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Paris XIII

Consider a branching random walk on the real line with a killing bar-
rier at zero: starting from a nonnegative point, particles reproduce and move
independently, but are killed when they touch the negative half-line. The
population of the killed branching random walk dies out almost surely in
both critical and subcritical cases, where by subcritical case we mean that
the rightmost particle of the branching random walk without killing has a
negative speed, and by critical case, when this speed is zero. We investigate
the total progeny of the killed branching random walk and give their pre-
cise tail distribution both in the critical and subcritical cases, which solves
an open problem of Aldous [Power laws and killed branching random walks,
http://www.stat.berkeley.edu/~aldous/Research/OP/brw.html].

1. Introduction. We consider a one-dimensional discrete-time branching ran-
dom walk V on the real line R. At the beginning, there is a single particle located
at the origin 0. Its children, who form the first generation, are positioned according
to a certain point process .’ on R. Each of the particles in the first generation inde-
pendently gives birth to new particles that are positioned (with respect to their birth
places) according to a point process with the same law as .Z’; they form the second
generation. And so on. For any n > 1, each particle at generation n produces new
particles independently of one another and of everything up to the nth generation.

Clearly, the particles of the branching random walk V form a Galton—Watson
tree, which we denote by 7. Call @ the root. For every vertex u € 7, we denote
by |u| its generation (then |@| = 0) and by (V (u), |u| = n) the positions of the
particles in the nth generation. Then .Z = Z‘ =1 8(v(u))- The tree 7 will encode
the genealogy of our branching random walk.

It will be more convenient to consider a branching random walk V starting
from an arbitrary x € R [namely, V(&) = x], whose law is denoted by P, and the
corresponding expectation by E, . For simplification, we write P = P and E = Ey.
Letv:= 3}, = | be the number of particles in the first generation, and denote by
v(u) the number of children of u € 7.
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Assume that E[v] > 1, namely the Galton—Watson tree 7 is supercritical. Then
the system survives with positive probability P(7 = oco) > 0. Let us define the
logarithmic generating function for the branching walk

W (t) ::10gE[ > e’V(L‘)} € (—00, +00], teR.
lul=1

We shall assume that i is finite on an open interval containing O and that
supp-Z N (0, c0) # @ [the later condition is to ensure that V can visit (0, co)
with positive probability, otherwise the problem that we shall consider becomes of
a different nature]. Assume that there exists g, > 0 such that

(1.1) ¥ (0x) :Q*‘/I/(Q*)-

We also assume that i is finite on an open set containing [0, o.]. The condi-
tion (1.1) is not restrictive: For instance, if we denote by m™ = esssup supp.Z,
then (1.1) is satisfied if either m* = oo or m* < oo and E} =1 v uy=m} < 15
see Jaffuel [18] for detailed discussions.

Recall that (Kingman [23], Hammersley [14], Biggins [7]) conditioned on {7 =
00},

1

(1.2) nlggo " |max V() =y (04) a.s.,

where o4 is given in (1.1). According to v¥'(04) = 0 or ¥/ (04) < 0, we call the
case critical or subcritical. Conditioned on {7 = oo}, the rightmost particle in the
branching random walk without killing has a negative speed in the subcritical case,
while in the critical case it converges almost surely to —oo in the logarithmical
scale; see [16] and [2] for the precise statement of the rate of almost sure conver-
gence.

We now place a killing barrier at zero: any particle which enters (—oo, 0) is
removed and does not produce any offspring. Hence at every generation n > 0,
only the particles that always stayed nonnegative up to time »n survive. Denote by
% the set of all surviving particles of the killed branching walk,

Z={ueT:V(@)=>0,Yvel[d,ul},

where [, u] denotes the shortest path in the tree 7 from u to the root &. We are
interested in the total progeny

7 =#Z.
Then Z < 00, a.s., in both critical and subcritical cases. David Aldous made the
following conjecture:
CONJECTURE (Aldous [4]).
(i) (Critical case). If ¥'(0+) =0, then E[Z] < 0o and E[Z log Z] =
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(ii) (Subcritical case). If ¥’ (04) < 0, then there exists some constant b > 1 such
that P(Z > n) = n=T°W g5 n - 0.

Let us define an i.i.d. case when .Z is of the form .2 = }"!_| §(x,} with (X;);>1
a sequence of i.i.d. real-valued variables, independent of v. There are several pre-
vious works on the critical and i.i.d. cases: when (X;) are Bernoulli random vari-
ables, Pemantle [30] obtained the precise asymptotic of P(Z = n) as n — oo,
where the key ingredient of his proof is the recursive structure of the system
inherited from the Bernoulli variables (X;). For general random variables (X;),
Addario-Berry and Broutin [1] recently confirmed Aldous’s conjecture (i). This
was improved later by Aidékon [3] who proved that for a regular tree 7 (namely
when v equals some integer), for any fixed x > 0,

c1R(x)e®* < liminfn(logn)sz(Z >n) <lim supn(logn)sz(Z >n)
n—00 n—00
< c2R(x)e®,

where ¢; > ¢ > 0 are two constants, and R(x) is some renewal function which
will be defined later. For the continuous setting, the branching Brownian motion,
Maillard [28] solved the question by analytic tools, using link with the F-KPP
equation. Berestycki et al. [5] looked at the genealogy of the branching Brownian
motion with absorption in the near-critical case.

In this paper, we aim at the exact tail behavior of Z both in critical and subcrit-
ical cases and for a general point process .Z.

Before the statement of our result, we remark that in the subcritical case
(¥'(0x) < 0), there are two real numbers o_ and o such that 0 < o_ < g, < 0+
and

Y(e-)=v(e+) =0,

[the existence of o4 follows from the assumption that supp.Z N (0, oo) # <.
In the critical case, we suppose that

(1.3) E[VI—HS*] < 00, sup Y (h) < oo for some §* > 0.
Oe[—56*,04+6%]

In the subcritical case, we suppose that
0+/0-+8*
(1.4) E[( Z (1 + eQ—V(u))) } < 00, sup Y (0) < oo,
lul=1 0e[—8*,04+56*]

for some §* > 0. In both cases, we always assume that there is no lattice that
supports .Z almost surely.
Our result on the total progeny reads as follows.



TOTAL PROGENY OF A KILLED BRANCHING RANDOM WALK 3789

THEOREM 1 (Tail of the total progeny). Assume (1.1) and that

o>2, in the critical case;
(15) E[p*]<oco  forsome § , - 2Q—+,
o_

in the subcritical case.

(i) (Critical case). If ¥'(0x) = 0 and (1.3) holds, then there exists a constant
Cerit > 0 such that for any x > 0,

P.(Z > n) ~ cerit R (x)e®** n— 00,

n(logn)?’

where R(x) is a renewal function defined in (5.20).
(ii) (Subcritical case). If V' (0x) < 0 and (1.4) holds, then there exists a con-
stant cqyp > 0 such that for any x > 0,

P.(Z > n) ~ capR(x)eC+ n=0+/0~ n— 0o,

where R(x) is a renewal function defined in (5.20).

The values of c¢i¢ and cgyp are given in Lemma 2. Let us make some remarks
on the assumptions (1.3) and (1.4).

REMARK 1 (Lid. case). If £ =3 ,8x, with (X;);>1 a sequence of i.i.d.
real-valued variables, independent of v, then (1.3) holds if and only if for some
8§>0,E[v!t9] < ocoand SUPpe[—5,0,+5] E[¢?X1] < oo while (1.4) holds if and only

if E[ve+/¢-%9] < 00 and SUPge[—5,0, +6] E[e?X1] < 0o for some § > 0.

REMARK 2. By Holder’s inequality, elementary computations show that (1.3)
is equivalent to E[(Z|u|=l(1 + €2V 148 < 50 and SUPge[—5,0,+5] Y(0) < oo,
for some § > 0.

To explain the strategy of the proof of Theorem 1, we introduce at first some
notation: for any vertex u € 7 and a € R, we define

(1.6) t.F(u) ;= inf]0 <k < |u|: V (ux) > a},

(1.7) T, (u) :=inf{0 <k < |u|: V (ur) < a},

with convention inf & := oo and for n > 1 and for any |u| = n, we write {ug =
g, uy,...,uy} =[9, u] the shortest path from the root & to u (uy is the ancestor
of kth generation of u).

By using these notation, the total progeny set Z of the killed branching random
walk can be represented as follows:

Z={ueT: 1y (u)>|ul}.
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o particles in £[a]

a =] \]\D\D \]h‘j\]\j\jﬂ\mhxh\j
FIG. 1. The set La].

For a < x, we define L[a] as the set of individuals of the (nonkilled) branching
random walk which lie below a for its first time (see Figure 1):

(1.8) Llal:={ueT:|ul=1, )}, a<x.

Since the whole system goes to —oo, L[a] is well defined. In particular, £[0] is
the set of leaves of the progeny of the killed branching walk. As an application of
a general fact for a wide class of graphs, we can compare the set of leaves £[0]
with Z. Then it is enough to investigate the tail asymptotics of #L[0].

To state the result for #£[0], we shall need an auxiliary random walk S, under
a probability Q, which are defined, respectively, in (5.17) and in (5.16) with the
parameter there o = o, in the critical case, and o = o4 in the subcritical case.
We mention that under Q, the random walk S is recurrent in the critical case and
transient in the subcritical case. Let us also consider the renewal function R(x) as-
sociated to S [see (5.20)] and 7, the first time when § becomes negative; see (5.8).
For notational simplification, let us write Q[£] for the expectation of £ under Q.
Then we have the following theorem.

THEOREM 2 (Tail of the number of leaves). Assume (1.1).

(i) (Critical case). If ¥'(0+) = 0 and (1.3) holds, then for any x > 0, we have
when n — o0

P, (#L[0] > n) ~ c.; R(x)e®*

n(logn)?’

%S

where ¢, 1= Q[e_g 0]—1.
(ii) (Subcritical case). if ' (04+) < 0 and (1.4) holds, then we have for any x > 0
when n — 00,

P, (#L[0] > n) ~ ¢}y, R(x)eb+¥n—0+/e-

for some constant ¢, > 0.
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We stress that Q, S and R(-) depend on the parameter o = g, (critical case) or
0 = 0+ (subcritical case). If 3, = (1 + €2V ®) has some larger moments, then
we can give, as in the critical case (i), a probabilistic interpretation of the constant
c.,p in the subcritical case.

LEMMA 1. Under (1.1) with ¥/’ (04) < 0 and (1.4). Let us assume furthermore
that

o+/0-+1+3
(1.9) E[( o1+ eQ‘V(“))) } <oo  forsomeé >0,

|ul=1

then
Club = Co_ ()0 Q(zg = 0),
*

where c,_ and cy, are given, respectively, by (8.18) and Lemma 21 [Q(z, =
o0) > 0 since the random walk S under Q drifts to oo].

The next lemma establishes the relation between #£[0] and the total progeny
Z =#% . Recall that E[v] > 1.

LEMMA 2. Assume (1.5). Then Theorem 2 implies Theorem 1 with:

(1) in the critical case: ceir = (E[v] — 1)_1cérit;

(ii) in the subcritical case: cgyp = (E[v] — 1)_Q+/9*c;ub.

The above lemma will be proven in Section 3, and the rest of this paper is
devoted to the proof of Theorem 2. To this end, we shall investigate the maximum
of the killed branching random walk and its progeny. Define for any L > 0,

(1.10) H(L) =) = ctompuy = #2(L), L >0,
u

where

(1.11) H(L):={ueT: 1y W) >t ) =lul}

denotes the set of particles of the branching random walk on [0, L] with two killing
barriers which were absorbed at level L [then 57 (L) C %]. Finally, we define

(1.12) Z[0, L] ::ZI{T(;(”):MQ;(M)}, L>0,
u

the number of particles (leaves) which touch 0 before L; see Figure 2.

The following result may have independent interest: The first two parts give a
precise estimate on the probability that a level 7 is reached by the killed branching
random walk. In the third part, conditioning on the event that the level ¢ is reached,
we establish the convergence in distribution of the overshoots at level ¢ seen as a
random point process.
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FIG. 2. The set 7 (L).

THEOREM 3. Assume (1.1).
(1) Assuming ¥'(0+) = 0 (critical case) and (1.3), we have

Q'] e e

P.(H(t) > 0) ~ R(x)eQ*xT, t — 00,

where Q is defined in (5.16), the random variable R is given in (6.27) with 0 = 0«
and Cg > 0 is a constant given in (5.21).
(i1) Assuming ¥'(04) < 0 (subcritical case) and (1.4), we have

Qi
C

P.(H(t) > 0) R(x)e+ e 0+ t — 00,
where Q is defined in (5.16), the random variable i is given in (6.27) with o = 0+
and Cg > 0 is a constant given in (5.21).

(iii) In both cases and under P,(-|H(t) > 0), the point process ; =
2 ue# ) 8V (w)—1y converges in distribution toward a point process jioo on (0, 00),

a—1
where [l Is distributed as |Loo under the probability measure Qf[’})t_l] -Q, with 1o

defined in (6.26).

The Yaglom-type result of Theorem 3 plays a crucial role in the proof of Theo-
rem 2. Loosely speaking, to make the total progeny Z (or the set of leaves L£[0]) as
large as possible, the branching walk will reach some level L as high as possible,
and the main contribution to #£[0] comes from the descendants of those particles
which have hit L. We control the contribution from the other particles by com-
puting the moments of Z[0, L] which are the most technical parts in the proof of
Theorem 2.

In the computations of moments of Z[0, L], we have to distinguish the contri-
butions of good particles from bad particles. By good particle, we mean that its
children do not make extraordinary jumps [and the number of its children is not



TOTAL PROGENY OF A KILLED BRANCHING RANDOM WALK 3793

too big; see (7.1) and (8.4) for the precise definitions]. To describe separately the
numbers of good and bad particles in Z[0, L], we shall modify the Yaglom-type
result Theorem 3(iii) as follows.

Denote by Q2 ¢ the set of o -finite measures on R. For any individual u # &, let

u be the parent of u and define
AV(@):=V@w)— V().

Let us fix a measurable function %:Qr — R, and write by a slight abuse of
notation

%’(u)z%’( > a{AV(v)}> YueT\ {2},

?:;,v;éu

and #A(u) = 0 if u does not have any brothers. We assume some integrability: there
exists some &1 > 0 such that

(1.13) E[ > (1+ 1{Q=Q*}|V(u)})eQV(”)%(u)8‘] < 00,
lul=1

where 0 = 04 if ¥/ (0+) =0 and ¢ = o4 if ¥'(04) < 0. For the function 4 appear-
ing in this paper, for instance, #(0) := (% Ja+ €9%)0(dx))? in the critical case
and £A(0) := (% Jo(dx)(1+ €9-*))1/e~ in the subcritical case (see Sections 7 and
8 where the constant A is introduced) for 6 € Q, (1.13) will always be a conse-
quence of (1.3) or (1.4) by taking a sufficiently small §;.

Define foru € T,

(1.14)  Br(u):=inf{1 < j <|u|: Bu;) > L7VWi-D} L >0,
with the convention that inf & = 0o. We consider
Hg(L):={ueT:t5 W) >t (u)=ul, Br(u) = oo}.

In other words, J#2(L) only contains those particles u# in (L) such that
PB(uj), j < |u|, are not very large. Obviously, 7z = 7 if %4 =0. We get an
extension of Theorem 3(iii) as follows:

PROPOSITION 1. Assume (1.13) and the hypothesis of Theorem 3. Under
P, (-|H(t) > 0), the point process |Lgg; := Zueﬁf@(t) 8(v (u)—r) converges in dis-
tribution toward a point process [Lg.oo on (0, 00), where [L . is distributed as

- Q, with g, ~ defined in (6.24).

U B.co Under the probability measure Q?‘l%l]

To prove Theorems 2, 3 and Proposition 1, we shall develop a spinal decomposi-
tion for the killed branching random walk up to some stopping lines. Viewed from
the stopping lines, the branching walk on the spine behaves as a two-dimensional
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Markov chain: The first coordinate is a real-valued random walk (sometimes con-
ditioned to stay positive) until some first passage times, and the second coordinate
takes values in the space of point measures, whose laws we shall describe through
a family of Palm measures. As the parameter of the stopping lines goes to infinity,
we shall also need some accurate estimates on the real-valued random walk and
establish a convergence in law for the time-reversal random walk, in both transient
and recurrent cases.
The rest of this paper is organized as follows:

e Section 2: we explain the main ideas in the proofs of Theorems 2 and 3.

e Section 3: we prove Lemma 2. Then the rest of this paper is devoted to the proofs
of Theorems 2, 3, Lemma 1 and Proposition 1.

e Section 4: we collect several preliminary results on the one-dimensional real-
valued random walk, both in recurrent and transient cases; in particular, we
establish a result of convergence in law for a time reversal random walk. The
proofs of these results are postponed in Section 9.

e Section 5: we develop the spinal decompositions for the killed and nonkilled
branching random walks, which are the main theoretical tools in the proofs.

e Section 6: by admitting three technical lemmas (whose proofs are postponed in
Section 9), we prove Theorem 3 and Proposition 1.

e Sections 7 and 8: based on Theorem 3 and Proposition 1, we prove Theorem 2
in the critical and subcritical cases, respectively. We also prove Lemma 1 in this
section.

e Section 9 contains the proofs of the technical lemmas stated in Sections 4 and 6.

Throughout this paper, we adopt the following notation: For a point process ® =
YL 8y, We write (f, ©) = Y7L, f(x;). Unless stated otherwise, we denote by
c or ¢’ (possibly with some subscript) some unimportant positive constants whose
values may change from one paragraph to another, and by f(¢) ~ g(¢t) ast — g €
[0, oo] if lim,_ % =1; We also write E[X, A] = E[X14] when A is an event

and E[X]* = E[X*] #+ (E[X])k when X does not have a short expression.

2. Heuristics in the proofs of Theorems 2 and 3. For brevity, we consider
x = 0 in both Theorems 2 and 3.

2.1. Sketch of the proof of Theorem 2. To make #L[0] > n very large, the
killed branching random walk needs to hit a high level, say L. Recalling (1.10),
(1.11) and (1.12), we have

Observe that in the above sum over u (if such u exists), the particle ¥ must be a

descendant of some v € 5#(L). Let us order the set of particles in .7#(L) (possibly
empty) in an arbitrary way: 5 (L) = (v, 1 <i < H(L)}. Denote by #L£D[0] the
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number of descendants of v which are absorbed at 0 (namely the number of the
leaves of the subtree rooted at v). Then we have

H(L) .
#£[0]= Z[0, L1+ »_ #£7[0].
i=1

The proof of Theorem 2 is divided into three main steps:

(1) With a suitable choice of L = L(n), we show that Z[0, L] is negligible in
the event {#£[0] > n}, which will be a consequence of Lemmas 13 and 14 in the
critical case and of Lemmas 19, 20 in the subcritical case. The proof of this fact
relies on the computations of the moments of Z[0, L] by distinguishing the good
and the bad particles. A particle is either good or bad; see (7.1) and (8.4) for the
precise definitions in both critical and subcritical cases. Roughly saying, a particle
is called bad if one of its ancestors makes an extraordinary large jump. The bad
particles are few and it is enough to compute the first moment to control their
contributions to #£[0], whereas for the good particles we need to control their
higher moments. The computations of moments are technical and follow from the
change of probabilities (spinal decomposition) and the estimates for random walks
presented in Section 4.

Let us denote by Y| ~ Y> when P(Y| > n) ~ P(Y> > n) as n — 0o, where the
probability P may be P or Q whose choice will be fixed in the proof according to
the random variable Y or Y». It follows that

H(L) H(L)
#L[01=Z[0, L1+ Y #£P[0]1~ > #£9[0].
i=1 i=1
Let Hg(L) be the number of some subset .77 (L) of good particles in 5 (L);
see (7.19) and (8.20). Denote by {u"/), 1 < j < H,(L)} the set #;(L). For nota-
tional brevity we continue to use the notation #£)[0] for the number of leaves of
the subtree rooted at u/). Since bad particles in .#(L) are negligible as those in
Z[0, L], we have

H(L) Hy(L) ‘
#L[01~ > #£P[01~ Y #£Y[0].
i=1 j=1

(2) Let us consider now the critical case. By a linear transform we may assume
that p* = 1. By Nerman [29], on (V) = v}, #£U)[0] is oforder £ asy — oo.

More precisely, if we denote by BU) := _V(”(”)V( U101, then under P,
conditioning on {V (u”)),1 < j < H(L)} and letting n — oo [hence L = L(n) —
oo], BW) converges in law to c*aWéé) where ¢* is some positive constant and
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8Wé<j;), j =1, are independent copies of d Wy, and d W, is the limit of the so-
called derivative martingale in the critical case. Therefore,

He (L) v ) Hg (L) ev(u(j))

e .
#L£[0] ~ — BV & c* ———aw).
[0] ; V(uW) ¢ ; V(uW)

Remark that V (1)) ~ L. By Proposition 1, a modified version of Theorem 3,
under P and conditioning on {H (L) > 0},

Hy(L) Ly wl) L HW oL _
5 8Wéé) Z Vw')— Law(]) ~ Zexiawéé)’
P=EACED) j=1 :

where Zle 8xi) dgnotes some point process on (0, co) defined under Q and in-

dependent of (9 Wéé), i > 1) which are 1.i.d. and are distributed as d Wy, under P.
Then by letting L =logn + loglogn — A with a large A,

¢ A
P(#LI0] > n) ~ Q[ S e awd) > S )P(H(L) > 0).

i=1 c*
By Theorem 3(i), there exists some constant ¢ > 0 such that P(H(L) > 0) ~

ée—’vAeiz as n — 00. Then as n — o0,
L n(logn)

¢ A
A ; i e
2.1) n(logn)*P(#L[0] > n) ~ ceAQ<Z W) > C—*>
i=1
Rigorously speaking, instead of the above equivalence as n — oo in (2.1), we
have to deal with limsup,,_, ., and liminf,,_, o, on the left-hand side of (2.1), and
we get an upper bound and a lower bound on the right-hand side of (2.1) with an

extra term o4 (1) which goes to 0 when A — oo. It turns out that Zle eti BW&)

has a Cauchy-law tail; see Lemma 17. (The point process z may depend on some
parameter after the truncation argument.) Then by letting A — oo on the right-
hand side of (2.1), we can obtain Theorem 2(i) for the critical case.

(3) The subcritical case in Theorem 2 will be proved in a similar way: By Ner-
man [29], if we denote by BY) :=#L£)[0]e—¢- V@) , then under P, conditioning
on {V(u'"),1<j< H(L)} and letting L = L(n) — oo, BY) converges in law

to ¢ Mo ©-7) where g, is some positive constant and Mg (@--7) ,j > 1, are inde-

sub
pendent copies of Mc(,g ), and Még ) is the limit of some positive martingale and
has a power-law tail; see (8.18). As in the critical case, we get that under P and
conditioning on {H (L) > 0},

Hg(L) Z ,
#LI01~ Y @ VB n ot 0L g0 g (00

j=1 i=1
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with some point process Zle 3(x;) on (0, 00) (this point process has of course
nothing to do withA that in the critical case). Under Q, (Még”i), i >1) are i.i1.d.,
independent of Zle d(x;) and distributed as Még’) under P. By Theorem 3(ii),
P(H(L) > 0) ~ ésupe 9+ with some positive constant égyp. Let L := % — A
with a large A > 0. It follows that as n — oo,

¢ .
n@+/0=P(#L[0] > n) ~ nQ+/Q—Q<c;"ubeQ‘L Zeg‘x" M > ”)P(H(L) > 0)
i=1

{ ; 1
~ 6subeQ+AQ(Z 0% e > *—eQA>,

i=1 Csub

yielding the part (ii) in Theorem 2 by letting A — oco.

