. sequence such that ai ≥ 0 almost surely. For any p ≥ 1 such that E[ap1 ]<∞
and for any κ > 0, there exists some constant cp,κ > 0 such that

Ex

[τ+
t −1∑
k=0

ak+1e
κ(Sk−t)

]p
≤ cp,κ ∀t > 0,∀x ≤ t.(4.7)

PROOF. See Section 9. �

4.2. Centered random walks. Let ((Sn)n≥0,Px) be a real-valued random walk
starting from x ∈ R. We write P = P0. Assume that

E[S1] = 0, Var(S1) > 0, E
[
euS1

]
<∞ ∀u ∈ (−(1 + η), η)(4.8)

for some η > 0. Recall that P(τ+
L < τ

−
0 ) is of order 1

L
as L→ ∞ (cf. Lemma 3).

For a ∈ R, recall that T +
a := Sτ+

a
− a > 0 (resp., T −

a := a − Sτ−
a
> 0) denotes the

overshoot (resp., undershoot) at level a.
We have the following estimate.

LEMMA 6. Under (4.8). For any 0< δ < η, there exist some constants c > 1
and c′ = c′(δ) > 1 such that for all b ≥ a ∈ R and x > 0,

Pa
(
T +
b > x

) ≤ c′e−δx,(4.9)

Pb
(
T −
a > x

) ≤ c′e−(1+δ)x.(4.10)

Moreover, for all L≥ 1, 0 ≤ a ≤ L,

Pa
(
τ−

0 < τ
+
L

) ≤ L− a + c
L

,(4.11)

Pa
(
τ−

0 > τ
+
L

) ≤ a + c
L
,(4.12)

Ea
[
e
−S

τ
−
0 1{τ−

0 <τ
+
L }
] ≤ cL− a + 1

L
,(4.13)
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Ea

[τ+
L −1∑
j=0

e−δ(L−Sj )
]

+ Ea

[τ−
0 −1∑
j=0

e−δSj
]

≤ c′,(4.14)

Ea
[
e
S
τ
−
0 −1

−S
τ
−
0
] ≤ c,(4.15)

Ea

[ ∑
0≤j<τ−

0 ∧τ+
L

e−δSj
]

≤ c′L− a + 1

L
,(4.16)

Ea

[ ∑
0≤j<τ−

0 ∧τ+
L

e−δ(L−Sj )
]

≤ c′ a + 1

L
,(4.17)

Ea

[
e
−S

τ
−
0 1{τ−

0 <τ
+
L }

∑
0≤j<τ−

0

e−δ(L−Sj )
]

≤ c′ a + 1

L2 .(4.18)

REMARK. A weaker assumption sup−η≤u≤ηE[euS1] < ∞ is enough to
get (4.14), (4.15), (4.16) and (4.17).

PROOF OF LEMMA 6. See Section 9. �

4.3. Random walks with negative drift. In this subsection, we give estimates
on transient random walks. We take again ((Sn)n≥0,Px) a random walk, but we
suppose now that E[S1] < 0, hence the random walk drifts to −∞. We suppose
that there exist γ, η1, η2 > 0 such that

E
[
eγS1

] = 1, E
[
euS1

]
<∞ ∀u ∈ (−η1, γ + η2).(4.19)

Then

P
(
τ−
a < τ

+
0

) → P
(
τ+

0 = ∞)
> 0, a→ −∞.(4.20)

By Theorem 1 of [17], if S1 is nonarithmetic, then

P
(
τ+
a < τ

−
0

) ∼ c(γ )e−γ a, a→ +∞(4.21)

for some constant c(γ ) > 0. We end this section with two lemmas:

LEMMA 7. Under (4.19). For any r > 0, we can find some positive constants
c, c′, c′′ such that for any a ≥ 0, L> 1,

Ea
[
e
−rS

τ
−
0
] ≤ c(r), if r < η1,(4.22)

Ea

[ ∑
0≤�<τ+

L

(1 +L− S�)αerS�
]

≤ c′(r, α)eγ (a−L)erL,
(4.23)

if r > γ,α ≥ 0.
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Ea

[min(τ−
0 ,τ

+
L )∑

�=0

(1 +L− S�)αeγS�
]

≤ c′′eγ a(1 +L− a)1+α,

(4.24)
a ∈ [0,L], α ≥ 0.

PROOF. See Section 9. �

LEMMA 8. Under (4.19). Fix some 0 ≤ η < η1 and α ≥ 0. Assume that (Sn −
Sn−1, an)n≥1 are i.i.d. with a1 ≥ 0 almost surely.

(i) Assume b > 0, 0 ≤ p < γ/b and a1 are such that E[(1 + 1{S1<0}e−ηS1)×
a
p
1 ]<∞. There exists some constant cp = cp(b, η,α) > 0 such that for all x ≥ 0,

Ex

[
e
−ηS

τ
−
0

( τ−
0∑
�=1

ebS�−1a�

)p]
≤ cpebpx.(4.25)

(ii) Assume b > 0, p ≥ 1 and a1 are such that E[(1 + 1{S1<0}e−ηS1)a
p
1 ] <∞

and E[epbS1]<∞. There exists some constant cp = cp(b, η,α) > 0 such that for
all L> 0 and 0 ≤ x ≤ L,

Ex

[
e
−ηS

τ
−
0

(min(τ−
0 ,τ

+
L )∑

�=1

(1 +L− S�−1)
αebS�−1a�

)p]
(4.26)

≤ cp ×
⎧⎪⎨⎪⎩
(1 +L− x)αpepbx, if p < γ/b,
eγ x(1 +L− x)1+αp, if p = γ /b,
eγ (x−L)+pbL, if p > γ/b.

PROOF. See Section 9. �

5. Spinal decomposition.

5.1. Spinal decomposition of a branching random walk (without killing). We
begin with a general formalism of the spinal decomposition for a branching ran-
dom walk. This decomposition has already been used in the literature by many
authors in various forms; see, for example, Lyons, Pemantle and Peres [27],
Lyons [26] and Biggins and Kyprianou [9].

There is a one-to-one correspondence between the branching random walk
(V (u)u∈T ) and a marked tree {(u,V (u)) :u ∈ T }. For n≥ 1, let Fn be the sigma-
algebra generated by the branching random walk in the first n generations. For
any u ∈ T \ {∅}, denote by

←
u the parent of u. Write as before [∅, u] = {u0 :=

∅, u1, . . . , u|u|} the shortest path from the root ∅ to u(with |ui | = i for any
0 ≤ i ≤ |u|).
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Let h : T → [0,∞) be measurable such that h(∅) > 0 and for any x ∈ R, v ∈ T
with |v| = n≥ 0,

Ex
[∑

←
u=v

h(u)
∣∣∣Fn

]
= λh(v),(5.1)

where λ > 0 is some positive constant. Let H+ := {u ∈ T :h(u) > 0}. In our exam-
ples of h in this paper, λ = 1, h(u) = f (V (u)) or h(u) = f (V (u1), . . . , V (u|u|))
for some nonrandom function f , and H+ equals either T or Z the set of progeny
of the killed branching walk.

Define

Wn := 1

h(∅)λn

∑
|u|=n

h(u), n≥ 0.

Fix x ∈ R. Clearly by (5.1), (Wn) is a (Px, (Fn))-martingale.
On the enlarged probability space formed by marked trees with distinguished

rays, we may construct a probability Q(h)x and an infinite ray {w0 = ∅,w1,w2, . . .}
such that for any n≥ 1,

←
wn =wn−1, and

Q(h)x (wn = u|Fn)= h(u)

h(∅)λnWn
∀|u| = n(5.2)

and

dQ(h)x
dPx

∣∣∣∣
Fn

=Wn.(5.3)

To construct Q(h)x , we follow Lyons [26] under a slightly more general frame-
work: Let L := ∑

|u|=1 δ{V (u)}. For any y ∈ H+, denote by L̃y a random variable
whose law has the Radon–Nikodym density W1 with respect to the law of L
under Py . Put one particle w0 = ∅ at x ∈ H+. Generate offsprings and displace-
ments according to an independent copy of L̃x . Let {|u| = 1} be the set of the
children of w0. We choose w1 = u according to the probability h(u)

h(w0)λW1
. All chil-

dren u �=w1 give rise to independent branching random walks of law PV (u), while
conditioned on V (w1)= y, w1 gives offsprings and displacements according to an
independent copy of L̃y . We choosew2 among the children ofw1 in the same size-

biased way, and so on. Denote by Q(h)x the joint law of the marked tree (V (u))|u|≥0

and the infinite ray {w0 = ∅,w1, . . . ,wn, . . .}. Then Q(h)x satisfies (5.3) and (5.2),
which can be checked in the same way as in Lyons [26].

Under Q(h)x , we write, for k ≥ 1,

�k := {
u : |u| = k,←u =wk−1, u �=wk}.(5.4)
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In words, �k is the set of children of wk−1 except wk , or equivalently, the set of
the brothers of wk , and is possibly empty. Define S0 := V (∅) and

Sn := V (wn), �n := ∑
u∈�n

δ{�V (u)}, n≥ 1,(5.5)

where we recall that �V (u) := V (u)−V (←u ). Finally, let us introduce the follow-
ing sigma-field:

Gn := σ {(�V (u),u ∈ �k
)
,V (wk),wk,�k,1 ≤ k ≤ n}.(5.6)

Then G∞ is the sigma-field generated by all random variables related to the
spine {wk, k ≥ 0}. Let us write v < u if v is an ancestor of u (then v ≤ u if v < u
or v = u). By the standard “words”-representation in a tree, u < v if and only if
the word v is a concatenation of the word u with some word s, namely v = us with
|s| ≥ 1.

The promised spinal decomposition is as follows. Since it differs only slightly
from the spinal decomposition presented in Lyons [26] and Biggins and Kypri-
anou [9], we feel free to omit the proof.

PROPOSITION 2. Assume (5.1) and fix x ∈ H+. Under probability Q(h)x :

(i) for each n≥ 1, conditionally on Gn−1 and on {Sn−1 = y}, the point process
(V (u),

←
u = wn−1) is distributed as L̃y . In particular, the process (Sn,�n)n≥0 is

Markovian. Moreover, (Sn)n≥0 is also a Markov chain and satisfies

Q(h)x
(
f (Sn)|Sn−1 = y,Gn−1

) = 1

λ
Ey

[ ∑
|u|=1

f
(
V (u)

) h(u)
h(∅)

]
for any nonnegative measurable function f , n≥ 1 and y ∈ H+.

(ii) Conditionally on G∞, the shifted branching random walks {V (vu) −
V (v)}|u|≥0, for all v ∈ ⋃∞

k=1 �k , are independent, and have the same law as
{V (u)}|u|≥0 under P0.

Remark that under Q(h)x , {wn,n≥ 0} lives in H+ with probability one. We can
extend Proposition 2 to the so-called stopping lines. Recall (1.6) and (1.7). For
0 ≤ x < t , we consider the stopping line

Ct := {
u ∈ T : τ+

t (u)= |u|}.(5.7)

Note that for any v ∈ T , |v|< τ+
t (v) means that sup0≤i≤|v| V (vi)≤ t ; see Fig-

ure 4. The process {V (u)}|u|≤τ+
t (u)

can be interpreted as the branching random
walk stopped by the line Ct . Recalling (1.11), we remark that Ct ∩ Z = H (t),
where as before Z denotes the set of progeny of the killed branching random
walk.



3808 E. AÏDÉKON, Y. HU AND O. ZINDY

FIG. 4. The set Ct .

Let FCt := σ {(u,V (u)) :u ∈ T , |u| ≤ τ+
t (u)} be the σ -field generated by the

branching walk V up to the stopping line Ct . Assuming (5.1), we define

WCt :=
1

h(∅)

∑
u∈Ct

h(u)λ−|u|.

Define two families of stopping times for the process (Sn := V (wn), n ≥ 0)
under Q(h)x ,

τ+
a := inf{k ≥ 0 :Sk > a}, τ−

a := inf{k ≥ 0 :Sk < a} ∀a ∈ R,(5.8)

with the usual convention inf∅ = ∞ and the corresponding overshoot and under-
shoot processes

T +
a := Sτ+

a
− a, T −

a := a − Sτ−
a

∀a ∈ R.(5.9)

Analogously to (5.6), we introduce the sigma-field

GCt := σ
{(
�V (u),u ∈ �k

)
,V (wk),wk,�k,1 ≤ k ≤ τ+

t , τ
+
t

}
,(5.10)

generated by all information related to the spine [∅,w(τ+
t )]. Similarly, we recall

L[a] in (1.8) and define FL[a], WL[a], GL[a] as before. The next result describes
the decomposition along the spine [∅,w(τ+

t )] (resp., [∅,w(τ−
a )]).

PROPOSITION 3. Assume (5.1), and let x ∈ H+. Take t ≥ x. Suppose that h
is such that Q(h)x (τ+

t <∞)= 1. Then

dQ(h)x
dPx

∣∣∣∣
FCt

=WCt .(5.11)
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(i) Under probability Q(h)x , conditionally on GCt and on {V (v) = xv, v ∈⋃τ+
t

k=1 �k}, the shifted branching random walks {V (vu) − V (v)}u : |vu|≤τ+
t (vu)

,
stopped by the line Ct , are independent, and have the same law as
{V (u)}|u|≤τ+

t−xv (u)
under P0, stopped by the line Ct−xv .

(ii) The distribution of the spine within Ct is given by

Q(h)x (wτ+
t

= u|FCt )=
h(u)λ−|u|

h(∅)WCt

∀u ∈ Ct .

(iii) For any bounded measurable function f : RN → R and for any bounded
FCt -measurable random variable �t ,

Ex
[ ∑
u∈Ct

h(u)

h(∅)λ|u|f
(
V (ui),0 ≤ i ≤ |u|)�t] = Q(h)x

[
f
(
Si,0 ≤ i ≤ τ+

t

)
�t

]
.

Similarly, take a ≤ x and assume that h is such that Q(h)x (τ−
a <∞)= 1. Then

the analog holds for Ct replaced by L[a] (and τ+
t by τ−

a ).

REMARK 3. If Q(h)x (τ+
t < ∞) = 1 for all t , then WCt is a (Px,FCt )-

martingale by Lemma 6.1 and Theorem 6.1 in [9]. The equivalent holds for L[a].
PROOF OF PROPOSITION 3. It is enough to prove that for any g : T → R

measurable and bounded,

Ex
[ ∑
u∈Ct

h(u)

h(∅)λ|u|f
(
V (ui),0 ≤ i ≤ |u|)g(u)�t]

(5.12)
= Q(h)x

[
f
(
Si,0 ≤ i ≤ τ+

t

)
g(wτ+

t
)�t

]
.

In fact, part (iii) follows from (5.12), and by taking f ≡ g ≡ 1 in (5.12) we
get (5.11); Taking f ≡ 1 in (5.12) and using (5.11), we get part (ii); Finally since
τ+
t is a stopping time for (Sk)k , the part (i) follows easily from Proposition 2.

To check (5.12), it is enough to show that for any N ≥ 1, (5.12) holds for all �t
of form �t,N := F(u,V (u),u ∈ T , |u| ≤ τ+

t (u)∧N) with a bounded measurable
function F . Notice that the left-hand side of (5.12) equals

∞∑
n=0

Ex
[ ∑
|u|=n

1{τ+
t (u)=n}

h(u)

h(∅)λn
f
(
V (ui),0 ≤ i ≤ n)g(u)�t,N]

(5.13)

:=
∞∑
n=0

(5.13)n,

with obvious definition of (5.13)n. If n≥N , since�t,N is measurable with respect
to FN , we deduce from (5.2) and the absolute continuity (5.3) that

(5.13)n = Q(h)x
[
1{τ+

t =n}f (Si,0 ≤ i ≤ n)g(wn)�t,N ].
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For n < N , we deduce from the branching property along the stopping line Ct
(see Jagers [19]) that

(5.13)n = Ex
[ ∑
|u|=n

1{τ+
t (u)=n}f

(
V (ui),0 ≤ i ≤ n)g(u)�t,N ∑

|v|=N,u<v

h(v)

h(∅)λN

]

= Ex
[ ∑
|v|=N

1{τ+
t (v)=n}f

(
V (vi),0 ≤ i ≤ n)g(vn)�t,N h(v)

h(∅)λN

]

= Q(h)x
[
1{τ+

t =n}f (Si,0 ≤ i ≤ n)g(wn)�t,N ],
by using again (5.2) and the absolute continuity (5.3) at N . Noting that f (Si,0 ≤
i ≤ n)g(wn)= f (Si,0 ≤ i ≤ τ+

t )g(wτ+
t
) on {τ+

t = n}, we take the sum of (5.13)n
over all n and obtain (5.12). The proof for L[a] works by analogy. �

Let us present below a particular example of h and the corresponding laws of
(�n,Sn)n≥0. Recall (1.1). Define

h(u) :=
{
e�∗V (u), if ψ ′(�∗)= 0,
e�+V (u), if ψ ′(�∗) < 0,

u ∈ T .(5.14)

Since ψ(�∗) = 0 in the critical case and ψ(�+) = 0 in the subcritical case,
the function h satisfies (5.1) with λ = 1 and H+ = T . We mention that in the
subcritical case, since ψ(�−) = 0, the function u→ e�−V (u) also satisfies (5.1)
with λ= 1. This fact will be explored in Section 8 for the definition of Q(�−), the
measure satisfying (5.3) with h(u)= e�−V (u).

Write for any x ∈ R, Qx ≡ Q(h)x the probability with the choice of h given
in (5.14). For simplification, let

� :=
{
�∗, if ψ ′(�∗)= 0 (critical case);
�+, if ψ ′(�∗) < 0 (subcritical case).

(5.15)

Then for any x ∈ R, Qx satisfies

dQx
dPx

∣∣∣∣
Fn

= e−�x ∑
|u|=n

e�V (u).(5.16)

We shall write Q ≡ Q0 when x = 0. The following description of the law of
(Sn,�n)n≥0 under Qx is an easy consequence of Proposition 2(i).

COROLLARY 1. Recall (5.15) and (5.5). Fix x ∈ R.

(i) Under Qx , (Sn − Sn−1,�n)n≥1 are i.i.d. under Qx whose common law is
determined by

Qx
[
f (Sn − Sn−1)e

−〈g,�n〉] = E
[ ∑
|u|=1

e�V (u)f
(
V (u)

)
e−

∑
v �=u,|v|=1 g(V (v))

]
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for any n≥ 1, any measurable functions f,g : R → R+. In particular, the process
(Sn)n≥0 is a random walk on R, starting from S0 = x, with step distribution given
by

Qx
[
f (Sn − Sn−1)

] = E
[ ∑
|u|=1

f
(
V (u)

)
e�V (u)

]
, n≥ 1.(5.17)

(ii) For any n≥ 1 and any measurable function F : Rn+1 → R+,

Ex
[ ∑
|u|=n

F
(
V (ui),0 ≤ i ≤ n)] = e�xQx

[
e−�SnF (Si,0 ≤ i ≤ n)].

(iii) For any n≥ 1, and any |u| = n,

Qx(wn = u|Fn)= e�V (u)∑
|v|=n e�V (v)

.

Remark that by (5.17), Q[S1] = 0 and Q[S2
1 ] = ψ ′′(�∗) > 0 in the critical case,

while Q[S1] =ψ ′(�+) > 0 in the subcritical case.

5.2. Spinal decomposition for a killed branching random walk. Before intro-
ducing a change of measure related to the killed branching walk, we recall some
elementary facts on the Palm distribution of the point process L = ∑

|u|=1 δ{V (u)}
under P. Let E(L (dx)) be the intensity measure of L , namely for any measurable
function f : R → R+,∫

R

f (x)E
(
L (dx)

) = E
[ ∑
|u|=1

f
(
V (u)

)]
.

Clearly E(L (dx)) is σ -finite since ψ is well defined on some interval. Then there
exists a family (�x, x ∈ R), called reduced Palm distributions, of distributions of
random point measures on R such that∫


f

F (x, θ)�x(dθ)= E[F(x,L − δ{x})L (dx)]
E(L (dx))

(5.18)
for E

(
L (dx)

)
-a.e. x

for any measurable F : R × 
f (R)→ R+, and where 
f denotes the set of σ -
finite measures on R; see Kallenberg [21], Chapter 10 for more details. Roughly
said, �x is the distribution of L − δ{x} conditioned on that L charges x.

In this subsection, let ((Sn),Qx) be as in Corollary 1 and (5.16). Based on
Corollary 1(i) (with n= 1 and x = 0), elementary computations give that for any
measurable f,g : R → R+,

Q
[
f (S1)e

−〈g,�1〉] =
∫

R

E
(
L (dx)

)
e�xf (x)

∫

f

e−〈g,θ〉�x(dθ).
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It follows immediately from (5.17) that the law of S1 under Q is given by
Q(S1 ∈ dx)= E(L (dx))e�x . Hence for any measurable f,g : R → R+,

Q
[
f (S1)e

−〈g,�1〉] =
∫

R

Q(S1 ∈ dx)f (x)
∫

f

e−〈g,θ〉�x(dθ).(5.19)

In words, �x is the law of �1 conditioned on {S1 = x} under Q.
Now, we are interested in a change of measure in the killed branching ran-

dom walk. To introduce the corresponding density, we consider R(·) the renewal
function of the random walk (Sn)n≥0 under Q. More precisely, for x > 0, R(x) is
defined by the expected number (under Q) of visits to [−x,0] before first returning
to [0,∞), that is, R(0)= 1, and

R(x) := Q

[
τ∗−1∑
j=0

1{−x≤Sj }
]

∀x > 0,(5.20)

with τ ∗ := inf{j ≥ 1 :Sj ≥ 0}. We extend the definition of R on the whole real line
by letting R(x)= 0 for all x < 0.

Recall that Q[S1] = 0 in the critical case and Q[S1]> 0 in the subcritical case.
It is known (see Lemma 3) that the following limits exist and is equal to some
positive constants:

CR :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
lim
x→∞

R(x)

x
= 1

Q[−Sτ−
0
] , if ψ ′(�∗)= 0 (critical case),

lim
x→∞R(x)=

1

Q(τ−
0 = ∞) , if ψ ′(�∗) < 0 (subcritical case),

(5.21)

with τ−
0 defined in (5.8). Recall (5.15). Define

h+(u) :=R(V (u))e�V (u)1{V (u1)≥0,...,V (un)≥0}, |u| = n,u ∈ T .

It is well known that (R(Sn)1{τ−
0 >n}, n ≥ 0) is a Qx-martingale for any x ≥ 0;

see, for example, [6]. Then h+ satisfies (5.1) with λ = 1. Note that in this case,
H+ = {u ∈ T :V (u0)≥ 0, . . . , V (u|u|)≥ 0} = Z is exactly the set of progeny of
the killed branching walk.

Let Q+
x be the probability satisfying (5.3) and (5.2) with h= h+,

dQ+
x

dPx

∣∣∣∣
Fn

:= e−�x

R(x)

∑
|u|=n,u∈Z

R
(
V (u)

)
e�V (u) =:M∗

n, x ≥ 0, n≥ 1(5.22)

withM∗
0 := 1. Write for simplification Q+ = Q+

0 . Recalling (5.5), we deduce from
Proposition 2 the following result; see Figure 5 below.

COROLLARY 2. Recall (5.15). Fix x ≥ 0. Under Q+
x :
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FIG. 5. Spinal decomposition under Q+
0 .

(a) (Sn)n≥0 is a (Gn)-Markov chain: for any n≥ 1, y > 0 and any measurable
function f : R+ → R+,

Q+
x

[
f (Sn)|Gn−1, Sn−1 = y] = Qy

[
R(S1)

R(y)
f (S1)1{S1≥0}

]
.