2.2. Sketch of the proofs of Theorem 3 and Proposition 1. By the spine de-
composition (see Proposition 2), the process (Sk, kK > 0) formed by the positions
of the spine (wg, k > 0) is a random walk under the probability Q. Moreover S
has zero mean in the critical case and positive mean in the subcritical case. Let
;7 :=inf{k > 0: S; > ¢} and denote by T, := S+ — t the overshoot. Then by the
spine decomposition, t

+
i
(2.2) =Y Svaw-n) =8p+y + oy 1,
ue (1) k=1uely

where Uy denotes the set of brothers of wy at kth generation [see (5.4)], and the

point process ;L,(") is associated to the subtree 7™ (rooted at u) of 7 M,(") =

2 e () Oy ) -1}-

Consider a new probability QT defined in (5.22). Under QT, S is a random
walk conditioned on staying nonnegative. By (5.26), for any f a nonnegative mea-
surable function,

E[€_<f’“’>1{H(z)>0}] _ Q+|:e_<f*/‘t>:| N 1 e_QtQ+|: e—{Sfom) ]
Mz, CrZ(t) Jre%mi(dz) l

t — 00,

where Cg denotes some positive constant and Z(¢) and o are given in (6.4). There-
fore to prove Theorem 3, it is enough to check the convergence in law of the point
process ji; under Q.

To this end, we first check that in the sum Z,:’: | in (2.2), only those terms
with k near to 7,7 contribute (see Lemma 9 for the precise statement), and that
we may replace ;LE”) by ﬁﬁ“) a point process defined by some branching random
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walk starting from V (1) without killing at 0; see Lemma 10. Then by using the
convergence in law (Lemma 4) for the time reversal random walk combined with
the overshoot {T,+, Sr,* — Srf—k’ 1<k< r,+}, we can obtain the convergence of

w; under Q1 and prove Theorem 3. Proposition 1 will be proved in a similar way.

3. From the number of leaves to the total progeny of the killed branching
walk: Proof of Lemma 2. We recall that our branching random walk starts from
x > 0. We introduced for u € 7, t,; (1) :=inf{0 <k < |u|: V (ux) < a} and

Llal:={ueT:|ul=1, W)}, a<x.

PROOF OF LEMMA 2. We equip the tree 7 with the lexicographical order. Let
Uy be the kth vertex for this order in the set 2 of the living particles. It is well
defined until K = Z when all living particles have been explored. For k € [1, Z],
we introduce

>~

= ZU(U,)—I

and we notice that Yz = #L[0]. (This can be easily checked by using an argument
of recurrence on the maximal generation of the individuals of 2°.) We extend
the definition of Y; to k > Z, by Yi4+1 := Yx + vi — 1 where vy is taken from a
family {v;,i > 1} of i.i.d. random variables distributed as v(&) and independent
of our branching random walk. We claim that (Y, k > 1) is a random walk. To
see this, observe that we can construct the killed branching random walk in the
following way. Let (,,iﬂi(c), i > 1) bei.i.d. copies of .Z. At step 1, the root @ =: U,
located at x generates the point process Zl(c). If all the children are killed, we
stop the construction. Otherwise, we call U, the first vertex for the lexicographical
order that is alive. Then, U, generates the point process .,?Q(c), and we continue
similarly. The process that we get has the law of the killed branching random
walk. In particular, if v(c) denotes the number of points of .,?i(c), then (Yi, k> 1)
has the law of (Z l(v(c) 1), k > 1) which is a random walk by construction.
This proves the claim. We suppose that Theorem 2 holds and we want to deduce
Theorem 1. Let us look at the upper bound of P,(Z > n). Let m :=E[v] > 1 and
take ¢ € (0, m — 1). We have

P,(#L[01<(m—1—en,Z>n)=P(Yz<(m—1—¢)n,Z>n)
=Y P(Yi<(m—1—e)n, Z=k)

k>n

<Y P(Yi <(m—1—ek),

k>n
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which is exponentially small by Cramér’s bound. By Theorem 2, P, (#L£[0] > n)
decreases polynomially. Therefore,
P (Z >n) <P (#L[0] > (m — 1 —&)n) + Py (#L[0] < (m — 1 — &)n, Z > n)
=P, (#L£[0] > (m — 1 — &)n)(1 + o(1)).

Letting n go to oo, then € — 0 yields the upper bound. For the lower bound, we
take € > 0, and we observe that

P,(#L[0]>(m —1+en,Z<n)=Py(Yz>(m—1+¢e)n,Z <n)
< Px(g/g;n(n — (m — 1)) > en).

Let @ > 2 in the critical case and « > 2p./o— in the subcritical case. By Doob’s
LP-inequality,

o

E| max (¥ic— (n - l)k)‘ T

which according to Theorem 2.10 in Petrov [31], page 62, is less than

E[(Yy — (m — Dn)|*

’

n
c(a)n“/z_lEZ lvi —m|* = c(@)n®/*Elv — m|°,
i=1
with some constant c(a) > 0. It follows that
Elv —
P, (#L[0] > (m — 14+ ¢&)n, Z <n) < M
8(1

Therefore,

E _ o
P.(Z > n) > P,(#L[0] > (m — 1 + &)n) — @B =ml” oy
8(1

which proves the lower bound by taking n — oo then e — 0. [J

4. One-dimensional real-valued random walks. In this section we collect
some preliminary results for a one-dimensional random walk (S,),>0 on some
probability space (€2, .7, P). Most of the results in this section will be applied to
the random walk S defined in (5.17) under Q in Section 5. For the sake of clarity
of presentation, the technical proofs are postponed to Section 9.

4.1. Time-reversal random walks. Let ((S,),,Py) be a real-valued random
walk starting from x € R. We write P = Py. Assume that E[S;] > 0 and
E[]S; |3+5] < oo for some & > 0. In words, we consider random walks that do
not drift to —oo. Moreover we assume that the distribution of S} is nonarithmetic.
Define

“4.1) ra+ = inf{k > 0:8; > a}, T

a -

=inf{k > 0:S; <a},
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and the overshoot/undershoot

TH:=8S+—a>0 T_:=a—STa—>0.

a T, ’ a

Let R(-) be the renewal function of (S,),>0 under P, that is, with t* :=inf{j >
1: Sj > 0},

T*—1
R(x):= E|: > 1{,(55_,.}} Vx >0,
j=0

and R(0) = 1.

Following [6], we introduce the law of the random walk conditioned to stay
nonnegative. To this aim, we see (S,),>0 under [P, as a Markov chain with tran-
sition function w(y, dz) :=P(y + S| € dz). We denote by P} the h-transform of
PP, by the function R. That is, P} is a probability measure under which (Sy)n>0
is a homogeneous Markov chain on the nonnegative real numbers, with transition
function

4.2) wr(y. d2) —%u(y,dz) y.220.

It is well known that P -almost surely S, — oo when n — oo. When (Sn)n=0
drifts to oo (i.e., when E[S;] > 0), P is the law of the random walk conditioned
to stay nonnegative in the usual sense, thatis, P (-) = P(:|S; >0, ..., S5, >0,...).
We denote by (o, H,),>0 the strict ascending ladder epochs and ladder heights
of S defined by (o9, Hp) = (0, 0) and otherwise for n > 1 by
. {min{k>an_1:Sk > H,_1}, if 0,,—1 < 00,
On = 00, if 0,1 =00
and
H .:{Sgn, if o, < 00,
" oo, if o, = o0.

Some results from random walk theory are important in the proofs presented
here and recorded in the following lemma.

LEMMA 3. Assume that E[S1] > 0, E[|S1]°H°] < oo for some & > 0 and that
the distribution of Sy is nonarithmetic. Then:

() T;" converges in law to a finite random variable when t tends to infinity.
(i) (T,+, t > 0) is bounded in L? forall 1 < p <1+436.
(iii) S, + /t converges in probability to 1 when t tends to infinity.
@iv) e IfIE[Sl] =0, there exists a constant Cg € (0, oo) such that R(x)/x —>

Cr when x — o00. In this case, Cp = E[; 1= E=S_1 5_]
K0)

o IfE[S1] > 0, there exists a constant CR € (0, 00) such that R(x) —> Cp

when x — oo. In this case, Cr = W
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(v) o IfE[S1=0, then P(z;t <75) ~ c%t when t — oo.
o IfE[Si]1>0, then P(r;" <75) — CLR when t — 00.

PROOF. Notice that T,Jr is also the overshoot of the random walk (H,,) above
the level ¢. In the case E[S1] = 0, Doney [12] implies that H; has a finite (2 4 §)-
moment which in view of Lorden [25], Theorem 3, applied to (H,,), implies that
(T,+,t > 0) is bounded in L? forall 1 < p <1+ 4. In the case E[S;] > 0, again
by Lorden [25], Theorem 3, applied to (S,), (T,+,t > 0) is bounded in L? for
all 1 < p <2+ 4. This provides Part (ii) of the lemma. Moreover, we see that
in both cases, H| = T0+ has a finite expectation and obviously is nonarithmetic,
then a refinement of the renewal theorem gives part (i) of the lemma (Feller [13],
page 370, equation (4.10)). For both cases, part (iii) is a consequence of part (ii).
To show (iv), we recall the duality lemma (Feller [13], page 395),

oo
R(x)=1+> P(H; <x), x>0,

n=1

where (H, ,n > 0) denotes the (strict) ascending ladder heights of —S (in par-
ticular, H,” = T, the undershoot at 0). In the case E[S;] = 0, part (iv) is a con-
1
E[T, 1’
while part (v) is obtained by applying the optional stopping theorem to the mar-
tingale (Sp,0 <k <77 A T ) (the uniform integrability is guaranteed by (ii);
see [3], Lemma 2.2). In the case E[S]] > 0, parts (iv) and (v) follow from
the duality lemma, Cg = E[t*] = limy,oo R(x) =1 + Y ;2 | P(H, < 00) =
1+ 3% Pty <00)' = —L—. O

T P(ry =00)

sequence of the renewal theorem (see Feller [13], page 360) with Cg =

We recall now Tanaka’s construction (see [33] and Figure 3) of the random walk
conditioned to stay positive. Let us recall that (o,,, H,),>0 are the strict ascending
ladder epochs and ladder heights of S, and let (w;);>1 be independent copies of

Cn

0 01 P U:j; (72— Os

FIG. 3. Tanaka’s construction.
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the segment of the random walk (S,),>0 up to time o := o7 viewed from (o, Sy)
in reversed time and reflected in the y-axis; that is, (w;);>¢ are independent copies
of

(43) (0750’_SU’—17SO'_SO'—Z""7SU_517SO')'

We write now w; = (w;(£); £ =0, 1,2, ...0®) to identify the components of w;.
In [33], Tanaka shows that the random walk conditioned to stay positive can be
constructed by gluing the w;’s together, each starting from the end of the previous
one. More formally, let (cr H +),,>1 be the renewal process formed from the
independent random Varlables (o () , w; (0 ®)), that is,

@4 (o H) =D+ 40 wi(cD)+ - +w,(c™), nx>1.

Then, Tanaka’s result says that the random walk conditioned to stay positive can

be constructed via the process (£,),>0 given by
4.5) anH,:r—I—wH](n—G,j), O’,j<il§0’];:_1.

Finally we introduce a process (3,,),,20 (obtained by modifying slightly the ran-
dom walk conditioned to stay positive) which will be the limit process that appears
in the following lemma. Let & := sup{n > 1:¢, = minj<;<, ¢;} and observe that
& is almost surely finite since ¢, — oo. Then (Sn)nzo is defined by

(4.6) E[F((S)n=0)] = mﬂa[w((mnzo)]

for any test function F. Observe that Tanaka’s constructlon 1mphes El¢z] =
E[H]. Moreover we introduce 6 := sup{n > 1: Sn =minj<;<p S } which is al-
most surely finite since S,, — oco.

LEMMA 4. Assume that E[S1] > 0, E[|51|3+5] < 00 for some & > 0 and that
the distribution of Sy is nonarithmetic. Recall (4.1), and fix an arbitrary integer
K > 1. Let F:R} x R_’E — R be a bounded and measurable function. Suppose
that for any z € R, the set {x € R% : F(-, z) is not continuous at x} is at most
countable [which may depend on z]. Then

(1)
lim E[F(T,%, (S.+ = S+ i<j<k)lt” > K]=E[F(US;, §i<j<k)];

t—00

where (Sn)nzo is the process defined by (4.6) and U is a uniform random variable
on [0, 1] independent of (Sp)n>0.

(i1)

lim EX[F(T*, (S+ — S+ i<j=x)l5 > K] =E[F(USs. $)1=j<k)]:

t—00

where ET denotes the expectation with respect to the probability measure P,
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As a consequence, under P(:| ‘L't+ > K) or under P (- |t,Jr > K), the random vec-
tor (T,+, (Sr,+ — Sr,*—j)ISJ'SK) converges in di.St.ribl'ltiOI‘l t(.)ward (USs,(Sj)i<j<k)
when ¢t — o0o. We also note that the conditioning with respect to the event
{r;" > K} is just technical since this event is asymptotically typical (indeed al-
most surely 7,” — oo when r — 00).

PROOF OF LEMMA 4. See Section 9. [
We end this subsection with an estimate on a random walk with positive drift:

LEMMA 5. Assume that E[S|] > 0, E[Slz] < oo. Let (a;, Si — Si—1)i>1 be an
i.i.d. sequence such that a; > 0 almost surely. For any p > 1 such that IE[af7 ]<oo
and for any k > 0, there exists some constant cp > 0 such that

+

7, —1 p

4.7 Ex|: Z ak+1e"(5"_’)i| <cCpx« vVt >0,Vx <t.
k=0

PROOE. See Section9. [

4.2. Centered random walks. Let ((S;)n>0, Px) be areal-valued random walk
starting from x € R. We write P = [Py. Assume that

4.8) E[S]=0,  Var(S))>0, E[e"S']<oco  Vue(=(1+4+1n),n)

for some 1 > 0. Recall that IP’(‘L'LJr < 1, ) is of order % as L — oo (cf. Lemma 3).
For a € R, recall that TaJr = STJ —a>0(esp., T, :=a— STa— > () denotes the
overshoot (resp., undershoot) at level a.

We have the following estimate.

LEMMA 6. Under (4.8). For any 0 < § < n, there exist some constants ¢ > 1
and ¢’ = ' (8) > 1 such that for all b > a € R and x > 0,

(4.9) Py (T > x) < /e,
(4.10) Py(T, > x) < c'e”1H0,
Moreover, forall L>1,0<a <L,
_ L—a+c

(4.11) Pu(ry <7/) < —
(4.12) Pu(zy > 1) <2 JLFC,

-5 - L—a+1
(4.13) Eq[e ™ l{t(;<rL+}] se— ,
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rl:"—l 75 —1
(4.14) Ea[ 3 e_‘s(L_Sf)i| +Ea[ 3 e—“f} <c,
j=0 j=0
S-S _
(4.15) Eqle 07" ] <ec,
i L— 1
(4.16) B, Y < c/++,
0§j<ro_/\72' -
(4.17) B, Y e ¢S gc’aJLrl,
0§j<t(;/\rzr -
—5 —s-sp] o o4t
(4.18) E, |:e 0 1{T0_<Tzr} Z e 0(L=S)) / 5

0<j<ty

REMARK. A weaker assumption sup_

get (4.14), (4.15), (4.16) and (4.17).

PROOF OF LEMMA 6.

4.3. Random walks with negative drift.

77<M<,IIE)[e“Sl] < 0o is enough to

See Section 9. [

In this subsection, we give estimates

on transient random walks. We take again ((S,),>0,Px) a random walk, but we
suppose now that E[S7] < 0, hence the random walk drifts to —oo. We suppose

that there exist y, n1, 2 > 0 such that

(4.19) E[e"S1]=1, E[e“'] <00  Vue(—n,y+nmn).
Then
(4.20) P(z; <1y) = P(ry = o0) >0, a — —oo.
By Theorem 1 of [17], if S} is nonarithmetic, then
(4.21) P(t <15 ) ~cly)e ", a— 400

for some constant c(y) > 0. We end this section with two lemmas:

LEMMA 7.
c,c,c” such that foranya >0, L > 1,

(4.22) Eule

") < e,

Under (4.19). For any r > 0, we can find some positive constants

ifr <mn,

Eo| Y (+L- Sz)"‘e’s‘} <dra)e’ @bt

0§€<12'

(4.23)

ifr>y,a>0.
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min(t, ,7;)
Ea[ Z (1+L- Sg)“eVS‘f] <"1+ L —a)'te,

=0
(4.24)

ael0,L],ax>0.
PROOF. See Section9. [

LEMMA 8. Under (4.19). Fix some 0 < n < ny and a > 0. Assume that (S, —
Sn—1,an)n>1 are i.i.d. with a; > 0 almost surely.

(i) Assume b > 0,0 < p <y /b and ay are such that E[(1 + 1{51<0}e_"51) X
af] < 00. There exists some constant ¢, = ¢, (b, n, o) > 0 such that for all x > 0,

T p
nSs _ (0
(425) ]Ex |:e n 7 (Z ehS[—laé> :| < Cpebpx.
=1
(i1) Assume b >0, p > 1 and ay are such that E[(1 + Iy, <0}e_’7sl)af] < 00

and E[ePP51] < co. There exists some constant cp =cp(b,n,a) > 0 such that for
all L>0and0<x <L,

s min(r(;,rzr) p
Ex[e ! fo( 3 (1+L—Sg_1)°‘ebS‘1ag> }

(=1
(4.26)
(1+ L —x)*PeP™, if p<vy/b,
Scpx e+ L—-x)*P ifp=y/b,
ey mLAPbL, if p>v/b.

PROOF. See Section9. [
5. Spinal decomposition.

5.1. Spinal decomposition of a branching random walk (without killing). We
begin with a general formalism of the spinal decomposition for a branching ran-
dom walk. This decomposition has already been used in the literature by many
authors in various forms; see, for example, Lyons, Pemantle and Peres [27],
Lyons [26] and Biggins and Kyprianou [9].

There is a one-to-one correspondence between the branching random walk
(V(u),er) and a marked tree {(u, V(u)):u € T}. For n > 1, let .%,, be the sigma-
algebra generated by the branching random walk in the first n generations. For
any u € 7 \ {@}, denote by u the parent of u. Write as before [, u] = {ug :=
D, ui,...,uy ) the shortest path from the root @ to u(with |u;| =i for any
0=<i<lul.
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Let h:7 — [0, 00) be measurable such that 2(&) > 0 and forany x e R,v e T
with [v| =n >0,

5.1) EX[Z h(u)‘gzn] = Mh(v),

where A > 0 is some positive constant. Let % := {u € 7 : h(u) > 0}. In our exam-
ples of A in this paper, A =1, h(u) = f(V(u)) or h(u) = f(V(u1), ..., V(uw))
for some nonrandom function f, and 77, equals either 7 or Z the set of progeny
of the killed branching walk.
Define
' 1
T h(@)an

> h(w), n>=0.

|u|=n

Fix x € R. Clearly by (5.1), (W,,) is a (Py, (:%,))-martingale.

On the enlarged probability space formed by marked trees with distinguished
rays, we may construct a probability Qy’) and an infinite ray {wg = 9, wy, wa, ...}
such that for any n > 1, En = wy_1, and

h(u)

5.2 W, =u|Fp)) = ———— Vu|=
(5.2) Q" (wn = ulFy) D)W, lul=n
and

dQy"
53 =W,.
(5.3) P, |

To construct Q)(Ch), we follow Lyons [26] under a slightly more general frame-
work: Let £ :=3",,,=1 8(v )} For any y € 7, denote by DS?; a random variable
whose law has the Radon—Nikodym density W with respect to the law of &
under P,. Put one particle wg = @ at x € ;. Generate offsprings and displace-
ments according to an independent copy of 2. Let {lu| = 1} be the set of the
children of wg. We choose w; = u according to the probability I’l(u})l()(% All chil-
dren u # w give rise to independent branching random walks of law Py ), while
conditioned on V (w;) =y, w; gives offsprings and displacements according to an
independent copy of ‘,?y We choose w; among the children of wj in the same size-

biased way, and so on. Denote by Q)(Ch) the joint law of the marked tree (V (u))u|>0

and the infinite ray {wo = @, w1, ..., wn, ...}. Then Q" satisfies (5.3) and (5.2),
which can be checked in the same way as in Lyons [26].
Under Q)(Ch), we write, for k > 1,

(5.4) O o= {u:lul =k, u = wi_1,u# wy}.
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In words, Uy is the set of children of wi_1 except wg, or equivalently, the set of
the brothers of wy, and is possibly empty. Define Sp := V(&) and

(5.5) Sn ==V (wp), On:= Y Savwy n>1l,

uely,

where we recall that AV (1) .=V (u) — V((II). Finally, let us introduce the follow-
ing sigma-field:

(5.6) Gy =0 {(AV(u),u € By), V(wk), wg, Ok, 1 <k <nj.

Then % is the sigma-field generated by all random variables related to the
spine {wg, k > 0}. Let us write v < u if v is an ancestor of u (then v <u if v <u
or v = u). By the standard “words”-representation in a tree, u < v if and only if
the word v is a concatenation of the word u# with some word s, namely v = us with
Is] > 1.

The promised spinal decomposition is as follows. Since it differs only slightly
from the spinal decomposition presented in Lyons [26] and Biggins and Kypri-
anou [9], we feel free to omit the proof.

PROPOSITION 2. Assume (5.1) and fix x € 7&,. Under probability Q)(Ch):

(1) for each n > 1, conditionally on %, 1 and on {Sy—1 = y}, the point process

(V(u), U= = wy_1) is distributed as Z In particular, the process (Su, Op)n>0 is
Markovian. Moreover, (S,)n>0 is also a Markov chain and satisfies

QW (F (SISt =y, %) [Z F(V@w) h<(@)>]
=1

for any nonnegative measurable function f,n>1andy € 7.

(ii) Conditionally on 9, the shifted branching random walks {V (vu) —
V() u=0, for all v € U2, O, are independent, and have the same law as
{V(u)}u)>0 under Py.

Remark that under Q)(Ch), {wy, n > 0} lives in 7. with probability one. We can
extend Proposition 2 to the so-called stopping lines. Recall (1.6) and (1.7). For
0 <x < t, we consider the stopping line

(5.7) G ={ueT:1, () =ul}.

Note that forany v € 7, |v| < 7, *(v) means that SUPg<; <|v| V(v;) <t; see Fig-
ure 4. The process {V(“)}|u| <ty €N be interpreted as the branching random
walk stopped by the line %;. Recalling (1.11), we remark that ¢; N Z = J2(¢),
where as before 2 denotes the set of progeny of the killed branching random
walk.
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V(u)
t o) Vi P N /) o) L /)

o particles in &;

0 S WY NN

FIG. 4. The set 6;.