In words, under Q+
x , the process (Sn, n≥ 0) has the same law as the random walk

(Sn, n≥ 0) under Px , conditioned to stay nonnegative.
(b) Conditioned on (Sn)n≥0, the point processes (�n)n≥1 are independent, and

each �n is distributed as �Sn−Sn−1 .
(c) For any nonnegative function F and any n≥ 0,

Ex
[ ∑
u∈Z ,|u|=n

F
(
V (ui),0 ≤ i ≤ |u|)] =R(x)e�xQ+

x

[
e−�Sn
R(Sn)

F (Si,0 ≤ i ≤ n)
]
.

PROOF. The formula many-to-one (c) is routine. Let us only check (a) and (b):
By Proposition 2(i), we get that for any n≥ 1,

Q+
x

[
e−〈g,�n〉f (Sn)|Gn−1, Sn−1 = y]
= Ey

[ ∑
|u|=1

1

R(y)e�y
e�V (u)R

(
V (u)

)
(5.23)

× 1{V (u)≥0}f
(
V (u)

)
e−

∑
v �=u,|v|=1 g(V (v)−y)

]
= Qy

[
R(S1)

R(y)
1{S1≥0}f (S1)e

−〈g,�1〉
]

(5.24)

= Q
[
R(y + S1)

R(y)
1{y+S1≥0}f (y + S1)e

−〈g,�1〉
]
,(5.25)

by using Corollary 1(i). Taking g = 0 in (5.24) yields the assertions in (a). Taking
n= 1 gives the joint law of (S1,�1) under Q+

x . Let p(dz)= Q(S1 ∈ dz) be the law
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of S1 under Q. Recall that �z is the law of �1 conditioning on {S1 = z} under Q.
Then for any event A ∈ Gn−1, we deduce from (5.25) that

Q+
x

[
e−〈g,�n〉f (Sn)1A

]
= Q+

x

[
1A

∫
R

p(dz)
R(Sn−1 + z)
R(Sn−1)

1{Sn−1+z≥0}f (Sn−1 + z)
∫

f

�z(dθ)e
−〈g,θ〉

]

= Q+
x

[
1Af (Sn)

∫

f

�Sn−Sn−1(dθ)e
−〈g,θ〉

]
,

by using (a) for the last equality. This together with Markov’s property of (Sn)
with respect to (Gn), imply that for any n≥ 1 and g : R → R+,

Q+
x

[
e−〈g,�n〉|Gn−1, (Sj )j≥0

] =
∫

f

�Sn−Sn−1(dθ)e
−〈g,θ〉,

proving (b). �

REMARK 4. If we assume that L = ∑ν
i=1 δ{Xi} with (Xi)i≥1 a sequence of

i.i.d. real-valued variables of the same law as X, independent of ν, then the expec-
tation in (5.24) equals

∑
k≥0

P(ν = k)kE
[
R(X+ y)
R(y)

e�X1{X+y≥0}f (X+ y)
](

Ee−g(X)
)k−1

,

which implies that under Q+
x for each n≥ 1, conditionally on Gn−1 and on {Sn−1 =

y}, Sn and �n are independent and �n is distributed as
∑ν̃−1
i=1 δXi , with ν̃ the size-

biased of ν, Q+
x (̃ν = k)= kP(ν = k)/E[ν], k ≥ 1, and independent of (Xi)i≥1.

We may extend Corollary 2 to the stopping lines. Remark that Ct ∩Z = H (t);
see (5.7) and (1.11). We deduce from Proposition 3 the following result:

COROLLARY 3. Recall (5.15) and (5.8). Fix 0 ≤ x < t . We have

dQ+
x

dPx

∣∣∣∣
FCt

= e−�x

R(x)

∑
u∈H (t)

R
(
V (u)

)
e�V (u) =:M∗

Ct
.(5.26)

(i) Under probability Q+
x , conditionally on GCt and on {V (v) = xv, v ∈⋃τ+

t

k=1 �k}, the shifted branching random walks {V (vu) − V (v)}u : |vu|≤τ+
t (vu)

,
stopped by the line Ct , are independent, and have the same law as {V (u)}|u|≤τ+

t−xv (u)
under P0, stopped by the line Ct−xv .
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(ii) Moreover, for any measurable function F : RN+ → R+,

Ex
[ ∑
u∈Ct∩Z

F
(
V (ui),0 ≤ i ≤ |u|)]

=R(x)e�xQ+
x

[
e
−�S

τ
+
t

R(Sτ+
t
)
1{τ+

t <τ
−
0 }F

(
Si,0 ≤ i ≤ τ+

t

)]
.

6. Maximum of the killed branching random walk: Proofs of Theorem 3
and Proposition 1. Let us first recall the following criterion for convergence in
distribution of point processes which can be found in Resnick [32]; see page 153,
Proposition 3.19. LetE be a polish space. Then, let us define the Laplace transform
of a point process θ with probability measure P by

�P(f ) :=
∫

exp
{
−
∫
f dθ

}
dP(θ)=

∫
exp

{−〈f, θ〉}dP(θ),(6.1)

where f is a positive measurable function from E to R. Let C+
K(E) be the space

of continuous functions from E to R+ with compact support. Then we have

lim
n→∞�Pn(f )=�P(f ) ∀f ∈ C+

K(E),(6.2)

if and only if

Pn
(vague)−→ P, n→ ∞,(6.3)

which is the same as the convergence in distribution of the point processes.
Recall the real-valued random walk (Sn) defined in Corollary 1. In order to treat

both critical and subcritical cases in the same proof, we introduce the following
function defined on R+ by

R(t) :=
{
t, if ψ ′(�∗)= 0,
1, if ψ ′(�∗) < 0,

� :=
{
�∗, if ψ ′(�∗)= 0,
�+, if ψ ′(�∗) < 0,

(6.4)

and observe that the renewal function R(·), associated with the random walk
(Sn,Q) defined by (5.20), satisfies [see (5.21)]

R(t)∼ CRR(t), t → ∞.
We take the notation of Theorem 3 and Proposition 1. The key step is to prove

that for any f ∈ C+
K(R) and when t → ∞, we have

Ex
[
e−〈f,μB,t 〉1{H(t)>0}

] ∼ R(x)e�x

CRR(t)e�t
Q
[
e−〈f,μB,∞〉

�
]
.(6.5)

We recall from (5.26) that M∗
Ct

= e−�x
R(x)

∑
u∈H (t) R(V (u))e

�V (u), where H (t)

denotes the set of those u ∈ Z satisfying τ+
t (u)= |u| [see (1.11)]. Then H(t) > 0
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if and only ifM∗
Ct
> 0. It follows that

Ex
[
e−〈f,μB,t 〉1{H(t)>0}

] = Ex
[M∗

Ct

M∗
Ct

e−〈f,μB,t 〉1{H(t)>0}
]

(6.6)

= Q+
x

[
e−〈f,μB,t 〉

M∗
Ct

]
.

We will now use the so-called “decomposition along the spine” (wk) (under Q+
x ).

Recalling that �k = {u : |u| = k,←u =wk−1, x �=wk}, we have

〈f,μB,t 〉 = f (T +
t

)
1{βt (wτ+t )=∞} + ∑

1≤k≤τ+
t

∑
u∈�k

1{βt (u)=∞}
〈
f,μ

(u)
B,t

〉
,(6.7)

where T +
t = Sτ+

t
− t denotes the overshoot of S above the level t [see (5.9)], and

for any u ∈ T the point process μ(u)B,t is associated to the subtree T (u) (rooted at u)
of T and defined by

μ
(u)
B,t :=

∑
v∈T (u)∩Hβ(t)

δ{V (v)−t}, μ
(u)
t := ∑

v∈T (u)∩H (t)

δ{V (v)−t}.(6.8)

Recall that R(s) ∼ CRR(s) when s → ∞. Since V (u) > t for all u ∈ H (t), we
get that, under Q+

x ,

M∗
Ct

∼ e−�x

R(x)
CRR(t)e�t

∑
u∈H (t)

R

(
1 + V (u)− t

t

)
e�(V (u)−t),

(6.9)
t → ∞.

Then repeating the spinal decomposition arguments for the above sum
∑
u∈H (t)

we obtain

Ex
[
e−〈f,μB,t 〉1{H(t)>0}

] ∼ R(x)e�x

CRR(t)e�t
Q+
x

[
Iβ(t)

J (t)

]
,(6.10)

with

Iβ(t) := exp
{
−f (T +

t

)
1{βt (wτ+t )=∞} − ∑

1≤k≤τ+
t

∑
u∈�k

1{βt (u)=∞}
〈
f,μ

(u)
B,t

〉}
,

J (t) := R

(
1 + T +

t

t

)
e�T

+
t + ∑

1≤k≤τ+
t

∑
u∈�k

∫
R

(
1 + z

t

)
e�zμ

(u)
t (dz).

Therefore, to prove (6.5) we only have to show that

lim
t→∞ Q+

x

[
Iβ(t)

J (t)

]
= Q

[
e−〈f,μB,∞〉

�
]
.(6.11)
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Note that Iβ(t) ∈ [0,1] and J (t)≥ 1, hence Iβ(t)
J (t)

∈ [0,1]. Recalling the conver-
gence in law of the process (t −Sτ+

t −j )0≤j≤K for any fixedK ≥ 1 (see Lemma 4),

we will restrict the sums over k in Iβ(t) and J (t) to k’s between τ+
t −K and τ+

t .
To this aim let us introduce Hu(t) the number of descendants of u that reach t
before 0 [with the convention Hu(t) = 1 if V (u) > t]. The following lemma en-
sures that with probability close to 1,

∑
1≤k≤τ+

t −K
∑
u∈�k

Hu(t)= 0 (the sum is 0

if τ+
t ≤K):

LEMMA 9. We have:

(i) lim supK→∞ lim supt→∞ Q+
x (

∑τ+
t −K
k=1

∑
u∈�k

Hu(t)≥ 1)= 0;
(ii) lim supK→∞ lim supt→∞ Q+

x (βt (wτ+
t
)≤ τ+

t −K)= 0.

PROOF. See Section 9.4. �

Notice that limt→∞ Q+
x (τ

+
t > K) = 1 and that on {βt (wτ+

t
) > τ+

t −K,τ+
t >

K},
βt(u)= inf

{
τ+
t −K < j ≤ |u| :B(uj ) > e

t−V (uj−1)
} =: βKt (u)

for any u = wτ+
t

or u ∈ �k with τ+
t − K < k ≤ τ+

t . The advantage of βKt (u) is

that βKt (u) only locally depends on the spines around τ+
t . Therefore (6.11) will be

a consequence of

lim
K→∞ lim

t→∞ Q+
x

[I ′
β(t,K)

J ′(t,K)
1{τ+

t >K}
]

= Q
[
e−〈f,μB,∞〉

�
]
,(6.12)

with

I ′
β(t,K) := exp

{
−f (T +

t

)
1{βKt (wτ+t )=∞} − ∑

τ+
t −K<k≤τ+

t

∑
u∈�k

1{βKt (u)=∞}
〈
f,μ

(u)
B,t

〉}
,

J ′(t,K) := R

(
1 + T +

t

t

)
e�T

+
t + ∑

τ+
t −K<k≤τ+

t

∑
u∈�k

∫
R

(
1 + z

t

)
e�zμ

(u)
t (dz).

Recall from (6.8) that the measures μ(u)B,t in the previous expressions are as-
sociated with the branching random walk killed at 0. Now, we want to replace
the measures μ(u)B,t by the same measures μ̃(u)B,t but associated with the nonkilled
branching random walk,

μ̃
(u)
B,t :=

∑
v∈T (u)∩Ct

1{βt (v)=∞}δ{V (v)−t},

(6.13)
μ̃
(u)
t := ∑

v∈T (u)∩Ct

δ{V (v)−t},
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where we recall that v ∈ T (u)∩Ct if and only if v is a descendant of u and τ+
t (v)=

|v|; see (5.7) for the definition of Ct . The following lemma confirms that we can
replace μ(u) by μ̃(u) with probability close to 1:

LEMMA 10. Let us define for t > 0 and K ≥ 1,

�(t,K) := {
τ+
t > K

}
∩ {(

μ
(u)
B,t ,μ

(u)
t

) = (
μ̃
(u)
B,t , μ̃

(u)
t

)
,∀u ∈ �k,∀k ∈ (

τ+
t −K,τ+

t

]}
.

Then for any K ≥ 1, we have

lim
t→∞ Q+

x

(
�(t,K)c

) = 0.

PROOF. See Section 9.4. �

By Lemmas 9 and 10, to prove (6.5) it is enough to show that

lim
K→∞ lim

t→∞ Q+
x

[
Ĩβ(t,K)

J̃ (t,K)
1{τ+

t >K}
]

= Q
[
e−〈f,μB,∞〉

�
]
,(6.14)

where Ĩβ(t,K) and J̃ (t,K) are as I ′
β(t,K) and J ′(t,K) but with μ̃(u) in lieu

of μ(u),

Ĩβ(t,K) := exp
{
−f (T +

t

)
1{βKt (wτ+t )=∞} − ∑

τ+
t −K<k≤τ+

t

∑
u∈�k

1{βKt (u)=∞}
〈
f, μ̃

(u)
B,t

〉}
,

J̃ (t,K) := R

(
1 + T +

t

t

)
e�T

+
t + ∑

τ+
t −K<k≤τ+

t

∑
u∈�k

∫
R

(
1 + z

t

)
e�zμ̃

(u)
t (dz).

Let us now introduce a family of point processes denoted by (μB,y,μy)y∈R,
which are associated to the nonkilled branching random walk V under P and are
defined by

μB,y :=
⎧⎪⎨⎪⎩

∑
v∈Cy

1{βy(v)=∞}δ{V (v)−y}, if y ≥ 0,

δ{−y}, if y < 0,
(6.15)

and

μy :=
⎧⎪⎨⎪⎩

∑
v∈Cy

δ{V (v)−y}, if y ≥ 0,

δ{−y}, if y < 0,
(6.16)

where Cy was defined in (5.7); in particular, {V (v)−y, v ∈ Cy} denotes exactly the
set of overshoots of the (nonkilled) branching random walk V above the level y.
By part (i) of Corollary 3, under Q+, conditionally on GCt and on {V (u)= xu,u ∈
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�k,1 ≤ k ≤ τ+
t }, the family {(μ̃(u)B,t , μ̃

(u)
t ), u ∈ �k,1 ≤ k ≤ τ+

t } is independent
and satisfies((

μ̃
(u)
B,t , μ̃

(u)
t

)
, under Q+

x

) law= (
(μB,t−xu,μt−xu), under P

)
.(6.17)

For convenience of notation, let us introduce

S
(t)
i := Sτ+

t
− Sτ+

t −i , 1 ≤ i ≤ τ+
t ,(6.18)

�
(t)
i :=�τ+

t −i+1, 1 ≤ i ≤ τ+
t .(6.19)

Recall that T +
t := Sτ+

t
− t denotes the overshoot of S over t . Thus, (6.17) yields

that on {τ+
t > K},

Q+
x

[
Ĩβ(t,K)

J̃ (t,K)

∣∣∣GCt

]
a.s.= ϕt,K

(
T +
t , S

(t)
1 , . . . , S

(t)
K ,�

(t)
1 , . . . ,�

(t)
K

)
,(6.20)

where for any t0 > 0, s1, . . . , sK > 0 and the point measures θ(i), 1 ≤ i ≤ K , of

form θ(i) = ∑m(i)

j=1 δx(i)j
, we define

Di,K :=
K⋂
j=i

{
B
(
θ(j)

) ≤ e−t0+sj }, 1 ≤ i ≤K

and

ϕt,K
(
t0, s1, . . . , sK, θ

(1), . . . , θ (K)
)

:= E
[ exp{−f (t0)1D1,K −∑K

i=1 1Di,K

∑m(i)

j=1〈f,μ(i,j)B,si−t0−x(i)j
〉}

R(1 + t0/t)e�t0 +∑K
i=1

∑m(i)

j=1
∫

R(1 + z/t)e�zμ(i,j)
si−t0−x(i)j

(dz)

]
,

and with (under P) ((μ(i,j)B,y,μ
(i,j)
y ), y ∈ R)i,j≥1 i.i.d. copies of ((μB,y,μy), y ∈

R). Then, applying part (b) of Corollary 2 to (6.20) implies that on {τ+
t > K},

Q+
x

[
Ĩ (t,K)

J̃ (t,K)

∣∣∣Sk,0 ≤ k ≤ τ+
t , τ

+
t

]
a.s.= ϕ̃t,K

(
T +
t , S

(t)
1 , . . . , S

(t)
K

)
,(6.21)

with

ϕ̃t,K(t0, s1, . . . , sK) :=
∫ K∏
i=1

�si−si−1

(
dθ(i)

)
ϕt,K

(
t0, s1, . . . , sK, θ

(1), . . . , θ (K)
)
,

with s0 := 0 for notational convenience. Now for any (t0, s1, . . . , sK) ∈ R∗+ × RK+
and for any family (θ(i))1≤i≤K of point processes θ(i) := ∑m(i)

j=1 δx(i)j
, let us define

ϕ∞,K
(
t0, s1, . . . , sK, θ

(1), . . . , θ (K)
) := lim

t→∞ϕt,K
(
t0, s1, . . . , sK, θ

(1), . . . , θ (K)
)
,

ϕ̃∞,K(t0, s1, . . . , sK) := lim
t→∞ ϕ̃t,K(t0, s1, . . . , sK),
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and observe that these limits exist by the dominated convergence theorem, which
also yields that

ϕ̃∞,K(t0, s1, . . . , sK)

=
∫ K∏
i=1

�si−si−1

(
dθ(i)

)
ϕ∞,K

(
t0, s1, . . . , sK, θ

(1), . . . , θ (K)
)

(6.22)

=
∫ K∏
i=1

�si−si−1

(
dθ(i)

)
E

×
[exp{−f (t0)1D1,K −∑K

i=1 1Di,K

∑m(i)

j=1〈f,μ(i,j)B,si−t0−x(i)j
〉}

e�t0 +∑K
i=1

∑m(i)

j=1
∫
e�zμ

(i,j)

si−t0−x(i)j
(dz)

]
.

The next step is to replace ϕ̃t,K by ϕ̃∞,K :

LEMMA 11. Fix K ≥ 1. Then we have

lim
t→∞ Q+

x

[∣∣ϕ̃t,K(T +
t , S

(t)
1 , . . . , S

(t)
K

)
(6.23)

− ϕ̃∞,K
(
T +
t , S

(t)
1 , . . . , S

(t)
K

)∣∣1{τ+
t >K}

] = 0.

PROOF. See Section 9.4. �

Note that since ϕ̃t,K(·) and ϕ̃∞,K(·) differ only ifψ ′(�∗)= 0, the previous result
is not trivial only in the critical case.

Finally thanks to (6.21) and Lemma 11, the double limits (6.14) will be a con-
sequence of the following lemma.

LEMMA 12. We have

lim
K→∞ lim

t→∞ Q+
x

[
ϕ̃∞,K

(
T +
t , S

(t)
1 , . . . , S

(t)
K

)
1{τ+

t >K}
] = Q

[
e−〈f,μB,∞〉

�
]
,

where

μB,∞ := δ
UŜσ̂

1D1 +
∞∑
i=1

1Di

ν̃i∑
j=1

μ
(i,j)

B,Ŝi−UŜσ̂−X̃(i)j
,(6.24)

Di :=
∞⋂
j=i

{
B(�̃j )≤ e−UŜσ̂+Ŝj } ∀i ≥ 1,(6.25)

μ∞ := δ
UŜσ̂

+
∞∑
i=1

ν̃i∑
j=1

μ
(i,j)

Ŝi−UŜσ̂−X̃(i)j
,(6.26)
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� := e�UŜσ̂ +
∞∑
i=1

ν̃i∑
j=1

∫
e�zμ

(i,j)

Ŝi−UŜσ̂−X̃(i)j
(dz)=

∫
e�zμ∞(dz)(6.27)

and �= �∗ if ψ ′(�∗)= 0, �= �+ if ψ ′(�∗) < 0, and under Q:

• the ((μ(i,j)B,y,μ
(i,j)
y ), y ∈ R)i,j≥1 are i.i.d. with common distribution that of

((μB,y,μy), y ∈ R) under P [see (6.16)], and are independent of everything
else;

• the process (Ŝn)n (as well as the associated random time σ̂ ) and the random
variable U are introduced in Lemma 4 (see Section 4.1);

• conditionally on {Ŝn, n ≥ 0}, the random point processes �̃i := ∑ν̃i
j=1 δX̃(i)j

for

i ≥ 1 are independent, and �̃i is distributed as �
Ŝi−1−Ŝi ; see (5.18) and Corol-

lary 2 for the Palm measures (�z, z ∈ R).

PROOF. See Section 9.4. �

PROOF OF THEOREM 3 AND PROPOSITION 1. Assembling (6.21), Lem-
mas 11 and 12 imply (6.14), hence (6.5): namely for any f ∈ C+

K(R) and when
t → ∞, we have

Ex
[
e−〈f,μB,t 〉1{H(t)>0}

] ∼ R(x)e�x

CRR(t)e�t
Q
[
e−〈f,μB,∞〉

�
]

= R(x)e�x

CRR(t)e�t
Q
[�−1]Q[

e−〈f,μ̂B,∞〉],
by the definition of μ̂B,∞. Taking f = 0 in the above asymptotical equivalence
yields parts (i) and (ii) of Theorem 3 while Proposition 1 is a consequence of
parts (i) and (ii) together with (6.5). Finally, taking B ≡ 0 in Proposition 1 gives
part (iii), which completes the proof of Theorem 3. �

7. Proof of Theorem 2: The critical case. We look at the critical case
ψ ′(�∗) = 0. By linear transformation on V , we may assume that �∗ = 1 in the
whole section without any loss of generality. We investigate the tail distribution
of the number of leaves #L[0]; see (1.8) for the definition. We will see that when
L[0] is large, the main contribution comes from particles that reached a critical
height L. For integrability reasons, we will also restrict to good particles whose
brothers do not display atypical jumps, and are not too many. We denote by
�(v) := {u ∈ T :

←
u = ←

v ;u �= v} the set of brothers of v (
←
v denotes as before

the parent of v in the tree T ). For λ > 1,L > 1 (typically λ is a large constant
whereas L→ ∞), we say that

u ∈ B(L,λ) if there exists some 1 ≤ j ≤ |u| :
(7.1) ∑

v∈�(uj )

(
1 + e�V (v))> λe(L−V (uj−1))/2
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and u ∈ G(L,λ) if such j does not exist. In words, G(L,λ) collects good particles
in the sense that their large moments are finite; however, B(L,λ) is a set of bad
particles for which only low moments exist. Recall from (1.12) that Z[0,L] =∑
u 1{τ−

0 (u)=|u|<τ+
L (u)} counts the number of leaves in the killed branching random

walk that did not touch the level L. Let us decompose Z[0,L] as the sums over
good particles and bad particles,

Z[0,L] = Zg[0,L] +Zb[0,L]
with

Zg[0,L] := ∑
u∈G(L,λ)

1{τ−
0 (u)=|u|<τ+

L (u)},

(7.2)
Zb[0,L] := ∑

u∈B(L,λ)

1{τ−
0 (u)=|u|<τ+

L (u)}.

The following lemma shows that we can neglect the number of bad particles.

LEMMA 13. For δ > 0 small enough, there exist constants c = c(δ) > 0 and
c′ = c′(δ) > 0 such that for x ≥ 0, λ≥ 1 and L≥ 1,

Ex
[
Zb[0,L]] ≤ cλ−δ (1 + x)ex

L2 + cexe−c′L.(7.3)

For δ > 0 small enough, there exists a constant c= c(δ) > 0 such that for x ≥ 0,
λ≥ 1, L≥ 1 and B ≥ 0,

Ex
[ ∑
u∈H (L)

1{u∈B(L,λ)}Z(u)[0,L+B]
]

≤ cλ−δ 1 +B
L+B

(1 + x)ex
L

,(7.4)

where Z(u)[0,L + B] is the number of leaves in L[0] that are descendants of u
and did not cross level L+B .

PROOF. We prove separately (7.3) and (7.4). The notation c denotes a constant
that can change value from line to line.

PROOF OF EQUATION (7.3). Mentioning here that (5.1) holds with λ= 1 (be-
cause ψ(�∗)= �∗ψ ′(�∗)= 0), Proposition 3 (applied to L[0] and h(u) := eV (u))
implies that

Ex
[
Zb[0,L]] = exQx

[
1∑

u∈L[0] eV (u)
Zb[0,L]

]

= exQx
[ ∑
u∈L[0]

eV (u)∑
u∈L[0] eV (u)

e−V (u)1{τ−
0 (u)<τ

+
L (u)}1{u∈B(L,λ)}

]
.
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The weight eV (u)∑
u∈L[0] eV (u)

is the probability that the vertex u is the spine; see

Proposition 3. Therefore,

Ex
[
Zb[0,L]] = exQx

[
e
−S

τ
−
0 1{τ−

0 <τ
+
L }1{w

τ
−
0

∈B(L,λ)}
]
,

where τ−
0 (resp., τ+

L ) is the hitting time of (−∞,0) [resp., (L,+∞)] by the ran-
dom walk S. Let δ ∈ (0,1), and, for k ≥ 1, ak := ∑

u∈�k
{1 + e�V (u)} [we recall

that �k := �(wk)]. From the definition of B(L,λ), we observe that

1{w
τ
−
0

∈B(L,λ)} ≤
τ−

0∑
k=1

1{ak>λe(L−Sk−1)/2} ≤
τ−

0∑
k=1

min
(
aδkλ

−δe−δ(L−Sk−1)/2,1
)
.

It follows that

Ex
[
Zb[0,L]] ≤ exQx

[
e
−S

τ
−
0 1{τ−

0 <τ
+
L }

τ−
0∑
k=1

min
(
aδkλ

−δe−δ(L−Sk−1)/2,1
)]
.(7.5)

We first consider the term corresponding to k = τ−
0 , that is,

Qx
[
e
−S

τ
−
0 1{τ−

0 <τ
+
L } min

(
aδ
τ−

0
λ−δe

−δ(L−S
τ
−
0 −1

)/2
,1

)]
≤ Qx

[
e
−S

τ
−
0 min

(
aδ
τ−

0
λ−δe

−δ(L−S
τ
−
0 −1

)/2
,1

)]
.

We know that (Sn)n is under Q a centered random walk [since ψ ′(1) = 0].
Assumption (1.3) ensures that Q[e−(1+η)S1] is finite if η is small enough. In turn,
it implies [see (4.10)] that

Qx
[
e
−(1+η)S

τ
−
0
] ≤ c

for small η > 0, and any x ≥ 0. We also have Qx[eSτ−0 −1
−S

τ
−
0 ] ≤ c by (4.15). Then

it is not hard to see that, with E := {Sτ−
0

≥ −δL/8, Sτ−
0 −1 ≤ L/2}, we have, for

some constant η′ > 0,

Qx
[
e
−S

τ
−
0 1Ec

] ≤ c′e−η′δL.

Therefore, we can restrict to the event E , on which e
−S

τ
−
0 ≤ eδL/8, and

e
−δ(L−S

τ
−
0 −1

)/2 ≤ e−δL/4. It yields that

Qx
[
e
−S

τ
−
0 min

(
aδ
τ−

0
λ−δe

−δ(L−S
τ
−
0 −1

)/2
,1

)] ≤ c′e−η′δL + λ−δe−δL/8Qx
[
aδ
τ−

0

]
.

Observe that

Qx
[
aδ
τ−

0

] =
∞∑
j=1

Qx
[
1{j−1<τ−

0 }QSj−1

[
1{S1<0}aδj

]]
,
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by Markov’s property at j − 1. For y := Sj−1 ≥ 0,

Qy
[
1{S1<0}aδj

] ≤ Qy
[
e−(1/2)S1aδj

] = e−(1/2)yQ
[
e−(1/2)S1aδj

]
.

By the Cauchy–Schwarz inequality and (1.3), we have Q[e−S1/2aδj ] ≤ c if δ > 0
is chosen small enough. Therefore,

Qx
[
aδ
τ−

0

] ≤ c
∞∑
j=1

Qx
[
1{j−1<τ−

0 }e
−(1/2)Sj−1

]
,

which is uniformly bounded by (4.14). Hence, we showed that

Qx
[
e
−S

τ
−
0 1{τ−

0 <τ
+
L }a

δ
τ−

0
λ−δe

−δ(L−S
τ
−
0 −1

)/2] ≤ ce−η′′δL.(7.6)

We consider now the terms corresponding to k < τ−
0 in (7.5). By Markov’s

property at time k, we get

Qx
[
e
−S

τ
−
0 1{k<τ−

0 <τ
+
L }a

δ
kλ

−δe−δ(L−Sk−1)/2
]

≤ λ−δQx
[
1{k<τ−

0 <τ
+
L }a

δ
ke

−δ(L−Sk−1)/2
]
sup
y≥0

Qy
[
e
−S

τ
−
0
]

= cλ−δQx
[
1{k<τ−

0 <τ
+
L }a

δ
ke

−δ(L−Sk−1)/2
]
,

again by (4.10). By Markov’s property at time k − 1, we observe that the last ex-
pectation is Qx[1{k<τ−

0 <τ
+
L }e−δ(L−Sk−1)/2]Q[aδ1]. Summing over k ≥ 1, we deduce

that

Qx

[
e
−S

τ
−
0 1{τ−

0 <τ
+
L }
τ−

0 −1∑
k=1

aδke
−δ(L−Sk−1)/2

]
≤ cQx

[
1{τ−

0 <τ
+
L }
τ−

0 −1∑
k=1

e−δ(L−Sk−1)/2

]
.

By (4.18), we have Qx[1{τ−
0 <τ

+
L }

∑τ−
0 −1
k=0 e−δ(L−Sk−1)/2] ≤ c 1+x

L2 for some c =
c(δ). We obtain that

λ−δQx
[
e
−S

τ
−
0 1{τ−

0 <τ
+
L }
τ−

0 −1∑
k=1

aδke
−δ(L−Sk−1)/2

]
≤ c′λ−δ 1 + x

L2 .

Then (7.3) follows from equations (7.5) and (7.6). �

PROOF OF EQUATION (7.4). By the branching property, we have

Ex
[ ∑
u∈H (L)

1{u∈B(L,λ)}Z(u)[0,L+B]
]

= Ex
[ ∑
u∈H (L)

1{u∈B(L,λ)}f
(
V (u)

)]
,
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with f (y) := Ey[Z[0,L + B]]. Using the measure Qy , Proposition 3 implies

that f (y) = eyQy[e−V (wτ−0 )1{τ−
0 <τ

+
L+B }] which is smaller than c 1+(L+B−y)+

L+B ey

by (4.13). It follows that

Ex
[ ∑
u∈H (L)

1{u∈B(L,λ)}Z(u)[0,L+B]
]

(7.7)

≤ c(1 +B)
L+B Ex

[ ∑
u∈H (L)

1{u∈B(L,λ)}eV (u)
]
.

By Proposition 3 with CL and h(y) := ey , we observe that

Ex
[ ∑
u∈H (L)

1{u∈B(L,λ)}eV (u)
]

= exQx[1{τ+
L <τ

−
0 }1{w

τ
+
L

∈B(L,λ)}].

As before, we have for δ > 0,

1{w
τ
+
L

∈B(L,λ)} ≤ λ−δ
τ+
L∑
k=1

aδke
−δ(L−Sk−1)/2,

where ak := ∑
u∈�k

{1 + e�V (u)}. Hence,

Qx[1{τ+
L <τ

−
0 }1{w

τ
+
L

∈B(L,λ)}] ≤ λ−δQx
[

1{τ+
L <τ

−
0 }

τ+
L∑
k=1

aδke
−δ(L−Sk−1)/2

]

= λ−δ∑
k≥1

Qx
[
1{k≤τ+

L <τ
−
0 }a

δ
ke

−δ(L−Sk−1)/2
]
.

Using Markov’s property at time k− 1, for every k ≥ 1, yields

Qx[1{τ+
L <τ

−
0 }1{w

τ
+
L

∈B(L,λ)}] ≤ c′λ−δQx
[

1{τ+
L <τ

−
0 }

τ+
L∑
k=1

e−δ(L−Sk−1)/2

]
,

with c′ = Q[aδ1]<∞ if δ > 0 is small enough by (1.3). We get by equation (4.17)

Qx[1{τ+
L <τ

−
0 }1{w

τ
+
L

∈B(L,λ)}] ≤ cλ−δ 1 + x
L
.

Going back to (7.7), we obtain

Ex
[ ∑
u∈H (L)

1{u∈B(L,λ)}Z(u)[0,L+B]
]

≤ cλ−δ (1 +B)
L+B

(1 + x)ex
L

,

proving (7.4). �

We are going to re-prove the following estimate of Aïdékon [3] but in a more
general setting. We recall that L[0,L] is the set of leaves in L[0] which did not
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hit (L,+∞), and Z[0,L] := #L[0,L]. We call similarly Lg[0,L] the leaves in
L[0,L] which are in G(L,λ), hence we have Zg[0,L] := #Lg[0,L] the number
of such leaves.

LEMMA 14. Fix λ≥ 1 and assume that ψ ′(�∗)= 0 with �∗ = 1. Under (1.3),
there exists some constant c > 0 such that for all L≥ 1, and 0 ≤ x ≤ L,

Ex
[(
Zg[0,L])2] ≤ cλ(1 + x)ex e

L

L3 .

PROOF. Writing Zg[0,L] = ∑
v∈L[0] eV (v)1{τ+

L (v)>|v|}e−V (v)1{v∈G(L,λ)}, we

deduce from Proposition 3 (applied to L[0] and h(u) := eV (u)) that

Ex
[(
Zg[0,L])2] = exQx

[
Zg[0,L]e−Sτ−0 1{τ−

0 <τ
+
L }1{w

τ
−
0

∈G(L,λ)}
]
.(7.8)

We decompose Zg[0,L] along the spine (wn,n≥ 0) as follows:

Zg[0,L] ≤ 1 +
τ−

0∑
k=1

∑
u∈�k

Z(u)[0,L],

where Z(u)[0,L] := ∑
v∈T (u) 1{τ−

0 (v)=|v|<τ+
L (v)} denotes the number of descen-

dants of u, touching 0 before L (T (u) means as before the subtree rooted
at u). We have an inequality here since we dropped the condition that the par-
ticles must be in G(L,λ). By Proposition 2, under Qx , conditioned on G∞ :=
σ {ωj ,Sj ,�j , (V (u), u ∈ �j ), j ≥ 0}, (Z(u)[0,L])u∈�j ,j≤τ−

0
are independent, and

each Z(u)[0,L] is distributed as (Z[0,L],PV (u)). In particular,

Qx
[
Zg[0,L]|G∞

] ≤ 1 +
τ−

0∑
k=1

∑
u∈�k

EV (u)
[
Z[0,L]].

Proposition 3 implies as well that for any z ∈ R,

Ez
[
Z[0,L]] = ezQz[e−Sτ−0 1{τ−

0 <τ
+
L }
]
,

which is zero if z > L and is 1 if z < 0. By (4.13), we get that

Ez
[
Z[0,L]] ≤ cezL− z+ 1

L
1{z∈[0,L]} + 1{z<0}.

Hence,

Qx
[
Zg[0,L]|G∞

] ≤ 1 +
τ−

0∑
k=1

∑
u∈�k

(
ceV (u)

L− V (u)+ 1

L
1{V (u)∈[0,L]} + 1{V (u)<0}

)
.
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For k < τ+
L , we observe that [recalling Sk−1 = V (wk−1)≤ L]

∑
u∈�k

eV (u)
L− V (u)+ 1

L
1{V (u)∈[0,L]}

= eSk−1
∑
u∈�k

e�V (u)
L− V (u)+ 1

L
1{V (u)∈[0,L]}

≤ L− Sk−1 + 1

L
eSk−1ak,

with ak := ∑
u∈�k

{1 + e�V (u)}. If wτ−
0

∈ G(L,λ), it follows that for any k < τ−
0 ,

∑
u∈�k

eV (u)
L− V (u)+ 1

L
1{V (u)∈[0,L]} ≤ λeLL− Sk−1 + 1

L
e(Sk−1−L)/2.

Similarly, we observe that
∑
u∈�k

1{V (u)<0} ≤ ak ≤ λeL/2. Therefore, if wτ−
0

∈
G(L,λ), then

Qx
[
Zg[0,L]|G∞

] ≤ 1 + cλe
L

L

τ−
0∑
k=1

(L− Sk−1 + 1)e(Sk−1−L)/2.

The equality (7.8) implies that

Ex
[(
Zg[0,L])2]
≤ exQx

[
e
−S

τ
−
0 1{τ−

0 <τ
+
L }
]

+ cλe
x+L

L
Qx

[
e
−S

τ
−
0 1{τ−

0 <τ
+
L }

τ−
0∑
k=1

(L− Sk−1 + 1)e(Sk−1−L)/2
]
.

The right-hand side is smaller than ex(1 + c′(1 + x)λ eL
L3 ) by (4.18). It completes

the proof of the lemma. �

We look now at the progeny of a particle which went far to the right. Let the
derivative martingale be defined by

∂Wn := − ∑
|u|=n

V (u)eV (u), n≥ 0.

According to Theorems 5.1 and 5.2 in Biggins and Kyprianou [9], under P, ∂Wn
converges almost surely to ∂W∞ which has infinite mean and is almost surely
positive on {T = ∞}.
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LEMMA 15. Assuming ψ ′(�∗)= 0 with �∗ = 1. Under (1.3), as t → ∞, the
law of #L[0] under Pt , normalized by et/t converges in distribution to c∗∂W∞,
with

c∗ := Q[e−Sτ−0 − 1]
−Q[Sτ−

0
] .(7.9)

PROOF. By linear translation, it is equivalent to prove that under P0, #L[−t]
normalized by et/t converges in law to c∗∂W∞. If we define

∂WL[−t] := − ∑
u∈L[−t]

V (u)eV (u),

then ∂WL[−t] converges almost surely to ∂W∞; cf. Biggins and Kyprianou [9],
Theorem 5.3. We write

∂WL[−t] = te−t
( ∑
u∈L[−t]

eV (u)+t + 1

t
ηt

)
,(7.10)

with ηt = −∑
u∈L[−t](V (u)+ t)eV (u)+t . At this stage, we may apply a result of

Nerman [29] for the asymptotic behavior of 1
#L[−t]

∑
u∈L[−t] eV (u)+t : Let ξ :=∑

u∈L[0] δ{−V (u)} be the point process formed by the (nonkilled) branching walk V
stopped at the line L[0]. Generate a branching random walk (Vξ (u), u ∈ Tξ ) from
the point process ξ , where Vξ ,Tξ are related to ξ in the same way as V,T are
to L . Define Lξ [a] := {u ∈ Tξ : |u| = τ+

a (u)} for all a > 0. Clearly Lξ [t] = L[−t]
and ∑

u∈L[−t] eV (u)+t

#L[−t] =
∑
u∈Tξ ψu(t − σu)∑
u∈Tξ φu(t − σu)

,

where for any u ∈ Tξ , σu := −Vξ (u) and

ψu(x) := 1{x≥0}
∑
←
v=u

ex−(σv−σu)1{σv−σu>x}, φu(x) := 1{x≥0}
∑
←
v=u

1{σv−σu>x}.

Applying Theorem 6.3 in Nerman [29] (with α = 1 and λu = ∞ there) gives that
conditioned on {T = ∞}, almost surely, when t tends to infinity∑

u∈Tξ ψu(t − σu)∑
u∈Tξ φu(t − σu)

→ E[∑|v|=1,v∈Tξ e
−σvσv]

E[∑|v|=1,v∈Tξ (1 − e−σv )] .

Observe that E[∑|v|=1,v∈Tξ e
−σvσv] = −E[∑u∈L[0] eV (u)V (u)] = −Q[Sτ−

0
],

and similarly, E[∑|v|=1,v∈Tξ (1 − e−σv )] = Q[e−Sτ−0 ] − 1. Therefore conditioned
on {T = ∞}, almost surely∑

u∈L[−t] eV (u)+t

#L[−t] →
Q[Sτ−

0
]

1 − Q[e−Sτ−0 ]
, t → ∞.
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On the other hand, following the same strategy, we get that conditioned on {T =
∞}, we have almost surely

ηt

#L[−t] →
Q[(Sτ−

0
)2/2]

Q[e−Sτ−0 ] − 1
, t → ∞.

Dividing both sides of (7.10) by #L[−t], and using the fact that ∂WL[−t] goes
to ∂W∞, we deduce the lemma. �

We also need the following simple technical lemma whose proof is postponed
until Section 9:

LEMMA 16. On some probability space (
,F ,P), let
∑ξ
i=1 δ{Yi} be a point

process on R+. Let (�i, i ≥ 1) be a sequence of i.i.d. random variables on R+,
independent of σ {ξ,Yi,1 ≤ i ≤ ξ}. Assume that for some p > 0 and a > 0,

P(�1 > t)= (
a + o(1))t−p, t → ∞.

(i) If p = 1 and if there exists some δ > 0 such that E[∑ξ
i=1 Y

1+δ
i ]<∞, then

lim
t→∞ tP

(
ξ∑
i=1

Yi�i > t

)
= aE

[
ξ∑
i=1

Yi

]
.

(ii) If p > 1 and if there exists some δ > 0 such that E[∑ξ
i=1(1 +Yi)]p+δ <∞,

then

lim
t→∞ t

p
P

( ξ∑
i=1

Yi�i > t

)
= aE

[ ξ∑
i=1

Y
p
i

]
.

In the critical case, the branching random walk goes to −∞. In particu-
lar, almost surely, H(L) = 0 if L is large enough. Fix λ ≥ 1. For L ≥ 1, let
μλ,L := ∑

u∈H (L) δ{V (u)−L}1{u∈G(L,λ)}. Then Proposition 1 implies that μλ,L un-
der P(·|H(L) > 0) converges whenL→ ∞ to μ̂B,∞ defined in Proposition 1 with

B(u) := λ−2(
∑
v∈�(u){1 + e�V (v)})2. We will write μ̂λ,∞ := ∑ζ̂λ

i=1 δxi instead of
μ̂B,∞. Since the measures μ̂λ,∞ are increasing in λ, we can assume that the la-
beling (xi)i does not depend on λ ≥ 1. We write similarly μλ,∞ := ∑ζλ

i=1 δxi for
the measure μB,∞ given by Proposition 1, and we know that the Radon–Nikodym

derivative of μ̂λ,∞ with respect to μλ,∞ is �−1

Q[�−1] . Notice that if ζ̂λ = 0, then μ̂λ,∞
is the measure zero.

LEMMA 17. Assuming ψ ′(�∗) = 0 with �∗ = 1 and (1.3), fix λ ≥ 1 and let
μ̂λ,∞ and μλ,∞ be as above. Under Q, let (∂W(i)∞ , i ≥ 1) be a sequence of i.i.d.
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random variables, independent of μ̂λ,∞ and of common law that of ∂W∞ under P.
For any λ≥ 1, we have

lim
t→∞ tQ

(
ζ̂λ∑
i=1

exi ∂W(i)∞ > t

)
= Q[�−1 ∑ζλ

i=1 e
xi ]

Q[�−1] .(7.11)

Moreover, for any c > 0,

lim
λ→∞λ

2Q

(
ζ̂λ∑
i=1

exi ∂W(i)∞ > cλ2

)
= 1

cQ[�−1] .(7.12)

PROOF. For any i ≥ 1, by Theorem 1.2 in [10],

Q
(
∂W(i)∞ > t

) = P(∂W∞ > t)∼ 1

t
, t → ∞.(7.13)

In order to prove (7.11), we shall apply Lemma 16(i) and it is enough to show

that there exists some δ > 0 such that Q[∑ζ̂λ
i=1(1 + exi )1+δ] <∞. Remark that

μ̂λ,∞ has the support contained in R+, hence for δ > 0, Q[∑ζ̂λ
i=1(1 + exi )1+δ] ≤

21+δQ[∑ζ̂λ
i=1 e

(1+δ)xi ]. We are going to prove a stronger statement: for μ̂∞ the
point process defined in Theorem 3(iii), we have

Q
[∫
μ̂∞(dx)e(1+δ)x

]
<∞.(7.14)

The statement (7.14) implies the corresponding integrability for μ̂λ,∞ since
μ̂λ,∞ is stochastically dominated by μ̂∞. To prove (7.14), we consider χ(L) :=∑
u∈H (L) e

(1+δ)(V (u)−L) and prove first that, under P(·|H (L) �= ∅), χ(L) con-
verges in law to

∫
μ̂∞(dx)e(1+δ)x . In order to apply the convergence in law of

Theorem 3(iii), we need some tightness result. We claim that

sup
L≥1

Px
(∃i ∈ [∣∣1,H(L)∣∣] :V

(
u(i)

)−L>K|H(L) > 0
) = oK(1),(7.15)

where we order the set of particles in H (L) (eventually empty) in an arbitrary
way: H (L)= {u(i),1 ≤ i ≤H(L)}. Markov’s inequality yields that the probabil-
ity term in (7.15) is smaller than

e−Ke−LEx
[ ∑
u∈H (L)

eV (u)
]
Px

(
H(L) > 0

)−1

(7.16)

≤ ce−KLEx
[ ∑
u∈H (L)

eV (u)
]
,

where the inequality is a consequence of Theorem 3(i). To prove the claimed tight-
ness result it is sufficient to show that there exists some constant c > 0 such that
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for any x ≥ 0 and L≥ max(1, x) we have

Ex
[ ∑
u∈H (L)

eV (u)
]

≤ c(1 + x)e
x

L
.(7.17)

To see it, a change of measure from Px to Qx by Proposition 3 is applied to CL
and h(u) := eV (u), and we find that

Ex
[ ∑
u∈H (L)

eV (u)
]

= exQx
(
τ+
L < τ

−
0

)
.

Then (4.12) implies (7.17). Assembling (7.16) and (7.17) yields (7.15) and al-
lows us to apply Theorem 3(iii) to obtain the convergence in distribution, under
P(·|H (L) �= ∅), of χ(L) toward

∫
μ̂∞(dx)e(1+δ)x .

Then (7.14) will hold once we have checked that E(χ(L)|H (L) �= ∅) is
bounded on L. By Theorem 3(i) with �∗ = 1, it is enough to show that

E
[
χ(L)

] ≤ ce
−L

L
.(7.18)

But by the change of measure,

E
[
χ(L)

] = e−LQ
[
e
δ(S

τ
+
L

−L)
, τ+
L < τ

−
0

]
.

The above expectation Q[·] is less than c
L

by applying (4.13) to the random
walk (δ(L − Sj ))j≥0 (the integrability is guaranteed if δ is sufficiently small).
This proves (7.18) and a fortiori (7.11).

Recall that by (7.14) and Lemma 16(i), if we write μ̂∞ = ∑ζ̂
i=1 δ{xi}, then

Q

(
ζ̂∑
i=1

exi ∂W(i)∞ > t

)
∼ Q[�−1 ∑ζ

i=1 e
xi ]

Q[�−1]
1

t
= 1

Q[�−1]
1

t
, t → ∞

since � = ∑ζ
i=1 e

xi by definition; see (6.27). We have already observed that
μ̂λ,∞ is stochastically nondecreasing in λ and is dominated by μ̂∞ (μ̂∞ corre-

sponds to μ̂λ,∞ with λ = ∞). Then lim supλ→∞ λ2Q(
∑ζ̂λ
i=1 e

xi ∂W
(i)∞ > cλ2) ≤

lim supλ→∞ λ2Q(
∑ζ̂
j=1 e

xi ∂W
(i)∞ > cλ2) which is 1

cQ[�−1] , yielding the upper
bound in (7.12).