Let F¢ =of{(u,VWw):ueT,|ul <71 *(u)} be the o-field generated by the
branching walk V up to the stopping line %;. Assuming (5.1), we define

= h(u)r "
Ve = e >u§g (w0

Define two families of stopping times for the process (S, := V(wy),n > 0)
under Q(h)

(5.8) ‘L’;_ = inf{k > 0:8; > a}, T

a

=inf{k > 0: 5 < a} Va e R,

with the usual convention inf @ = oo and the corresponding overshoot and under-
shoot processes

(5.9 Tu+ = ST; —a, T =a-— Sfa— Ya € R.

a

Analogously to (5.6), we introduce the sigma-field
(5.10) Y=o {(AV (), u € By), V(wi), wr, Ox, 1 <k <77, 7,7},

generated by all information related to the spine [@, w(z;")]. Similarly, we recall
L[a] in (1.8) and define .Z (4], Weria)s %L[a] as before. The next result describes
the decomposition along the spine [&, w(r )] (resp., [F, w(T,)D.

PROPOSITION 3. Assume (5.1), and let x € ;. Take t > x. Suppose that h
is such that Q,(Ch)(r;r < o0)=1.Then

dQ;"

(5.11)
dP, Fe,

=We¢.
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(i) Under probability Q)(Ch), conditionally on %, and on {V(v) = xy,v €

+
U,f’lek}, the shifted branching random walks {V (vu) — V(v)}u:|vu|gr,+(vu)’
stopped by the line €;, are independent, and have the same law as
{V(u)}lulir[txv ) under Py, stopped by the line €, .

(ii) The distribution of the spine within 6; is given by
h(u)r~Hl

L T e
1W(2)We, wen

QP (w,+ =ulFg) =
(iii) For any bounded measurable function f:RN — R and for any bounded
F,-measurable random variable &,

h
B X o/ (V0,021 < )@ | = QP £(5.0 =i = 7).
UEG,

Similarly, take a < x and assume that h is such that Q)(Ch) (tr, <oo)=1.Then
the analog holds for €; replaced by L[a)] (and t;~ by T, ).

REMARK 3. If Q§!‘)(rt+ < o0) =1 for all ¢, then Wy, is a (Py, Z¢)-
martingale by Lemma 6.1 and Theorem 6.1 in [9]. The equivalent holds for L[a].

PROOF OF PROPOSITION 3. It is enough to prove that for any g:7 — R

measurable and bounded,
B Y %]‘(V(W%O <i = ul)gwe |
ues;
(5.12)
=QV[f(Si,0<i <7)g(w, )]

In fact, part (iii) follows from (5.12), and by taking f =g =1 in (5.12) we
get (5.11); Taking f =1 in (5.12) and using (5.11), we get part (ii); Finally since
7, is a stopping time for (Sy)x, the part (i) follows easily from Proposition 2.

To check (5.12), it is enough to show that for any N > 1, (5.12) holds for all ®;
of form @, y :=F(u,Vu),ueT,|u| < rt+(u) A N) with a bounded measurable
function F'. Notice that the left-hand side of (5.12) equals

- h
ZEX[ Z l{tf(u)zn}%f(v(ui), 0<i< n)g(u)CIJLN}
—0

lul=n

(5.13) ©
=Y (5.13),,
n=0

with obvious definition of (5.13),. If n > N, since ®, y is measurable with respect
to .Zx, we deduce from (5.2) and the absolute continuity (5.3) that

(5.13)n = QM1+, F (8,0 < i <m)g(wa)Pr n]-



3810 E. AIDEKON, Y. HU AND O. ZINDY

For n < N, we deduce from the branching property along the stopping line %;
(see Jagers [19]) that

13 =] 2 1o F(V @050 <mg@iy ¥

lul=n |[v|=N,u<v

h(v)
h(@)AN }

B ¥ 1o f (V0. 051 n)gw),
lv|=N

h(v) ]
N (@)aN

= Q)(ch)[l{r,+:n}f(si’ 0<ic< n)g(wn)cbt,N],

by using again (5.2) and the absolute continuity (5.3) at N. Noting that f(S;,0 <
i<n)g(w,) = f(Si,0<i< r,+)g(wr[+) on {z;” = n}, we take the sum of (5.13),,
over all n and obtain (5.12). The proof for L[a] works by analogy.

Let us present below a particular example of # and the corresponding laws of
(®n, Su)n>0. Recall (1.1). Define

eQ*V(u)’ if wl(Q*) =0,

5.14 h(u) :=
( ) (M) eQ+V(“), lf wl(g*) < 0’

ueT.

Since ¥ (04) = 0 in the critical case and ¥ (04+) = O in the subcritical case,
the function / satisfies (5.1) with A = 1 and 7. = 7. We mention that in the
subcritical case, since ¥ (0—) = 0, the function u — ¢2-V® also satisfies (5.1)
with A = 1. This fact will be explored in Section 8 for the definition of Q©-), the
measure satisfying (5.3) with A (u) = €9~V ®,

Write for any x € R, Qy = )(Ch) the probability with the choice of i given
in (5.14). For simplification, let

(5.15) . {Q*, if ¥’ (04) = 0 (critical case);
. ¢ O+, if ¥/ (04) < 0 (subcritical case).
Then for any x € R, Qj satisfies
(5.16) dQx — e 9% Z L2V
dPy |z,

lul=n
We shall write Q = Qp when x = 0. The following description of the law of
(Sn, ®n)n>0 under Qy is an easy consequence of Proposition 2(i).

COROLLARY 1. Recall (5.15) and (5.5). Fix x € R.

(1) Under Qx, (Sn — Sn—1, On)n>1 are i.i.d. under Q, whose common law is
determined by

Q. [f(Sn _ Sn71)€_<g’®">] — E|: Z eQV(”)f(V(u))ef 2 vstu,fvl=1 g(V(v))i|

lul=1
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for any n > 1, any measurable functions f, g:R — Ry.. In particular, the process
(Sn)n=0 is a random walk on R, starting from So = x, with step distribution given
by

517 QulFS—Sin)] = [zjfvm>¢WW} =1,

lu|=1

(ii) For any n > 1 and any measurable function F :R"T! — R,

Ex[ Z F(V(ui),0<i Sn)] =eQxQx[e_9S”F(Si,0§ i <n)].
lul=n
(iii)) For anyn > 1, and any |u| =n,

2V

_ ar J—
Qx(wy =ulF,) = Z|v\:n LON
Remark that by (5.17), Q[S;] =0 and Q[Slz] =" (0+) > 0 in the critical case,
while Q[S1] = v¥/(04) > 0 in the subcritical case.

5.2. Spinal decomposition for a killed branching random walk. Before intro-
ducing a change of measure related to the killed branching walk, we recall some
elementary facts on the Palm distribution of the point process .2 = 3", =1 8(v )
under P. Let E(_Z(dx)) be the intensity measure of .Z’, namely for any measurable
function f:R — R,

[ rwrz@n) = [vam]

lu|=1

Clearly E(.Z(dx)) is o-finite since i is well defined on some interval. Then there
exists a family (Ey, x € R), called reduced Palm distributions, of distributions of
random point measures on R such that

- _E[F(x, Z —§(,))Z (dx)]
o, F(x,0)8,(d0) = E(Zdn)

(5.18)
for E(Z(dx))-a.e. x

for any measurable F:R x Q(R) — R4, and where Q¢ denotes the set of o-
finite measures on R; see Kallenberg [21], Chapter 10 for more details. Roughly
said, Ey is the distribution of £ — §{,) conditioned on that .Z’ charges x.

In this subsection, let ((S;), Qy) be as in Corollary 1 and (5.16). Based on
Corollary 1(i) (with n =1 and x = 0), elementary computations give that for any
measurable f, g: R — R,

Q[f(S)e™ &8 = /E(,i”(dx))egxf(x)/;z e~ 8 (do).
;
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It follows immediately from (5.17) that the law of S; under Q is given by
Q(S) edx) =E(Z(dx))e?*. Hence for any measurable f, g:R — R,

(5.19)  Q[f(Spe O] = /R Q(S1 € dx) f(x) fg e~ &0, (d6).
f

In words, E, is the law of ®; conditioned on {S; = x} under Q.

Now, we are interested in a change of measure in the killed branching ran-
dom walk. To introduce the corresponding density, we consider R(-) the renewal
function of the random walk (S,),>0 under Q. More precisely, for x > 0, R(x) is
defined by the expected number (under Q) of visits to [—x, 0] before first returning
to [0, o0), that is, R(0) =1, and

-1
(5.20) R(x):= Q[ > 1{x§Sj}i| Vx >0,
j=0

with 7% :=inf{j > 1:S; > 0}. We extend the definition of R on the whole real line
by letting R(x) =0 for all x < 0.

Recall that Q[S1] = 0 in the critical case and Q[.S1] > O in the subcritical case.
It is known (see Lemma 3) that the following limits exist and is equal to some
positive constants:

. RXx) 1
lim =

= , if / -0 itical ’
x—>00 x Q[_Sr(;] if ¥ (0x) (critical case)

(5.21) Cp :=

. _ e ..
xlgrolo R(x) = if ¥’ (04) < 0 (subcritical case),

Q(ry =o0)’
with 7, defined in (5.8). Recall (5.15). Define
hy(u) = R(V @)Y “ 1y wy)=0,... v (un) =0} lu|=n,ueT.

It is well known that (R(S”)l{to_>n}’ n > 0) is a Q,-martingale for any x > 0;
see, for example, [6]. Then h satisfies (5.1) with A = 1. Note that in this case,
e ={ueT:V(wug) =0,...,V(uy) =0} =2 is exactly the set of progeny of
the killed branching walk.

Let Q" be the probability satisfying (5.3) and (5.2) with h = h,

+ —0x
aQy| . _e® Y R(V@)e’™ =M  x>=0n>1
dPy |z,  R(x)

n lu|=n,ue %

(5.22)

with Mg := 1. Write for simplification Q"= Qar . Recalling (5.5), we deduce from
Proposition 2 the following result; see Figure 5 below.

COROLLARY 2. Recall (5.15). Fix x > 0. Under Q}:
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V(u)
e spine
o particles in (Uy)y
< P-BRW’s Q
O O,
0

FI1G. 5. Spinal decomposition under QS‘ .

@) (Spn=o0 is a (9,)-Markov chain: for any n > 1, y > 0 and any measurable
function f:Ry — R4,

R(S1)
R(y)

In words, under Qj, the process (S,,, n = 0) has the same law as the random walk
(Sy, n > 0) under Py, conditioned to stay nonnegative.

(b) Conditioned on (S,)n>0, the point processes (®,),>1 are independent, and
each ©, is distributed as Es, s, .

(c) For any nonnegative function F and any n > 0,

QI f(S)IGn—1, Sn—1=1] :Qy|: f(Sl)l{Sle}]-

e_QSn
R(Sn)

Ex[ Z F(V(u;),0<i< Iul)] = R(x)eQij[

ueZ \ul=n

F(S,-,Ofifn)].

PROOF. The formula many-to-one (c) is routine. Let us only check (a) and (b):
By Proposition 2(i), we get that for any n > 1,

Q [e O £(S)|%u—1, Su1 =]

=K |: 7€QV(M)R(V(M))
g MZZI R(y)e®
(5.23)
X l{V(u)EO}f(V(M))e_ Zv#u,lw_lg(v(v)_”il

R(S i
(5.24) = Qy[%l{s, ZO}f(Sl)e_(g’Ol)}

R(y+S g
(5.25) Q[ G sz £+ spe @00,

by using Corollary 1(i). Taking g = 0 in (5.24) yields the assertions in (a). Taking
n = 1 gives the joint law of (S;, ©;) under Q. Let p(dz) = Q(S) € dz) be the law
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of S1 under Q. Recall that E; is the law of ®; conditioning on {S; = z} under Q.
Then for any event A € ¢,_1, we deduce from (5.25) that
Qi[O £(S)14]
R(Sp—1+2)
= Qt |14 [ ptan

1 Sp—1 4+ / E.(d6 e—<g’9>}
RS, 1) (Sp_142200 f (Sn—1 +2) o, :(d9)

=Q§f[1Af(Sn)/Q Esn—s,,l(de)e_@ﬂ)}
;

by using (a) for the last equality. This together with Markov’s property of (S;)
with respect to (¥,), imply that forany n > 1 and g: R — Ry,

Q;_[e_<g7®n>|gn_l, (S])]EO] = \/SZ ESn_Snfl (d0)6_<870>,
f

proving (b). O

REMARK 4. If we assume that £ =Y, (x,; with (X;);>1 a sequence of
i.i.d. real-valued variables of the same law as X, independent of v, then the expec-
tation in (5.24) equals

3 PO = RRE[ < e X ) | B0,
y

k>0

which implies that under Qj foreachn > 1, conditionally on ¢,,_; andon {S,,_; =
v}, Sy and ®,, are independent and ®,, is distributed as Z;’:_ll 8x,, with V the size-
biased of v, Qj(i =k) =kP(v =k)/E[v], k > 1, and independent of (X;);>1.

We may extend Corollary 2 to the stopping lines. Remark that ; N 2" = J2(¢);
see (5.7) and (1.11). We deduce from Proposition 3 the following result:

COROLLARY 3. Recall (5.15) and (5.8). Fix 0 < x < t. We have
dQ+ emox

dPy |z,  R(x)

(5.26)

Y R(VW)etV ™ =: M.
ue I (1)

(i) Under probability Qf, conditionally on %, and on {V(v) = x,,v €
+

U}?:1 Ok}, the shifted branching random walks {V (vu) — V(v)}u:|vu|§r,+(vu)’

stopped by the line 6;, are independent, and have the same law as {V(u)}lulff,t )

under Py, stopped by the line €;_, .
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(ii) Moreover, for any measurable function F :RN+ — R,

B ¥ F@)0<izp)]

uee:NZ

—0S
eQ’f

= R(x)eQin[ml{rﬁ«O}
T

F(Si,0§i§rt+)].

6. Maximum of the Kkilled branching random walk: Proofs of Theorem 3
and Proposition 1. Let us first recall the following criterion for convergence in
distribution of point processes which can be found in Resnick [32]; see page 153,
Proposition 3.19. Let E be a polish space. Then, let us define the Laplace transform
of a point process ¢ with probability measure P by

6.1)  Wp(f) ::/exp{—/fd@}dP(@):/exp{—(f,@)}dIP(@),

where f is a positive measurable function from E to R. Let C ;(”(E ) be the space
of continuous functions from E to R} with compact support. Then we have

6.2) lim Wp, (f) =Wp(f)  YfeCLE),
if and only if
6.3) P, "p, o oo,

which is the same as the convergence in distribution of the point processes.

Recall the real-valued random walk (S;,) defined in Corollary 1. In order to treat
both critical and subcritical cases in the same proof, we introduce the following
function defined on R by

L RI=0 e ¥G)=C
1, if ¥/ (0+) <0, O+, if ¥/(04) <0,

and observe that the renewal function R(-), associated with the random walk
(S5, Q) defined by (5.20), satisfies [see (5.21)]

R(t) ~ CRrZ (1),  — 0.

(6.4) Z(t):= {

We take the notation of Theorem 3 and Proposition 1. The key step is to prove
that for any f € C;g (R) and when t — oo, we have

~ R(x)egx e_<f,ll'33,oo>
(6.5) Ei[e 101 5)20)] ~ [ }

CRZ(t)e! N

We recall from (5.26) that Mg, = % S uerw ROV (u))elV ™, where (1)
denotes the set of those u € 2 satisfying rt+(u) = |u| [see (1.11)]. Then H(z) > 0
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if and only if M%z > 0. It follows that

*

M
— G —
E.[e <f,u%.t>1{H(,)>0}]=Ex[ %, <f,m,t>1{H(t)>o}]
M,

e Wnad)
:Qx[ M; }
G

We will now use the so-called “decomposition along the spine” (wy) (under Qj{).

(6.6)

Recalling that Oy = {u: |u| =k, U= Wk—1, X 7 Wi}, we have

(6.7) <fvl‘~=95’,t):f(n+)1{ﬂt(wrt+)=00}+ Y Lpw=oallf nlg,),

1<k<t,m u€Uy

where T;r = ST[+ — t denotes the overshoot of S above the level ¢ [see (5.9)], and

for any u € 7 the point process M%)t is associated to the subtree 7™ (rooted at 1)

of 7 and defined by

(6.8) M%)J = > Sww—)s i = > Sy
veTWNIR(1) veT WM (t)

Recall that R(s) ~ CrZ(s) when s — oo. Since V(1) >t for all u € J#(¢), we
get that, under Q7 ,

—0x
% e

M ~
% R(x)

CrZ(t)e? Z %(1+%)e@(wu)—o’

ue 7 (1)
(6.9)

t — oQ.

Then repeating the spinal decomposition arguments for the above sum »_, ¢ s,
we obtain

R(x)e?” Ig(t
(6.10) E.[e~ 120 ] -0)] ~ (x)e +[ ﬂ()}

CrZ (e < | T (1)
with
. W
Ig(®) -:eXP{_f(Y}+)l{ﬂt(w,[+)=00}_ > Zl{mu):oo}(f’ﬂé,t)}v

I<k<zt uely
J () ':%’<1 + E)eQTf+ + > ) /%(1 + E)eé’zu(”)(alz)
. t t t .
I<k<gt uely
Therefore, to prove (6.5) we only have to show that

) I5(1) e~ firg.c0)
wn malh] o]
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Note that Ig () € [0, 1] and J (t) > 1, hence If.’((;; € [0, 1]. Recalling the conver-
gence in law of the process (f — T _ j)0< j<k forany fixed K > 1 (see Lemma 4),

we will restrict the sums over k in Ig(¢) and J(7) to k’s between r, — K and r, .
To this aim let us introduce H"(t) the number of descendants of u that reach ¢
before O [with the convention H*(¢) = 1 if V(u) > t]. The following lemma en-
sures that with probability close to 1, leksrﬁ— x 2uev, H"(t) =0 (the sum is 0

if 7,7 < K):
LEMMA 9. We have:

- . T-K
(i) limsupg_, o limsup,_, ., QF (ZT ZueUk H"(t) > 1) =0
(ii) limsupg_, o limsup,_, o QF (,Bt(w +) < T —K)=

PROOF. See Section 9.4. [J
Notice that lim/—, o Qf (r;” > K) =1 and that on {8 (w, +) > K, 1"
K},
Br(u) =inf{r," — K < j <|u|: Bu;) >V} = gK )
for any u = w ot Oru € Ux with 7,7 — K < k < 7;7. The advantage of ﬂt (u) is

that ,B, (u) only locally depends on the spines around t;". Therefore (6.11) will be
a consequence of

14, K) o8 00)
+| 280 —
©12 lgnoorlirgoQX[J’(r, K)l{’f+>K}]_Q[ n }
with
. W
Ip(t. K) -=CXP{—f(Tz+)1{ﬂ[’<<wq+>=oo}— 2. 2 lpFa=oalf ki, >}’

7T —K <k<t," u€Uy

J(t, K):= (1+T—)eQTt + > Zf (1+ )eQZ W (dz).

T, —K <k<t," u€U

Recall from (6.8) that the measures u%) , in the previous expressions are as-

sociated with the branching random walk killed at 0. Now, we want to replace
the measures i @ , by the same measures [t ) , but associated with the nonkilled
branching random walk,

~(u)
Ay, = Y. lgw=dvw-n,
veT WNE,
(6.13) W
~(u
L= ) Syw-r

veT WNE;
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where we recall that v € 7™ N%, if and only if v is a descendant of u and r,+(v) =
|v|; see (5.7) for the definition of %;. The following lemma confirms that we can
replace ™ by i®) with probability close to 1:
LEMMA 10. Let us define fort > 0and K > 1,
' K):={r," > K}
W @y (@ 20V e ke (oF — Koot
Mg i) = (g i), Yu € Uy, Vk € (57 — K, 7,7 ]}

Then for any K > 1, we have

: + cy _
tl_l)Igon (C(r, K))=0.
PROOF. See Section 9.4. O

By Lemmas 9 and 10, to prove (6.5) it is enough to show that
I~,3(t, K) 3 e {fitz,00)
To k) w0 T )

where Zg([, K) and J(z, K) are as Ié(r, K) and J'(¢t, K) but with ™ in lieu
OfM(M)’

T . ~(u)
Iﬁ(t’ K):= exp{_f(Tt_'_)l{ﬁ,K(wT;_):oo} - Z Z l{ﬂ,K(u):oo}<f’ Mﬂ%,t)}’

T, —K <k<t;m u€ly

(6.14) lim lim Q+[

K—oot—>00 %

~ T+ + z
Jit,K):=2%(1 L) et /%(1 _) 0z (1
5 (+te+ > X + )R (d2)

ot —K <k<t," u€lx

Let us now introduce a family of point processes denoted by (i, Ity)yeR,
which are associated to the nonkilled branching random walk V under P and are
defined by

Y lg,w=aldvw-y,  ify =0,
(6.15) By =1 ves,

3(—y} if y <0,
and
Y Sww-y,  ify=0,
(6.16) Ly 1= | ves,
Si—y}» if y <O,
where ¢, was defined in (5.7); in particular, {V (v) —y, v € €y} denotes exactly the

set of overshoots of the (nonkilled) branching random walk V above the level y.
By part (i) of Corollary 3, under Q™, conditionally on g, andon {V(u) =x,,u €
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O, 1 <k < ‘r;”}, the family {(ﬁgé),t, ﬁ,(")), uell<k< ‘ct+} is independent

and satisfies
- ~ law _
(6.17) ((M%)t, i), under QF) & (B, —x,s Bi—x,), under P).

For convenience of notation, let us introduce

(6.18) SV =84 =S, =izt
(6.19) 0 =04, l<izgh

Recall that Tt+ = Sr,* — t denotes the overshoot of S over ¢. Thus, (6.17) yields
that on {r,+ > K},
Ts(t, K)
J(t, K)
where for any #p > 0, s1,...,5x > 0 and the point measures 00 1<i<K,of
form 0¢) = Z’J"ﬁ)l SXJ(;), we define

(6.20) Qj[ \%] Lo k(180,50 el el

K

Dk =(BOV) <), 1<is<K
j=i

and
(pf,K(t09 $1,-.-,5K, 0(1)5 R} Q(K))
@) —(,j
expl=f 101, — Iy 1g e ST AEL) o)
::E[ - — }
R +1o/D)eeo + LK Y00 [ R +2/nee ™) (d2)
Si—lo—x;

and with (under P) (3. 72y""). y € R); j=1 iid. copies of (g, ,). ¥ €
R). Then, applying part (b) of Corollary 2 to (6.20) implies that on { r,+ > K},

1, K)
J(t, K)

(6.21) Qj[

with

56,0 <k <7t rﬁ} Lok (T8 850),

K
@JI,K(IO’ Slyenes SK) = f l_[ ES,’*Si_l (de(l))(pt,K(t07 §1,...,5K, 9(1)’ LR Q(K))9
i=1
with sg := 0 for notational convenience. Now for any (¢, s1,...,Sk) € Ri X ]R_Iﬁ
and for any family (6 (i))lsis x of point processes ) := Z’J"f)l (Sx;i), let us define

(pOO,K(t07 S1,---55K, 0(1)7 ] Q(K)) = tl_i)ngo(pl,K(tO’ §1,.+-,5K, 9(1)9 ey G(K)),

Do,k (10, 81, ..., 8k) := lim @; g (10,51, ...,5K),
t— 00
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and observe that these limits exist by the dominated convergence theorem, which
also yields that

500 K(t()’slv""sK)

K

1_[ —Si— 1 0(1))(p00 K(t09s1asSK70(1)a,9(K))
i=1

K
/HE si—si_ (@0V)E

R ()]
exp{_f(t())l@],[( - Zl 1 9,1( Zm f %s —to— x(z)>}
X oty K ~m® o)) 4 ]
e’ 43 Zj:l [e 'uv-—zo—x(")( 2)
5i ;

(6.22)

The next step is to replace @; x by @oo k-

LEMMA 11. Fix K > 1. Then we have

lim Q[[7k (T, 5(",... S¥)
(6.23) o ®
- wOO,K(TtJr’ Sp Sk )|1{z,+>1<}] =0.