For the lower bound, let λ0 > 1 and by the monotonicity in μ̂λ,

lim inf
λ→∞ λ2Q

(
ζ̂λ∑
i=1

exi ∂W(i)∞ > cλ2

)
≥ lim inf

λ→∞ λ2Q

( ζ̂λ0∑
i=1

exi ∂W(i)∞ > cλ2

)

= Q[�−1 ∑ζλ0
i=1 e

xi ]
cQ[�−1] ,
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by applying (7.11) to μ̂λ0,∞. Letting λ0 → ∞ and noting that
∑ζλ0
i=1 e

xi =∫
exμλ0,∞(dx)→ �, this gives the lower bound of (7.12). �

We now have all the ingredients to prove Theorem 2 in the critical case.

PROOF OF THEOREM 2(I), (CRITICAL CASE).
Lower bound of Theorem 2(i). Recall that we have assumed �∗ = 1 by linear

transformation. Fix a constant A > 0. Consider n→ ∞, and let Ln,A := logn+
log logn−A. We recall from (1.10) that H(Ln,A)= #H (Ln,A) is the number of
particles that hit level Ln,A before touching 0. Recall (7.1). We call Hg(Ln,A) :=
#Hg(Ln,A) the number of particles in H (Ln,A) which are in G(Ln,λ) with λ :=
eA/2,

Hg(Ln,A) := H (Ln,A)∩ G
(
Ln, e

A/2).(7.19)

Let us order the set of particles in Hg(Ln,A) (eventually empty) in an arbitrary
way, Hg(Ln,A) = {u(i),1 ≤ i ≤ Hg(Ln,A)}. Denote by #L(i)[0] the number of
descendants of the ith particle u(i) which are absorbed at 0. Then

Px
(
#L[0]> n)
≥ Px

(Hg(Ln,A)∑
i=1

#L(i)[0]> n
)

(7.20)

= Px
(
H(Ln,A) > 0

)
Px

(Hg(Ln,A)∑
i=1

#L(i)[0]> n
∣∣∣H(Ln,A) > 0

)
.

By Theorem 3(i), Px(H(Ln,A) > 0) ∼ Q[�−1]
CR

R(x)ex e
−Ln,A
Ln,A

as n → ∞. On

the other hand, conditioned on Hg(Ln,A) and on {V (u(i)),1 ≤ i ≤ Hg(Ln,A)},
(#L(i)[0])1≤i≤Hg(Ln,A) are independent, and each #L(i)[0] is distributed as #L[0]
under PV (u(i)).

By Lemma 15, if we denote by B(i) := #L(i)[0]e−V (u(i))V (u(i)), then condi-
tioned on Hg(Ln,A) and on {V (u(i)),1 ≤ i ≤ Hg(Ln,A)}, for each i, B(i) con-

verges in law to c∗∂W(i)∞ as n→ ∞, where ∂W(i)∞ , i ≥ 1, is a sequence of i.i.d.
random variables of common law that of (∂W∞,P), and independent of μLn,A . We
may assume by Skorohod’s representation theorem that for each i, B(i) converges
almost surely to c∗∂W(i)∞ .

Let ε ∈ (0,1). First, we want to show that we can restrict to the event
E(Ln,A) := {B(i) > (1 − ε)c∗∂W(i)∞ ;∀i : 1 ≤ i ≤Hg(Ln,A)}. We have

Px
(
E(Ln,A)

c|H(Ln,A) > 0
)

≤ Ex
[
Hg(Ln,A)|H(Ln,A) > 0

]
sup
z≥Ln,A

Pz
(
ze−z#L[0]< (1 − ε)c∗∂W∞

)
=: Ex

[
Hg(Ln,A)|H(Ln,A) > 0

]
ηLn,A.



TOTAL PROGENY OF A KILLED BRANCHING RANDOM WALK 3833

The term ηLn,A goes to zero as n→ ∞ by Lemma 15. By (7.17) and Theo-
rem 3(i), we have

Ex
[
Hg(Ln,A)|H(Ln,A) > 0

]
≤ e−Ln,AEx

[ ∑
u∈H (Ln,A)

eV (u)
∣∣∣H(Ln,A) > 0

]
≤ c

for some positive constant c = c(x) which depends on x. Hence, Px(E(Ln,A)c|
H(Ln,A) > 0)= oLn,A(1), where oLn,A(1)→ 0 as Ln,A → ∞. We have

Px

(Hg(Ln,A)∑
i=1

#L(i)[0]> n
∣∣∣H(Ln,A) > 0

)

= Px

(Hg(Ln,A)∑
i=1

eV (u
(i))

V (u(i))
B(i) > n

∣∣∣H(Ln,A) > 0

)
(7.21)

≥ Px

(Hg(Ln,A)∑
i=1

eV (u
(i))

V (u(i))
B(i) > n,E(Ln,A)

∣∣∣H(Ln,A) > 0

)
.

Observe that

Px

(Hg(Ln,A)∑
i=1

eV (u
(i))

V (u(i))
B(i) > n,E(Ln,A)

∣∣∣H(Ln,A) > 0

)

≥ Px

(Hg(Ln,A)∑
i=1

eV (u
(i))

V (u(i))
∂W(i)∞ >

n

c∗(1 − ε),E(Ln,A)
∣∣∣H(Ln,A) > 0

)
(7.22)

≥ Px

(Hg(Ln,A)∑
i=1

eV (u
(i))

V (u(i))
∂W(i)∞ >

n

c∗(1 − ε)
∣∣∣H(Ln,A) > 0

)
+ oLn,A(1).

In order to apply the convergence in law of Proposition 1, we need some tight-
ness results. Recalling (7.15), it is sufficient to show that

sup
L≥1

Px
(∃i ∈ [∣∣1,H(L)∣∣] : ∂W(i)∞ >K|H(L) > 0

) = oK(1).

Since the ∂W(i)∞ ’s are i.i.d. copies of ∂W∞ and independent of μLn,A , Markov’s
inequality yields that the probability term in the previous equation is smaller than

K−1/2Ex
[
H(L)|H(L) > 0

]
E[√∂W∞] =O(

K−1/2),
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by using (7.17), Theorem 3(i) and (7.13). This yields the claimed tightness and
allows us to apply Proposition 1 to get

lim
n→∞ Px

(Hg(Ln,A)∑
i=1

eV (u
(i))

V (u(i))
∂W(i)∞ >

n

c∗(1 − ε)
∣∣∣H(Ln,A) > 0

)
(7.23)

= Q

(
ζ̂λ∑
i=1

exi ∂W(i)∞ >
eA

c∗(1 − ε)
)
,

where μ̂λ,∞ := ∑ζ̂λ
i=1 δxi is the point process defined before Lemma 17, and we

recall that λ := eA/2. By (7.20)–(7.23) and the definition of Ln,A, we deduce that
for any A> 0,

lim inf
n→∞ n(logn)2Px

(
L[0]> n)

≥ Q[�−1]
CR

R(x)exeAQ

(
ζ̂λ∑
i=1

exi ∂W(i)∞ >
λ2

c∗(1 − ε)
)
.

We let ε→ 0 to get

lim inf
n→∞ n(logn)2Px

(
#L[0]> n) ≥R(x)exC(A),

with C(A) := Q[�−1]
CR

eAQ(
∑ζ̂λ
i=1 e

xi c∗∂W(i)∞ > λ2).

By Lemma 17, we have C(A)→ c∗
CR

as A→ ∞, which leads to

lim inf
n→∞ n(logn)2Px

(
#L[0]> n) ≥R(x)ex c

∗

CR
.

Upper bound of Theorem 2(i). We notice that we showed in fact that, for any
A> 0,

lim inf
n→∞ n(logn)2Px

(Hg(Ln,A)∑
i=1

#L(i)[0]> n
)

≥R(x)exC(A).

Repeating the same argument with this time E′(Ln,A) := {B(i) < (1+ ε)∂W(i)∞ ;
∀i : 1 ≤ i ≤Hg(Ln,A)} yields that C(A) is also a limsup. Therefore,

lim
n→∞n(logn)2Px

(Hg(Ln,A)∑
i=1

#L(i)[0]> n
)

=R(x)exC(A),(7.24)

with C(A)→ c∗
CR

as A→ ∞.
Then, let η > 0 and ε > 0. We take again Ln,A := logn + log logn − A and

λ := eA/2. Markov’s inequality with (7.3) implies that if A is taken large enough,

lim sup
n→∞

n(logn)2Px
(
Zb[0,Ln,A]> ηn) ≤ ε.
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By Theorem 3(i), we can choose B > 0 large enough such that

lim sup
n

n(logn)2Px
(
H(Ln +B) > 0

) ≤ ε.(7.25)

On the other hand, by (7.4) and Markov’s inequality, we obtain that for A large
enough,

lim sup
n

n(logn)2Px
( ∑
u∈H (Ln,A)

1{u∈B(Ln,A,λ)}#L(u)[0]> ηn,H(Ln +B)= 0
)

≤ lim sup
n

n(logn)2
1

ηn
Ex

[ ∑
u∈H (Ln,A)

1{u∈B(Ln,A,λ)}Z(u)[0,Ln +B]
]

(7.26)

≤ ε,
where the notation Z(u)[, ] was introduced in Lemma 13. Finally, it yields that

lim sup
n

n(logn)2Px
( ∑
u∈H (Ln,A)

1{u∈B(Ln,A,λ)}#L(u)[0]> ηn
)

≤ 2ε.(7.27)

We now show that the “good particles” which never touch Ln,A are negligible
when A is large. We recall that Zg(0,Ln,A) is the number of particles in G(Ln,λ)

that touch 0 before Ln,A. By Lemma 14,

Ex
[
Zg(0,Ln,A)

2] ≤ c(1 + x)exλe
Ln,A

L3
n,A

.

Therefore, by the choice of Ln,A and λ we have that for any fixed η > 0,

lim sup
n→∞

n(logn)2Px
(
Zg[0,Ln,A]> ηn) ≤ c(1 + x)exe−A/2

η2 ,

which is less than ε if A is large enough. By the triangle inequality, for any 0 <
η < 1/3 and any ε > 0, we deduce that if A is large enough,

Px
(
#L[0]> n) ≤ Px

(Hg(Ln,A)∑
i=1

#L(i)[0]> (1 − 3η)n

)
+ 4ε

n(logn)2
.

From this and (7.24), by letting A→ ∞ and η→ 0, we deduce the upper bound

lim sup
n→∞

n(logn)2Px
(
#L[0]> n) ≤R(x)ex c

∗

CR
.

Thus we have

lim
n→∞n(logn)2Px

(
#L[0]> n) =R(x)exc′crit,

with c′crit = c∗
CR

. Finally, we recall that CR is the limit of R(x)/x as x→ ∞, R(x)
being the renewal function for the descending ladder heights. The renewal theorem
implies that CR = Q[−Sτ−

0
]−1. Hence, from the value of c∗ in (7.9), we end up

with c′crit = Q[e−Sτ−0 − 1] indeed. �
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8. Proof of Theorem 2: The subcritical case. We treat here the subcritical
case ψ ′(�∗) < 0. Define a new probability measure Q(�−) by (5.3) with h(u) =
e�−V (u) for all u ∈ T . Then for any x ∈ R,

dQ(�−)
x

dPx

∣∣∣∣
Fn

= e−�−x
∑

|u|=n
e�−V (u), n≥ 0.

We recall that Q satisfies (5.16) with �= �+.
Applying Proposition 2, we see that the trajectory of the spine (Sn) is a random

walk that drifts to +∞ under Q, and drifts to −∞ under Q(�−), in fact, Q[S1] =
ψ ′(�+) > 0 and Q(�−)[S1] = ψ ′(�−) < 0. In particular [see (4.20) and (4.21),
changing S1 in −S1 for Q(�−)], we deduce the existence of C(�−)

R > 0 such that

Q(�−)(τ+
L < τ

−
0

) ∼ 1

C
(�−)
R

e(�−−�+)L,

(8.1)

Q
(
τ+
L < τ

−
0

) ∼ 1

CR
, L→ ∞,

(the second equivalence follows from Lemma 3). The strategy of the proof of The-
orem 2(ii) is in the same spirit as in the critical case (i). Recall (1.8) that L[0]
denotes the set of leaves of the killed branching random walk. We give first an
estimate on the moments of #L[0].

LEMMA 18. For any integer k < �+
�− , there exists some constant ck > 0 such

that for any x ≥ 0,

Ex
[(

#L[0])k] ≤ ckek�−x.

PROOF OF LEMMA 18. We give a proof by induction on k. Changing measure
from Px to Q(�−)

x with Proposition 3 (with L[0] and h(u) = e�−V (u) for u ∈ T )
yields the identity

Ex
[(

#L[0])k] = e�−xQ(�−)
x

[
e
−�−Sτ−0

(
#L[0])k−1]

.(8.2)

By (4.22), the case k = 1 holds. Suppose that it is true for k − 1 ≥ 1, and that
2 ≤ k < �+

�− . We decompose #L[0] along the spine

#L[0] = 1 +
τ−

0∑
�=1

∑
u∈��

#L(u)[0],

where #L(u)[0] is the number of particles descended from u absorbed at 0. We
mention that if V (u) < 0, then #L(u)[0] = 1. Conditionally on G∞,
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(#L(u)[0])u∈�j+1 , 0 ≤ j < τ−
0 , are independent and each #L(u)[0] is distributed

as (#L[0],PV (u)). By the triangle inequality,

(
Q(�−)
x

[(
#L[0])k−1|G∞

])1/(k−1) ≤ 1 +
τ−

0∑
�=1

∑
u∈��

(
Q(�−)
x

[(
#L(u)[0])k−1|G∞

])1/(k−1)
.

For each � and u ∈ ��, we have from our induction assumption

Q(�−)
x

[(
#L(u)[0])k−1|G∞

] ≤ 1{V (u)<0} + 1{V (u)≥0}ck−1e
�−(k−1)V (u)

(8.3)
≤ c(1 + e�−V (u))k−1

.

Therefore we get

Q(�−)
x

[(
#L[0])k−1|G∞

]1/(k−1) ≤ 1 + c′
τ−

0∑
�=1

∑
u∈��

1 + e�−V (u).

In view of (8.2), we deduce that

Ex
[(

#L[0])k] ≤ ce�−x + ce�−xQ(�−)
x

[
e
−�−Sτ−0

( τ−
0∑
�=1

∑
u∈��

{
1 + e�−V (u)})k−1]

≤ ce�−x + ce�−xQ(�−)
x

[
e
−�−Sτ−0

( τ−
0∑
�=1

e�−S�−1a�

)k−1]
,

where for any � ≥ 1, a� := ∑
u∈��

{1 + e�−�V (u)}. Plainly Corollary 1 also

holds with � = �−, which implies that under Q(�−)
x , the random variables (S� −

S�−1, a�)�≥1 are i.i.d. (whose law does not depend on x). Moreover,

Q(�−)[(1 + 1{S1<0}e−�−S1
)
ak−1

1

] ≤ E

[ ∑
|u|=1

(
1 + e�−V (u))]k <∞,

by (1.4). Applying (4.25) with b = �−, p = k − 1, γ = �+ − �− (recalling that

�+/�− > k ≥ 2), we get Q(�−)
x [e−�−Sτ−0 (

∑τ−
0
�=1 e

�−S�−1a�)
k−1] ≤ ce(k−1)�−x , prov-

ing the lemma. �

We introduce the analog of good and bad particles in the subcritical case, and
we feel free to use the same notation. For λ > 1,L > 1, we say now that

u ∈ B(L,λ) if there exists some 1 ≤ j ≤ |u| :
(8.4) ∑

v :
←
v=uj−1

(
1 + e�−�V (v))> λe�−(L−V (uj−1)),
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and u ∈ G(L,λ) otherwise, and we define again

Zg[0,L] := ∑
u∈G(L,λ)

1{τ−
0 (u)=|u|<τ+

L (u)},

(8.5)
Zb[0,L] := ∑

u∈B(L,λ)

1{τ−
0 (u)=|u|<τ+

L (u)}.

Recall the notation δ∗ in (1.4).

LEMMA 19. Let k∗ := ��+
�− �+1 be the smallest integer such that k∗ > �+

�− . Let

0< δ2 <min( δ
∗
2 , k

∗ − �+
�− ).

(i) There exists some constant c > 0 such that for any L> x ≥ 0,

Ex
[
Zg[0,L]k∗] ≤ cλk∗−�+/�−−δ2e�+xe(�−k∗−�+)L.

(ii) For q := �+
�− + δ2, there exists some constant c′ := c′(λ, q) > 0 such that

for any L> x ≥ 0,

Ex
[ ∑
u∈H (L)∩G(L,λ)

e�−V (u)
]q

≤ c′e�+xe(q�−−�+)L.

(iii) If we assume (1.9), then

Ex
[ ∑
u∈H (L)

e�−V (u)
]k∗

≤ ce�+xe(k
∗�−−�+)L, 0 ≤ x < L.

PROOF OF LEMMA 19. (i) Let k be an integer. By changing of measure from
Px to Q(�−)

x , we obtain

Ex
[(
Zg[0,L])k]

(8.6)
= e�−xQ(�−)

x

[
e
−�−Sτ−0 1{w

τ
−
0

∈G(L,λ)}
(
Zg[0,L])k−1

, τ−
0 < τ

+
L

]
.

By decomposing the tree T along the spine (w�), we get that

Zg[0,L] ≤ Z[0,L] = 1 +
τ−

0∑
�=1

∑
u∈��

Z(u)[0,L],(8.7)

where Z(u)[0,L] := ∑
v∈T (u) 1{τ−

0 (v)=|v|<τ+
L (v)} denotes the number of descendants

of u, touching 0 before L (T (u) means as before the subtree rooted at u). By Propo-
sition 2, under Qx , conditioned on G∞ = σ {ωj ,Sj ,�j , (V (u), u ∈ �j ), j ≥ 0},
the random variables (Z(u)[0,L])u∈��,�≤τ−

0
are independent and each Z(u)[0,L]
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is distributed as (Z[0,L],PV (u)). Conditioning and using the triangle inequality,
we have (

Q(�−)
x

[(
Zg[0,L])k−1|G∞

])1/(k−1)

(8.8)

≤ 1 +
τ−

0∑
�=1

∑
u∈��

(
Q(�−)
x

[(
Z(u)[0,L])k−1|G∞

])1/(k−1)
.

Assume k < (�+/�−) + 1. From Lemma 18, since Z(u)[0,L] ≤ #L(u)[0] and
k− 1< �+/�−, we know that(

Q(�−)
x

[(
Z(u)[0,L])k−1|G∞

])1/(k−1) ≤ ce�−V (u) + 1{V (u)<0},

where the indicator comes from Z(u)[0,L] = 1 if V (u) < 0. It follows that

Ex
[(
Zg[0,L])k]
≤ ce�−xQ(�−)

x

[
e
−�−Sτ−0

]
(8.9)

+ ce�−xQ(�−)
x

[
e
−�−Sτ−0 1{w

τ
−
0

∈G(L,λ),τ−
0 <τ

+
L }

( τ−
0∑
�=1

∑
u∈��

(
1 + e�−V (u)))k−1]

=: ce�−xQ(�−)
x

[
e
−�−Sτ−0

]+ ce�−xA(8.9),

with some larger constant c > 0 and the obvious definition of A(8.9) for the remain-

ing expectation under Q(�−)
x . By (4.22), see also Theorem 4 in [25] applied to −S

at τ+
x , Q(�−)

x [e−�−Sτ−0 ] ≤ c. Therefore we have shown that for all k < (�+/�−)+1,

Ex
[(
Zg[0,L])k] ≤ c′e�−x + ce�−xA(8.9).(8.10)

To estimate A(8.9), let us adopt the notation a�: for any �≥ 1, a� := ∑
u∈��

(1 +
e�−�V (u)), hence

∑τ−
0
�=1

∑
u∈��

(1 + e�−V (u)) ≤ ∑τ−
0
�=1 e

�−S�−1a�. On {wτ−
0

∈
G(L,λ)}, a� ≤ λses�−(L−S�−1)a1−s

� for any 0< s < 1. It follows that

A(8.9) ≤ λs(k−1)es�−(k−1)L

(8.11)

× Q(�−)
x

[
e
−�−Sτ−0

( τ−
0∑
�=1

e�−(1−s)S�−1a1−s
�

)k−1

, τ−
0 < τ

+
L

]
,

for any 0< s < 1 and k < (�+/�−)+ 1.
If �+/�− is not an integer, then k∗ < �+

�− + 1 and (8.11) holds for k = k∗. Take

s = k∗ − �+/�− − δ2
k∗ − 1

.(8.12)
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Notice that

Q(�−)
x

[(
1 + 1{S1<0}e−�−S1

)
a
(1−s)(k∗−1)
1

] ≤ E
[ ∑
|u|=1

(
1 + e�−V (u))](1−s)(k∗−1)+1

<∞,
Q(�−)[e(1−s)�−(k∗−1)S1

] = eψ(�−(1+(1−s)(k∗−1))) <∞,
by (1.4). Under Q(�−), (S�−S�−1, a

1−s
� )�≥1 are i.i.d. Applying (4.26) (with α = 0)

to the expectation term Q(�−)
x [·] in (8.11) with γ = �+ − �−, b = �−(1 − s), η =

�−,p = k∗ − 1 and noticing that pb > γ , we get that if we take k = k∗ in (8.9),
then

A(8.9) ≤ cλs(k∗−1)es�−(k∗−1)Le(�+−�−)(x−L)+(k∗−1)(�−−s�−)L

= cλs(k∗−1)e(�+−�−)(x−L)+(k∗−1)�−L.

This estimate with (8.10) proves (i) in the case that �+/�− is not an integer.
It remains to treat the case when �+/�− is an integer. Then k∗ = �+

�− + 1. Ap-

plying (8.9) to k = k∗ − 1 (which is less than �+
�− + 1), we have that

Ex
[(
Zg[0,L])k∗−1]
≤ c′e�−x + ce�−xQ(�−)

x

[
e
−�−Sτ−0

( τ−
0∑
�=1

e�−S�−1a�

)k∗−2

, τ−
0 < τ

+
L

]
,

which by an application of (4.26) with α = 0, γ = �+ −�−, b= �−,p = k∗ − 2 =
γ /b [it is easy to check the integrability hypothesis in Lemma 8(ii)], yields that

Ex
[(
Zg[0,L])k∗−1] ≤ c(1 +L− x)e�+x, 0 ≤ x ≤ L.

Moreover, Ex[(Zg[0,L])k∗−1] is 1 if x < 0 and 0 if x > L. Going back to (8.8)
and (8.6) with now k = k∗, we obtain that

Ex
[(
Zg[0,L])k∗] ≤ ce�−xQ(�−)

x

[
1 + e−�−Sτ−0 1{w

τ
−
0

∈G(L,λ)}Ak
∗−1, τ−

0 < τ
+
L

]
with

A :=
τ−

0∑
�=1

∑
u∈��

((
1 +L− V (u))�−/�+e�−V (u)1{V (u)∈[0,L]} + 1{V (u)<0}

)
.

Observe that on {� ≤ τ−
0 < τ

+
L }, S�−1 ∈ [0,L]. For any u ∈ �� such that V (u) ∈

[0,L], either �V (u) ≥ 0 then (1 + L − V (u))�−/�+ ≤ (1 + L − S�−1)
�−/�+ , or

�V (u) < 0, then (1 + L− V (u))�−/�+e�−V (u) ≤ (1 + L− S�−1)
�−/�+e�−V (u) +
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|�V (u)|�−/�+e�−V (u) ≤ (1 +L− S�−1)
�−/�+e�−V (u)+ c(�)e�−S�−1 , with c(�) :=

supy≤0 |y|�−/�+ey <∞. It follows that there exists some c > 0 such that∑
u∈��

((
1 +L− V (u))�−/�+e�−V (u)1{V (u)∈[0,L]} + 1{V (u)<0}

)
≤ c(1 +L− S�−1)

�−/�+eρ−S�−1
∑
u∈��

(
1 + e�−�V (u)),

which in turn is bounded by c(1+L−S�−1)
�−/�+eρ−S�−1λses�−(L−S�−1)a1−s

� since
wτ−

0
∈ G(L,λ), where 0< s < 1 is as in (8.12). It follows that

Ex
[(
Zg[0,L])k∗]
≤ c′λs(k∗−1)es�−(k∗−1)Le�−x

× Q(�−)
x

[
e
−�−Sτ−0

( τ−
0∑
�=1

(1 +L− S�−1)
�−/�+a1−s

� e�−(1−s)S�−1

)k∗−1

,

τ−
0 < τ

+
L

]
.

Again, we apply (4.26) with α = �−/�+ to (S� − S�−1, a
1−s
� )�≥1 with γ =

�+ − �−, b = �−(1 − s), η = �−,p = k∗ − 1 > γ/b (the integrability hypoth-
esis can be easily checked as before), which yields that Ex[(Zg[0,L])k∗] ≤
c′λs(k∗−1)e�+x+(k∗�−−�+)L, proving (i) in the case that �+/�− is an integer.

(ii) Write in this proof  := ∑
u∈H (L)∩G(L,λ) e

�−V (u). Instead of Q(�−)
x , we

shall make use of the probability Q defined in (5.16) with � = �+ for the change
of measure. We stress that under Q, (Sn) drifts to +∞.

Firstly, we prove by induction on k that for any 1 ≤ k ≤ k∗ − 1, there exists
some constant ck = ck(λ) > 0 such that

Ex
[
 k

] ≤ cke�+xe(k�−−�+)L.(8.13)

By the change of measure, we get that for k ≥ 1,

Ex
[
 k

] = e�+xQx
[
e
(�−−�+)Sτ+

L 1{w
τ
+
L

∈G(L,λ)} k−1, τ+
L < τ

−
0

]
(8.14)

= e�+x+(�−−�+)LQx
[
e(�−−�+)T +

L 1{w
τ
+
L

∈G(L,λ)} k−1, τ+
L < τ

−
0

]
,

where T +
L := Sτ+

L
−L> 0. This yields the case k = 1 of (8.13).

Assume 2 ≤ k ≤ k∗ −1 and that (8.13) holds for 1, . . . , k−1. Exactly as before,
we decompose  along the spine up to τ+

L , apply the triangular inequality and
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arrive at

(
Qx

[
 k−1|G∞

])1/(k−1)

≤ e�−Sτ+
L +

τ+
L∑
�=1

∑
u∈��

(
Qx

[(
 (u)

)k−1|G∞
])1/(k−1)

,

where  (u) := ∑
v∈T (u)∩H (L)∩G(L,λ) e

�−V (v) with T (u) the subtree rooted at u.
By Proposition 2, under Qx and conditioning on G∞, each  (u) is distributed
as ( ,PV (u)). Hence by induction assumption, (Qx[( (u))k−1|G∞])1/(k−1) ≤
c

1/(k−1)
k−1 e�+(V (u)−L)/(k−1)e�−L. Then

(
Qx

[
 k−1|G∞

])1/(k−1)

≤ e�−Sτ+
L + c1/(k−1)

k−1 e�−L
τ+
L∑
�=1

∑
u∈��

e�+�V (u)/(k−1)e�+(S�−1−L)/(k−1).

Notice that �+
k−1 ≥ �− and that on {wτ+

L
∈ G(L,λ)},

∑
u∈��

e�+/(k−1)�V (u) ≤ a�max
u∈��

e(�+/(k−1)−�−)�V (u)

≤ (a�)1−sλ(�+/(�−(k−1)))−(1−s)e(�+/(k−1)−(1−s)�−)(L−S�−1),

with s := k∗−�+/�−−δ2
k∗−1 . We mention that the above inequality holds for k = k∗.

Going back to (8.14), we obtain that [we keep the density there e(�−−�+)T +
L only

for e
�−Sτ+

L and use the inequality (x + y)k−1 ≤ 2k−1(xk−1 + yk−1)]

Ex[ k]
≤ c(λ)e�+x+(�−−�+)L

× e�−(k−1)L

(
Qx

[
e(k�−−�+)T +

L
]+ Qx

[ τ+
L∑
�=1

(a�)
1−se(1−s)�−(S�−1−L)

]k−1)
.

Recall that Qx[e(k�−−�+)T +
L ] = Q[e(k�−−�+)T +

L−x ] is bounded by some constant
since we have Q[e(k�−−�++δ)S1] = exp{ψ(k�− + δ)}<∞ if δ > 0 is sufficiently
small [here we use the fact that k ≤ k∗ − 1]. By Lemma 5, the above expectation
Qx[· · ·]k−1 is uniformly bounded, which proves (8.13).
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To control Ex[ q], we use the change of measure

Ex
[
 q

] = e�+x+(�−−�+)LQx
[
e(�−−�+)T +

L 1{w
τ
+
L

∈G(L,λ)} q−1, τ+
L < τ

−
0

]
.

Since q < k∗, (Qx[ q−1|G∞])1/(q−1) ≤ (Qx[ k∗−1|G∞])1/(k∗−1). From (8.13)
with k = k∗ − 1 there, we use the same arguments as before and get that

Ex[ q] ≤ ce�+x+(�−−�+)Le�−(q−1)L

(
Qx

[
e(q�−−�+)T +

L
]

+ Qx

[ τ+
L∑
�=1

(a�)
1−se(1−s)�−(S�−1−L)

]q−1)
.

Again, Qx[e(q�−−�+)T +
L ] is bounded by some constant since

Q
[
e(q�−−�++δ)S1

] = exp
(
ψ(q�− + δ))<∞

if δ > 0 is sufficiently small. By Lemma 5, the above expectation Qx[· · ·]q−1 is
uniformly bounded, which proves (ii).

(iii) The proof follows in the same spirit as that of (i) and (ii): Let χ(L) :=∑
u∈H (L) e

�−(V (u)−L), and we prove by induction that for any 1 ≤ k ≤ k∗,

Ex
[
χ(L)k

] ≤ cke�+(x−L), x ∈ R.(8.15)

The case k = 1 is obvious by the change of measure. Assume (8.15) for k − 1
and 2 ≤ k ≤ k∗. By repeating the same arguments as in (ii), we get that

Ex
[
χ(L)k

] ≤ ce�−(x−L)

×
(

Q(�−)
x

[
e(k−1)�−T +

L , τ+
L < τ

−
0

]
(8.16)

+ Q(�−)
x

[( τ+
L∑
�=1

∑
u∈��

e(�+/(k−1))(V (u)−L)
)k−1

, τ+
L < τ

−
0

])
.

By the absolute continuity between Q(�−)
x and Qx ,

Q(�−)
x

[
e(k−1)�−T +

L , τ+
L < τ

−
0

] = e(�+−�−)x−(k−1)�−LQx
[
e
(k�−−�+)Sτ+

L , τ+
L < τ

−
0

]
= e(�+−�−)(x−L)Qx

[
e(k�−−�+)T +

L , τ+
L < τ

−
0

]
≤ ce(�+−�−)(x−L),

where the term Qx[e(k�−−�+)T +
L ] is uniformly bounded, since for k ≤ k∗ and suf-

ficiently small δ4 > 0, Q[e(k�−−�++δ4)S1] = eψ(k�−+δ4) <∞ by (1.9).
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It remains to control the second expectation term Q(�−)
x in (8.16). Let b� :=∑

u∈��
e�+/(k−1)�V (u), for �≥ 1. Under Q(�−)

x , (S� − S�−1, b�)�≥1 are i.i.d. and

Q(�−)[bk−1
1

] = E
[( ∑

|u|=1

e�−V (u)
)(∑

v �=u
e(�+/(k−1))V (v)

)k−1]

≤ E
[ ∑
|u|=1

e�−V (u)
]1+�+/�−

,

where the last inequality follows from the elementary inequality: for any n≥ 1 and
x1, . . . , xn ∈ R, (

∑n
i=1 e

�+xi/(k−1))k−1 ≤ (
∑n
i=1 e

�−/r�+�+xi )�+/�− =
(
∑n
i=1 e

�−xi )�+/�− , since k − 1 < �+
�− . Then Q(�−)[bk−1

1 ] < ∞ by (1.9). Going

back to (8.16), we see that the expectation term Qx[(··)k−1, τ+
L < τ

−
0 ] equals

Q(�−)
x

[( τ+
L∑
�=1

b�e
�+/(k−1)(S�−1−L)

)k−1

, τ+
L < τ

−
0

]
≤ c′e(�+−�−)(x−L),

by applying (4.26) to (S� − S�−1, b�)�≥1 with γ = �+ − �−, b = �+/(k − 1) and
p = k− 1. This proves (8.15) hence (iii). �

The next lemma controls the number of bad particles.

LEMMA 20. Let r = �+
�− − 1 + δ∗

2 [with δ∗ as in (1.4)].

(i) There exists some constant c= c(r) > 0 such that for all 0 ≤ x ≤L,

Ex
[
Zb[0,L]] ≤ cλ−re�+xe(�−−�+)L.

(ii) Denote by Lb,L[0] := {v ∈ L[0] :∃u ∈ H (L)∩ B(L,λ) with u < v} the set
of leaves which are descendants of some element of H (L)∩B(L,λ). Then for any
0 ≤ x ≤ L,

Ex
[
#Lb,L[0]] ≤ cλ−re�+xe(�−−�+)L.

PROOF. (i) By changing the measure from Px to Q(�−)
x ,

Ex
[
Zb[0,L]] = e�−xQ(�−)

x

[
e
−�−Sτ−0 1{w

τ
−
0

∈B(L,λ)}, τ−
0 < τ

+
L

]
.

Let us write aj := ∑
u∈�j

(1 + e�−�V (u)), j ≥ 1, in this proof. Then

1{w
τ
−
0

∈B(L,λ)} ≤
τ−

0∑
j=1

λ−rarj e−r�−(L−Sj−1),(8.17)
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which yields that

Ex
[
Zb[0,L]] ≤ λ−re�−xQ(�−)

x

[
e
−�−Sτ−0

τ−
0∑
j=1

arj e
−r�−(L−Sj−1), τ−

0 < τ
+
L

]

≤ cλ−re�−xe(�+−�−)(x−L),

by applying (4.26) to γ = �+ − �−,p = 1 and b = r�− > γ [the integra-
bility hypothesis is satisfied thanks to (1.4) and the choice of r : Q(�−)[(1 +
1{S1<0}e−�−S1)ar1] ≤ E[∑|u|=1(1 + e�−V (u))]r+1 < ∞, and Q(�−)[er�−S1] =
eψ(�−(1+r)) <∞]. This proves (i).

(ii) Remark that #Lb,L[0] = ∑
u∈H (L)∩B(L,λ) #L(u)[0], where L(u)[0] denotes

the set of leaves which are descendants of u. By the branching property, condi-
tioned on H (L)∩B(L,λ), (#L(u)[0])u∈H (L)∩B(L,λ) are independent and are dis-
tributed as #L[0] under PV (u). It follows from Lemma 18 (with k = 1) that

Ex
(
#Lb,L[0]) ≤ cEx

[ ∑
u∈H (L)∩B(L,λ)

e�−V (u)
]

= ce�−xQ(�−)
x

[
wτ+

L
∈ B(L,λ), τ+

L < τ
−
0

]
,

by the change of measure from Px to Q(�−)
x . By (8.17) (with τ+

L instead of τ−
0 ),

the above probability under Q(�−)
x is less than

λ−rQ(�−)
x

[ τ+
L∑
j=1

arj e
−r�−(L−Sj−1), τ+

L < τ
−
0

]

≤ λ−r ∑
j≥1

Q(�−)
x

[
e−r�−(L−Sj−1), j ≤ min

(
τ+
L , τ

−
0

)]
Q(�−)
x

[
arj

]
,

since for each j , aj is independent of (Sj−1, j ≤ min(τ+
L , τ

−
0 )); moreover

Q(�−)
x [arj ] = Q(�−)[arj ] = c′ <∞ as in (i). Then we have

Ex
[
Zb[0,L]] ≤ cc′e�−xλ−r ∑

j≥1

Q(�−)
x

[
e−r�−(L−Sj−1), j ≤ min

(
τ+
L , τ

−
0

)]
,

which by an application of (4.23) (with r�− > γ := �+ − �−) gives (ii). �

Let M(�−)∞ be the almost sure limit of M(�−)
n := ∑

|u|=n e�−V (u). By [8, 26],

M
(�−)∞ is almost surely positive on the event {T = ∞}. From [24], we know that

there exists a constant c�− such that

P
(
M
(�−)∞ > t

) ∼ c�− t
−�+/�−, t → ∞.(8.18)
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We mention that the constant c�− is given in [20], Theorem 4.10:

c�− = 1

�+ψ ′(�+)
E
[( ∑

|u|=1

e�−V (u)M(�−,u)∞
)�+/�−

− ∑
|u|=1

e�+V (u)(M(�−,u)∞
)�+/�−

]
,

where under P and conditioned on {V (u), |u| = 1}, (M(�−,u)∞ )|u|=1 are i.i.d. copies

ofM(�−)∞ .

LEMMA 21 (Subcritical case). As t → ∞, the law of #L[0] under Pt , the
number of descendants absorbed at 0 of a particle starting from t , normalized by
e�−t converges in distribution to c∗subM

(�−)∞ where

c∗sub = Q(�−)[e−�−Sτ−0 ] − 1

�−Q(�−)[−Sτ−
0
] .

PROOF. The proof is similar to that of Lemma 15; we only point out the
main difference and omit the details. Recall that L[a] := {u ∈ T : |u| = τ−

a (u)}.
By linear translation, it is enough to prove that e−�−t#L[−t] converges in law
to c∗subM

(�−)∞ . Let M(�−)
L[−t] := ∑

u∈L[−t] e�−V (u), which converges almost surely to

M
(�−)∞ . On the other hand, we have M(�−)

L[−t] = e−�−t∑
u∈L[−t] e�−(V (u)+t). Sim-

ilarly to the proof of Lemma 15, we apply Theorem 6.3 in Nerman [29] (with
α = �− there) and obtain that on {T = ∞}, almost surely∑

u∈L[−t] e�−(V (u)+t)

#L[−t] → �−
Q(�−)[−Sτ−

0
]

Q(�−)[e−�−Sτ−0 ] − 1
, t → ∞,

which easily yields the lemma. �

LEMMA 22. For any λ > 0, let μ̂λ,∞ := ∑ζ̂λ
i=1 δ{xi} be the point process de-

fined in Proposition 1 associated with B(θ) := ( 1
λ

∫
θ(dx)(1 + e�−x))1/�− for

θ ∈
f . Let (M(�−,i)∞ , i ≥ 1) be a sequence of i.i.d. random variables of common

law that of (M(�−)∞ ,P), independent of μ̂λ,∞. As t → ∞, we have

Q

(
ζ̂λ∑
i=1

e�−xiM(�−,i)∞ > t

)
∼ c�−Q

[∫
μ̂λ,∞(dx)e�+x

]
t−�+/�− .

We mention that as λ → ∞, Q[∫ μ̂λ,∞(dx)e�+x] → 1
Q[�−1] by (6.24)

and (6.27).

PROOF. Let  L,λ := ∑
u∈H (L)∩G(L,λ) e

�−(V (u)−L). By Proposition 1, under

Px(·|H(L) > 0),  L,λ converges in law to
∫
μ̂λ,∞(dx)e�−x = ∑ζ̂λ

i=1 e
�−xi (some
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tightness is required here but we omit the details since the arguments are similar to
the critical case). By Lemma 19(ii), the family ( L,λ,Px(·|H(L) > 0)) is bounded
in Lq with q = ρ+

ρ− + δ2, hence

Q

[
ζ̂λ∑
i=1

e�−xi
]q
<∞.(8.19)

This together with (8.18) allows us to apply Lemma 16 to p = �+
�− and yields

the desired asymptotic result. �

We now prove Theorem 2 in the subcritical case.

PROOF OF THEOREM 2(II).
Lower bound of Theorem 2(ii): The proof of the lower bound goes in the same

way as that of Theorem 2(i) by using Proposition 1 and Lemma 21. Let A > 0.
Consider n→ ∞, let LA := 1

�− logn−A and λ := e�−A. We keep the same nota-

tion Hg(LA), (#L(i)[0],1 ≤ i ≤Hg(LA)): Recall (7.1) and Hg(LA) := #Hg(LA)

with

Hg(LA) := H (LA)∩ G
(
Ln, e

�−A).(8.20)

We define as well B(i) := #L(i)[0]e−�−V (u(i)) for u(i) ∈ H (LA), and E(LA) the
event that B(i) > (1 − ε)M(�−,i)∞ , ∀i with small ε > 0. Repeating the proof of the
lower bound of Theorem 2(i), and using Proposition 1 and Lemma 21, we get that
for any A> 0,

lim inf
n→∞ n�+/�−Px

(Hg(LA)∑
i=1

#L(i)[0]> n
)

≥ Q[�−1]
CR

R(x)e�+xe�+AQ

(
ζ̂λ∑
i=1

e�−xiM(�−,i)∞ >
1

c∗sub
e�−A

)
(8.21)

=: Q[�−1]
CR

R(x)e�+xCs(A),

where μ̂λ,∞ := ∑ζ̂λ
i=1 δ{xi} is the point process as in Lemma 22 (with λ := e�−A

there) and c∗sub is defined in Lemma 21. The same also holds for the upper bound,
hence for any A> 0,

lim
n→∞n

�+/�−Px

(Hg(LA)∑
i=1

#L(i)[0]> n
)

= Q[�−1]
CR

R(x)e�+xCs(A).(8.22)
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Since Px(#L[0]> n)≥ Px(
∑H(LA)
i=1 #L(i)[0]> n), we get that for any A> 0,

lim inf
n→∞ n�+/�−Px

(
#L[0]> n) ≥ Q[�−1]

CR
R(x)e�+xCs(A).(8.23)

Upper bound of Theorem 2(ii): By Lemma 20 and Lemma 19(i) with L := LA =
1
�− logn−A, λ := e�−A and k∗ := ��+

�− �+1, we obtain the following estimate: For
any ε > 0,

Px
(
Zg[0,LA] ≥ εn) ≤ (εn)−k∗ceA(�−k∗−�+−δ2�−)e�+x+(�−k∗−�+)LA

= cε,xn−�+/�−e−δ2�−A

and

Px
(
Zb[0,LA] ≥ εn) ≤ 1

εn
ce−A(�+−�−+δ∗�−/2)e�+x+(�−−�+)LA

= cε,xn−�+/�−e−δ∗�−A/2,

with the same estimate for Px(Lb,LA[0] ≥ εn). Since Z[0,LA] = Zg[0,LA] +
Zb[0,LA], we obtain that for any ε > 0,

lim sup
A→∞

lim sup
n→∞

n�+/�−Px
(
Z[0,LA] + Lb,LA[0] ≥ 3εn

) = 0.

From here and using the fact that #L[0] = Z[0,LA] + Lb,LA[0] +∑Hg(LA)

i=1 #L(i)[0], we deduce from (8.22) that for any A> 0,

lim sup
n→∞

n�+/�−Px
(
#L[0]> n) ≤ Q[�−1]

CR
R(x)e�+xCs(A)+ oA(1),

with oA(1)→ 0 as A→ ∞ (in fact exponentially fast). This together with the
lower bound (8.23) yields that limn→∞ n�+/�−Px(#L[0] > n) exists and is finite.
Then, a fortiori, limA→∞Cs(A) also exists and is some finite constant. This proves
Theorem 2(ii). �

We end this section by giving the proof of Lemma 1.

PROOF OF LEMMA 1. By (5.21), CR = 1/Q(τ−
0 = ∞). Recall (8.21). It suf-

fices to show that

lim
A→∞Cs(A)=

c�−
Q[�−1]

(
c∗sub

)�+/�− .(8.24)

The lower bound follows from the monotonicity: the random point measure
μ̂λ,∞ is stochastically increasing in λ; Then for any A > A0, λ = e�−A > λ0 :=
e�−A0, μ̂λ,∞ stochastically dominates μ̂λ0,∞ := ∑ζ̂λ0

i=1 δ{xi}, hence

Cs(A)≥ e�+AQ

( ζ̂λ0∑
i=1

e�−xiM(�−,i)∞ >
1

c∗sub
e�−A

)
.
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Applying Lemma 22 to λ0 yields that for any λ0 := e�−A0 ,

lim inf
A→∞ Cs(A)≥ c�−Q

[∫
μ̂λ0,∞(dx)e�+x

](
c∗sub

)�+/�− .

Letting λ0 → ∞, the above expectation term converges to 1/Q[�−1] and proves
the lower bound.

To derive the upper bound, by Lemma 19(iii) and Theorem 3(ii), we get that
under P(·|H (L) > 0),

∑
u∈H (L) e

�−(V (u)−L) is bounded in Lk
∗

and converges in

law to
∑ζ̂∞
i=1 e

�−xi , where μ̂∞ = ∑ζ̂∞
i=1 δ{xi}. Therefore

Q

[
ζ̂∞∑
i=1

e�−xi
]k∗
<∞,

which in view of Lemma 16 and (8.18) yields, as A→ ∞,

e�+AQ

(
ζ̂∞∑
i=1

e�−xiM(�−,i)∞ >
1

c∗sub
e�−A

)
→ c�−

Q[�−1]
(
c∗sub

)�+/�− .

Since μ̂∞ stochastically dominates μ̂A,∞, this gives the desired upper bound for
Cs(A) and completes the proof of the lemma. �

9. Proofs of the technical lemmas.

9.1. Proof of Lemma 4. Obviously we may assume that ‖F‖∞ ≤ 1 throughout
the proof of (i) and (ii).

Proof of part (i). Since P(τ+
t > K)→ 1 as t → ∞, it is enough to show that

lim
t→∞E

[
1{τ+

t >K}F
(
T +
t , (Sτ+

t
− Sτ+

t −j )1≤j≤K
)]

(9.1)
= E

[
F
(
UŜσ̂ , (Ŝj )1≤j≤K

)]
.

Recall that (σn,Hn)n≥1 are the strict ascending ladder epochs and ladder heights
of S. Since for some (unique) n≥ 1, τ+

t = σn and T +
t =Hn − t , we can write

Bt := E
[
1{τ+

t >K}F
(
T +
t , (Sτ+

t
− Sτ+

t −j )1≤j≤K
)]

= ∑
n≥1

E
[
1{Hn−1≤t<Hn}1{K<σn}F

(
Hn − t, (Sσn − Sσn−j )1≤j≤K

)]
.

Let us choose some integer m >K . Notice that σn − σn−m > K and σn > K for
n≥m. Since the previous sum for n < m is smaller than P(Hm > t) which tends
to 0 when t tends to infinity, we get

Bt = ∑
n≥m

E
[
1{Hn−1≤t<Hn}F

(
Hn − t, (Sσn − Sσn−j )1≤j≤K

)]+ ot (1)

=: B ′
t + ot (1),
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with |ot (1)| ≤ P(Hm > t)→ 0 as t → ∞. Applying the strong Markov property
at the stopping time σn−m, we obtain that

B ′
t =

∑
n≥m

E
[
1{Hn−m≤t}EHn−m

[
1{Hm−1≤t<Hm}F

(
Hm − t, (Sσm − Sσm−j )1≤j≤K

)]]
= ∑
n≥m

E
[
1{Hn−m≤t}g(t −Hn−m)],

with

g(x) := E
[
1{Hm−1≤x<Hm}F

(
Hm − x, (Sσm − Sσm−j )1≤j≤K

)] ∀x ≥ 0.