PROOFE. See Section 9.4. O

Note that since @; g (-) and @oo g (+) differ only if ¥/ (04) = 0, the previous result
is not trivial only in the critical case.

Finally thanks to (6.21) and Lemma 11, the double limits (6.14) will be a con-
sequence of the following lemma.

LEMMA 12. We have
—<f,ugg,oo>]

lim lim QY [Qﬂoo,K(Tz+v Sl(t)’ s S%))l{ffrﬂ(}] - Q[ N

K—o00t—>00

where

, (i)
(6.24) 11,00 = by, 1@1+21@ Zu%’s Ub g0
i=1 j=1 ' ‘ /
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R 0 Ui o
627)  Ni=eU% 43N / O mD D)= / % [too(dz)
i=1 j=I Lo

and 0 = 0+ if Y'(0+) =0, 0 = 0+ if ¥'(0+) <0, and under Q:

o the ((Egéjy),ﬁg’j)),y € R); j>1 are i.id. with common distribution that of
((IX,ys Iy), y € R) under P [see (6.16)], and are independent of everything
else;

o the process (Sy), (as well as the associated random time &) and the random
variable U are introduced in Lemma 4 (see Section 4.1); B

o conditionally on {S,,,n > 0}, the random point processes ®; := 25;1 5;(@) for

j

i > 1 are independent, and (:)i is distributed as ES,_PS.; see (5.18) and Corol-
lary 2 for the Palm measures (E, z € R).

PROOE. See Section 9.4. [

PROOF OF THEOREM 3 AND PROPOSITION 1. Assembling (6.21), Lem-
mas 11 and 12 imply (6.14), hence (6.5): namely for any f € C ;g (R) and when
t — 00, we have

- R(x)eQx €_<f’/’*33,oo)
E (f,ﬂgg,,)l . N |: :|
x[e (H(1)>0)] Caed .
R(x)egx ~ o
:WQ[ER NQ[e~ /e,

by the definition of f{g . Taking f = 0 in the above asymptotical equivalence
yields parts (i) and (ii) of Theorem 3 while Proposition 1 is a consequence of
parts (i) and (ii) together with (6.5). Finally, taking &% = 0 in Proposition 1 gives
part (iii), which completes the proof of Theorem 3. [l

7. Proof of Theorem 2: The critical case. We look at the critical case
¥’ (0x) = 0. By linear transformation on V, we may assume that o, = 1 in the
whole section without any loss of generality. We investigate the tail distribution
of the number of leaves #£[0]; see (1.8) for the definition. We will see that when
L[0] is large, the main contribution comes from particles that reached a critical
height L. For integrability reasons, we will also restrict to good particles whose
brothers do not display atypical jumps, and are not too many. We denote by

OWw):={ueT: U = <v_; u # v} the set of brothers of v (<17 denotes as before
the parent of v in the tree 7). For A > 1, L > 1 (typically A is a large constant
whereas L — 00), we say that

u € B(L, L) if there exists some 1 < j < |u]:

Z (] +eAV(v)) > pelL=Vw;-1)/2
UGU(M])

(7.1)
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and u € G(L, }) if such j does not exist. In words, G(L, 1) collects good particles
in the sense that their large moments are finite; however, B(L, ) is a set of bad
particles for which only low moments exist. Recall from (1.12) that Z[0, L] =
You l{r(; (W=lul <t} ()} counts the number of leaves in the killed branching random
walk that did not touch the level L. Let us decompose Z[0, L] as the sums over
good particles and bad particles,

Z[0, L] = Z4[0, L1+ Z[0, L]

with
Zgl0, L] := Z l{ro_(u)z\u|<rZ(u)}’
ueG(L,A)
(7.2)
Zp[0, L] := Z 1{f(;(u):|u|<r{(u)}'
ueB(L,A)

The following lemma shows that we can neglect the number of bad particles.

LEMMA 13. For § > 0 small enough, there exist constants ¢ = c(8) > 0 and
¢’ =c'(8) > 0 such that forx >0, A >l and L > 1,

R

—c'L
L2 '

(1.3) E.[Z,[0, L]] < ¢ +cete

For § > 0 small enough, there exists a constant ¢ = c¢(8) > 0 such that for x > 0,
A>1,L>1and B>0,

_s 1+ B (14+x)e"
L+ B L

(7.4) Ex[ Z Lwew. 2“0, L + B]} <ck
ue (L)

’

where ZW[0, L + B] is the number of leaves in L[0] that are descendants of u
and did not cross level L + B.

PROOF. We prove separately (7.3) and (7.4). The notation ¢ denotes a constant
that can change value from line to line.

PROOF OF EQUATION (7.3). Mentioning here that (5.1) holds with A =1 (be-
cause ¥ (0x) = 0+V¥'(0+) = 0), Proposition 3 (applied to £[0] and h(x) := ¢V ®))
implies that

1
B 2610, L1] =¢'Qu| sy 0. L]

> uer[o]
VW)

— V)
_erx|: Z eV(u)e w1

3 F( l{ue]B(L,A)}]
uel[0] Zuell[O] {tg W<t/ W)}
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eV(u)

- 2uel[o)€
Proposition 3. Therefore,

The weight v 18 the probability that the vertex u is the spine; see

_S _
E[Z00. L] =€"Qule " 1 ooy lw - emwan):

where 7, (resp., fzr) is the hitting time of (—oo, 0) [resp., (L, +00)] by the ran-
dom walk S. Let § € (0, 1), and, for k > 1, ax := Y ,,¢i5,{1 + 2V} [we recall
that U := O(wy)]. From the definition of B(L, 1), we observe that

T T
1{wr()_eB(L,k)} < Z l{ak>ke(L’sk—1)/2} < Zmin(a,‘z)h—Se—B(L—Skq)/z’ 1).
k=1 k=1

It follows that

K0
_S7
(7.5)  E.[Z5[0, L] < ¢* Qs {e 0 1o oty 2 min(agr e TS0/, 1)}-
k=1

We first consider the term corresponding to k = 7, that is,

_s _ —S(L—S — )2
7 _ : ) -5 ) —1
Qq[e l{fo <t} mln(aro,)\ e

1]
1)

We know that (S,), is under Q a centered random walk [since ¥'(1) = 0].
Assumption (1.3) ensures that Qe 4MS1] is finite if n is small enough. In turn,
it implies [see (4.10)] that

-5 _ . o —8(L-S— )2
<Qufe ™ mln(af,k 3o o !
0

—(14n)S -
(77)rO

Qx[e ]SC

L
for small > 0, and any x > 0. We also have Q,[e ' ™ ] <c by (4.15). Then
it is not hard to see that, with £ := {Sr(; > —6L/8, Sr(;_1 < L/2}, we have, for

some constant n’ > 0,
=S - / —n'S§L
Qule ™ lge]<ce™m".

_S_
Therefore, we can restrict to the event &, on which e © < ¢*L/3 and
5=, D2 _ spa
e 0 < e 9L/4 Tt yields that
-5 _ s —8(L=S_— )2
Qi[e ™ mln(af,)\ 8o o !

)] < e ML —i—)»_’se_‘SL/SQx[af,].
0 0

Observe that

o0
Qx [af(;] = Z Qx[l{j—1<ro_}QSj—l [1is, <0}a,(;s']]’
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by Markov’s property at j — 1. For y :=S;_1 >0,
Q[ 115, <0jaj] = Qye™/21af] = 7122 Q™2 af]).

By the Cauchy—Schwarz inequality and (1.3), we have Q[e™5/2a%] < ¢ if § > 0
is chosen small enough. Therefore,

1/2)S;_-
x 1_, <CZQx = 1<770 (/);1]’

which is uniformly bounded by (4.14). Hence, we showed that

—H(L=S- D)2 o

R
(7.6) Q.[e ™ 1{10 <t }a‘S 2% ] <ce™

We consider now the terms corresponding to k < 7, in (7.5). By Markov’s
property at time k, we get

-S _
Qx[e o 1{k<10_<rE}a2A_Se_8(L_Sk71)/2]

-5 _
-8 8 —8(L—Sk—1)/2 z
<A Qx[l{k<r07<tzr}ake ( )/ ]S‘i%Qy[e 0 ]
y=
-8 —8(L—Sk-1)/2
=ch Qx[ {k<zy <tL}ake ( 1)/ ]
again by (4.10). By Markov’s property at time k — 1, we observe that the last ex-

pectation is Qx[l{k«g<rL+}e_5(L_S"“)/2]Q[a‘13]. Summing over k > 1, we deduce
that

7 —1 7, —1
S _ 0 0
T 2 i —§(L—S 2 § : —5(L—S, 2
Qx|:€ 0 1{.[0 <TL} a e ( k=1)/ :| <CQX [1{.[0 <‘L’+} e ( k= 1)/:|

By (4.18), we have QX[I{TO_<TZ—} Z;‘igl e dL=8-1/2] < clLizx for some ¢ =
c(8). We obtain that

79 —1

- 1+x

i Qx|:e rolt <r+} Z aye —8(L—Sy— 1)/2:| <c '\~ 87.
=1

Then (7.3) follows from equations (7.5) and (7.6). [J

PROOF OF EQUATION (7.4). By the branching property, we have

EX[ > l{ueB(L,A)}Z(M)[O’L+B]]ZEx[ > 1{ueB(L,A)}f(V(u))],
ue (L) uet (L)
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with f(y) := Ey[Z[0, L + B]]. Using the measure Q,, Proposition 3 implies

—V(w_-) _
that f(y) = e’Q,[e Y51 1+(L+B—y)+ ,y

{T(T<TL++B}] which is smaller than c—7%
by (4.13). It follows that

Ex[ > Lwerw. 200, L + B]}
ue (L)

c¢(1+ B)
< ﬁEx[ > l{ueIB%(L,A)}eV(u):|-
+ ue (L)

.7

By Proposition 3 with 47 and k(y) := e, we observe that
Ex[ 2 l{uem,x)}ev(”)] =€ Qullj oy L, Bz )
ue (L) L

As before, we have for § > 0,
+

L
Lw eB(L.ay) < A Z ade dL=S=0/2,
L k=1

where ay :=3_, 5, {1 + eAV W) Hence,

+
22
=4 8§ —8(L—Sk—1)/2
Qx[l{t11+<t0*}l{wrieB(L,)\)}] =i Qx |:1{1-L+<r0}k2;ake ( 1)/ :|

-5 8 ,—8(L—Sk-1)/2
=A ZQX[I{kgrL*«(;}“ke (E=Se-0r2],
k>1

Using Markov’s property at time k — 1, for every k > 1, yields

+

7L
-4 —8(L—S;_1)/2
Qx[l{rjao—}l{wrgeB@,x)}]Sc/)» QX[I{er«o‘}l;e (L=Sk-1)/ :|
=1

with ¢’ = Q[a‘f] < 00 if § > 0 is small enough by (1.3). We get by equation (4.17)

sl+x
QX[l{rj<r0’}1{wz;e]B3(L,)L)}] <t ——.

Going back to (7.7), we obtain

< end 1+ B)(1+x)e*

Ex[ > 1{ueIEB(L,A)}Z(u)[O,L+B]j| LB 7

ue st (L)

9

proving (7.4). O

We are going to re-prove the following estimate of Aidékon [3] but in a more
general setting. We recall that £[0, L] is the set of leaves in £[0] which did not
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hit (L, +o00), and Z[0, L] :=#L[0, L]. We call similarly L¢[0, L] the leaves in
L[0, L] which are in G(L, 1), hence we have Z¢[0, L] :=#L,[0, L] the number
of such leaves.

LEMMA 14. Fix A > 1 and assume that V' (04) = 0 with 0, = 1. Under (1.3),
there exists some constant ¢ > 0 such that forall L > 1,and 0 <x <L,

L
E,[(Z,[0, L])?] < ea(l +x)ex%.

PROOF.  Writing Zg[0, L] = Yyegiore” Lt wy=ope "V LveGL ), We
deduce from Proposition 3 (applied to £[0] and h(u) := eV ) that

S _
(08 El(Z00. L)) = QuIZ00.Lle 0 1yl _cow)

We decompose Z,[0, L] along the spine (wy, n > 0) as follows:

)
Z00,L1<1+ Y > zWo, L],
k=1uely
where ZWJ0, L] := Y oveTw 1{r(;(v)=|v|<rL+(v)} denotes the number of descen-

dants of u, touching 0 before L (7™ means as before the subtree rooted
at u). We have an inequality here since we dropped the condition that the par-
ticles must be in G(L, A). By Proposition 2, under Q,, conditioned on ¥, :=

o{w;,S;,0;,(V(u),uclj),j=>0} (ZW10, L])uer,jfrO_ are independent, and
each Z®[0, L] is distributed as (Z[0, L], Py ,)). In particular,
7
Q:[Z,[0, L1%s0] <1+ > D Eyw[Z[0, L]].
k=1uely

Proposition 3 implies as well that for any z € R,
-S

E.[Z[0, L]] = €*Q.[e
which is zero if z > L and is 1 if z < 0. By (4.13), we get that

L—z+1
EZ[Z[O, L]] < Cele{ze[O,L]} + 1{z<0}-

0 1{‘[0_<12'}]’

Hence,

)
L—Vw)+1
Qx[Zg[O, L]|goo] <1+ Z Z (Cev(”)—L Livwelo,L)y + l{v(u)<()}>.
k=1ueUy
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For k < ‘L’Z_, we observe that [recalling S;_; = V (wg—1) < L]

1
I {Vwel0,L]}

uely
L—-—V@u)+1
=%t 3 et T Ly wero.ny
ueUy
< LSkt Skt + les"*'ak,
- L
with ag := 3,5, {1 + AV If W, € G(L, A), it follows that for any k < 7,

L—Vu)+1 L—Si1+1 _
> e lvwero.y < het ——— e TH,

uely

Similarly, we observe that ZueUk Livay<oy < ax < reL/2. Therefore, if W €
G(L, L), then

L T

Q.[Z,[0. L1[%] < 1+ cx% 3L = Sp1 + DelS1=D72,
k=1

The equality (7.8) implies that
E.[(Z[0. L1)’]
S _
<e'Qule 01 ]

X+
L

e

L To_
S _
+ch——Qy |:e O e oty 2 (L = Skt + 1)e(5k—1—“/2].

k=1

The right-hand side is smaller than ¢*(1 + ¢’(1 + x)A 2—2) by (4.18). It completes
the proof of the lemma. [

We look now at the progeny of a particle which went far to the right. Let the
derivative martingale be defined by

AW, == > V(e ™, n>0.
lul=n

According to Theorems 5.1 and 5.2 in Biggins and Kyprianou [9], under P, oW,
converges almost surely to d W, which has infinite mean and is almost surely
positive on {7 = oo}.
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LEMMA 15. Assuming ¥'(04+) = 0 with 0, = 1. Under (1.3), as t — 00, the
law of #L[0] under P;, normalized by €'/t converges in distribution to c¢*dWeo,
with

-9 _
Qe " —1]

7.9 =
7 C TS, ]

PROOF. By linear translation, it is equivalent to prove that under Py, #£[—¢]
normalized by e’ /t converges in law to ¢*9 Wx. If we define

IWemi=— > Ve ™,
uel[—t]

then dW,[—; converges almost surely to d Wy; cf. Biggins and Kyprianou [9],
Theorem 5.3. We write

1
(7.10) IWer—n = tet( > Tt —’71>,
uel—1] t
with ny = =3, cpin(V () + 1)eV )+ At this stage, we may apply a result of
Nerman [29] for the asymptotic behavior of ﬁ > uer[—] eV Tet £ :=
>_uerio] 8{—v )} be the point process formed by the (nonkilled) branching walk V
stopped at the line £[0]. Generate a branching random walk (Vg (1), u € T¢) from
the point process &, where Vg, 7 are related to £ in the same way as V, 7 are
to .. Define Lg[a] :={u € T : lu| = t;F (u)} for all a > 0. Clearly L¢[r] = L[—1]
and
Zueﬁ[—t]ev(u)+l _ Zue?% Yu(t —oy)
#L[—1] Zuqu @yt —oy) ,

where for any u € 7¢, 0, := — Vg (u) and

V() = 1lp=0p D € gang $u®) = 10) O Loy—oy o)

v=u v=u

Applying Theorem 6.3 in Nerman [29] (with « = 1 and A,, = oo there) gives that
conditioned on {7 = oo}, almost surely, when ¢ tends to infinity

Luer Vull 0w Elljy=1ver €700l
Yuer; But —ou) B[ =1 per (1 — 7))
Observe that E[Yy=1 yer; ¢ 700] = —E[X ezoe” @V @] = —QIS-1,

—-S _
and similarly, E[ZM:LUE?—S(I —e )] =Q[e To]— 1. Therefore conditioned
on {7 = oo}, almost surely

Yueci-ne’ Ot QIS |
—
#E[—t] 1 _Q[e_SIO_]

, r— o0.
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On the other hand, following the same strategy, we get that conditioned on {7 =
oo}, we have almost surely

m QI(S,-)%/2]
— . ,
#L[—1] Qle 0]—1

Dividing both sides of (7.10) by #£[—t], and using the fact that 0 W,[_;} goes
to 0 W, we deduce the lemma. [

r — 00.

We also need the following simple technical lemma whose proof is postponed
until Section 9:

LEMMA 16. On some probability space (2, F,P), let Zle d(v;y be a point
process on Ry.. Let (I';,i > 1) be a sequence of i.i.d. random variables on R,
independent of 0 {&, Y;, 1 <i <&}. Assume that for some p > 0 and a > 0,

Py >1)=(a+o(1)) P, t — oo.

(i) If p = 1 and if there exists some § > 0 such that E[Zl;:l Yi1+8] < 00, then

i (Sm=0) a3

i=1 i=1

(11) If p > 1 and if there exists some & > 0 such that IEJ[Z‘s (1+Y; )P < o0,
then

& 3
. _ P
tl_l)rgotpP(E YiFi>t)_aE|:E Y; :|

i=1 i=1

In the critical case, the branching random walk goes to —oo. In particu-
lar, almost surely, H(L) = 0 if L is large enough. Fix A > 1. For L > 1, let
ML i= Zueﬁo@) 8tvw) -}l weG(L,1))- Then Proposition 1 implies that ) 7, un-
der P(-|H (L) > 0) converges when L — 00 to {43~ defined in Proposition 1 with
Bu) =172 yepwll +e2V N2 We will write 1 o0 := 5%, 8y, instead of
L .- Since the measures (i) oo are increasing in A, we can assume that the la-
beling (x;); does not depend on A > 1. We write similarly p; o := Zf*: 1 Ox; for
the measure [t o given by Proposition 1, and we know that the Radon—Nikodym

derivative of 1) o With respect to i) o is Notice that if Q =0, then 1) ~

Q[‘Y 1]
is the measure zero.

LEMMA 17. Assuming ¥'(0+) = 0 with 04 =1 and (1.3), fix 2 = 1 and let
fr..co and ) oo be as above. Under Q, let (BW&),i > 1) be a sequence of i.i.d.
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random variables, independent of [1). oo and of common law that of d W, under P.
For any A > 1, we have

2)» g)'t—l o} Xi
- iaw® < ) = QT 2z, et
(7.11) tl_l)ng()tQ(Ee IWL >z>_ o
1=
Moreover, for any ¢ > 0,
7.12 lim A oW A= —.
712 s Q(;e o 7€ ) Q]
PROOF. Forany i > 1, by Theorem 1.2 in [10],
. 1
(7.13) QWY >t)=P(8Woo>t)~;, t — 0.

In order to prove (7.11), we shall apply Lemma 16(i) and it is enough to show
that there exists some § > 0 such that Q[ZiQ (1 + e*)118] < 0o. Remark that

{100 has the support contained in R, hence for § > 0, Q[Z?:l(l + %)) <

21+5Q[Z?: | e(119)%i] We are going to prove a stronger statement: for i the
point process defined in Theorem 3(iii), we have

(7.14) QU ;’Zoo(dx)e(H‘S)X} < 00.

The statement (7.14) implies the corresponding integrability for fi)  since
fx.00 1S stochastically dominated by flo. To prove (7.14), we consider x (L) :=
D ue (L) eI+ =L) and prove first that, under P(-| 7 (L) # @), x (L) con-
verges in law to [ oo (dx)e! 9%, In order to apply the convergence in law of
Theorem 3(iii), we need some tightness result. We claim that

(7.15) supP,(Ji € [|1, HL)|]: V() =L > K|H(L) > 0) = 0k (1),
L>1

where we order the set of particles in 7#’(L) (eventually empty) in an arbitrary
way: (L) = {u”,1 <i < H(L)}. Markov’s inequality yields that the probabil-
ity term in (7.15) is smaller than

e_Ke_LEx[ Z ev(“)}Px(H(L)>O)_1
ue 7€ (L)

§ce_KLEx[ 3 e"(”)},

ues? (L)

(7.16)

where the inequality is a consequence of Theorem 3(i). To prove the claimed tight-
ness result it is sufficient to show that there exists some constant ¢ > 0 such that
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for any x > 0 and L > max(1, x) we have

X
(7.17) Ex[ > ev(”)}gc(l—i—x)e—.
ue st (L) L

To see it, a change of measure from P, to Q, by Proposition 3 is applied to 67
and h(u) := "™, and we find that

Ex|: Z ev(”):| =e"Q,C(‘L'LJr <7 ).
uest (L)

Then (4.12) implies (7.17). Assembling (7.16) and (7.17) yields (7.15) and al-
lows us to apply Theorem 3(iii) to obtain the convergence in distribution, under
P(-|5¢ (L) # D), of x (L) toward [ fioo(dx)e1 %,

Then (7.14) will hold once we have checked that E(x(L)|7# (L) # 9) is
bounded on L. By Theorem 3(i) with g, = 1, it is enough to show that

e—L

(7.18) E[x(L)] 507.