Therefore

B ′
t =

∫ t

0
g(t − x)du(x),(9.2)

with u(x)= ∑
n≥0 P(Hn ≤ x). Let us check that g is directly Riemann integrable

on R+. Recall that a function g is directly Riemann integrable (see Feller [13],
page 362) if g is continuous almost everywhere and satisfies

∞∑
n=0

sup
n≤x≤n+1

∣∣g(x)∣∣<∞.(9.3)

Observe first that ‖F‖∞ ≤ 1 implies ‖g‖∞ ≤ 1. Now recall that H1 is integrable.
Therefore,∑

n≥0

sup
n≤x≤n+1

∣∣g(x)∣∣ ≤ ∑
n≥0

P(Hm ≥ n)= 1 + E[Hm] = 1 +mE[H1]<∞,

yielding (9.3). Now we prove that g is a.e. continuous. For z ∈ R
K+ , denote by

D(z) ⊂ R
∗+ the set on which F(·, z) is discontinuous. By assumption, D(z) is at

most countable for any real z, hence D((Sσm − Sσm−j )1≤j≤K) is a random set
(maybe empty) at most countable; the same is true for the random set

ϒ :=
∞⋃
n=1

{
Hn − z : z ∈D(

(Sσm − Sσm−j )1≤j≤K
)∪ {0}}.

In other words, we may represent ϒ by a sequence of random variables taking
values in R. It follows that

D := {
y : P(y ∈ϒ) > 0

}
is at most countable.

We claim that for any x ∈ R∗+ \D , g is continuous at x. In fact, for any sequence
(xn)n such that xn → x as n→ ∞, let ξn := 1{Hm−1≤xn<Hm}F(Hm − xn, (Sσm −
Sσm−j )1≤j≤K) and ξ := 1{Hm−1≤x<Hm}F(Hm−x, (Sσm −Sσm−j )1≤j≤K), we shall
show that as n→ ∞,

ξn → ξ a.s.,(9.4)
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which in view of the dominated convergence theorem, implies that g(xn)→ g(x)

and the desired continuity of g at x. To prove (9.4), first we remark that

lim sup
n→∞

∣∣1{Hm−1≤xn<Hm} − 1{Hm−1≤x<Hm}
∣∣ ≤ 1{Hm−1=x} + 1{Hm=x}

(9.5)
= 0 a.s.,

since x /∈ D [hence a fortiori P(Hn = x)= 0 for all n≥ 1]. Second,

P
(
Hm − x ∈D(

(Sσm − Sσm−j )1≤j≤K
)) ≤ P(x ∈ϒ)= 0,

since x /∈ D . In words, almost surely, Hm − x /∈D((Sσm − Sσm−j )1≤j≤K), which
implies that F(·, (Sσm − Sσm−j )1≤j≤K) is continuous at Hm − x; hence F(Hm −
xn, (Sσm −Sσm−j )1≤j≤K)→ F(Hm−x, (Sσm −Sσm−j )1≤j≤K) a.s. when n→ ∞.
This and (9.5) yield (9.4) and the continuity of g on R∗+ \ D . Then g is directly
Riemann integrable.

Going back to (9.2), we apply the renewal theorem (see Feller [13], page 363)
and obtain that

lim
t→∞B

′
t =

1

E[H1]
∫ ∞

0
g(x) dx,

which implies

lim
t→∞Bt =

1

E[H1]E
[∫ Hm−Hm−1

0
F
(
Hm −Hm−1 − x, (Sσm − Sσm−j )1≤j≤K

)
dx

]
= 1

E[H1]E
[
(Hm −Hm−1)F

(
U(Hm −Hm−1), (Sσm − Sσm−j )1≤j≤K

)]
,

by using the independent uniform variable U .
Finally since the random segments {(Sσk+j − Sσk )0≤j≤σk+1−σk ;0 ≤ k < m} are

i.i.d., Tanaka’s construction [see (4.5)] implies that under P the segment of the
random walk (Sn)n≥0 up to time σm viewed from (σm,Sσm) in reversed time
and reflected in the x-axis, that is, (Sσm − Sσm−j )0≤j≤K , has the same law as
(ζj )0≤j≤K . Moreover since with this “partial” construction Hm − Hm−1 corre-
sponds to the value of the reversed and reflected process at time σ̃ = sup{n ≥
1 : ζn = min1≤i≤n ζi}, we obtain that

1

E[H1]E
[
(Hm −Hm−1)F

(
U(Hm −Hm−1), (Sσm − Sσm−j )1≤j≤K

)]
= 1

E[H1]E
[
ζσ̃ F

(
Uζσ̃ , (ζj )1≤j≤K

)] = E
[
F
(
UŜσ̂ , (Ŝj )1≤j≤K

)]
,

by using (4.6). This proves (9.1) and part (i) of the lemma.
Proof of part (ii). Write for notational convenience S̃(t)j := Sτ+

t
− Sτ+

t −j when

1 ≤ j ≤ τ+
t . Note that part (i) of the lemma implies

lim
L→∞ E

[
1{K<τ+

L }F
(
T +
L ,

(
S̃
(L)
j

)
1≤j≤K

)] = E
[
F
(
UŜσ̂ , (Ŝj )1≤j≤K

)] =: CF .(9.6)
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Using the absolute continuity between P+ and P up to the stopping time τ+
t [the

martingale (R(Sj )1(j<τ+
t )
, j ≤ τ+

t ) is uniformly integrable thanks to Lemma 3(ii)
and (iv)], we can write

E
+[1{K<τ+

t }F
(
T +
t ,

(
S̃
(t)
j

)
1≤j≤K

)] = E
[
R(Sτ+

t
)1{K<τ+

t <τ
−
0 }F

(
T +
t ,

(
S̃
(t)
j

)
1≤j≤K

)]
.

We treat first the case E[S1] = 0. Combining parts (iii) and (iv) of Lemma 3, we
deduce from the above equality that as t → ∞,

E
+[1{K<τ+

t }F
(
T +
t ,

(
S̃
(t)
j

)
1≤j≤K

)] ∼ CRtE
[
1{K<τ+

t <τ
−
0 }F

(
T +
t ,

(
S̃
(t)
j

)
1≤j≤K

)]
=: At .

Let us now introduce �t := t − 2tγ with (1 + δ/2)−1 < γ < 1 and observe that
τ+
�t
< τ−

0 on the event {τ+
t < τ

−
0 }. Recalling that part (ii) of Lemma 3 says that

(T +
t , t ≥ 0) is bounded in Lp for all 1<p < 1+ δ, we get P(T +

�t
> tγ )≤ ct−γp =

o(t−1) by choosing p such that γp > 1. Therefore we obtain

At = CRtE[1{K<τ+
t <τ

−
0 }1{S

τ
+
�t

≤t−tγ }F
(
T +
t ,

(
S̃
(t)
j

)
1≤j≤K

)]+ ot (1)

=A′
t +A′′

t + ot (1),
where ot (1)→ 0 as t → ∞ and

A′
t := CRtE

[
1{τ+

t <τ
−
0 }1{S

τ
+
�t

≤t−tγ }1{τ+
t −τ+

�t
>K}F

(
T +
t ,

(
S̃
(t)
j

)
1≤j≤K

)]
,

A′′
t := CRtE[1{K<τ+

t <τ
−
0 }1{S

τ
+
�t

≤t−tγ }1{τ+
t −τ+

�t
≤K}F

(
T +
t ,

(
S̃
(t)
j

)
1≤j≤K

)]
.

Applying the strong Markov property at the stopping time τ+
�t

yields

A′
t = CRtE

[
1{τ+

�t
<τ−

0 }1{S
τ
+
�t

≤t−tγ }f (Sτ+
�t

)
]
,

where

f (x) := Ex
[
1{K<τ+

t <τ
−
0 }F

(
T +
t ,

(
S̃
(t)
j

)
1≤j≤K

)]
.(9.7)

Then, writing

Ex
[
1{K<τ+

t }F
(
T +
t ,

(
S̃
(t)
j

)
1≤j≤K

)] = E
[
1{K<τ+

L }F
(
T +
L ,

(
S̃
(L)
j

)
1≤j≤K

)]
,

with L= t − x, equation (9.6) yields

max
x∈[�t ;t−tγ ]

∣∣Ex[1{K<τ+
t }F

(
T +
t ,

(
S̃
(t)
j

)
0≤j≤K

)]−CF
∣∣ −→ 0, t → ∞,(9.8)

from which we deduce

max
x∈[�t ;t−tγ ]

∣∣f (x)−CF ∣∣ −→ 0, t → ∞,



TOTAL PROGENY OF A KILLED BRANCHING RANDOM WALK 3853

since uniformly in x ≥ �t , Px(τ
−
0 < τ+

t ) = P(τ−−x < τ+
t−x) ≤ P(τ−

−�t < τ
+
tγ ) =

ot (1). Furthermore, observing that P(τ+
�t
< τ−

0 ) ∼ 1
CRt

[see part (v) of Lemma 3

and recall that �t = t − 2tγ with γ < 1] and P(t − Sτ+
�t

≤ tγ ) = P(T +
�t
> tγ ) =

o(t−1) imply P(τ+
�t
< τ−

0 ;Sτ+
�t

≤ t− tγ )∼ 1/CRt , and when t tends to infinity, we

obtain

A′
t −→ CF , t → ∞.(9.9)

Similarly, the strong Markov property applied at the stopping time τ+
�t

implies

A′′
t ≤ CRtE[1{τ+

�t
<τ−

0 }1{S
τ
+
�t

≤t−tγ }PS
τ
+
�t

(
τ+
t ≤K)]

.

Moreover, observe that

sup
x≤t−tγ

Px
(
τ+
t ≤K) ≤ Pt−tγ

(
τ+
t ≤K) = P

(
τ+
tγ ≤K) = ot (1),(9.10)

which implies

A′′
t ≤ CRtP(τ+

�t
< τ−

0 , Sτ+
�t

≤ t − tγ )P(τ+
tγ ≤K) = ot (1),(9.11)

by recalling that P(τ+
�t
< τ−

0 ;Sτ+
�t

≤ t − tγ ) ∼ 1
CRt

. Combining (9.9), (9.11) and

recalling (9.7), we obtain At → CF , when t → ∞, which concludes the proof of
part (ii) in the case E[S1] = 0.

The case E[S1]> 0 is similar but easier. Indeed, combining parts (iii) and (iv)
of Lemma 3 implies

E
+[1{K<τ+

t }F
(
T +
t ,

(
S̃
(t)
j

)
1≤j≤K

)] ∼ CRE
[
1{K<τ+

t <τ
−
0 }F

(
T +
t ,

(
S̃
(t)
j

)
1≤j≤K

)]
=: Ãt .

Recalling that �t = t − 2tγ and that part (ii) of Lemma 3 implies P(T +
�t
> tγ ) =

ot (1), and we get

Ãt = CRE
[
1{K<τ+

t <τ
−
0 }1{S

τ
+
�t

≤t−tγ }F
(
T +
t ,

(
S̃
(t)
j

)
1≤j≤K

)]+ ot (1)
(9.12)

= CRE
[
1{τ+

t <τ
−
0 }1{S

τ
+
�t

≤t−tγ }1{τ+
t −τ+

�t
>K}F

(
T +
t ,

(
S̃
(t)
j

)
1≤j≤K

)]+ ot (1),
the last equality being a consequence of (9.10), which still holds in the case
E[S1]> 0. Then, the strong Markov property yields

Ãt = CRE
[
1{τ+

�t
<τ−

0 }1{S
τ
+
�t

≤t−tγ }f (Sτ+
�t

)
]+ ot (1),(9.13)

where we recall that the function f is defined by (9.7). Now the strategy is exactly
the same as for the previous case. Indeed, since Px(τ

−
0 < τ

+
t )= ot (1) (uniformly

in x ≥ �t ) is still true, (9.6) implies maxx∈[�t ;t−tγ ] |f (x)−CF | → 0, when t tends
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to ∞. Combining this with part (v) of Lemma 3 [which implies P(τ+
�t
< τ−

0 ;Sτ+
�t

≤
t − tγ )→ 1/CR] yields Ãt → CF , when t → ∞. This completes the proof of
part (ii) of the lemma and completes the proof of Lemma 4.

PROOF OF LEMMA 5. We may assume that p equals some integer, say,m≥ 1.
Indeed, for any m− 1<p ≤m, by the concavity,

Ex

[τ+
t −1∑
k=0

ak+1e
κ(Sk−t)

]p
≤ Ex

[τ+
t −1∑
k=0

(ak+1)
p/meκp(Sk−t)/m

]m
.

Applying (4.7) to ((ak+1)
p/m,Sk−Sk−1) with integerm yields the general case p.

Now, we consider p =m is some integer and prove (4.7). First,

E

[τ+
t −1∑
k=0

eκ(Sk−t)
]

≤
∞∑
k=0

E
[
1{Sk≤t}e

κ(Sk−t)] =
∫ t

0
e−κ(t−y) du(y),

where Sk := max{Sj : 0 ≤ j ≤ k} and

u(y) :=
∞∑
n=0

P(Sn ≤ y), y ≥ 0.

Remark that u is finite and satisfies the following renewal equation (see
Heyde [15], Theorem 1):

u(y)= 1{0≤y} + F ∗ u(y), y ≥ 0,

with F(s) := P(S1 ≤ s), s ∈ R.According to the renewal theorem (see Heyde [15],
Theorem 2 or Feller [13] page 362 (1.17) and page 381),

∫ t
0 e

−κ(t−y) du(y)=O(1)
as t → ∞ (the limit exists in the nonarithmetic case). By linear transformation, we

obtain that for any κ > 0, Ex[∑τ+
t −1
k=0 eκ(Sk−t)] is uniformly bounded for all x ≤ t .

We now prove the lemma by induction on m. By independence,

Ex[∑τ+
t −1
k=0 ak+1e

κ(Sk−t)] = ∑
k≥0 Ex[eκ(Sk−t), k < τ+

t − 1]E[a1] is bounded by
some constant (the law of ak+1 does not depend on x). This proves the lemma in
the case m= 1.

Let m ≥ 2 and assume that the lemma holds for 1, . . . ,m − 1. Write χi :=∑τ+
t −1
k=i ak+1e

κ(Sk−t) for 0 ≤ i < τ+
t and χτ+

t
:= 0. Note that

(χ0)
m =

τ+
t −1∑
i=0

[
(χi)

m − (χi+1)
m]

=
m−1∑
j=0

(
m

j

) τ+
t −1∑
i=0

a
m−j
i+1 e

(m−j)κ(Si−t)(χi+1)
j .
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Applying Markov’s property at i + 1, we get

Ex
[
χm0

] =
m−1∑
j=0

(
m

j

)
Ex

[τ+
t −1∑
i=0

a
m−j
i+1 e

(m−j)κ(Si−t)ESi
[
(χi+1)

j ]]

≤ c
m−1∑
j=0

Ex

[τ+
t −1∑
i=0

a
m−j
i+1 e

(m−j)κ(Si−t)
]
,

since by the induction hypothesis ESi [(χi+1)
j ] is bounded by some constant. The

last expectation is again uniformly bounded (the case m= 1 of the lemma), which
proves that the lemma holds for m, as desired. �

9.2. Proof of Lemma 6. For a ∈ R, denote as before by T +
a := Sτ+

a
− a > 0

(resp., T −
a := a − Sτ−

a
> 0) the overshoot (resp., undershoot) at level a. Clearly

the overshoot T +
a is also the overshoot at the level a for the strict ascending ladder

heights (Hn). By assumption (4.8), max(S1,0) has finite η-exponential moment.
This in view of Doney [12] implies that E[eδH1]<∞ for any 0< δ < η. Applying
Chang ([11], Proposition 4.2) yields (4.9). Similarly for the undershoot T −

a > 0:
since max(−S1,0) has a finite (1 + η)-exponential moment, again (4.10) follows
from Chang ([11], Proposition 4.2).

By (4.9) and (4.10), max0≤k≤τ−
0 ∧τ+

L
|Sk| ≤ L+T +

L +T −
0 is integrable under Pa .

By applying the optional stopping theorem, we get

a = Ea[Sτ−
0 ∧τ+

L
] = Ea

[
(Sτ−

0
− Sτ+

L
)1{τ−

0 <τ
+
L }
]+ Ea[Sτ+

L
].

Observe that Ea[Sτ+
L
] = L+ Ea[T +

L ] ≤ L+ c by (4.9). Since Sτ−
0

− Sτ+
L
< −L,

this implies (4.11). Exactly doing the same and using (4.10), we get (4.12).
Let us mention that by considering the martingale (S2

j − Var(S1)j)j≥1, which

is uniformly integrable on [0, τ−
0 ∧ τ+

L ], we can find some constant c > 0 such that
for all L> 1 and 0 ≤ a ≤ L,

Ea
[
τ−

0 ∧ τ+
L

] ≤ cL2.(9.14)

(i) Proof of (4.13). If L − a ≥ L
3 , we deduce from (4.10) that

Ea[e−Sτ−0 1{τ−
0 <τ

+
L }] ≤ Ea[e−Sτ−0 ] ≤ c which is less than c′L−a+1

L
if c′ ≥ 3c.

Let 0<L− a < L
3 . Note that under Pa , τ−

0 < τ
+
L implies that τ−

L/2 ≤ τ−
0 < τ

+
L .

Then by the strong Markov property at τ−
L/2,

Ea
[
e
−S

τ
−
0 1{τ−

0 <τ
+
L }
] = Ea

[
e
−S

τ
−
0 1{τ−

L/2≤τ−
0 <τ

+
L }
]

= Ea
[
1{τ−

L/2<τ
+
L }ESτ−

L/2

[
e
−S

τ
−
0 1{τ−

0 <τ
+
L }
]]

≤ Ea
[
1{τ−

L/2<τ
+
L }
(
c+ e−Sτ−L/2 1{S

τ
−
L/2
<0}

)]
,
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where we use the fact that for all z := Sτ−
L/2

≥ 0, Ez[e−Sτ−0 1{τ−
0 <τ

+
L }] ≤ Ez[e−Sτ−0 ] ≤

c by (4.10). Since Sτ−
L/2
< 0 means that T −

L/2 ≥ L/2, we deduce from (4.10) that

Ea
[
e
−S

τ
−
L/2 1{S

τ
−
L/2
<0}

] = Ea
[
e
L/2+T −

L/21{T −
L/2≥L/2}

] ≤ ce−δL/2.

This together with (4.11) gives that

Ea
[
e
−S

τ
−
0 1{τ−

0 <τ
+
L }
] ≤ cPa(τ−

L/2 < τ
+
L

)+ ce−δL/2

= cPa−L/2(τ−
0 < τ

+
L/2

)+ ce−δL/2

≤ cL− a + c′
(L/2)

+ ce−δL/2

≤ c′′L− a + 1

L
.

(ii) Proof of (4.14). Let us show that E[∑τ−
0 −1
j=0 e−δSj ]<∞,

E

[τ−
0 −1∑
j=0

e−δSj
]

= ∑
j≥0

E
[
e−δSj , j < τ−

0

] ≤ ∑
j≥0

c(1 + j)−3/2 <∞,

where we used Theorem 4 (and Theorem 6 if S1 is lattice) of [34] for the bound
of E[e−δSj , j < τ−

0 ]. Let (H−
n , σ

−
n )n≥0 be the strict ascending ladder heights and

epochs of −S (with σ−
0 := 0). For a > 0, we notice that

Ea

[τ−
0 −1∑
j=0

e−δSj
]

= E

[τ−−a−1∑
j=0

e−δ(a+Sj )
]

=
∞∑
n=0

E

[ ∑
σ−
n ≤j<σ−

n+1

e−δ(a+Sj )1{H−
n ≤a}

]

=
∞∑
n=0

E
[
e−δ(a−H−

n )1{H−
n ≤a}

]
E

[τ−
0 −1∑
j=0

e−δSj
]
,

by applying the strong Markov property at σ−
n . We showed that E[∑τ−

0 −1
j=0 e−δSj ]<

∞. On the other hand, Lemma 5 applied to the random walk (H−
n )n≥0 says that

sup
a>0

∞∑
n=0

E
[
e−δ(a−H−

n )1{H−
n ≤a}

]
<∞.
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Hence supa≥0 Ea[∑τ−
0 −1
j=0 e−δSj ] <∞. Similary, by considering the random walk

L− S·, we get that Ea[∑τ+
L −1
j=0 e−δ(L−Sj )] is uniformly bounded by some constant.

This proves (4.14).
(iii) Proof of (4.15). Considering the value of the time τ−

0 , then using Markov’s
property, we have

Ea
[
e
S
τ
−
0 −1

−S
τ
−
0
] = ∑

k≥1

Ea
[
eSk−1−Sk1{τ−

0 =k}
]

= ∑
k≥1

Ea
[
h(−Sk−1)1{τ−

0 ≥k}
]

where for any y ∈ R, h(y) := E[e−S11{S1≤y}] ≤ eδyE[e−(1+δ)S1] = ceδy for δ > 0
small enough. Hence,

Ea
[
e
S
τ
−
0 −1

−S
τ
−
0
] ≤ cEa

[τ−
0 −1∑
k=0

e−δSk
]

and (4.15) follows from (4.14).
(iv) Proof of (4.16) and (4.17): Clearly (4.17) follows from (4.16) by consid-

ering the random walk (L− Sj )j≥0. It suffices to prove (4.16). If L− a ≥ L/3,
there is nothing to prove since Ea[∑0≤j<τ−

0 ∧τ+
L
e−δSj ] ≤ Ea[∑0≤j<τ−

0
e−δSj ] is

less than some constant by (4.14).
Considering L− a < L/3, we have

Ea

[ ∑
0≤j<τ−

0 ∧τ+
L

e−δSj
]

= Ea

[
1{τ−

L/2≥τ−
0 ∧τ+

L }
∑

0≤j<τ−
0 ∧τ+

L

e−δSj
]

+ Ea

[
1{τ−

L/2<τ
−
0 ∧τ+

L }
∑

0≤j<τ−
0 ∧τ+

L

e−δSj
]

≤ Ea
[
e−δL/2

(
τ−

0 ∧ τ+
L

)]+ Ea

[
1{τ−

L/2<τ
−
0 ∧τ+

L }
∑

τ−
L/2≤j<τ−

0 ∧τ+
L

e−δSj
]

≤ cL2e−δL/2 + Ea

[
1{τ−

L/2<τ
−
0 ∧τ+

L }ESτ−
L/2

[ ∑
0≤j<τ−

0 ∧τ+
L

e−δSj
]]
,

by using (9.14) and the strong Markov property at τ−
L/2. Let x := Sτ−

L/2
< L/2. If

x < 0, then under Px , τ−
0 = 0 and Ex[∑0≤j<τ−

0 ∧τ+
L
e−δSj ] = 0, whereas if 0 ≤ x <
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L/2, Ex[∑0≤j<τ−
0 ∧τ+

L
e−δSj ] ≤ c by (4.14). Then we get

Ea

[ ∑
0≤j<τ−

0 ∧τ+
L

e−δSj
]

≤ cL2e−δL/2 + cPa(τ−
L/2 < τ

−
0 ∧ τ+

L

)
≤ cL2e−δL/2 + cPa(τ−

L/2 < τ
+
L

)
≤ cL2e−δL/2 + cL− a + c′

L/2
,

by using (4.11). This proves (4.16).
(v) Proof of (4.18): By monotonicity, it is sufficient to prove (4.18) for

0< δ < η. Then notice that

Ea

[
e
−S

τ
−
0 1{τ−

0 <τ
+
L }

∑
0≤j<τ−

0

e−δ(L−Sj )
]

=
∞∑
n=1

Ea

[
1{n≤τ+

L ∧τ−
0 ,Sn<0}e

−Sn ∑
0≤j<n

e−δ(L−Sj )
]
.