But by the change of measure,

5(S+—L)
. + -
e Lt <1

E[x(L)]=e Q]

The above expectation Q[-] is less than by applying (4.13) to the random
walk (§(L — S;))j>0 (the integrability is guaranteed if § is sufficiently small).
This proves (7.18) and a fortiori (7.11). ~

Recall that by (7.14) and Lemma 16(i), if we write [ioo = Zle (x;}» then

E h—1 ¢ Xi
Xi (@) - QR > e l]l o 1 l
Q(lg}e oW > t> Q] T f— 00

since N = Zle e* by definition; see (6.27). We have already observed that
.0 1s stochastically nondecreasing in A and is dominated by [io (fieo cOITE-

sponds to 1) oo With A = 0o). Then limsupkﬁoo)LZQ(Z?:l exiGWéQ > cA?) <
limsup; _, , 2Q(X%_, e"dWS) > ¢2?) which is
bound in (7.12).

For the lower bound, let Ag > 1 and by the monotonicity in [,

CQ[*%_I], yielding the upper

2)\. Z‘)\.O
PR ; j 2 NP ; j 2
liminf A Q(Zex BW&) > CA ) zlin_l)mfk Q(E e’ anQ > CcA )

A—00 i o0 i=1

QI e
o QMR-




3832 E. AIDEKON, Y. HU AND O. ZINDY
by applying (7.11) to [i;,00. Letting Ag — oo and noting that fol eYl =
J € g, 00(dx) — N, this gives the lower bound of (7.12). O

We now have all the ingredients to prove Theorem 2 in the critical case.

PROOF OF THEOREM 2(I), (CRITICAL CASE).

Lower bound of Theorem 2(i). Recall that we have assumed g, = 1 by linear
transformation. Fix a constant A > 0. Consider n — oo, and let L, 4 :=logn +
loglogn — A. We recall from (1.10) that H(L, a) = #5¢ (L, 4) is the number of
particles that hit level L, 4 before touching 0. Recall (7.1). We call Hg(Lj,, ) :=
#¢3(Ly, o) the number of particles in J# (L, 4) which are in G(L,, A) with A :=
eAl2,

(7.19) (L, p) := (L, a) NG(Ly, e*?).

Let us order the set of particles in .77, (L, 4) (eventually empty) in an arbitrary
way, (L a) = W, 1<i< Hg(Ly,a)}. Denote by #£®[0] the number of
descendants of the ith particle ") which are absorbed at 0. Then

P, (#L£[0] > n)

Hg(LrL,A) )
(7.20) sz( > #c0r0] >n)

i=1

Hg(Ln,A) )
=P, (H(Ln 1) > O)Px( Y #LD10] > n|H(Ln,a) > 0).
i=1
. Q"] xe tna

By Theorem 3(i), Py (H(Lp ) > 0) ~ C—RR(x)e L asn— oo On
the other hand, conditioned on % (L, 4) and on {V(u®), 1 <i < Hy(Ly )},
#LD[0D1<i<H, (L, ,) are independent, and each #£1)[0] is distributed as #L[0]
under Py, o).

By Lemma 15, if we denote by_B(i) = #E(i)[O]e_V(”(l))V(u(i)), then condi-
tioned on 7, (L, 4) and on (Vw®,1<i< Hgy(Ly, 4)}, for each i, B® con-
verges in law to c*BWéé) as n — oo, where BW&),i > 1, is a sequence of i.i.d.
random variables of common law that of (d Weo, P), and independent of np,, ,. We
may assume by Skorohod’s representation theorem that for each i, B¢) converges

almost surely to c*awéé).
Let ¢ € (0,1). First, we want to show that we can restrict to the event

E(Lp.a):={BD > 1 —g)c*dW;Vi:1<i < Hg(Ly.4)}. We have
P (E(Ln,A)|H(Ln,a) > 0)
<E,[Hy(Ly )| H(Lna)>0] sup P,(ze H#L[0] < (1 — £)c*dWoo)

ZZLn,A

= Ex [Hg (Ln,A)lH(Ln,A) > O]r]L,,YA .
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The term np, , goes to zero as n — oo by Lemma 15. By (7.17) and Theo-
rem 3(i), we have

E.[Hg(Ly,A)H(Ly,a) > 0]

Ee—Ln,AEx[ T W

MG%(L,,’A)

H(L, A) >0] <c

for some positive constant ¢ = c(x) which depends on x. Hence, Py (E (L )|
H(Ly,4)>0)=o0r,,(1), where o, ,(1) - 0 as L, 4 — co. We have

Hylns)
Px< 3 #£<'>[O]>n‘H(Ln,A)>0>

i=l

Hg(LnA,A) eV(u(i)) .
(7.21) =Px( V(u(i>)B(l) >n‘H(L,1,A) >O>
Hg(Ln,A) eV(u<i)) )
>P, 7B >, E(Ly, )| H(Ln,a) > 0).
5 Ve AP
Observe that
Hg(Lp,A) ev(u(i))
@)
Px( - V(u(i>)B >n, E(Ly, A)|[H(Ly,A) > O)
Hg(Ly,a) ev(u@) n
o -
(7.22) sz< Y vt mg — B )| H(L) >0)

Hg(Lp,A) ev(u@) n

M. "

sz< Z} Ve > o _@‘H(L,,,A) >0) +or, (D).
1=

In order to apply the convergence in law of Proposition 1, we need some tight-
ness results. Recalling (7.15), it is sufficient to show that

supPy(Ji € [|1, H(L)|]:0W) > K|H(L) > 0) = 0k (1).
L>1

Since the GW&)’S are i.i.d. copies of dWy and independent of pr, ,, Markov’s
inequality yields that the probability term in the previous equation is smaller than

K™'2E,[H(L)|H(L) > O]E[aWeo] = O(K~/?),
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by using (7.17), Theorem 3(i) and (7.13). This yields the claimed tightness and
allows us to apply Proposition 1 to get

lim P,

n—oo

Hg(Ln.A) eV(u(i))
()
( A *(1_ )‘H(L,,A)>O>

i=1

Xi (l)
(Ze oW *(1_8)>

where (i o0 := Z?: 1 8x; 1s the point process defined before Lemma 17, and we
recall that ) := /2. By (7.20)—(7.23) and the definition of L, 4, we deduce that
for any A > 0,

liminfn (logn)*Py (£[0] > n)

(7.23)

Q[m_l] X A X (l) 2
2 = R()ee <Ze W > o

We let ¢ — 0 to get
liminfn(logn)sz (#[I[O] > n) > R(x)e*C(A),
n—o0

with C(4) := W AQ(yy x"c*8Wéé) > 22).
By Lemma 17 we have C(A) — ~— - as A — o0, which leads to

*

.. L C
l}lrggéfn(logn)sz (#L[0] > n) > R(x)e o

Upper bound of Theorem 2(i). We notice that we showed in fact that, for any
A >0,
Hg(Ly,A)
liminfn (logn) Px< Zl #£910] >n> > R(x)e*C(A).
1=
Repeating the same argument with this time E’(L, 4) := (BY < (1+ e)BWéé);
Vi:1<i<Hg(Lya)} yields that C(A) is also a limsup. Therefore,
Hg(Ln,A) )
(7.24) lim n(logn)sz< Y #£900] > n) = R(x)e*C(A),
n—0o0 izl
with C(A) — é’—z as A — oo.
Then, let n > 0 and ¢ > 0. We take again L, 4 :=logn + loglogn — A and
A := e/ Markov’s inequality with (7.3) implies that if A is taken large enough,
lim supn(logn)sz(Zb[O, L, al>nn)<e.

n—o0
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By Theorem 3(i), we can choose B > 0 large enough such that
(7.25) lim sup n(log n)sz(H(L,, + B)>0) <e.
n

On the other hand, by (7.4) and Markov’s inequality, we obtain that for A large
enough,

lim supn(logn)sz( > LueBw, o #L[0] > nn, H(L, + B) = 0)
" ue (L p)

1
(7.26) §limsupn(logn)2—Ex[ > I{MGB(LHA,A)}Z(“)[O,LH—}—B]]
n n ’
uejf(Ln,A)

=¢,

where the notation Z[, ] was introduced in Lemma 13. Finally, it yields that

(7.27) lim supn(logn)sz< Y Nuer, 4 #L™[0] > nn) <2e.
" ue S (Ln,a)

We now show that the “good particles” which never touch L, 4 are negligible
when A is large. We recall that Zg (0, L, ) is the number of particles in G(L,, 1)
that touch O before L, 4. By Lemma 14,
eLn,A

-
Ln,A
Therefore, by the choice of L, 4 and A we have that for any fixed n > 0,
c(1+x)efe=A/2
S 2 9
n
which is less than ¢ if A is large enough. By the triangle inequality, for any 0 <
n < 1/3 and any € > 0, we deduce that if A is large enough,

E[Z(0, Ly 4)%] < c(1+x)e"h

lim sup n(logn)>Py (Zg[0, Ly, 41> 1n)
n—od

Hg(Lp,A) de
P, (#L[0 <P #0101 > (1 -3 —.
x( [ ]>n)— x( ; [ ]>( 77)”>+n(logn)2

From this and (7.24), by letting A — oo and n — 0, we deduce the upper bound

*

lim sup n(log n)>Px (#£[0] > n) < R(x)exé—.

n—o0o R
Thus we have
. 2
nll)ngon(logn) P, (#L£[0] > n) = R(x)e* Ly
with céﬁt = é—z. Finally, we recall that Cg is the limit of R(x)/x as x — 0o, R(x)
being the renewal function for the descending ladder heights. The renewal theorem

implies that Cg = Q[—STO—]_I. Hence, from the value of ¢* in (7.9), we end up
S _
=Q[e " —1]indeed. O

: /
with c_;,
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8. Proof of Theorem 2: The subcritical case. We treat here the subcritical
case ¥'(04) < 0. Define a new probability measure Q) by (5.3) with h(u) =
e~V for all u € 7. Then for any x € R,

de)‘
dP, |z,

=e 9F Z 0V, n>0.

|ul=n

We recall that Q satisfies (5.16) with o = 0.

Applying Proposition 2, we see that the trajectory of the spine (S;) is a random
walk that drifts to +o00 under Q, and drifts to —oco under Q(Q*), in fact, Q[S1] =
V' (04) > 0 and Q@)[S;] = ¥/(0—) < 0. In particular [see (4.20) and (4.21),

changing S7 in —S§; for Q(Q*)], we deduce the existence of C ;eg’) > 0 such that

Dt - o)L
Qe )(TL <15)~ C(gi)e(e oL
(8.1) 1R
Q(rzr<r(;)~—, L — o0,
Cr

(the second equivalence follows from Lemma 3). The strategy of the proof of The-
orem 2(ii) is in the same spirit as in the critical case (i). Recall (1.8) that £[0]
denotes the set of leaves of the killed branching random walk. We give first an
estimate on the moments of #£[0].

LEMMA 18. For any integer k < g—f, there exists some constant cy > 0 such
that for any x > 0,

E.[(#£[0])"] < creto-.

PROOF OF LEMMA 18. We give a proof by induction on k. Changing measure
from P, to Q)(CQ*) with Proposition 3 (with £[0] and A (u) = €9~V ® for u € T)
yields the identity

S _
K

8.2) E,[(#£[0])"] = e Q@[e * "0 (#Lro))*"].

By (4.22), the case k = 1 holds. Suppose that it is true for k — 1 > 1, and that
2<k< g—f. We decompose #£[0] along the spine

To
#L[01=1+>_ Y #£“[0],

t=1uel,

where #£®[0] is the number of particles descended from u absorbed at 0. We
mention that if V(u) < 0, then #L£®[0] = 1. Conditionally on G,
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(#ﬁ(”)[O])MGUj +1» 0 < j <1, are independent and each #£1[0] is distributed
as (#L[0], Py )). By the triangle inequality,

QU (#2100 16"V <14+ Y 0 (@ (ke o) 9] V4.

L=1uely

For each ¢ and u € §§;, we have from our induction assumption
k—1 _
53) QU [(#L™I01)" 1G] < v wy<0) + 1y y=0jck—1e8- &~ DV
' <c(l1+ eQ*V(”))k_l.

Therefore we get

0
QE[#L10) T 1Gu] TV s 14 YT Y T eV,
{=1uely

In view of (8.2), we deduce that

o Ty k—1
E.[(#£[0])"] < ce®* + ce?* Q)| -5 (Z Y1+ eQV(M)}) }

£=1uely

r s 75 k—1
05
< cef* +ceg‘xQ)(f") e %0 (Z eQ‘S‘f—lag) :|,
o=1

where for any € > 1, a; := 3, ¢5,{1 + e?-AV 1 Plainly Corollary 1 also

holds with o = o_, which implies that under )(CQ_), the random variables (S; —

Se—1,ap)e>1 are i.i.d. (whose law does not depend on x). Moreover,

k
Q7 [(1 4 Lys,<ope @1)ay '] = E[ 2+ erw))] =0

lul=1
by (1.4). Applying (4.25) with b=90_, p=k — 1, y = o4+ — o— (recalling that
© ), 05 T0 o Si_i, \k—1 (k—1)o_x i
o+/0— >k =>2),wegetQy ’[e 0 (X € ag) '] <ce , prov
ing the lemma. [
We introduce the analog of good and bad particles in the subcritical case, and
we feel free to use the same notation. For A > 1, L > 1, we say now that

u € B(L, A) if there exists some 1 < j < |u]:

3 (14 e0-AVW) 5 o= V)

«
VIv=uUj—|

(8.4)
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and u € G(L, A) otherwise, and we define again

Zgl0.L1:= Y0 i<t o)
ueG(L,)\)

Zpl0. LY== ¥ e (umpul <y )
ueB(L,\)

(8.5)

Recall the notation §* in (1.4).

LEMMA 19. Let k* := |2 | + 1 be the smallest integer such that k* > %+ . Let
o— o—

0 <& <min(%, k* — &),

(1) There exists some constant ¢ > 0 such that for any L > x > 0,
E,[Z,[0, L]F'] < eaX e+/e-—9g04x oK o)L

(i1) For q := g—f + 87, there exists some constant ¢’ := c'(A, q) > 0 such that
forany L > x >0,

q
Ex[ Z eQ—V(M)] < e+ plde-—er)L
ue (L)NG(L,A)
(iii) If we assume (1.9), then
Ex|: Z eQ—V(M):| fceQ+xe(k*Q——Q+)L’ 0<x<L.
ue (L)

PROOF OF LEMMA 19. (i) Let k be an integer. By changing of measure from
P, to Q)(CQ’), we obtain
k
E[(Z¢10, L])]
(8.6) s
—0-S - k=1
=@ Qe 0 1w _ecway(Zel0. L) L7y <]
0

By decomposing the tree 7 along the spine (wy), we get that

%o
(8.7) Zgl0, L1 < Z[0, L1=1+ )" > Z™[0, L],
{=1uely

where Z®[0, L] := Y veTw l{
of u, touching 0 before L (7 ) means as before the subtree rooted at u). By Propo-

sition 2, under Q,, conditioned on ¥y = o{w;, S;,C;, (V(u),u € Uj), j = 0},
the random variables (Z®[0, L]) - are independent and each Z 1o, L]

uely, <1,

5 W=lvl<t} ) denotes the number of descendants
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is distributed as (Z[0, L], Py (,)). Conditioning and using the triangle inequality,
we have

(Q[(Z4[0. L) 1Go]) /77
(8.8)

%0
<1430 > (@110, L) 1G] 4.

=1uely,
Assume k < (0+/0-) + 1. From Lemma 18, since ZWI0, L] < #£"[0] and
k—1 < p+/0—, we know that
QL [(Z®10, L) 1Goc ) /7Y < ce® Y + 1y <0y,
where the indicator comes from Z®[0, L] =1 if V (u) < 0. It follows that
E.[(Z,10. L))"]

< cet*QE e 5]
(8.9)

Ty k—1
_ Y e %
+ ceQ XQ)(CQ )|:g l{w _GG(L 2, r() <TL (Z Z 1 —+ eQ (M))) :|

L=1uely
—0-S —
=:ce? QL) e "0 |4 ce®~FAg),
with some larger constant ¢ > 0 and the obvious definition of A g ¢) for the remain-

ing expectation under Q,(CQ‘). By (4.22), see also Theorem 4 in [25] applied to —S
S -

attl Q(Q ) 0 ] <c. Therefore we have shown that for all k < (04/0-)+1,

(8.10) E.[(Z,[0, L1)"] < /e * + ce®* A g0,

To estimate A s.9), let us adopt the notation ay: for any € > 1, ap := <15, (1 +
e-2V W) " hence Zzozl duen, (1 + e0- V) < 22021 e?-St-1q,. On {wr(; €
G(L, M}, ae < )\SesQ*(L_S‘f—l)aéfs for any 0 < s < 1. It follows that
3 5k=1) so- (k=1L

Ao <
(8.11)

< Ty k—1

—0-S - _ _ _

X Q)(f?)|:e ) (ZeQ(l “)Sf—laé S) . Ty <rL+:|,
=1

forany O <s < 1and k < (o+/0-) + 1.
If o+ /0— is not an integer, then k* < S—f + 1 and (8.11) holds for k = k*. Take

k* —o4/0- —
k*—1

(8.12) s =



3840 E. AIDEKON, Y. HU AND O. ZINDY

Notice that

Ams) (D) (1=s)(k*=1D)+1
Q{1+ s <™ af! V) < Y (14 eV

lul=1
< 00,

Q(Qf)[e(FS)Qf(k**l)&] — ¥ (e-(+(1=5)(k*=1))) _ 00,

by (1.4). Under Q) (Sp—Si_1, aé_s)gzl are i.i.d. Applying (4.26) (with o = 0)
to the expectation term Q)(CQ’)[-] in811)withy =0+ —o—_,b=0-(1—5),n=
o—, p =k* — 1 and noticing that pb > y, we get that if we take k = k™ in (8.9),
then

Ago) < ceaSE =D gso—(K*=DL ,(0+—0-)(x—=L)+(k*=1)(0-—so-)L
— o)SE =D oy —o- ) (x—L)+(k*=o-L

This estimate with (8.10) proves (i) in the case that o /o_ is not an integer.
It remains to treat the case when ¢ /o— is an integer. Then k* = g—f + 1. Ap-

plying (8.9) to k = k* — 1 (which is less than g—f + 1), we have that

E.[(Z,00, L) "]

s Ty k*—=2
—0-S - _
< c'e®= 4 ce?—"Qle-) |:e 7 (Z e@—S“ag) Ty < r+},

=1
which by an application of (4.26) witha =0,y =04y —0_,b=0_,p=k*—2=
v /b [itis easy to check the integrability hypothesis in Lemma 8(ii)], yields that
E.[(Z,0. L))" "' <c(l+L—x)e®, 0<x<L.

Moreover, E;[(Z,[0, L1) ~'1is 1 if x < 0 and 0 if x > L. Going back to (8.8)
and (8.6) with now k = k*, we obtain that

* —0-S - % _
E.[(Z410, L1) ] < ce® Q@ [1+¢ * 0 l{wfo—eG@,A)}Ak L <]
with
Ty
A=Y (1+L—Vw)® "% e O 1y e, + v <o)-

{=1uely

Observe that on {£ <7, < rf}, S¢—1 € [0, L]. For any u € Uy such that V(u) €
[0, L], either AV (u) >0 then (1 + L — V(u))2-/2+ < (1 + L — S;_1)¢/2+, or
AV (u) <0, then (14 L — V(u))2/¢+ee-VW < (1 4+ L — §;_)0/0+ee-V) 4
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AV (u)]0-/0+e0- VW) < (14 L — Sp_1)2-/2+e0=V W 4 ¢(0)e?=St-1 with ¢(p) :=
supy, < | y|e-/e+e¥ < 0o. It follows that there exists some ¢ > 0 such that

Y (1L = V@) e O 1y hero, + Ly <o)
uely

<c(l+L— Sp_1)0 /0 er-St-1 Z (1+ engV(u)),

uely

which in turn is bounded by ¢(1 + L — Sy_1)2-/€+eP-St-1 )\Se“@*(L*Sl—l)ael_s since
W= € G(L, L), where 0 < s < 11is as in (8.12). It follows that

E.[(Z,[0. L])"]

< C/)\S(k*_l)€SQ_(k*_l)LEQ_X

T k*—1
—0_S _
x Qfgg‘)[e R (Z(l +L— SZ_I)Q—/Q+a£}—SeQ—(1—S)Sz1) ’
=1

- _ .+
Ty <T }

Again, we apply (4.26) with ¢ = o_/0+ to (S¢ — Sg_l,aé_s)gzl with y =
0+ —0—,b=0_( —3s),n=0—,p=k*—1> y/b (the integrability hypoth-
esis can be easily checked as before), which yields that E.[(Z,[O, L])k*] <
WK =D gerxt+(k*e-—e)L proving (i) in the case that o /o_ is an integer.

(ii) Write in this proof A =}, c v ()nG(L.2) e?-V@ Instead of Q/(VQ_), we
shall make use of the probability Q defined in (5.16) with ¢ = o4 for the change
of measure. We stress that under Q, (S,,) drifts to +o00.

Firstly, we prove by induction on k that for any 1 < k < k* — 1, there exists
some constant ¢; = cx(A) > 0 such that

(8.13) E, [Ak] < cpet+reke-—0+)L

By the change of measure, we get that for £ > 1,
(e-—0+)S + — -
E[AN]=e Qe Tl oA T T <1 ]
(8.14) t

+

_ o) T _ _
= g0+ te-—eLQ [¢le-—e)Ts 1{wz+eG(L,A)}Ak Lo <],
L

where TLJr = Sff — L > 0. This yields the case k = 1 of (8.13).

Assume 2 < k < k* — 1 and that (8.13) holds for 1, ..., k — 1. Exactly as before,
we decompose A along the spine up to ‘EZ_ , apply the triangular inequality and
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arrive at

(Qx [Ak—l |goo])l/(k_l)

+
_S L _ _
< 3 T QAW T ) Y,

=1uely

where A® := 2 veTWAA(L)NG(L.A) 9=V ® with T the subtree rooted at u.
By Proposition 2, under Q, and conditioning on %, each A™ is distributed
as (A,Py(,). Hence by induction assumption, (Qx[(A(”))k_l|€¢Oo])1/(k_l) <
¢/ §7 Do (V@ —L)/k=1)go-L Then

(Qx[Ak_l |goo])1/(/<—1)
S TL+
<770 4 c,l/_(f‘“e@—L 33 et AV KD g0 (St =L)/t=D),
{=1uel,

Notice that 25 > o_ and that on {wrzr e G(L, M)},

3 o0+ k=DAV@) < g max ¢4/ (= D=e)AV ()

uely uelUy
< (a[)I*SA‘(QJr/(Qf(k*l)))*(l*S)e(é?+/(k*1)*(1*S)Qf)(L*Sl—l)’
with s := k*_it#. We mention that the above inequality holds for k = k*.

Going back to (8.14), we obtain that [we keep the density there ele—=en)T; only
_S
for ¢* " and use the inequality (x + y)¥=1 < 2k=T(xk=T 4 yk=1y]

E,[AF]

< C()L)eé?+x+(é?7*9+)L

+
T k—1
% 00— k=1L (Qx [eke-—enT ] 4 Q, [Z(ae)lsgls)g(&_lL)} )

=1

Recall that Q,[e*e- —o)T, 1= Q[e*e ‘_Q+)TL+—x] is bounded by some constant
since we have Q[e*ke-—0+FI81] = exp{yr (ko_ + 8)} < oo if § > 0 is sufficiently
small [here we use the fact that k < k* — 1]. By Lemma 5, the above expectation
Q.- J1 s uniformly bounded, which proves (8.13).
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To control E,[A7], we use the change of measure

E, [AQ] — eQ+X+(Q7*Q+)LQx[e(Q—*th)TZrl{w +eG(L,A)}Aq717 TZL < 7;0_]
L

Since g < k*, (Qu[AT™! %o )/ < (Q[AY ™! |0 ]) /=D, From (8.13)
with k = k* — 1 there, we use the same arguments as before and get that

E,[AY] < cel+rte——o+)L o-(g—DL (Qx [e(qQ7*Q+)TL+]

+

17 q—1
+Q, [Z(az)l—se(l—s)Q(551—L)i| )

=1
Again, Q [e 0-—on)T, ] is bounded by some constant since
Q[e'7e-—e+ %] —exp(y (g0 +8)) < 00

if § > 0 is sufficiently small. By Lemma 5, the above expectation Q,[- - -7~ is
uniformly bounded, which proves (ii).

(iii) The proof follows in the same spirit as that of (i) and (ii): Let (L) :=
Zue%(m e@-V=L) and we prove by induction that for any 1 <k < k*,

(8.15) E,[x(L)"] < cre®+ ™D, x €R.

The case k =1 is obvious by the change of measure. Assume (8.15) for k£ — 1
and 2 < k < k*. By repeating the same arguments as in (ii), we get that

E,[x(L)}] < ce®-@—D)

(8.16) X (Q;Q—)[e(k_l)Q‘T;, tzr <1 |

5 k—1
L
+Q§f‘)[<z 3 e(@+/(k—1))(V(u)—L)> o < TO_D'

t=1uety;
By the absolute continuity between Q,(CQ‘) and Q,,
QU [k V=T ot o 1] = ples—e-r—tk=ne-Lq [ X705 1
+
= ele+—0)=L, [e(kgf—m)TL , TZr <]

< Ce(Q+_Q—)(X_L) ,

where the term Q, [e("Q—_Q+)TL+ ] is uniformly bounded, since for k < k* and suf-
ficiently small 84 > 0, Q[e@-—¢++3)S1] = ¥ ke-+31) — 50 by (1.9).
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It remains to control the second expectation term Q(Q ) in (8.16). Let by :=
> uety e0+/k=DAV@W) for ¢ > 1. Under Q)(CQ’), (Se — Se—1,bg)e=1 are i.i.d. and

k—1
Q1] [(Z e v<u>><ze<g+/<k—1>>v<v>> ]

lul=1 vF#uU

< E[ 3 ooV

]1+Q+/Q
|u|=1

’

where the last inequality follows from the elementary inequality: for any n > 1 and
X1y Xn € R, (er,lzl e9+xi/(k—1))k—1 < (Z?:l eQ—/rQ+Q+xi)Q+/Q— —
(31| e0—¥iye+/e~ since k — 1 < g—j. Then Q(Q—)[b]f_l] < o0 by (1.9). Going

)k—l +

back to (8.16), we see that the expectation term Qy[(-- ,Tp < Ty ] equals

+ k—1
7L
Q)(cg_) |:<Z bEeQ+/(k—1)(S£1—L)> , TZ < To_:| < c/e(g+_9—)(x_L),

(=1

by applying (4.26) to (S¢ — Se—1, be)e>1 With y =0+ —0—, b =04 /(k — 1) and
p =k — 1. This proves (8.15) hence (iii). [

The next lemma controls the number of bad particles.

LEMMA 20. Letr =% —1+ 8 [with 8* as in (1.4)].
(1) There exists some constant ¢ = c¢(r) > 0 such that forall 0 < x < L,
E,[Z[0, L]] < cA™"ef+*e(0-7e)L

(ii) Denote by Ly 1[0] :={v € L[0]:3u € 5€(L) NB(L, 1) with u < v} the set
of leaves which are descendants of some element of 7€ (L) NB(L, 1). Then for any
O0<x<L,

E, [#Lp.1[0]] < cA™"e@+ el0-m0)E,
PROOF. (i) By changing the measure from Py to Q,(CQ_),
E.[Z500, L] = Q@[ * lu,-eBLa) T <7L -
Let us write a; := Zuer (1 4 e0-AV W), j > 1, in this proof. Then
Ty

(8.17) 1{w,eIB(L W< Y A dle —re-(L=5j-1),
j=1
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which yields that

%
—0_S _
E.[Z,[0, L]] < r’eQ—XQ;Q—)[e Y b S0 g < rj}
j=1

< AT 0K plormo)(x—L)

by applying (4.26) to y = o4+ —o—,p =1 and b = ro_ > y [the integra-
bility hypothesis is satisfied thanks to (1.4) and the choice of r: Q@-)[(1 +
Iy <oje @-50af] < BIX), o1 (1 + eV +1 < oo, and Q-)[ere-51] =
eV (©@-U+47) — 60]. This proves (i).

(i) Remark that #£p 1 [0] = X, c o 0ynB(z. #L (0], where £#[0] denotes
the set of leaves which are descendants of u. By the branching property, condi-
tioned on JZ(L)NB(L, 1), (#L™W [0Dues#(L)nB(L,1) are independent and are dis-
tributed as #£[0] under Py (). It follows from Lemma 18 (with k = 1) that

E, (#Lp,.10]) < cEx[ > e@_V(m}
ue s (L)NB(L,A)

_ _ + -
= ce? xQ)(CQ )[wrzr eB(L, 1), 1] <1 ],

by the change of measure from P, to Q)(CQ_). By (8.17) (with rzr instead of 7 ),
the above probability under Q,(CQ_) is less than

+
L

)L—rQ)(CQ—) |:Z a;e—rQ—(L—Sj_l)’ 1-2' < -L-O—:|
Jj=1

<A Y Q@ ere-E=Si0 i < min(t], 75)]QE[a]],
j=l

since for each j, a; is independent of (S;_1,j < min(tzr,to_ )); moreover

i@,)[a;] = Q(Q*)[a;] = ¢/ < oo as in (i). Then we have

E.[Z,[0, L]] < cc’e®* 27" Y Q@[ e L=8iD)  j <min(r;, 75)],
j=1

which by an application of (4.23) (with ro_ > y := o4 — o—) gives (ii). U

Let Mc(,g_) be the almost sure limit of M,(,Q_) = ZM:n €0V, By [8, 26],

§§*) is almost surely positive on the event {7 = oco}. From [24], we know that

there exists a constant ¢,_ such that

(8.18) P(ME” > 1) ~cp 1704/ 15 o0
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We mention that the constant ¢,_ is given in [20], Theorem 4.10:

1 E[( Z eQV(u)MC()g—,u)>Q+/Q_ Z eQ+V(u)(Még_,u))g+/Qi|’

Cp =———

where under P and conditioned on {V (i), |u| = 1}, (Mégf’”))|u|=1 are i.i.d. copies
(0-)
of Ms5™".

LEMMA 21 (Subcritical case). As t — oo, the law of #L[0] under P;, the

number of descendants absorbed at 0 of a particle starting from t, normalized by

e~ converges in distribution to c;kubMég’) where

—0_S _
. Qe -1
T 0_QEI[-S -]

C

PROOF. The proof is similar to that of Lemma 15; we only point out the
main difference and omit the details. Recall that Lla] :={u € T :|u| =7, (u)}.
By linear translation, it is enough to prove that e ¢-'#L[—¢] converges in law

to X, M) Let Még[:)t] =D uer[—1] e?-V® which converges almost surely to

sub
ML On the other hand, we have Mgf:)l] =e 'Y erin etV Sim-
ilarly to the proof of Lemma 15, we apply Theorem 6.3 in Nerman [29] (with
o = o— there) and obtain that on {7 = co}, almost surely

Yuer-ne? VO Q=S ]

— 00— — ,
#L[—1] Qe T o

t — 00,

which easily yields the lemma. [

LEMMA 22. Forany A > 0, let i) o := Z?:] 8(x;} be the point process de-
fined in Proposition 1 associated with %) = (%f@(dx)(l + e0-*)l/e- for
0 €. Let (Még”i), i > 1) be a sequence of i.i.d. random variables of common
law that of (M, P), independent of iy . As t — 00, we have

& ,
Q(ZegxiMég’” > f) ~ CQQ|:/ ﬁx,oo(dX)eQ”]t_Q*/Q-
i=1

We mention that as A — 00, Q[ co(dx)e?+ ] —
and (6.27).

1
R by (6.24)

PROOF. Let ALy =3 e (L)nG(L.2) e0-(V=L) By Proposition 1, under

P.(:|H(L) > 0), A converges in law to [ [i) co(dx)e?* = Zf‘zl e%-% (some
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tightness is required here but we omit the details since the arguments are similar to
the critical case). By Lemma 19(ii), the family (A », P (:|H (L) > 0)) is bounded
in L9 with g = z—f + 82, hence

5;\ q
(8.19) Q[Z eQ‘xf:| < 00.
i=1

This together with (8.18) allows us to apply Lemma 16 to p = g—j and yields
the desired asymptotic result. [J

We now prove Theorem 2 in the subcritical case.

PROOF OF THEOREM 2(1I).

Lower bound of Theorem 2(ii): The proof of the lower bound goes in the same
way as that of Theorem 2(i) by using Proposition 1 and Lemma 21. Let A > 0.
Consider n — oo, let L4 := Q% logn — A and X := -4 We keep the same nota-
tion Hy(L4), #LD[0], 1 <i < Hg(La)): Recall (7.1) and Hy (L 4) := #55(L 4)
with

(8.20) Hy(Lp) = H(Lp)NG(Ly, e ?).
We define as well B®) := #ﬁfi)[O]e_Q—V(“(i)) foru'’ € (L), and E(L 4) the
event that B) > (1 — S)Még”l), Vi with small ¢ > 0. Repeating the proof of the

lower bound of Theorem 2(i), and using Proposition 1 and Lemma 21, we get that
forany A > 0,

Hg(LA) .
1iminfn9+/QPx< > #E(l)[0]>n>
n—o00

i=I

R 2 1
(8.21) > Q[CR ]R(x)eg+er+AQ<Zeg‘xiMég"l) > ae@—A)
i=1 su
m—l
=: Q[CR ]R(x)eQ”CS(A),

where 1) o0 1= Z?zl d(x;) 18 the point process as in Lemma 22 (with A := 24
there) and cf,; is defined in Lemma 21. The same also holds for the upper bound,
hence for any A > 0,

R(x)e+* Cs(A).

Hy (L) \—1
4 )

(8.22) lim n®/Py| Y #£9[0]>n _ Q]
n— 00 i Cr
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Since P, (#L£[0] > n) > P, (ZlH:(lLA) #L£DO[0] > n), we get that for any A > 0,
p—1
_ Qi

(8.23) liminfn®+/°-P, (#L£[0] > n) R(x)e®+* C(A).

Upper bound of Theorem 2(ii): By Lemma 20 and Lemma 19(i)) with L := L 4 =
Q% logn— A, A := €24 and k* := Lg—jj + 1, we obtain the following estimate: For
any ¢ > 0,

P, (Z,[0, LAl > en) < (gn)_k*CeA(Q—k*_Q+_52Q—)eQ+X+(Q—k*_Q+)LA
= o yn OH/0-pm020-A
and

P (Z)[0, La] > en) < ——ce~Aer—0-+570-/D p0s o ~01)La
en
— cg’xn—m/g—e—ﬁ*g—A/Z’
with the same estimate for Py (Lp 1,[0] > en). Since Z[0, La] = Zg[0, La] +
Zp[0, L 4], we obtain that for any ¢ > 0,

lim sup lim sup n€+/€-P,.(Z[0, LAl + Lp.1,[0] > 3en) =0.

A—o0 n—>00
From here and using the fact that #L[0] = Z[0,La] + Lp1,[0] +
ZEI(LA) #L£©[0], we deduce from (8.22) that for any A > 0,

QR
C

limsuanJr/Q*Px(#ﬁ[O] >n) <

n—o00o

R(x)e®T" Cs(A) + 04(1),

with 04(1) — 0 as A — oo (in fact exponentially fast). This together with the
lower bound (8.23) yields that lim,,_, o, n+/e-P, (#L[0] > n) exists and is finite.
Then, a fortiori, lim4_, o Cs(A) also exists and is some finite constant. This proves
Theorem 2(ii). [

We end this section by giving the proof of Lemma 1.

PROOF OF LEMMA 1. By (5.21), Cgr = 1/Q(7, = 00). Recall (8.21). It suf-
fices to show that
. __ Co- * \o+/0-
(8.24) Ali)moo Cs(A) = Q] (cip) .
The lower bound follows from the monotonicity: the random point measure
.00 1s stochastically increasing in A; Then for any A > Ag, A = @A > =

e@-A0, 5,00 Stochastically dominates i), o0 = Zfﬁl 8(x;}> hence

2)»0
N
Cy(A) > eQ+AQ<Z 0= pp8=" o *—eQ‘A>.

i=1 Csub
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Applying Lemma 22 to Aq yields that for any Aq := 2~ 40,
li‘rgiorész(A) > cQ_Q[ / mo,oo(dx)ew] (ck )2t

Letting Ao — 00, the above expectation term converges to 1/Q[R~!] and proves
the lower bound.

To derive the upper bound, by Lemma 19(iii) and Theorem 3(ii), we get that
under P(-|7(L) > 0), > e (1) e¢-(V~L) js bounded in L¥* and converges in

law to Zf":"l e®=", where [loo = Zf":"l 8(x;}- Therefore

Too k
Q[Zeg—x'} < 00,
i=1

which in view of Lemma 16 and (8.18) yields, as A — oo,

Zoo

A _xi p(0—.0) 1 o Co_ o+/0-

e+ Q(X;eg M > = beQ ) — Q[?)’t—l](czub) e,
i= su

Since [l stochastically dominates 4 o, this gives the desired upper bound for
C;(A) and completes the proof of the lemma. [

9. Proofs of the technical lemmas.

9.1. Proof of Lemma 4. Obviously we may assume that || F||oc < 1 throughout
the proof of (i) and (ii).

Proof of part (i). Since P(z;” > K) — 1 as t — o0, it is enough to show that

[E}%E[l{rf+>K}F(7}+’ (S-L-r"' - S-[[+—j)1§]§K):|
9.1) o
=E[F(USs.(Sj1=j=x)].

Recall that (0,,, H,),>1 are the strict ascending ladder epochs and ladder heights

of S. Since for some (unique) n > 1, 7,¥ = 0, and T, = H,, — t, we can write

B, ::E[l{tt+>K}F(Tt+’ (S.[t+ — S+ ')ISjSK)]

T —J
= ZE[I{H1171§Z<Hn}]‘{K<UV!}F(H’Z - t’ (S‘Tn - SU,,—j)lSjSK)]'
n>1

Let us choose some integer m > K. Notice that 0,, — 0,,—,, > K and o,, > K for
n > m. Since the previous sum for n < m is smaller than P(H,, > t) which tends
to 0 when 7 tends to infinity, we get

Bt = Z E[l{Hn—1§f<Hn}F(H” -1 (So'n - SUn*j)lijK)] +0t(1)

n>m

=: B/ +0,(1),
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with |o;(1)| < P(H,, > t) — 0 as t — oo. Applying the strong Markov property
at the stopping time o,,_,,, we obtain that

B/ =) E[lm, =Bt [, =<t F (Hn =1, (S5, = So—D12j=k)]]

Az
= > E[l{n, <08 — Hy—m)],
n=m
with
8() :==E[ln, ,<x<m,) F(Hn = ¥, (S5, = So,—)1=j<k)]  Vx=0.

Therefore
t
(9.2) Bz/ =/0 gt —x)du(x),

with u(x) = 3,50 P(H, < x). Let us check that g is directly Riemann integrable
on R, . Recall that a function g is directly Riemann integrable (see Feller [13],
page 362) if g is continuous almost everywhere and satisfies

o0

9.3) Z sup  |g(x)| < o0.

n:0n§x§n+1
Observe first that || F||co < 1 implies ||g|lcoc < 1. Now recall that H; is integrable.
Therefore,

> sup [g(0)| <D _P(Hy=n)=1+E[H,]=1+mE[H] < o0,

nzonfxgn-i-l n>0

yielding (9.3). Now we prove that g is a.e. continuous. For z € RX, denote by
D(z) C RY the set on which F(., z) is discontinuous. By assumption, D(z) is at
most countable for any real z, hence D((S5, — Ss,,—j)1<j<k) is a random set
(maybe empty) at most countable; the same is true for the random set

o0

Y= (J{Hy —z:2€ D((So, = So,—)1=j=) U (0}

n=1

In other words, we may represent Y by a sequence of random variables taking

values in R. It follows that
2 :={y:P(yeY)>0} is at most countable.

We claim that for any x € R% \ 2, g is continuous at x. In fact, for any sequence
(x1)n such that x, — x as n — oo, let &, := liy,, | <x,<H, ) F(Hn — xn, (So,, —
Sou—ji<j<k) and & := lyn,,  <x<H,} F (Hpn —x, (So,, — So,,—j)1<j<k ), We shall
show that as n — oo,

9.4) & — & a.s.,
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which in view of the dominated convergence theorem, implies that g(x,) — g(x)
and the desired continuity of g at x. To prove (9.4), first we remark that
lim Sup| 1{Hmfl <xp<Hp} — I{Hm71§x<Hm} | = 1{Hmfl:x} + 1{I'Im:x}

n—oo

(9.5)
=0 a.s.,

since x ¢ Z [hence a fortiori P(H,, = x) = 0 for all n > 1]. Second,
IED(I_Im —X€ D((So-m - So-m_j)lfij)) = P(X € T) = O’

since x ¢ Z. In words, almost surely, H,, — x ¢ D((S,, — S5,,—j)1<j<k), which
implies that F(-, (S5,, — Ss,,—j)1<j<k) is continuous at H,, — x; hence F(H, —
Xn, (ng — Sam—j)lsng) d F(Hm —X, (Sam — Sam—j)lfjfl() a.s. when n — o0.
This and (9.5) yield (9.4) and the continuity of g on R* \ Z. Then g is directly
Riemann integrable.

Going back to (9.2), we apply the renewal theorem (see Feller [13], page 363)
and obtain that

lim B, = ! - d
t_l)fgo ;—m/o g(x)dx,

which implies

Hpy—Hpy—
tgr&Bt=mE[A F(Hm_Hm—l —X,(ng—Sam—j)lgng)dx}

1
- ]E[H]]E[(Hm B Hm_l)F(U(Hm — Hp-1), (Sq, — Som—j)lgng)],

by using the independent uniform variable U'.

Finally since the random segments {(Sy,+; — S0, )0<j <0y —ors 0 < k < m} are
i.i.d., Tanaka’s construction [see (4.5)] implies that under P the segment of the
random walk (S,),>0 up to time o, viewed from (0, S5,) in reversed time
and reflected in the x-axis, that is, (S5, — Ss,,—j)0o<j<k, has the same law as
(¢j)o<j<k . Moreover since with this “partial” construction H,, — H,,— corre-
sponds to the value of the reversed and reflected process at time & = sup{n >
1:¢, =min;<;<y &}, we obtain that

1
E[H]

E[(Hm - Hm—l)F(U(Hm - Hm—l)a (S(rm - Som—j)lsjsl()]

— mE[%F(U@“&, Ci<j<k)] =E[F(USs, ($j)1<j<k)],

by using (4.6). This proves (9.1) and part (i) of the lemma.
Proof of part (ii). Write for notational convenience §](.[) = Sr,* — Stt+7 j when

1 < j <1t,". Note that part (i) of the lemma implies

96) lim E[1x . F(T;. (5}7)1<;<x) ] = E[F(US;. $)i<j=k)] = Cr.
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Using the absolute continuity between P and P up to the stopping time 7,7 [the
martingale (R(S j)l( i<ty Jj =< t,+) is uniformly integrable thanks to Lemma 3(ii)
and (iv)], we can write

H'EJF[1{1<<1: }F(TJr (Sy))1<,<1<)] [R(S +)1{K<r <7, }F(T+ (Sy))lfij)]'

We treat first the case E[ S]] = 0. Combining parts (iii) and (iv) of Lemma 3, we
deduce from the above equality that as t — oo,

E+[ K<r }F(T+ (S‘(Z))lgjgl()] CRtE[ K<‘[ <7, }F(T+ (S‘(t))lgjgl()]
::A[.

Let us now introduce ¢; :=t — 2¢t” with (1 + (S/2)_1 < ¥y < 1 and observe that
réf < 1, on the event { r,+ < 15 }. Recalling that part (i) of Lemma 3 says that

(T;*,t > 0) is bounded in L? forall 1 < p < 146, we get ]P’(T;tr >tV)<ct7VP =
o(t~1) by choosing p such that yp > 1. Therefore we obtain

NQ)
A= CRtE[l{K<rt+<r(;}1{STZ5171V}F(Tz+’ (Sj )15/'51()] +oi(1)
= A, + Al +0,(1),
where 0;(1) — 0 as t — oo and
. NG
Ap = CRtE[l{r,+<r(;}1{St[+§t—ty}1{7,+—r[:>K}F(Tt+’ (S;)1<j<x)];
t
o
Al = CRIE[I{K<‘L',+<1:O_}I{Srz—if—”’}l{r[+—rZ§K}F(T+’ (S,( ))1§j51<)]-
Applying the strong Markov property at the stopping time IZ yields
A] —CRIE[ (<75 Sl Fst- ) f (S, +)]
where
Q)
0.7 FE) =EBallig or oo F(TT (S]7) 12 2i)]-
Then, writing
Q) (L)
Ex[l{K«#}F(]}JF»(Sj )lfij)]zE[l{K<tZ'}F(TL+’ (Sj )15151{)]’
with L =t — x, equation (9.6) yields

)
08) max [Bxflg o) F(T, (5 )o<j<x)] = Crl—0. 100,

from which we deduce

max | f(x) —Cp| — 0, t — 00,
X€E[ls;t—17]
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since uniformly in x > £;, Py (7, < f,+) =P, < ‘Ettx) < P(‘L’__er < rtJ,C) =
04 (1). Furthermore, observing that P(TZ <T5) "~ CLRt [see part (v) of Lemma 3
and recall that ¢, =t — 2t¥Y with y < 1] and P(r — SIZ <tV)= IED(T;tr >tV) =
o(t™h imply IP’(IZ: <7y STZ <t—1tY)~1/Cgt,and when ¢ tends to infinity, we

obtain
(9.9) A — Cp, t — oo.
Similarly, the strong Markov property applied at the stopping time ‘L’Z implies

A;/ < CRIE[I{ +<r0_}1{SZZ+Sf—fV}]PST[+ (7:[‘" < K)]
t t

‘L'zt
Moreover, observe that

(9.10) sup Py(t,F <K) <Py (1, <K)=P(r; <K)=o0,(1),
xX<t—t”

which implies

9.11) Al < CriP(t) <15, Spr=t— t")P(z} < K) =o0,(1),

by recalling that ]P’(rztr <T; ST; <t—tV)~ CLRZ. Combining (9.9), (9.11) and
recalling (9.7), we obtain A; — Cp, when t — oo, which concludes the proof of
part (ii) in the case E[S1] = 0.