Applying Markov’s property of S at n − 1 and using the fact that for all x ≥
0, Ex[e−S11{S1<0}] = E[e−x−S11{S1<−x}] ≤ c(δ)e−(1+δ)x by (4.8) (recall that 0<
δ < η), we get that

Ea

[
e
−S

τ
−
0 1{τ−

0 <τ
+
L }

∑
0≤j<τ−

0

e−δ(L−Sj )
]

≤ c
∞∑
n=1

Ea

[
1{n≤τ+

L ∧τ−
0 }e

−(1+δ)Sn−1
∑

0≤j<n
e−δ(L−Sj )

]
(9.15)

= c
∞∑
j=0

Ea

[
1{j<τ+

L ∧τ−
0 }e

−δ(L−Sj )ESj
[ ∑

0≤m<τ+
L ∧τ−

0

e−(1+δ)Sm
]]
,

where the last equality follows from Markov’s property at j . Applying (4.16)
and (4.17), we get that

Ea

[
e
−S

τ
−
0 1{τ−

0 <τ
+
L }

∑
0≤j<τ−

0

e−δ(L−Sj )
]

≤ c
∞∑
j=0

Ea

[
1{j<τ+

L ∧τ−
0 }e

−δ(L−Sj )cL− Sj + 1

L

]

≤ c
′

L
Ea

[ ∑
0≤j<τ+

L ∧τ−
0

e−(δ/2)(L−Sj )
]

≤ ca + 1

L2 ,



TOTAL PROGENY OF A KILLED BRANCHING RANDOM WALK 3859

proving (4.18).
We mention that (9.15) also holds with δ = 0, which implies that

Ea
[
e
−S

τ
−
0 1{τ−

0 <τ
+
L }τ

−
0

] ≤ cEa[τ−
0 ∧ τ+

L

] ≤ c′L2

(9.16)
∀L≥ 1,0 ≤ a ≤ L.

9.3. Proof of Lemmas 7 and 8. Keeping the notation T −
a for the undershoot at

level a, we have as before for any 0< r < η1,

Pb
(
T −
a > x

) ≤ c(r)e−rx ∀a ≤ b,∀x > 0.(9.17)

PROOF OF LEMMA 7. (i) Proof of (4.22). It is a straightforward consequence
of (9.17).

(ii) Proof of (4.23). Let us introduce the tilted measure P̃a defined by
dP̃a
dPa

|σ(S0,...,Sn) := eγ (Sn−S0). Under P̃a , the random walk drifts to +∞. We write

Ea

[ ∑
0≤�<τ+

L

(1 +L− S�)αerS�
]

= ∑
�≥0

Ea
[
(1 +L− S�)αerS�1{�<τ+

L }
]

= eγ a∑
�≥0

Ẽa
[
(1 +L− S�)αe(r−γ )S�1{�<τ+

L }
]

= eγ ae(r−γ )LẼa

[ ∑
0≤�<τ+

L

(1 +L− S�)αe(r−γ )(S�−L)
]

≤ ceγ ae(r−γ )LẼa

[ ∑
0≤�<τ+

L

e(r−γ )(S�−L)/2
]
.

Therefore, we only have to show that

sup
a≥0

Ẽa

[ ∑
0≤�<τ+

L

e(r−γ )(S�−L)/2
]

≤ c,

which is done by the same argument as in the proof of (4.14).
(iii) Proof of (4.24). We have

Ea

[min(τ−
0 ,τ

+
L )∑

�=0

(1 +L− S�)αeγS�
]

= eγ aẼa
[min(τ−

0 ,τ
+
L )∑

�=0

(1 +L− S�)α
]

= eγ aẼ
[min(τ−−a,τ+

L−a)∑
�=0

(1 +L− a − S�)α
]
.
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Remark that (1 + L − a − S�)α ≤ c(1 + L − a)α + c|S�|α1{S�<0} and that
Ẽ[∑�≥0 |S�|α1{S�<0}] <∞ (indeed observe that for any γ ′ ∈ (0, γ ) there exists
c(α, γ ′) such that

∑
�≥0 |S�|α1{S�<0} ≤ c(α, γ ′)∑�≥0 e

−γ ′S� , whose expectation
under P̃ is finite; see Kesten [22]). Therefore, we get

Ẽ

[min(τ−−a,τ+
L−a)∑

�=0

(1 +L− a − S�)α
]

≤ c′(1 +L− a)αẼ[τ+
L−a

]+ c′

≤ c(1 +L− a)α+1,

which completes the proof of the lemma. �

PROOF OF LEMMA 8. First, we remark that it is enough to prove the lemma
for integer p. In fact let us assume that (i) holds for any integer p satisfying the
hypothesis in (i). Now for 0 ≤ p < γ

b
, we choose an arbitrary integer k larger

than p. Then (4.25) holds for any (ã·, b̃) [in lieu of (a·, b)] satisfying the hypothesis
in (i): 0 ≤ k < γ/b̃ and E[(1 + 1{S1<0}e−ηS1)ãk1]<∞. Observe that ã� := (a�)p/k
for any �≥ 1 and b̃ := pb

k
fulfill the above hypothesis, hence

Ex

[
e
−ηS

τ
−
0

( τ−
0∑
�=1

e(pb/k)S�−1(a�)
p/k

)k]
≤ ckeb̃kx = ckebpx ∀x ≥ 0.

Since k ≥ p, we have by concavity that

Ex

[
e
−ηS

τ
−
0

( τ−
0∑
�=1

ebS�−1a�

)p]
≤ Ex

[
e
−ηS

τ
−
0

( τ−
0∑
�=1

e(pb/k)S�−1(a�)
p/k

)k]
≤ ckebpx.

Hence it is enough to show (i) with an integer p. The same is true for (ii).
Now we assume p is an integer, and we shall use Markov’s property to expand

the power. Let either χ := τ−
0 or χ := min(τ−

0 , τ
+
L ) and consider a measurable

function f : R → R+. Define

Aχ,f (x, k) := Ex

[
e
−ηS

τ
−
0

( χ∑
�=1

f (S�−1)a�

)k]
, k ≥ 0, x ∈ R,

and we mention that Aχ,f (x,0) = e−ηx if x < 0, Aχ,f (x, k) = 0 if x < 0 and
k ≥ 1. Let k ≥ 1 and Yi := ∑χ

�=i f (S�−1)a� for 1 ≤ i ≤ τ−
0 , Yχ+1 := 0. Then

Y k1 =
χ∑
i=1

(
Y ki − Y ki+1

) =
k∑
r=1

Crk

χ∑
i=1

(
f (Si−1)

)r
(ai)

r (Yi+1)
k−r .



TOTAL PROGENY OF A KILLED BRANCHING RANDOM WALK 3861

Applying Markov’s property at i gives that

Aχ,f (x, k)=
k∑
r=1

Crk

∞∑
i=1

Ex
[
1{i≤χ}

(
f (Si−1)

)r
(ai)

rAχ,f (Si, k− r)]
(9.18)

= Bχ(x, k)+Cχ(x, k),
with

Bχ(x, k) :=
k∑
r=1

Crk

∞∑
i=1

Ex
[
1{i≤χ,Si≥0}

(
f (Si−1)

)r
(ai)

rAχ,f (Si, k− r)],
Cχ(x, k) :=

∞∑
i=1

Ex
[
1{i≤χ,Si<0}

(
f (Si−1)

)k
(ai)

ke−ηSi
]
.

In the rest of the proof of the lemma, we shall use twice the notation Aχ(x, k),
Bχ(x, k), Cχ(x, k) but without the subscript χ and take χ = τ−

0 , f (y) = eby in
the proof of (i) and χ = min(τ−

0 , τ
+
L ), f = (L− y + 1)αeby in the proof of (ii).

Proof of (i). Let in this proof A(x, k) = Ex[e−ηSτ−0 (∑τ−
0
�=1 e

bS�−1a�)
k]. We

prove (4.25) by induction on k.
The case k = 0 follows from (4.22). Let 1 ≤ k < γ/b and assume that we know

that A(x, j) ≤ cj ejbx for all 0 ≤ j ≤ k − 1 and x ≥ 0. We have to show that
A(x, k)≤ ckekbx .

Using the induction hypothesis, A(S�, k − r) ≤ ck−re(k−r)bS� if S� ≥ 0.
From (9.18), we have

B(x, k)≤ c
k∑
r=1

∑
�≥1

Ex
[
ekbS�−1(a�)

re(k−r)b�S�, �≤ τ−
0

]

≤ c
k∑
r=1

∑
�≥1

Ex
[
ekbS�−1(a�)

re(k−r)b�S�
]
,

with �S� := S� − S�−1 for �≥ 1. By the independence of (a�,�S�), we get that

B(x, k) ≤ c
k∑
r=1

Ex
[
(a1)

re(k−r)b�S1
]∑
�≥1

Ex
[
ekbS�−1

]

= cekbx
k∑
r=1

E
[
(a1)

re(k−r)bS1
]∑
�≥1

(
E
[
ekbS1

])�−1
.

Observe that
k∑
r=1

E
[
(a1)

re(k−r)bS1
] ≤ E

[(
a1 + ebS1

)k] ≤ 2k
(
E
[
ak1

]+ E
[
ekbS1

])
<∞,(9.19)
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and E[ekbS1]< 1 since k < γ/b. Hence B(x, k)≤ ckekbx .
It remains to deal with C(x, k). Observe from (9.18) that

C(x, k)=
∞∑
i=1

Ex
[
ebkSi−1(ai)

k1{τ−
0 >i−1}1{Si<0}e−ηSi

]

=
∞∑
i=1

Ex
[
ebkSi−11{τ−

0 >i−1}ESi−1

[
1{S1<0}(a1)

ke−ηS1
]]
,

by Markov’s property at i − 1. Since y := Si−1 > 0,

Ey
[
1{S1<0}(a1)

ke−ηS1
] = e−ηyE[1{S1<−y}(a1)

ke−ηS1
] ≤ E

[
1{S1<0}(a1)

ke−ηS1
]
.

It follows that

C(x, k)≤ c
∞∑
i=1

Ex
[
ebkSi−1

] ≤ c′ebkx,

since bk < γ . This yields that A(x, k)= B(x, k)+C(x, k)≤ cebkx proving (4.25).
Proof of (ii). Write in this proof

A(x, j) := Ex

[
e
−ηS

τ
−
0

(min(τ−
0 ,τ

+
L )∑

�=1

(1 +L−S�−1)
αebS�−1a�

)j]
, x ∈ R, j ≥ 0.

We mention that A(x,0)= e−ηx if x < 0 and for j ≥ 1, A(x, j)= 0 if x < 0 or
x > L.

From (9.18), A(x, k)= B(x, k)+C(x, k) with

B(x, k)=
k∑
r=1

Crk

∑
j≥1

Ex
[
(1 +L− Sj−1)

αrerbSj−1(aj )
r

(9.20)
×A(Sj , k− r)1{j<min(τ−

0 ,τ
+
L )}

]
,

C(x, k)=
∞∑
i=1

Ex
[
(L− Si−1 + 1)αkaki e

bkSi−1e−ηSi1{i=τ−
0 <τ

+
L }
]
.(9.21)

We now prove (4.26) by induction on p, where p equals some integer m≥ 1.
First, let m< γ/b, and assume (4.26) holds for all A(x, j) with 0 ≤ j ≤m− 1.

By (9.20),

B(x,m)≤ c
m∑
r=1

∑
j≥1

Ex
[
(1 +L− Sj−1)

αrerbSj−1(aj )
r(1 +L− Sj )α(m−r)

× eb(m−r)Sj , j < τ+
L

]
.
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Write as before �Sj = Sj − Sj−1. Notice that for any j < τ+
L , (1 + L −

Sj )
α(m−r)eb(m−r)�Sj ≤ c + c(1 + L − Sj−1)

α(m−r)eb(m−r)�Sj . By the indepen-
dence of (aj ,�Sj ), it is easy to see that the above expectation under Ex is less
than

cE
[
ar1
(
1 + eb(m−r)S1

)]
Ex

[(
1 +L− Sj−1

)αm
embSj−1, j < τ+

L

]
.

Since E[ar1(1 + eb(m−r)S1)]<∞ by (9.19), this implies that

B(x,m) ≤ c′ ∑
j≥1

Ex
[
(1 +L− Sj−1)

αmembSj−1, j < τ+
L

]
= c′embx ∑

j≥1

E
[
(1 +L− x − Sj−1)

αmembSj−1, j < τ+
L−x

]
(9.22)

≤ c(1 +L− x)αmembx,
where the last estimate follows from the facts that for j < τ+

L−x , (1 + L − x −
Sj−1)

αm ≤ c(1 +L− x)αm + c|Sj−1|αm and that
∑
j≥1 E[|Sj−1|αmembSj−1]<∞

(since mb < γ ).
By Markov’s property at i − 1,

C(x,m)=
∞∑
i=1

Ex
[
(L− Si−1 + 1)αmebmSi−1ESi−1

[
1{S1<0}am1 e−ηS1

]
,

i − 1< τ−
0 < τ

+
L

]
.

As in the proof of (i), ESi−1[1{S1<0}am1 e−ηS1] is less than some constant, hence

C(x,m)≤ c
∞∑
i=1

Ex
[
(L− Si−1 + 1)αmebmSi−1, i − 1< τ−

0 < τ
+
L

]
(9.23)

≤ c′(1 +L− x)αmembx,
by (9.22). Therefore, A(x,m)= B(x,m)+C(x,m)≤ c(1 +L− x)αmembx prov-
ing the case m.

Consider now the case when γ /b = m is an integer. Since m − r < γ/b for
any 1 ≤ r ≤ m, B(y,m − r) ≤ cm−r,α(1 + L − y)α(m−r)e(m−r)y for 0 ≤ y ≤ L.
By (9.20),

B(x,m)≤ c
m∑
r=1

∑
j≥1

Ex
[
(1 +L− Sj−1)

αrerbSj−1(aj )
r (1 +L− Sj )α(m−r)

× e(m−r)Sj 1{j<min(τ−
0 ,τ

+
L )}

]
.

Repeating the same argument as before, we get that

B(x,m)≤ c′Ex
[min(τ−

0 ,τ
+
L )∑

j=1

(1 +L− Sj−1)
αmembSj−1

]
≤ c(1 +L− x)1+αmembx,
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by (4.24). According to (9.23), we get the same estimate forC(x,m), which proves
the case m= γ /b.

It remains to deal with the case m > γ/b. Let m1 := �γ /b� + 1 be the least
integer larger than γ /b and assume that E[am1

1 ] < ∞, E[eb(m1−1)S1] < ∞. We
check that (4.26) is satisfied for m = m1: applying (9.20) and using the already
proved results for A(x,m1 − r) (since m1 − r ≤ γ /b), we get that B(x,m1) is
bounded by

c

m1∑
r=1

∑
j≥1

Ex
[
(1 +L− Sj−1)

αrerbSj−1(aj )
r (1 +L− Sj )1+α(m1−r)

× eb(m1−r)Sj 1{j<τ+
L }
]
,

(the extra 1 in the power comes from the possibility thatm1 −1 = γ /b). As before,
we get that

B(x,m1)≤ c′
∑
j≥1

Ex
[
(1 +L− Sj−1)

1+αm1em1bSj−1, j < τ+
L

] ≤ ceγ (x−L)+m1bL,

by applying (4.24). The same estimate holds for C(x,m1) by using (9.22). This
proves that (4.26) holds form=m1. The otherm>m1 can be treated by induction
on m, and by using the same arguments as before, we omit the details. �

9.4. Proofs of Lemmas 9, 10, 11 and 12. We give in this subsection the proofs
of these lemmas used in the proof of Theorem 3.

PROOF OF LEMMA 9. Write in this proof

A(9.24) :=
{τ+
t −K∑
k=1

∑
u∈�k

Hu(t) > 0

}
,

(9.24)
B(9.24) := {

βt(wτ+
t
)≤ τ+

t −K}
.

Let us first observe that Markov’s inequality together with part (i) of Corollary 3
imply

Q+
x (A(9.24)|G∞)≤

τ+
t −K∑
k=1

∑
u∈�k

π
(
V (u), t

)
,(9.25)

with

π(x, t) := Ex
[
H(t)

]
1{x≤t} + 1{x>t}.

Furthermore, part (ii) of Corollary 3 yields for any x ≤ t

Ex
[
H(t)

] =R(x)e�xQ+
x

[
e
−�S

τ
+
t

R(Sτ+
t
)
1{τ+

t <τ
−
0 }
]

≤ R(x)
R(t)

e�xe−�t ≤ e�(x−t),
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from which we deduce that π(x, t)≤ e�(x−t)1{x≤t} + 1{x>t} ≤ e�(x−t). Therefore,
we obtain

Q+
x (A(9.24)|G∞)≤

τ+
t −K−1∑
k=0

e�(Sk−t)
∑

u∈�k+1

e��V (u).

On the other hand, by the definition of βt (wτ+
t
) [see (1.14)],

1B(9.24) ≤
τ+
t −K−1∑
k=0

e�(Sk−t)
(
B(wk+1)

)�
.

It follows that

Q+
x (A(9.24) ∪B(9.24)|G∞)≤

τ+
t −K−1∑
k=0

e�(Sk−t)bk+1 :=ϒ(t),(9.26)

with bk+1 := ∑
u∈�k+1

e��V (u) + (B(wk+1))
�. Recall that under Q+

x , (Sk, bk)k≥0
is a Markov chain; see Proposition 2. Fix a λ > 0. Then we claim that the following
double limits equal zero:

lim sup
K→∞

lim sup
t→∞

Q+
x

(∃k < τ+
t −K : t − Sk < λ, τ+

t > K
) = 0.(9.27)

In fact, let t be large, and observe that

Q+
x

(∃k < τ+
t −K : t − Sk < λ, τ+

t > K
) ≤ Q+

x

(
τ+
t−λ +K < τ+

t

)
,

which by Markov’s property at τ+
t−λ, is less than supt−λ<y<t Q+

y (K < τ
+
t ). By the

absolute continuity between Q+
y and Qy ,

Q+
y

(
K < τ+

t

) = Qy
[
1{K<τ+

t ∧τ−
0 }
R(SK)

R(y)

]
≤ R(t)

R(y)
Qy

(
τ+
t > K

)
= R(t)

R(y)
Q
(
τ+
t−y > K

)
.

It follows that

lim sup
t→∞

Q+
x

(∃k < τ+
t −K : t − Sk < λ, τ+

t > K
) ≤ Q

(
τ+
λ >K

)
lim sup
t→∞

R(t)

R(t − λ)
= Q

(
τ+
λ >K

)
,

which goes to 0 as K → ∞. This proves (9.27).
Let

E1(t,K) := {∀k < τ+
t −K : t − Sk ≥ λ, τ+

t > K
}
.
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We have Q+
x (τ

+
t > K)→ 1 as t → ∞, which in view of (9.27) yields that for any

small ε > 0, there exists some K0 =K0(ε, λ) > 0 such that for all K ≥K0, there
exists some t0(K, ε,λ) satisfying

Q+
x

(
E1(t,K)

c) ≤ ε ∀t ≥ t0.(9.28)

We claim that there exists some small δ > 0 such that

sup
z≥0

Q+
z

[
bδ1
]
<∞,(9.29)

lim sup
t→∞

Q+
x

[τ+
t −1∑
k=0

eκ(Sk−t)
]
<∞(9.30)

for any κ > 0.
Assuming for the moment (9.29) and (9.30), we prove the lemma as follows:

define

E2(t,K) :=
τ+
t −K−1⋂
k=0

{
bk+1 ≤ e(�/2)(t−Sk)}∩ {

τ+
t > K

}
.

By (9.26) and on E2(t,K)∩E1(t,K) which is G∞-measurable,

Q+
x (A(9.24) ∪B(9.24)|G∞)≤ϒ(t)≤

τ+
t −K−1∑
k=0

e(�/2)(Sk−t),

which is less than e−�λ/4 ∑τ+
t −K−1
k=0 e(�/4)(Sk−t) since on E1(t,K), Sk − t ≤ −λ

for k < τ+
t −K . This with (9.28) imply that for all t ≥ t0,

Q+
x (A(9.24) ∪B(9.24))

(9.31)

≤ ε+ Q+
x

(
E2(t,K)

c ∩E1(t,K)
)+ e−�λ/4Q+

x

[τ+
t −1∑
k=0

e(�/4)(Sk−t)
]
.

On the other hand, fix the constant δ > 0 in (9.29), and we have

Q+
x

(
E2(t,K)

c ∩E1(t,K)
) ≤ Q+

x

[
1E1(t,K)

∑
k<τ+

t −K
(bk+1)

δe−(δ�/2)(t−Sk)
]

≤ e−δ�λ/4Q+
x

[
1E1(t,K)

∑
k<τ+

t −K
(bk+1)

δe−(δ�/4)(t−Sk)
]

≤ e−δ�λ/4Q+
x

[ ∑
k<τ+

t

(bk+1)
δe−(δ�/4)(t−Sk)

]
.
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Applying Markov’s property at k gives that

Q+
x

[τ+
t −1∑
k=0

e(δ�/4)(Sk−t)(bk+1)
δ

]
=

∞∑
k=0

Q+
x

[
1{k<τ+

t }e
(δ�/4)(Sk−t)Q+

Sk

(
bδ1
)]

≤ sup
z≥0

Q+
z

[
bδ1
]
Q+
x

[τ+
t −1∑
k=0

e(δ�/4)(Sk−t)
]
.

By (9.29) and (9.30), we get some constant c independent of λ and t (the con-

stant c may depend on x, δ) such that Q+
x [∑τ+

t −1
k=0 e(δ�/4)(Sk−t)(bk+1)

δ] ≤ c and

Q+
x [∑τ+

t −1
k=0 e(�/4)(Sk−t)] ≤ c. Going back to (9.31), we obtain that for all K ≥K0,

lim sup
t→∞

Q+
x (A(9.24) ∪B(9.24))≤ ε+ ce−δ�λ/4 + ce−�λ/4.

Letting λ→ ∞ and ε→ 0, we get that

lim sup
K→∞

lim sup
t→∞

Q+
x (A(9.24) ∪B(9.24))= 0.

It remains to show (9.29) and (9.30). By (5.22),

Q+
z

[
bδ1
] = Ez

[
e−�z

R(z)

∑
|u|=1

1{V (u)≥0}R
(
V (u)

)
e�V (u)

(∑
v �=u
e�(V (v)−z) + B(u)�

)δ]

= E
[

1

R(z)

∑
|u|=1

1{V (u)≥−z}R
(
V (u)+ z)e�V (u)(∑

v �=u
e�V (v) + B(u)�

)δ]

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cE
[ ∑
|u|=1

(
1 + ∣∣V (u)∣∣)e�V (u)(( ∑

|v|=1

e�V (v)
)δ

+ B(u)δ�
)]
,

(critical case),

cE
[( ∑

|u|=1

e�V (u)
)1+δ

+
( ∑

|u|=1

e�V (u)
)
B(u)δ�

]
,

(subcritical case),

since R(z) ∼ CRz in the critical case and R(z) ∼ CR in the subcritical case as
z→ ∞. If δ > 0 is sufficiently small, the later expectations are finite by (1.13)
together with (1.3) and (1.4), respectively, which yields (9.29).

To show (9.30), we deduce from the absolute continuity between Q+
x and Qx

that

Q+
x

[τ+
t −1∑
k=0

eκ(Sk−t)
]

=
∞∑
k=0

Qx
[
1{k<τ+

t ∧τ−
0 }e

κ(Sk−t) R(Sk)
R(x)

]
.(9.32)
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Let us distinguish the critical and subcritical cases: In the critical case, Q[S1] =
0 and R(z)∼ CRz as z→ ∞. There exists some constant c such that for all t ≥ 1,
the RHS of (9.32) is less than

ct

∞∑
k=0

Qx
[
1{k<τ+

t ∧τ−
0 }e

κ(Sk−t)] = ctQx
[τ+
t ∧τ−

0 −1∑
k=0

eκ(Sk−t)
]
.