The case E[S] > 0 is similar but easier. Indeed, combining parts (iii) and (iv)
of Lemma 3 implies

D) @)
E+[1{K<rr+}F(]}+’(Sj )15]51{)] ~ CRE[l{K<tt+<r(;}F(TZ+’ (Sj )15151()]
= Zt.

Recalling that ¢; =t — 2¢¥ and that part (ii) of Lemma 3 implies IP’(TZIr >tY) =
0:(1), and we get

T <)

Ar= CREU{K«,*«&}1{5,(7+§t—tV}F(7}+’ (Sj )15;51{)] +or(1)
9.12) ! 0

:CRE[l{r,*«(;}1{S,£+§t—ﬁ’}1{z+ 1Z>K}F(Tt+’(Sj )15j51<)]+0t(1)v

t

AR

the last equality being a consequence of (9.10), which still holds in the case
E[S1] > 0. Then, the strong Markov property yields

(9.13) A= CRE[ g <oy lis - zt-1 f (S ] +0r (1),
t t 13

where we recall that the function f is defined by (9.7). Now the strategy is exactly
the same as for the previous case. Indeed, since Py (7, < rt+) = 0;(1) (uniformly
inx > {;) is still true, (9.6) implies maxy¢¢,.;—v1| f(x) — Cr| — 0, when ¢ tends
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to co. Combining this with part (v) of Lemma 3 [which implies IF’(‘L’Z <7; Srzr <
t

t —t¥) — 1/CR] yields A, — CF, when t — oco. This completes the proof of
part (ii) of the lemma and completes the proof of Lemma 4.

PROOF OF LEMMA 5. We may assume that p equals some integer, say, m > 1.
Indeed, for any m — 1 < p < m, by the concavity,

Tz+_1 p ‘L’[+—1 m
Ex|: Z ak+leK(Sk—f):| < Ex|: Z (ak+1)p/mekp(Sk—t)/m:| )
k=0 k=0

Applying (4.7) to ((ax+1)P/™, Si — S—1) with integer m yields the general case p.
Now, we consider p = m is some integer and prove (4.7). First,

+
AR 00 _ t
E|: Z e;c(Sk—t)] < ZE[l{gkﬁ}eK(S"_t)] :fo eV du(y),
k

k=0 =0

where Sy := max{S;:0 < j <k} and

u(y):=) P, <y, y=0.
n=0

Remark that u is finite and satisfies the following renewal equation (see
Heyde [15], Theorem 1):

u(y) =lyp<yy + F xu(y), y=>0,

with F(s) :=P(S; <s),s € R. According to the renewal theorem (see Heyde [15],
Theorem 2 or Feller [13] page 362 (1.17) and page 381), [ e ™) du(y) = O(1)
as t — oo (the limit exists in the nonarithmetic case). By linear transformation, we

obtain that for any « > 0, E, [Z;’l 0_1 ¢“Sk=D7 is uniformly bounded for all x < 1.
We now prove the lemma by induction on m. By independence,
B (Y0 o a1 0] = Yoo B[40 k < 7t — 1]E[ay] is bounded by
some constant (the law of a1 does not depend on x). This proves the lemma in
the case m = 1.
Let m > 2 and assume that the lemma holds for 1,...,m — 1. Write x; :=

7 -1 K (Sg—1) L+
=i a1 for0 <i < 7," and yx + := 0. Note that

-1

o)™ = Y [Oa)™ = GusD™]

i=0

-1

m—1
m I .
-y <]> S a0 ()
j=0

i=0
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Applying Markov’s property at i + 1, we get

m—1 1:,+—1
m i e (S — ;
B 1= 2 (7 )| & e g ]
j=0 i=0
m—1 T,+—1 )
<c Z Ex|: Z a?:"__lje(m_])/((si_f)],
j=0 i=0

since by the induction hypothesis Eg, [( X,-+1)j ] is bounded by some constant. The
last expectation is again uniformly bounded (the case m = 1 of the lemma), which
proves that the lemma holds for m, as desired. [

9.2. Proof of Lemma 6. For a € R, denote as before by T, := S,y —a> 0
(resp., T, :==a — ST; > () the overshoot (resp., undershoot) at level a. Clearly
the overshoot 7" is also the overshoot at the level a for the strict ascending ladder
heights (H,). By assumption (4.8), max (S, 0) has finite n-exponential moment.
This in view of Doney [12] implies that E[¢®f1] < oo for any 0 < § < 1. Applying
Chang ([11], Proposition 4.2) yields (4.9). Similarly for the undershoot 7,7 > 0:
since max(—Sy, 0) has a finite (1 4+ n)-exponential moment, again (4.10) follows
from Chang ([11], Proposition 4.2).

By (4.9) and (4.10), maxo_; .~ v+ |Sk| < L+ T, + 7Ty is integrable under Pq.
By applying the optional stopping theorem, we get

a=EalS;- 1 =Ea[ (S = S - ooy ] + BalS].
Observe that B[S, +]= L + Eu[T;1 < L + ¢ by (4.9). Since S;= = S <—L,

this implies (4.11). Exactly doing the same and using (4.10), we get (4.12).
Let us mention that by considering the martingale (SJZ — Var(S81)j) j>1, which

is uniformly integrable on [0, 7,” A ‘[2_], we can find some constant ¢ > 0 such that
forall L>1andO0<a <L,

(9.14) Eo[ty At ] <cL?
(i) Proof of (4.13). If L — a > %, we deduce from (4.10) that
-9 _
E,[e ™ 1{

Let0 < L —a < £. Note that under P,, 75 <t implies that t; , <1, <7} .
3 0 L 1mp L2=T L

-5 - L _ .
T()—<Tzr}] <E,le ™ ]<c whichis less than c/LTaH if ¢’ > 3c.

Then by the strong Markov property at 7, /20

-5 - —S -
Eq [e 0 1{1'0_<r2'}] =B, [e 0 l{TL_/szo_<t2—}]
-5 _

= IEa [1{r£/2<rzr}ESTE/2 [e K 1{1(;<t2“}]]

-9 _
nlete 2l <o),

T <t T

<Eq[1,
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—S _ -9 _
where we use the fact that for all 7 := Srg/z >0,E;[e "1 L+}] <E;,[e ™]<

{ry <7

¢ by (4.10). Since STL—/2 < 0 means that TL_/2 > L /2, we deduce from (4.10) that

T, L/2+T, —
Eole "t2lis <o) =Ea[e"*ir1o ) o] < ce®t2,
L2 /2

This together with (4.11) gives that

-S _ B _
Eqle ™ 1{r0_<12'}] < Pu(ty ), <7/) +ce SL/2

=cPa_r (1) < TZF/Z) + ce0L/?

L _ /
<emTATC L L
(L/2)
- C//L —a+1
= L .

(if) Proof of (4.14). Let us show that E[Y."0 ' ¢™9%/] < oo,

ro_—l
E[ > e—“.f} =Y Ele®,j<ty] =) e+ )7 < o0,
Jj=0

j=0 j=0

where we used Theorem 4 (and Theorem 6 if Sy is lattice) of [34] for the bound
of E[e~%5i, J <7 1. Let (H, , 0, )n>0 be the strict ascending ladder heights and
epochs of —S (with o, := 0). For a > 0, we notice that

75 —1 .1
Ea|: Z e—5Sj:| =E|: Z 6—8(a+5j):|
j=0 j=0

op <j<o0,

0
> E[ > e I{H,:sa}}
n=0

+1

00 79 —1
ZE[e—S(G—Hn )l{ana}]E|: Z e—5Sji|’
n=0 j=0

by applying the strong Markov property at o, . We showed that E[Z;O;al e 95 <
00. On the other hand, Lemma 5 applied to the random walk (H,),>0 says that

0
sup Z E[e‘a(“_H" )1{H,;§a}] < 0.

a>0,_q
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—35;

Hence sup,~¢ Eq [Z =0 Le ] < oco. Similary, by considering the random walk

L—S., we getthat E,[>" jL: 01 e~3(L=5)7 is uniformly bounded by some constant.
This proves (4.14).

(ii1) Proof of (4.15). Considering the value of the time 7, , then using Markov’s
property, we have

N _
Ea [8 ) ] = ];Ea[esk71 Skl{.[o—:k}]
>

= Y Eu[h(=Si-D1 5y 2]
k>1

where for any y € R, h(y) := E[e™5 1{5,<y)] < eV E[e=1HD51] = ¢e® for § > 0
small enough. Hence,

7, —1
S _ 0
Eqle ™" "0 ]<cEq [ > e_‘SS":|

and (4.15) follows from (4.14).

(iv) Proof of (4.16) and (4.17): Clearly (4.17) follows from (4.16) by consid-
ering the random walk (L — §;);>¢. It suffices to prove (4.16). If L —a > L/3,
there is nothing to prove since EQ[ZOSI.Q(;M; e %5 < EQ[ZOSKT& e %50 is
less than some constant by (4.14).

Considering L — a < L/3, we have

o T ]

C =t
0<j<ty AT/

:Ea[l{rzﬂzro_/\ri"} Z e ]:|

f = At
0<j<ty AT/

+E”[l{rm<th} 2 e ]

f = At
0<j<ty AT/

<E, [e_SL/z(TO_ A 772_)] +Ea |:1{TL_/2<‘[0_/\TZ—} Z e_asj]

— iz At
T pSi<Ty AT

2 —8L/2 —8S;
<cL?e™2 4 Eaq |:1{tL/2<roArL+}ESfL/2|: Z € ]jl:|’
+

0<j<ty AT/

by using (9.14) and the strong Markov property at 7, 2 Let x := Sf{/g < L/2. If

—SS_/‘]

x <0, then under Py, 7,” =0 and Ex[z(quo—“zr e =0, whereasif 0 < x <
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L/2. Bx[¥ < j <o ner € **'] < ¢ by (4.14). Then we get

E, > e_‘ssj] <cL?e2 4 o, (tLp <7 A )
0§j<t(;/\rzr
<cL?e L2 4 P, (tpp < )

_ /
<2ty Lmare
L)2

by using (4.11). This proves (4.16).
(v) Proof of (4.18): By monotonicity, it is sufficient to prove (4.18) for
0 < 6 < n. Then notice that

Ea[e (rg <7/} Z e S)]

0<j<ty

00
=ZE |: n<rL ATy S, <0}€

n=1

S ) )}

0<j<n

Applying Markov’s property of S at n — 1 and using the fact that for all x >
0, Exle 51 (s, <0)] = Ele ™51 (5, <—xj] < c(8)e~ 9% by (4.8) (recall that 0 <
8 < n), we get that

-5 -
= —8(L—S))
Ea[e 1{1 <) Z et /]

0<j<ty

o0
(9.15) SCZ]EG[I{H<TL/\‘[O }e—(1+5)sn 1 Z oL~ s,]
=1

0<j<n

00
_ e S(L=S5)) —(148)Sm
- Z |: ]<1'L ATy } ! ES./’|: Z € i|:|’

+ —
O<m<t; ATy

where the last equality follows from Markov’s property at j. Applying (4.16)
and (4.17), we get that

- —38(L—S;
Ea|:e {‘[ <rL Z € ( )]

0<j<ty

s L—S;+1
—8 L—S; J
= ; |: U<tineg 1 e L }
¢ , a+1
bl E : e~ O/D(L=S))
S LEG 4 ] SC Lz )

0<j<t,/ Aty
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proving (4.18).

We mention that (9.15) also holds with § = 0, which implies that
_S _

EqJe ™1

(5 <10 | = Ba[tg AT[] =L

(9.16)
VL>1,0<a<L.

9.3. Proof of Lemmas 7 and 8. Keeping the notation 7, for the undershoot at
level a, we have as before for any 0 < r < 7y,
(9.17) Py(T, >x) <c(r)e "™ Ya <b,V¥x > 0.

PROOF OF LEMMA 7. (i) Proof of (4.22). It is a straightforward consequence

of (9.17). _
(i) Proof of (4.23). Let us introduce the tilted measure P, defined by

% lo(So,.... ) = eV n=50) Under ]f‘)a, the random walk drifts to +00. We write

B ¥ (+L-s)ed]

0<t<t
=Y Ea[(1+L = 5% 1]
>0
=Y Ba[(1+L—S)%e" %1, 4]
>0

—eraer IR, Y (1L Se)aeo—y)(Sz—L)}

o</t <‘[Zr

<cerier LR, T e(r—V)(Se—L)/Z].

0§€<rzr
Therefore, we only have to show that
supra[ )3 e(ry)(SzL)/Q] <e
az0 0§€<IZ'

which is done by the same argument as in the proof of (4.14).
(iii) Proof of (4.24). We have

i— o+
min(ty ,7; )

min(zy ,7; )
Ea|: > a+L- Se)ae}’&} = eyaEa[ > a+L- Se)a}

=0 £=0

min(t_,,7;_,)
:veE[ > (+L-a- Sg)a:|.
£=0
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Remark that (1 + L —a — S¢)% <c(1 + L — a)® + c|S¢|*1(s,<0; and that
E[Zzzo |Se|*1¢s,<0y] < oo (indeed observe that for any y’ € (0, y) there exists
c(a, y’) such that 3~y-([Se|*Lis,<0) < c(@, ¥") Xp=0 e ?'St whose expectation
under P is finite; see Kesten [22]). Therefore, we get

min(t=,,7,_,)
IE[ > a4L-a- SJI} <C0+L—a B[ ]+
£=0

<c(l4+L—a)t,

which completes the proof of the lemma. [

PROOF OF LEMMA 8. First, we remark that it is enough to prove the lemma
for integer p. In fact let us assume that (i) holds for any integer p satisfying the
hypothesis in (i). Now for 0 < p < %, we choose an arbitrary integer k larger

than p. Then (4.25~) holds for any (a., 15) [in lieu of (a., b)] satisfying the hypothesis
in(i):0<k <y/band E[(1 + 1{51<0}e_’731)51]f] < 00. Observe that dp := (ag)P/*
for any £ > 1 and b := pr fulfill the above hypothesis, hence

T, k
s (Do 3
E, |:e % < E e(pb/k)S‘—‘(ag)p/k> :| < ¢ = crePx Vx > 0.

=1

Since k > p, we have by concavity that

_ 75 k
x[e 0} (Zebs@ ‘ag> :|§IEX |:e nSf& (Ze(”b/k)sf—l(ag)p/k> :|§ckebpx.

=1

Hence it is enough to show (i) with an integer p. The same is true for (ii).

Now we assume p is an integer, and we shall use Markov’s property to expand
the power. Let either x := 7, or x := min(t, , ‘L’Z_ ) and consider a measurable
function f:R — R,. Define

k
—nS _ X
Ay r(x, k) I=Ex[€ " (Z f(SZ—l)aZ> :| k>0,x R,

(=1

and we mention that A, ((x,0) =e ™ if x <0, Ay s(x,k) =0if x <0 and
k>1.Letk>1andY; := Zé(:i f(Se—pagforl <i <t,,Y,y1:=0.Then

X k X
Y=Y (vf = vE ) =D C Y (F(SimD) @) (Vi) -
j r=1 i=1
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Applying Markov’s property at i gives that

k 00
Ay r (k) =" Cr Y B [Li<yy (F(Sim1)) (@) Ay p(Si k —r)]
(9.18) r=1 i=1
= BX(x7 k) + CX(X9 k)7
with

k 00
By(x.k) == Ci Y Ex[liicy.520)(f(Si—1)) (@) Ay, p(Sisk —r)],

r=1 i=1

o0
k _ng.
Cr . k) ==Y B[ li<y.s,<01 (£ (Si-1)) (@) e 5],
i=1

In the rest of the proof of the lemma, we shall use twice the notation A, (x, k),
By (x, k), Cy(x, k) but without the subscript x and take x =7, , f(y) = eP in
the proof of (i) and x = min(z, , ‘L'ZF), f=L-y+ 1)%e"Y in the proof of (ii).

S _ —

Proof of (i). Let in this proof A(x,k) = Eele = 0 (X2, etSe-1ap)%]. We
prove (4.25) by induction on k.

The case k = 0 follows from (4.22). Let I <k < y /b and assume that we know
that A(x, j) < cj-efbx for all 0 < j <k — 1 and x > 0. We have to show that
Alx, k) < crekbx,

Using the induction hypothesis, A(S¢,k — r) < ci_,e*=b5¢ if §, > 0.
From (9.18), we have

k
B(x, k) <c Y Y Ey[ePSt1(ap) e A5 0 < 1]
r=1£>1

k
<c Z Z Ex [eka(,l (az)re(k—r)bASg]’
r=1¢>1

with ASy := S¢ — S¢—1 for £ > 1. By the independence of (a¢, ASy), we get that

k
B(x, k) <c) E, [(ay) e® =P85 S E, [kbSe1]

r=1 £>1
k
— cekbx ZE[(al)re(k—r)bsl] Z(E[ekbsl])e_l,
r=1 £>1

Observe that

k
9.19) Y E[(@) e* "] <E[(ar +€")"] < 24 (E[af] + E["]) < cc,

r=1
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and E[¢X?51] < 1 since k < y/b. Hence B(x, k) < cpekbx.
It remains to deal with C(x, k). Observe from (9.18) that

o0
Clo k) =Y B[S0 1oy lis<0pe "]

—_

IoF

Ec[e"5 11 B [Ls <op@nfe 1],

i=1

by Markov’s property ati — 1. Since y := §;_1 > 0,
Ey[lis,<0j(@)fe™ 1] = e P E[1(s, <—y) (@) e 1] < E[ 115, <0) (a)k e 751].

It follows that

o0
C()C, k) <c Z]Ex [ehksi—l] < C/ebkx’
i=1
since bk < y. This yields that A(x, k) = B(x, k) + C (x, k) < ce’™ proving (4.25).
Proof of (ii). Write in this proof

s min(r(;,rzr) j
A(x, j) = Ex|:e ! fo( > (1—|—L—Sg_1)aebselag) } xeR,j>0.
(=1
We mention that A(x,0) =e ™ if x <Oandfor j > 1, A(x, j)=0if x <Oor
x> L.
From (9.18), A(x, k) = B(x, k) + C(x, k) with

k
Bx,k)=> C; Y E[(I+L—S;—)%e i1 (ay)
1

r= izl
(9.20)
x A(Sj, k— r)l{j<min(r0_,rzr)}]’

o
92D Cl. k) =Y E[(L = Simg + D*afe i1t o ],

i=1

We now prove (4.26) by induction on p, where p equals some integer m > 1.
First, let m < y /b, and assume (4.26) holds for all A(x, j) withO<j <m —1.
By (9.20),

m
B(X, m) S CZ ZEX[(l —+ L — Sjil)drerij,l (aj)r(l + L — Sj)tx(m—r)
r=1j>1

% eb(mfr)S_,"j < ‘L’+].
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Write as before AS; = S; — S;_1. Notice that for any j < 7,7, (1 + L —
Sj)“(’"_’)eb(’"_r)ASf <c+4+c(l+L— Sj_l)“(m_’)eb(m_’msi. By the indepen-
dence of (a;, ASj), it is easy to see that the above expectation under E, is less
than

cElaf (14 SO R [(1+ L — S;_1)*" ™St j < 7]
Since E[a] (1 + ?™=)51)] < oo by (9.19), this implies that
B(x,m) <c ZEX[(I +L— Sj_l)“membsffl,j <1/
jz1
(9.22) =" Y E[(1+L—x—S;_p*™me™Si-1, j <1 ]
jz1
<c(l+ L —x)*memb
where the last estimate follows from the facts that for j < ;7 , (1+L —x —
Si—)®™ <c(l+L —x)*" +c|S;_1|*" and that 3" ;- E[|S;_1|*"e™"5i-1] < 00

(since mb < y).
By Markov’s property ati — 1,

o0
Clx,m) =Y B [(L— 81+ D*"e"5 B, 115, <pai’e ],
i=1
i—-1l<ty <t/

As in the proof of (i), Es, ,[1(s, <0}a{”e*’751] is less than some constant, hence

o0
Clx,m) <cY Ee[(L—Si—1 + D*e"Si-1i — 1 <15 <1]]
i=1
< C/(l +L _x)amembx’
by (9.22). Therefore, A(x, m) = B(x, m) + C(x,m) < c(1 + L — x)*™e"* prov-
ing the case m.
Consider now the case when y /b = m is an integer. Since m —r < y /b for

any 1 <r <m, B(y,m —r) < cm—pa(l + L — y)*" =m0 for 0 < y < L.
By (9.20),

(9.23)

m
B(x,m)<cy D E[(1+L—Sj_)* e ()" (1+L -5,
r=1j>1

(m—r)S;
x e M0 l{j<min(r(;,rj)}]~

Repeating the same argument as before, we get that
min(ro_,rf)
B(x,m) < c/IEx[ > (+L- sj_l)“mem”sf—l} <c(l+ L —x)!tamembx
j=1
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by (4.24). According to (9.23), we get the same estimate for C (x, m), which proves
the case m =y /b.

It remains to deal with the case m > y/b. Let m| := |y /b] + 1 be the least
integer larger than y /b and assume that E[a'lm] < 00, E[e?m—DS1] < 0. We
check that (4.26) is satisfied for m = m1: applying (9.20) and using the already
proved results for A(x,m; — r) (since my — r < y/b), we get that B(x,m1) is
bounded by

mi
CZ ZEx[(l +1— Sj_l)arerij_1(aj)r(1 +L— Sj)1+a(m17r)
r=1j=1

b(m1 r)SJI }]
]<‘L’ ’

(the extra 1 in the power comes from the possibility that m| — 1 = y /b). As before,
we get that
B(x,ml) < C/ ZEX[(I +L— Sj71)1+amlem1ij,|’j < TZL] < Cey(x—L)—i—m]bL’
j=1
by applying (4.24). The same estimate holds for C(x, m) by using (9.22). This

proves that (4.26) holds for m = m. The other m > m| can be treated by induction
on m, and by using the same arguments as before, we omit the details. [

9.4. Proofs of Lemmas 9, 10, 11 and 12.  We give in this subsection the proofs
of these lemmas used in the proof of Theorem 3.

PROOF OF LEMMA 9. Write in this proof

r,+—K
A©o4) = { Z Z H"(t)>0¢,

k=1 uely
(9.24)

Bwosy = {fi(w+) < 7" — K}.
Let us first observe that Markov’s inequality together with part (i) of Corollary 3
imply
r,+—K

(9.25) Qi (A24)|%0) < Z Z 7 (V(u),1),

k=1 ueUy
with
w(x,t):= Ex[H(t)]l{xft} + 1{x>t}-
Furthermore, part (ii) of Corollary 3 yields for any x <t

—05.+

R(S +)

E[H(t)]= R(x)e@’@*[

] < R&) ox ot < o001,
{rF <7y} R()
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from which we deduce that 7 (x, 1) < e@“ D1 oy + L=y < €230 Therefore,
we obtain

+
7, —K—1

Qf (ApaplDo) = Y. 2D 3~ eV,
k=0 u€Uk1

On the other hand, by the definition of f; (wtt+) [see (1.14)],

T —K—1
119(924)S Z eQ(Sk_t)(%(wk—H))Q-
k=0
It follows that
[ |
(926) Qi (Away UBwasy|Dos) < D 2y :=T(),
k=0

with bgy = ZueUk+1 eQAV W) 4 (A (wig+1))C. Recall that under Q;—, (Sk, bi) k>0
is a Markov chain; see Proposition 2. Fix a A > 0. Then we claim that the following
double limits equal zero:

(9.27)  limsuplimsupQf (Fk <7,F — K:t — Sy <A, 7,V > K) =0.

K—oo [—00

In fact, let 7 be large, and observe that
QrEk <t —K:it—Sk<i 1 >K)<Qi (", + K <1,"),

which by Markov’s property at Tttk’ is less than sup,_; _, Q;L(K <1,7). By the
absolute continuity between Qy+ and Q,,

R(Sg)] _ R
T(K<1h)= [1 - } < F>K
Qy( < Tl‘ ) Qy {K<T,+A‘L'0} R(y) — R(y) Qy(rl‘ > )
R . 4+
= — K).
Rey Q> = )
It follows that
: - + + + - R@®)
limsupQy (Fk <7," — K:t — Sy <A, 7" > K) <Q(r,” > K)limsup ————
t—00 t—00 R(t — )L)

=Q(7; > K),

which goes to 0 as K — o0. This proves (9.27).
Let

E\(t,K):={Vk<1"—K:t—S>xr 1 >K}.



3866 E. AIDEKON, Y. HU AND O. ZINDY

We have Qj{(r,+ > K) — 1 as t — 0o, which in view of (9.27) yields that for any
small ¢ > 0, there exists some Ko = Ko(g, A) > 0 such that for all K > Ky, there
exists some #y(K, €, A) satisfying

(9.28) QI (E1(t,K)) <e Yt > 1.
We claim that there exists some small § > O such that
(9.29) sup Qj [b‘ls] < 00,
z>0
-1
(9.30) limsup Q| > 50| <00
t—00 k=0

for any « > 0.
Assuming for the moment (9.29) and (9.30), we prove the lemma as follows:
define

r,+—K—1
Ex(t,K) := m {bks1 < 6(9/2)0_&‘)} n{z" > K}.
k=0

By (9.26) and on E» (¢, K) N E| (¢, K) which is ¥,,-measurable,

T —K—1

Qi (A@92a) U Booa)|%so) < Y(1) < Z /D=1,
k=0

+_ g
which is less than e—¢*/4 Z,:’:OK L e@/M =0 gince on Ei(t,K), S —t < —A
for k < 7,7 — K. This with (9.28) imply that for all # > 1,

Q (A©924) U B4y
9.31)

+

7, —1
<e+Qf(E2(t, K)*NE(t, K)) + e‘Q““Qi[ > e@/‘”“k‘”]

k=0

On the other hand, fix the constant § > 0 in (9.29), and we have

QI (E2(t, K)*NE (t,K)) < Q;_|:1E1(Z‘,K) > (bk+l)8€_(8Q/2)(t_Sk):|

k<tt—K

fe_BQ)LMQj[lEl(t,K) > (bk+1)5€_(59/4)(1_s")]

k<t —K

< e—5Q>»/4Q;F|: Z (bk+1)56_(5Q/4)(1_Sk):|.

k<"
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Applying Markov’s property at k gives that

7, 1
Q*[ > PGy } ZQ eeSDQE ()]

k=0

-1
< suij'[b‘f]Qj[ Z e((SQ/4)(Sk—t)i|.

220 k=0
By (9.29) and (9.30), we get some constant ¢ independent of A and ¢ (the con-
stant ¢ may depend on x, §) such that QJ“[ZI’Jr_l eWe/VS=1(p,  1)%] < ¢ and
QJr ZT’ - e@/MS=0] < ¢, Going back to (9.31), we obtain that for all K > K,

limsup Q (A(924) U B(o.24)) < & + ce 2%  cem 04,

1—>00

Letting A — oo and ¢ — 0, we get that

lim sup lim sup Qj (A©9.24) U B924y) =0.

K—o0o t—00

It remains to show (9.29) and (9.30). By (5.22),

e 0z 8

1 )
ZE[R( ) Y Lvwz—aR(V W) +2)e QV(M)<Z€QV(U)+‘@(”)Q> }
lul=1 vF#u

CE[ Y1+ [vw)) eQV(“)(( > eQV(”)) +%’(u)5g>],

u|=1 lv|=1
(critical case),

cE|:< > eQV(”)>1+8 + ( > eQV(“)><@(M)8Q],

lu|=1 lu|=1

IA

(subcritical case),

since R(z) ~ Cgz in the critical case and R(z) ~ Cg in the subcritical case as
z — oo. If § > 0 is sufficiently small, the later expectations are finite by (1.13)
together with (1.3) and (1.4), respectively, which yields (9.29).

To show (9.30), we deduce from the absolute continuity between Q;“ and Q,
that

-1

(9.32) Q;[Z eK(Sk—l‘):| ZQX[ (et A K(Sk—t) I;((ik)):|

k=0
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Let us distinguish the critical and subcritical cases: In the critical case, Q[S;] =
0 and R(z) ~ Crz as z — o0. There exists some constant ¢ such that for all r > 1,
the RHS of (9.32) is less than

00 r,+/\r07—1
ct Z Qx[l{k<rt+m(;}e"(5’<_t)] = cth|: Z e"(S"_t)].
k=0 k=0

Applying (4.17) with L =t and § = « [this § has nothing to do with that

+ = +

in (9.29)] gives that QX[Z,Z’:QTO ! eS—D] < cs%. Hence QI[ZE’ZO ! e Sk=07 <
c(x + 1) for all + > 1. This proves (9.30) in the critical case.

In the subcritical case, we note that Q[S;] > 0 and R(-) is bounded. By (9.32),
we get that for some constant ¢ > 0,

'L’t+—1 o0
Q)—:'_[ Z eK(Sk_t)} S ¢ Qx[1{k<r1+}eK(Sk_t)]’

k=0 k=0

which, according to Lemma 5 is uniformly bounded by some constant. This com-
pletes the proof of (9.30) and hence that of Lemma 9. [

PROOF OF LEMMA 10. Observe that
[tt>kinree, k) | UBveTWiul =) <t w) = vl
ke(r;m—K,7;F1u€Uk

Recall that % = o {(AV (1), u € Uy), V(wi), wg, Ux, 1 < k < 7,7}. For any
event F' € Y,, we deduce from Corollary 3 that

(5 = KN e k) =QF(F) +Qi 1 X X f(va)|
ke(z;m—K, 7t €0k
with f(y) :=PyFv:ty (v) < 5,7 (v) = [v]) = P@v:17,(v) < 1,7, (v) = |v]).
[We mention that f(y) =0 if y > ¢.] For any y <1, by the branching property
at T, (v), f(y) <sup, P;Eu:t" () < o00) =P@Eu:7 (1) < 00) := n(r)
which converges to 0 since the (nonkilled) branching random walk V goes to —oo.
Therefore,

Qf({z,f > K} NI, K)) < QI (F) + n(t)Q; [1F > #Uk].
ke(r,+—K,r,+]
Consider an arbitrary ¢ > 0. By Lemma 4(ii), (Stt+ — Srﬁ—i’ 1<i <K) con-
verges in law, and hence there exists some A = A(e, K) > 0 such that for all large ¢
(in particular, t > 41),

Qj(Fl):=Q;r<{rt+>K}ﬂ ﬂ {Sk>t—k,|Sk—Sk_1|§A}>>1—e,

ke(z;m =K,
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with obvious definition of the event F. Let C > 0, and define
FQZ:F]H{V]{E(‘E, K‘L’t]#Uk<C}
Hence for all sufficiently large ¢, Q} (r;” < K) < & and

Qf(r‘(r,K)) <2+ QH(FINF5)+ n(r)Qj[le > #Uk]

ke(r,+—K,r,+]
(9.33) N ‘
<2+ QI (FiNF5)+ CKn(@),

with n(t) — 0 as t — co. By (1.3) and (1.4), we can find a sufficiently small § > 0
such that Q[(#U;)°1 = E[(v — 1)° Z|u|=1 €2V W] .= ¢ < 0o. Observe that

Q) =cQtln X @]

ke(r;m —K,7t]

-5 5
=C ZQ;[1{|Sk—5k,1|§A,Sk,|>t—)»,t[+zk}(#6k) ]

k>1
- R(Sk)
$
=C ZQX[R( ) USk= Skt |k i1 > k<t ATg (#Uk)]
k>1
_ R(t—{—k)
$
=€ ]; R(x) {Sk 1 >t—Mk<tt ATy (#Uk)]

since R is nondecreasing and Sy <t + A. By Corollary 1(i), under Q,, #Uy is in-
dependent of {S;_| > — A,k < ‘L't+ AT, } and has the same law as #01; moreover
Q.[(#U1)%] = Q[(#U1)?] =: ¢ < oo. Using the fact that R(t + 1) < 2R(t — 1) for
all large ¢, we have

_ R(+X\)
8
Qj(Fl NF;) <cC Z R(x) QX[l{Sk,pt—A,kgzﬁm(;}]
k>1
_ R(Sk-1)
s
<2cC ZQx[ RO 1{Skl>z—x,k5rfm0}]
k>1
.[t+
= 2CC_8Q;_|:Z 1{Skl>t_)\}i|.
k=1

+ +

Observe that QF[X,, lis, =r—x] < QF[X;,e¢k=1=C¢=2)]  which
by (9.30) is smaller than some constant ¢ = c(A, x) < oo. Going back to (9.33),
we get that

Q (I“(r, K)) < 2e +2c¢C™° + CKn(1).

Letting t — oo, C — oo and then ¢ — 0 (§ being fixed), we prove Lemma 10. [J
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PROOF OF LEMMA 11. First, note that there is nothing to prove in the sub-
critical case [since Z(t) = 1 by (6.4)]. It remains to consider the critical case, thus
0 = 0« and Z(t) =1t for all t > 0. For notational convenience, write

(@

A= exp{ (2‘0)1@1 K Z 19, x Z I _(l_]) <'>
K m®

B:=¢%0 4" Z/eg*z_(l G
i=1j=1 S

K m®
e+ 33 [z m ) ),

i=1j=1 ' /

Then

A
10, S1s e e ,9(1),...,9(’0 :E[i}
%,K(o S1 SK ) B+ (/0D

A
Yook (10,51, ..., s, 00, ..., 6%) :E[E].

Since f >0, A <1, and we get that
|<ﬂr,1<(t0,s1,---,SK,Q(I),.--,Q(K)) —%o,K(to,Sh---,SK,@(l),---,Q(K))|

=¥
t B2

We are going to prove that

D 1
— < — a.s.
B2 ~ o4
Indeed, notice first that the nonkilled branching random walk V goes to —oo,
/,L(l J: (,)(dz) is an a.s. finite measure on R, and 7pe%’0 < Qi e2e+10 for any
Si—lo— *

o > 0. Second let & j :=supfa > 0: fi; o0 ,u(’ /) 0 (dz) > 0}. Note that
—lo—

G = et = g [T (). follows at [zt o) =

i feg*zﬁ(”) (i)(dZ) < é(f eQ*Z_EI-—]ZO—x(f)(dZ))Z' Hence
J ! J

Si—tlhp—x
z : z : l
Q*IO (/ eQ*Z ]to (1) (dZ)) —
i=1j=1 Si Qs

yieldingthat|@,,K(Tt+,s<’>,.. SE) = Poo k (T, 8", .., S{)1 < 71 and prov-
ing Lemma 11. 0
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PROOF OF LEMMA 12. We prove the following stronger statement: For any
K >1,
t1_1>m Qx [@oo x (T}, Sl(t)’ s S;é))l{rt+>[(}]
9.34) B i)
o Vi —(1,
exp{—f(USs) g, =X 1a e i (H " o o))

S,'—US;,—XE-I) ]
e? Ss Z IZW feQZ (l 7 P ~(i)(dZ)
—USs—X;

=Q[

which implies Lemma 12 by letting K — o0. Define
£i(s,0) :=ig21K(sj—log%(0j)), 1<i<K,

K m®
A(ty, s, 0) = expi—f(t0)1{£1(s,0)>z0 Z Li£; (s,0)>10) Z(f, Mil jzo x(”)}
i=1 j=1 !
K m®

B(ty, s, ) := e°" —i—ZZ‘/eQZ_(f /) x(i)(dz)
J

—I
i=1j=1 ST

fors:=(s1,...,s5%),0 :=(0,...,0k), with §; —Z’]"()l {(,) 1 <i < K. Denote

by ®(s) a random variable taking values in Q% y; K with law ]_[l 1 Bs—s;_ 1(de(’))
Then (recalling sg := 0)

~ . A(to,s,0) - )
QDOO,K(IOaS)—/ [B(to,s 0)]1_[‘-‘ Si—Si— 1 d9 )

_ E[A(to, s, @(s»]
~ LB(t0,5,0(s) [’
Plainly the function @ x is bounded by 1. Therefore Lemma 12 will be a con-

sequence of Lemma 4 if we have checked that for any fixed s € RX, the function
o = @0,k (to, S) is continuous excepted on a set that is at most countable.

(to,s) € R* x RX.

To this end, we study at first the continuity of y — (f, M( I )) which are i.i.d.
copies of (f,7x,). Recall that (f, ) Zue%y f(V(u) — y) for any fixed y > 0.

Let us consider T; T (u) :=inf{k: V (uy) > t} and define the associated optional line
%, just like (5.7). By the definition of the stopping line ‘5 and the continuity of f,
we immediately obtain

li/fnsup|(f, Hy) =S, ﬁy>| < f(0) Z l{f;r:|u|,v(u):y}

(9.35)
=£0) > lyw=y

u€by
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for any sequence (yi)k, such that y — y when kK — o0. On the other hand Corol-
lary 1(ii) also holds for this family of optional lines by replacing n by ;. Then
we take the expectation (under P) in (9.35) and obtain that

936)  E[limsup|(£,77,) — (£, 75,)] ]| < f(©)e @ QS5 =),

k— 00
where T'y+ :=1inf{n > 0:S, > y}. Denoting as before by (H;),>1 the (strict) as-
cending ladder heights of S, we remark that
oo
Ap = {y:Q(S?; =y)>0}C Ul{y:Q(H,, =y) >0} is countable.
n—=
Then by (9.36), y — (f, It,) is continuous (in L' hence a fortiori in probability)

—( i,j)

on y ¢ Aj. The same holds for y — (f, iy *’) with any i, j > 1. Now we write

explicitly ®(s) by a random vector ©(s) = (91, ...,0g) with 6; := Z?’I (ll) ( X<,>}

and the associated random variables £;(s,0), 1 <i < K. [The random Varlables
MY take values in N, X; @) in R, and £ (s, #) in R U {00}.] Observe that all the
following three events are countable
K . .
Ay = U{x P(x = X§l), forsome 1 < j < M(’)) >0},
i=1
K
Az = J{x:P(x =£i(s, 0)) > 0},
i=1

K
Ay ::A3UU{S,~ —x—y:x€e€ Ay ye A}
i=1
We claim that ¢, g (f0, S) is continuous on fy ¢ A4. To check this, we fix #y ¢
A3 and take a sequence t,, — ty as n — o0o. Let

= U U {X;-i) € S; —t()—Al} U {£,'(S,0) =l‘0}.

Since 79 ¢ A4, we deduce from the definition of A that P(E) = 0. Observe that
on E€, s; —ty — X;’) ¢ Ay and 1o #££;(s, ), hence A(t,,s,0)1 gc — A(to,s,0)1ge
in probability. In other words, A(%,, s, #) — A(t, s, §) in probability, and the same
holds for B(t,, s, #). By the dominated convergence theorem, when n — oo,

Yoo, K (tn,S) = E|:B(l‘n,s’ @(S))]
£ 050

B(1, s, @(S))i| = @oo,k (10, 8),
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proving the desired continuity at any fg ¢ A3. Then we can apply Lemma 4 and
get Lemma 12. [

9.5. Proof of Lemma 16. Throughout the proof, § > 0 is taken to be suffi-
ciently small.

Proof of (i). Let us write f(x) := —logEe ! for x > 0; By a Tauberian theo-
rem,
Fx) - 0
xX)y~a————, x—0.
log(1/x)

Let Ay :={maxj<;j<¢ ¥; < x‘l+5/2} (maxg = 0). Then for x > 0,

&
P(AC) < EZX(1+5)(1—5/2) Yi1+s — cx(IHO=3/D) _ (1 159/3), x— 0,
i=1

since 6 > 0 is small. By independence of (I';), we have

E[e ™ Ximt XiT1] = B¢~ Tim /61)]
(9.37)

&
= Eexp|:— Zf(in)le:| —I—o(xH"S/S).

i=1

Define

T, = log(l/x)Zf(Y)le, 0<x<l.

Plainlyasx — 0, Yy —> a Z?:] Y; almost surely. Notice thaton A, xY; < x%/2,
which together with the asymptotic properties of f implies that for all 0 < x < xg

;vlith xo sufficiently small, f(xY;) < 2a10g(f/1(/;Yi)) < 48" logx(l/x)’ forall 1 <i <E&.
ence
&
log(1/x) /1 da
log(1/x) () _ g=x/tost/orey <y < 32
X (1-e ) g

By the dominated convergence theorem,

£ 5
M(l —Eexp[—Zf(XYi)leD —~aR} Y.
i=1

X i=1

This and (9.37) yield that as x — 0, 2209 (] _ B[~ T YT}y 5 gE Yy,
which implies (i) by a Tauberian theorem.
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Proof of (ii). Define W := Zle Yiand let A > 1 and 0 < ¢ < a/2. By condi-
tioning on (¥;)1<;<¢ and using the tail of I';, we have that for large ¢,

;
]P’(Z Y;T; > t) > P(lr;%(y,-n) >1,W <))

i=1
> E|:1{W§A}(] — 1_[(] — %))}

i=1

3
> (a — 28)E|:1{W§)L} ZYip:|l‘_p,

i=1
which implies that

£ £
1iggfrpp<z YT > ;) > (a— 28)E[1{W5M X; Y,.P]

i=1
Letting ¢ — 0 and then A — oo yields the lower bound.

To prove the upper bound, we remark that by considering # instead of Y;
(with ¢ > 0), we can assume without loss of generality that almost surely ¥; > 1
(ifi <§&).

By Markov’s inequality (§ being small),

(9.38) P(W > 1'79/2) <=0 2R[Wr+] = o(17P).

Let £ > 0 be small, and define

~n

Y;T;

%
+{

A©39) = [IT?ES(YiFi) < SI}, B939) := {

i=1

9.39) s
C(9,39) = {Wﬁt }

By conditioning on Y :=o{Y;, 1 <i <§, £}, we get that

& p+3
P(A©39) N B39y N Coao) <t " °E [10@‘39)1“3[(2 Yi Fi) L4039, YH :
i=1

. _ B
By convexity, (Z,il yil)PTe < (Z?Zl yi)P+e IZ;?&:] yiF,-er for any y; > 0.
Observe that by using the tail of I';,

2(p+9)
)
for all large ¢ and y; < #'~%? It follows that for any 0 < & < 1,

(et/yi)’,

1

et/yi
E[I ™ Lr, <et/yn] < fo (p+8)xPHIP(I; > x) dx <

§
(9.40) P(A@939) N B939) N C9.39)) < Cp,at_p85E|:Wp+5_l Z Yil—8:| ‘
i=1
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Since ¥; > 1, the above expectation is less than E[WP*9] which is finite.
Let 1 <g < p and p — g < 1/2. Using Markov’s inequality and conditioning
on Y, we obtain

P({Hi <&:et<IiYi<(1-— 8)[} N B(9.39) N C(9.39))

< ]P’({Eli <&:TYi>et, ) YT > 8t} N C(g,gg))
J#i

ré q
< (et)'TIE ZYiFi(ZYjFJ) 10(9.39):|

Li=1 i
ré g—1
Lic1 ki i

< (e) "E[ME[N JE[W T 1cy ],

since (3_ 4 Y1) < (Xga Yk)q_l(Z#i YjF?) for all i by the convexity in-
equality and since the I";’s are i.i.d. and independent of Y. Furthermore, observe
that E[W1+4 lCg30] < E[WPt;(+a—p—8)(1-3/2) Therefore, we obtain

P({Hi <&:et<IjYi<(1— 8)[} N By39) N C(9.39)) < Cs’qt—p—(1+q—p)8/2.
This combined with (9.38) and (9.40) yields that, for all large ¢,

P(B939)) < P(lriliaiié(YiFi) > (1 —e)t, C(9,39)) + C;,,at_l’gls + O(l‘_l’)

£ P
(a+8)Yi /. —pab —-p
fE[izzlml{WSﬂS/Z} +Cp’(gt & +0([ )

It follows that

§ § p
Y:
limsupthP’<Z Y.T; > t) < E[Z %} + c;j’(;s‘s,
t—>00 i=1 i1 (1 - 8)

where § > 0 is fixed. Letting ¢ — 0 yields the upper bound and completes the
proof of the lemma.

10. Notation.

Tree

T genealogical tree;

g root;

|u|: generation of the vertex u;

v(1): number of children of u;

F . sigma-field of the branching random walk up to generation n.
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Branching random walk

(V(u),u € T): branching random walk;

£ point process on R governing the positions of the offspring of an individual;

L[a]: set of vertices absorbed below level a;

Z[0, L]: number of vertices in £[0] that did not touch level L;

%;: set of vertices absorbed above level ;

[ point process on R composed of the overshoots of the vertices in %;;

1, (u), respectively, 7,7 (u): for a vertex u, hitting time of (—oo, ), respectively,
(t, 00), on its ancestral line (oo if no such time).

Killed branching random walk

Z ' set of nonkilled vertices;

Z: cardinal of &;

F2(t): set of nonkilled vertices absorbed above level ¢;

H (t): cardinal of 57 (¢);

W point process on R composed of the overshoots of the vertices in J7°();
oo limit in distribution of u; conditioned upon being nonempty.

Good and bad vertices

HB(u): function controlling the jumps of the offspring of u;

Br(u): gives the first time there is an atypical jump. Br (1) = oo means that
vertex u is a good vertex;

(). set of vertices in 7 (¢) which are good,

1. the point process [i; restricted to good vertices;

Wz, the point process ; restricted to good vertices;

Z¢[0, L]: number of good vertices in Z[0, L];

Zp[0, L]: number of bad vertices in Z[0, L].

One-dimensional random walk

S, : one-dimensional random walk;
R(x): renewal function of S,,; see (5.20);
rt+: hitting time of (¢, +00);

7; : hitting time of (—o0, t);

T, overshoot at level 7

T, : undershoot at level ¢.

Spine decomposition

wp: spine at generation 7;

U,,: brothers of w,,;

S, position of wy,;

%, sigma-field generated by wg, V (wg), O for k < n;

Q,:: defined by fi%‘ 7 =e P Z|u|=n eV @ Under Q,, the spine is a centered
random walk;
) aQt . 1
Q;: defined by Bz = T O PXY ul=n R(V(u))epv(”)l{fa(u)>‘ul}. Under

Q" the spine is a centered random walk conditioned to stay positive;
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(e-)
Q)(CQ_): defined by dgf,x 7, = € Y uj=n e?-V® Under ;‘Q_), the spine
is a random walk with negative drift.
Martingales
Wy o= = 3y = V ()e2sV

My =3 = ROV ())eV @)
MIEQ—) — ZM:" eQ,V(M)‘
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