Applying (4.17) with L = t and δ = κ [this δ has nothing to do with that

in (9.29)] gives that Qx[∑τ+
t ∧τ−

0 −1
k=0 eκ(Sk−t)] ≤ c5

x+1
t

. Hence Q+
x [∑τ+

t −1
k=0 eκ(Sk−t)] ≤

c(x + 1) for all t ≥ 1. This proves (9.30) in the critical case.
In the subcritical case, we note that Q[S1]> 0 and R(·) is bounded. By (9.32),

we get that for some constant c > 0,

Q+
x

[τ+
t −1∑
k=0

eκ(Sk−t)
]

≤ c
∞∑
k=0

Qx
[
1{k<τ+

t }e
κ(Sk−t)],

which, according to Lemma 5 is uniformly bounded by some constant. This com-
pletes the proof of (9.30) and hence that of Lemma 9. �

PROOF OF LEMMA 10. Observe that{
τ+
t > K

}∩�c(t,K)⊂ ⋃
k∈(τ+

t −K,τ+
t ]

⋃
u∈�k

{∃v ∈ T (u) : |u| ≤ τ−
0 (v) < τ

+
t (v)= |v|}.

Recall that GCt = σ {(�V (u),u ∈ �k),V (wk),wk,�k,1 ≤ k ≤ τ+
t }. For any

event F ∈ GCt , we deduce from Corollary 3 that

Q+
x

({
τ+
t > K

}∩ �c(t,K)) ≤ Q+
x

(
Fc

)+ Q+
x

[
1F

∑
k∈(τ+

t −K,τ+
t ]

∑
u∈�k

f
(
V (u)

)]
,

with f (y) := Py(∃v : τ−
0 (v) < τ

+
t (v) = |v|) = P(∃v : τ−−y(v) < τ+

t−y(v) = |v|).
[We mention that f (y) = 0 if y > t .] For any y ≤ t , by the branching property
at τ−−y(v), f (y) ≤ supz≤−y Pz(∃u : τ+

t−y(u) < ∞) = P(∃u : τ+
t (u) < ∞) := η(t)

which converges to 0 since the (nonkilled) branching random walk V goes to −∞.
Therefore,

Q+
x

({
τ+
t > K

}∩ �c(t,K)) ≤ Q+
x

(
Fc

)+ η(t)Q+
x

[
1F

∑
k∈(τ+

t −K,τ+
t ]

#�k

]
.

Consider an arbitrary ε > 0. By Lemma 4(ii), (Sτ+
t

− Sτ+
t −i ,1 ≤ i ≤ K) con-

verges in law, and hence there exists some λ= λ(ε,K) > 0 such that for all large t
(in particular, t > 4λ),

Q+
x (F1) := Q+

x

({
τ+
t > K

}∩ ⋂
k∈(τ+

t −K,τ+
t ]

{
Sk > t − λ, |Sk − Sk−1| ≤ λ})> 1 − ε,
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with obvious definition of the event F1. Let C > 0, and define

F2 := F1 ∩ {∀k ∈ (
τ+
t −K,τ+

t

]
: #�k ≤ C}.

Hence for all sufficiently large t , Q+
x (τ

+
t ≤K)≤ ε and

Q+
x

(
�c(t,K)

) ≤ 2ε+ Q+
x

(
F1 ∩ Fc2

)+ η(t)Q+
x

[
1F2

∑
k∈(τ+

t −K,τ+
t ]

#�k

]
(9.33)

≤ 2ε+ Q+
x

(
F1 ∩ Fc2

)+CKη(t),
with η(t)→ 0 as t → ∞. By (1.3) and (1.4), we can find a sufficiently small δ > 0
such that Q[(#�1)

δ] = E[(ν − 1)δ
∑

|u|=1 e
�V (u)] := c <∞. Observe that

Q+
x

(
F1 ∩ Fc2

) ≤ C−δQ+
x

[
1F1

∑
k∈(τ+

t −K,τ+
t ]
(#�k)

δ

]

≤ C−δ∑
k≥1

Q+
x

[
1{|Sk−Sk−1|≤λ,Sk−1>t−λ,τ+

t ≥k}(#�k)
δ]

= C−δ∑
k≥1

Qx
[
R(Sk)

R(x)
1{|Sk−Sk−1|≤λ,Sk−1>t−λ,k≤τ+

t ∧τ−
0 }(#�k)

δ

]

≤ C−δ∑
k≥1

R(t + λ)
R(x)

Qx
[
1{Sk−1>t−λ,k≤τ+

t ∧τ−
0 }(#�k)

δ],
since R is nondecreasing and Sk ≤ t + λ. By Corollary 1(i), under Qx , #�k is in-
dependent of {Sk−1 > t −λ, k ≤ τ+

t ∧ τ−
0 } and has the same law as #�1; moreover

Qx[(#�1)
δ] = Q[(#�1)

δ] =: c <∞. Using the fact that R(t + λ)≤ 2R(t − λ) for
all large t , we have

Q+
x

(
F1 ∩ Fc2

) ≤ cC−δ∑
k≥1

R(t + λ)
R(x)

Qx[1{Sk−1>t−λ,k≤τ+
t ∧τ−

0 }]

≤ 2cC−δ∑
k≥1

Qx
[
R(Sk−1)

R(x)
1{Sk−1>t−λ,k≤τ+

t ∧τ−
0 }
]

= 2cC−δQ+
x

[ τ+
t∑
k=1

1{Sk−1>t−λ}
]
.

Observe that Q+
x [∑τ+

t

k=1 1{Sk−1>t−λ}] ≤ Q+
x [∑τ+

t

k=1 e
�(Sk−1−(t−λ))] which

by (9.30) is smaller than some constant c = c(λ, x) <∞. Going back to (9.33),
we get that

Q+
x

(
�c(t,K)

) ≤ 2ε+ 2cC−δ +CKη(t).
Letting t → ∞, C→ ∞ and then ε→ 0 (δ being fixed), we prove Lemma 10. �
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PROOF OF LEMMA 11. First, note that there is nothing to prove in the sub-
critical case [since R(t)≡ 1 by (6.4)]. It remains to consider the critical case, thus
�= �∗ and R(t)= t for all t ≥ 0. For notational convenience, write

A := exp

{
−f (t0)1D1,K −

K∑
i=1

1Di,K

m(i)∑
j=1

〈
f,μ

(i,j)

si−t0−x(i)j
〉}
,

B := e�∗t0 +
K∑
i=1

m(i)∑
j=1

∫
e�∗zμ(i,j)

si−t0−x(i)j
(dz),

D := t0e�∗t0 +
K∑
i=1

m(i)∑
j=1

∫
ze�∗zμ(i,j)

si−t0−x(i)j
(dz).

Then

ϕt,K
(
t0, s1, . . . , sK, θ

(1), . . . , θ (K)
) = E

[
A

B + (1/t)D
]
,

ϕ∞,K
(
t0, s1, . . . , sK, θ

(1), . . . , θ (K)
) = E

[
A

B

]
.

Since f ≥ 0, A≤ 1, and we get that∣∣ϕt,K(t0, s1, . . . , sK, θ(1), . . . , θ (K))− ϕ∞,K
(
t0, s1, . . . , sK, θ

(1), . . . , θ (K)
)∣∣

≤ 1

t
E
[
D

B2

]
.

We are going to prove that

D

B2 ≤ 1

�∗
a.s.

Indeed, notice first that the nonkilled branching random walk V goes to −∞,
μ
(i,j)

si−t0−x(i)j
(dz) is an a.s. finite measure on R+, and t0e�∗t0 ≤ 1

�∗ e
2�∗t0 for any

t0 > 0. Second, let ζi,j := sup{a > 0 :
∫
[a,∞) μ

(i,j)

si−t0−x(i)j
(dz) > 0}. Note that

ζi,j ≤ 1
�∗ e

�∗ζi,j ≤ 1
�∗

∫
e�∗zμ(i,j)

si−t0−x(i)j
(dz). It follows that

∫
ze�∗zμ(i,j)

si−t0−x(i)j
(dz)≤

ζi,j
∫
e�∗zμ(i,j)

si−t0−x(i)j
(dz)≤ 1

�∗ (
∫
e�∗zμ(i,j)

si−t0−x(i)j
(dz))2. Hence

D ≤ 1

�∗
e2�∗t0 + 1

�∗

K∑
i=1

m(i)∑
j=1

(∫
e�∗zμ(i,j)

si−t0−x(i)j
(dz)

)2

≤ B
2

�∗
,

yielding that |ϕ̃t,K(T +
t , S

(t)
1 , . . . , S

(t)
K )− ϕ̃∞,K(T +

t , S
(t)
1 , . . . , S

(t)
K )| ≤ 1

t�∗ and prov-
ing Lemma 11. �
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PROOF OF LEMMA 12. We prove the following stronger statement: For any
K ≥ 1,

lim
t→∞ Q+

x

[
ϕ̃∞,K

(
T +
t , S

(t)
1 , . . . , S

(t)
K

)
1{τ+

t >K}
]

(9.34)

= Q
[exp{−f (UŜσ̂ )1D1,K −∑K

i=1 1Di,K

∑ν̃i
j=1〈f,μ(i,j)Ŝi−UŜσ̂−X̃(i)j

〉}
e�UŜσ̂ +∑K

i=1
∑ν̃i
j=1

∫
e�zμ

(i,j)

Ŝi−UŜσ̂−X̃(i)j
(dz)

]
,

which implies Lemma 12 by letting K → ∞. Define

£i (s, θ) := min
i≤j≤K

(
sj − logB(θj )

)
, 1 ≤ i ≤K,

A(t0, s, θ) := exp

{
−f (t0)1{£1(s,θ)≥t0} −

K∑
i=1

1{£i (s,θ)≥t0}
m(i)∑
j=1

〈
f,μ

(i,j)

si−t0−x(i)j
〉}
,

B(t0, s, θ) := e�t0 +
K∑
i=1

m(i)∑
j=1

∫
e�zμ

(i,j)

si−t0−x(i)j
(dz)

for s := (s1, . . . , sK), θ := (θ1, . . . , θK), with θi = ∑m(i)

j=1 δ{x(i)j }, 1 ≤ i ≤K . Denote

by �(s) a random variable taking values in 
⊗K
f with law

∏K
i=1�si−si−1(dθ

(i)).
Then (recalling s0 := 0)

ϕ̃∞,K(t0, s)=
∫

E
[
A(t0, s, θ)
B(t0, s, θ)

] K∏
i=1

�si−si−1

(
dθ(i)

)
= E

[
A(t0, s,�(s))
B(t0, s,�(s))

]
, (t0, s) ∈ R

∗+ × R
K+ .

Plainly the function ϕ̃∞,K is bounded by 1. Therefore Lemma 12 will be a con-
sequence of Lemma 4 if we have checked that for any fixed s ∈ RK+ , the function
t0 → ϕ̃∞,K(t0, s) is continuous excepted on a set that is at most countable.

To this end, we study at first the continuity of y → 〈f,μ(i,j)y 〉 which are i.i.d.
copies of 〈f,μy〉. Recall that 〈f,μy〉 = ∑

u∈Cy f (V (u)− y) for any fixed y > 0.

Let us consider τ̃+
t (u) := inf{k :V (uk)≥ t} and define the associated optional line

C̃t just like (5.7). By the definition of the stopping line C̃y and the continuity of f ,
we immediately obtain

lim sup
k→∞

∣∣〈f,μyk 〉 − 〈f,μy〉
∣∣ ≤ f (0)∑

u

1{τ̃+
y =|u|,V (u)=y}

(9.35)
= f (0) ∑

u∈C̃y

1{V (u)=y}



3872 E. AÏDÉKON, Y. HU AND O. ZINDY

for any sequence (yk)k , such that yk → y when k→ ∞. On the other hand, Corol-
lary 1(ii) also holds for this family of optional lines by replacing n by τ̃+

t . Then
we take the expectation (under P) in (9.35) and obtain that

E
[
lim sup
k→∞

∣∣〈f,μyk 〉 − 〈f,μy〉
∣∣] ≤ f (0)e−�yQ(Sτ̃+

y
= y),(9.36)

where τ̃+
y := inf{n ≥ 0 :Sn ≥ y}. Denoting as before by (Hn)n≥1 the (strict) as-

cending ladder heights of S, we remark that

 1 := {
y : Q(Sτ̃+

y
= y) > 0

} ⊂
∞⋃
n=1

{
y : Q(Hn = y) > 0

}
is countable.

Then by (9.36), y → 〈f,μy〉 is continuous (in L1 hence a fortiori in probability)

on y /∈  1. The same holds for y → 〈f,μ(i,j)y 〉 with any i, j ≥ 1. Now we write

explicitly �(s) by a random vector �(s) = (θ1, . . . , θK) with θi := ∑M(i)

j=1 δ{X(i)j }
and the associated random variables £i (s, θ), 1 ≤ i ≤ K . [The random variables
M(i) take values in N, X(i)j in R, and £i (s, θ) in R ∪ {∞}.] Observe that all the
following three events are countable:

 2 :=
K⋃
i=1

{
x : P

(
x =X(i)j , for some 1 ≤ j ≤M(i))> 0

}
,

 3 :=
K⋃
i=1

{
x : P

(
x = £i (s, θ)

)
> 0

}
,

 4 := 3 ∪
K⋃
i=1

{si − x − y :x ∈ 2, y ∈ 1}.

We claim that ϕ∞,K(t0, s) is continuous on t0 /∈ 4. To check this, we fix t0 /∈
 3 and take a sequence tn → t0 as n→ ∞. Let

E :=
K⋃
i=1

M
(i)
j⋃

j=1

{
X
(i)
j ∈ si − t0 − 1

}∪ {
£i (s, θ)= t0}.

Since t0 /∈ 4, we deduce from the definition of 2 that P(E)= 0. Observe that
on Ec, si− t0 −X(i)j /∈ 1 and t0 �= £i (s, θ), hence A(tn, s, θ)1Ec →A(t0, s, θ)1Ec
in probability. In other words,A(tn, s, θ)→A(t0, s, θ) in probability, and the same
holds for B(tn, s, θ). By the dominated convergence theorem, when n→ ∞,

ϕ∞,K(tn, s) = E
[
A(tn, s,�(s))
B(tn, s,�(s))

]

→ E
[
A(t0, s,�(s))
B(t0, s,�(s))

]
= ϕ∞,K(t0, s),
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proving the desired continuity at any t0 /∈  3. Then we can apply Lemma 4 and
get Lemma 12. �

9.5. Proof of Lemma 16. Throughout the proof, δ > 0 is taken to be suffi-
ciently small.

Proof of (i). Let us write f (x) := − log Ee−x�1 for x ≥ 0; By a Tauberian theo-
rem,

f (x)∼ a x

log(1/x)
, x→ 0.

Let Ax := {max1≤i≤ξ Yi ≤ x−1+δ/2} (max∅ = 0). Then for x > 0,

P
(
Acx

) ≤ E

ξ∑
i=1

x(1+δ)(1−δ/2)Y 1+δ
i = cx(1+δ)(1−δ/2) = o(x1+δ/3), x→ 0,

since δ > 0 is small. By independence of (�i), we have

E
[
e−x

∑ξ
i=1 Yi�i

] = E
[
e−

∑ξ
i=1 f (xYi)

]
(9.37)

= E exp

[
−

ξ∑
i=1

f (xYi)1Ax

]
+ o(x1+δ/3).

Define

ϒx := log(1/x)

x

ξ∑
i=1

f (xYi)1Ax , 0< x < 1.

Plainly as x→ 0,ϒx → a
∑ξ
i=1 Yi almost surely. Notice that onAx , xYi ≤ xδ/2,

which together with the asymptotic properties of f implies that for all 0< x < x0

with x0 sufficiently small, f (xYi) ≤ 2a xYi
log(1/(xYi))

≤ 4a
δ

xYi
log(1/x) , for all 1 ≤ i ≤ ξ .

Hence

log(1/x)

x

(
1 − e−x/ log(1/x)ϒx

) ≤ϒx ≤ 4a

δ

ξ∑
i=1

Yi.

By the dominated convergence theorem,

log(1/x)

x

(
1 − E exp

[
−

ξ∑
i=1

f (xYi)1Ax

])
→ aE

ξ∑
i=1

Yi.

This and (9.37) yield that as x → 0, log(1/x)
x

(1 − E[e−x∑ξ
i=1 Yi�i ])→ aE

∑ξ
i=1 Yi

which implies (i) by a Tauberian theorem.
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Proof of (ii). Define W := ∑ξ
i=1 Yi and let λ > 1 and 0 < ε < a/2. By condi-

tioning on (Yi)1≤i≤ξ and using the tail of �i , we have that for large t ,

P

(
ξ∑
i=1

Yi�i > t

)
≥ P

(
max

1≤i≤ξ(Yi�i) > t,W ≤ λ
)

≥ E

[
1{W≤λ}

(
1 −

ξ∏
i=1

(
1 − (a − ε)Ypi

tp

))]

≥ (a − 2ε)E

[
1{W≤λ}

ξ∑
i=1

Y
p
i

]
t−p,

which implies that

lim inf
t→∞ tpP

(
ξ∑
i=1

Yi�i > t

)
≥ (a − 2ε)E

[
1{W≤λ}

ξ∑
i=1

Y
p
i

]
.

Letting ε→ 0 and then λ→ ∞ yields the lower bound.
To prove the upper bound, we remark that by considering c+Yi

c
instead of Yi

(with c > 0), we can assume without loss of generality that almost surely Yi ≥ 1
(if i ≤ ξ ).

By Markov’s inequality (δ being small),

P
(
W > t1−δ/2) ≤ t−(p+δ)(1−δ/2)

E
[
Wp+δ] = o(t−p).(9.38)

Let ε > 0 be small, and define

A(9.39) :=
{

max
1≤i≤ξ(Yi�i)≤ εt

}
, B(9.39) :=

{
ξ∑
i=1

Yi�i ≥ t
}
,

(9.39)
C(9.39) := {

W ≤ t1−δ/2}.
By conditioning on Y := σ {Yi,1 ≤ i ≤ ξ, ξ}, we get that

P(A(9.39) ∩B(9.39) ∩C(9.39))≤ t−p−δ
E

[
1C(9.39)E

[(
ξ∑
i=1

Yi�i

)p+δ
1A(9.39)

∣∣∣∣Y
]]
.

By convexity, (
∑ξ
i=1 yi�i)

p+δ ≤ (∑ξ
i=1 yi)

p+δ−1 ∑ξ
i=1 yi�

p+δ
i for any yi ≥ 0.

Observe that by using the tail of �i ,

E
[
�
p+δ
i 1{�i≤εt/yi}

] ≤
∫ εt/yi

0
(p+ δ)xp+δ−1

P(�i > x)dx ≤ 2(p+ δ)
δ

(εt/yi)
δ,

for all large t and yi ≤ t1−δ/2. It follows that for any 0< ε < 1,

P(A(9.39) ∩B(9.39) ∩C(9.39))≤ cp,δt−pεδE
[
Wp+δ−1

ξ∑
i=1

Y 1−δ
i

]
.(9.40)
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Since Yi ≥ 1, the above expectation is less than E[Wp+δ] which is finite.
Let 1 < q < p and p − q < 1/2. Using Markov’s inequality and conditioning

on Y, we obtain

P
({∃i ≤ ξ : εt < �iYi < (1 − ε)t}∩B(9.39) ∩C(9.39)

)
≤ P

({
∃i ≤ ξ :�iYi > εt,

∑
j �=i
Yj�j > εt

}
∩C(9.39)

)

≤ (εt)−1−q
E

[
ξ∑
i=1

Yi�i

(∑
j �=i
Yj�j

)q
1C(9.39)

]

≤ (εt)−1−q
E

[
ξ∑
i=1

Yi

(∑
k �=i
Yk

)q−1(∑
j �=i
Yj�

q
j �i

)
1C(9.39)

]

≤ (εt)−1−q
E[�1]E[�q1 ]E[W 1+q1C(9.39)

]
,

since (
∑
j �=i Yj�j )q ≤ (∑k �=i Yk)q−1(

∑
j �=i Yj�

q
j ) for all i by the convexity in-

equality and since the �j ’s are i.i.d. and independent of Y. Furthermore, observe
that E[W 1+q1C(9.39)] ≤ E[Wp+δ]t (1+q−p−δ)(1−δ/2). Therefore, we obtain

P
({∃i ≤ ξ : εt < �iYi < (1 − ε)t}∩B(9.39) ∩C(9.39)

) ≤ cε,q t−p−(1+q−p)δ/2.

This combined with (9.38) and (9.40) yields that, for all large t ,

P(B(9.39))≤ P

(
max

1≤i≤ξ(Yi�i) > (1 − ε)t,C(9.39)

)
+ c′p,δt−pεδ + o(t−p)

≤ E

[
ξ∑
i=1

(a + ε)Ypi
(1 − ε)ptp 1{W≤t1−δ/2}

]
+ c′p,δt−pεδ + o(t−p).

It follows that

lim sup
t→∞

tpP

(
ξ∑
i=1

Yi�i > t

)
≤ E

[
ξ∑
i=1

(a + ε)Ypi
(1 − ε)p

]
+ c′p,δεδ,

where δ > 0 is fixed. Letting ε → 0 yields the upper bound and completes the
proof of the lemma.

10. Notation.
Tree

T : genealogical tree;
∅: root;
|u|: generation of the vertex u;
ν(u): number of children of u;
Fn: sigma-field of the branching random walk up to generation n.
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Branching random walk
(V (u),u ∈ T ): branching random walk;
L : point process on R governing the positions of the offspring of an individual;
L[a]: set of vertices absorbed below level a;
Z[0,L]: number of vertices in L[0] that did not touch level L;
Ct : set of vertices absorbed above level t ;
μ̄t : point process on R composed of the overshoots of the vertices in Ct ;
τ−
t (u), respectively, τ+

t (u): for a vertex u, hitting time of (−∞, t), respectively,
(t,∞), on its ancestral line (∞ if no such time).

Killed branching random walk
Z : set of nonkilled vertices;
Z: cardinal of Z ;
H (t): set of nonkilled vertices absorbed above level t ;
H(t): cardinal of H (t);
μt : point process on R composed of the overshoots of the vertices in H (t);
μ̂∞: limit in distribution of μt conditioned upon being nonempty.

Good and bad vertices
B(u): function controlling the jumps of the offspring of u;
βL(u): gives the first time there is an atypical jump. βL(u) = ∞ means that

vertex u is a good vertex;
HB(t): set of vertices in H (t) which are good;
μ̄B,t : the point process μ̄t restricted to good vertices;
μB,t : the point process μt restricted to good vertices;
Zg[0,L]: number of good vertices in Z[0,L];
Zb[0,L]: number of bad vertices in Z[0,L].
One-dimensional random walk
Sn: one-dimensional random walk;
R(x): renewal function of Sn; see (5.20);
τ+
t : hitting time of (t,+∞);
τ−
t : hitting time of (−∞, t);
T +
t : overshoot at level t ;
T −
t : undershoot at level t .

Spine decomposition
wn: spine at generation n;
�n: brothers of wn;
Sn: position of wn;
Gn: sigma-field generated by wk,V (wk),�k for k ≤ n;
Qx : defined by dQx

dPx |Fn
:= e−ρx∑|u|=n eρV (u). Under Qx , the spine is a centered

random walk;
Q+
x : defined by dQ+

x

dPx |Fn
:= 1

R(x)
e−ρx∑|u|=n R(V (u))eρV (u)1{τ−

0 (u)>|u|}. Under

Q+
x , the spine is a centered random walk conditioned to stay positive;
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Q(�−)
x : defined by dQ

(�−)
x

dPx |Fn
:= e−�−x∑|u|=n e�−V (u). Under Q(�−)

x , the spine

is a random walk with negative drift.

Martingales
∂Wn := −∑

|u|=n V (u)e�∗V (u);
M∗
n := ∑

|u|=n R(V (u))e�V (u);
M
(�−)
n := ∑

|u|=n e�−V (u).
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