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We prove a strong approximation result for the empirical process associ-
ated to a stationary sequence of real-valued random variables, under depen-
dence conditions involving only indicators of half lines. This strong approx-
imation result also holds for the empirical process associated to iterates of
expanding maps with a neutral fixed point at zero, as soon as the correlations
decrease more rapidly than n−1−δ for some positive δ. This shows that our
conditions are in some sense optimal.

1. Introduction. Let (Xi)i∈Z be a strictly stationary sequence of real-valued
random variables with common distribution function F , and define the empirical
process of (Xi)i∈Z by

RX(s, t) = ∑
1≤k≤t

(
1Xk≤s − F(s)

)
, s ∈ R, t ∈ R

+.(1.1)

For independent identically distributed (i.i.d.) random variables Xi with the uni-
form distribution over [0,1], Komlós, Major and Tusnády (1975) constructed a
continuous centered Gaussian process KX with covariance function

E
(
KX(s, t)KX

(
s′, t ′

))= (
t ∧ t ′

)(
s ∧ s′ − ss′)

in such a way that

sup
s∈R,t∈[0,1]

∣∣RX

(
s, [nt])− KX

(
s, [nt])∣∣= O

(
log2 n

)
almost surely(1.2)

[we refer also to Castelle and Laurent-Bonvalot (1998) for a detailed proof]. The
rate of convergence given in (1.2) improves on the one obtained earlier by Kiefer
(1972) and the two-parameter Gaussian process KX is known in the literature as
the Kiefer process.

Such a strong approximation allows not only to derive weak limit theorems, as
Donsker’s invariance principle for the empirical distribution function, but also al-
most sure results, as the functional form of the law of the iterated logarithm [see
Finkelstein (1971)]. Moreover, from a statistical point of view, strong approxi-
mations with rates allow to construct many statistical procedures [we refer to the
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monograph of Shorack and Wellner (1986) which shows how the asymptotic be-
havior of the empirical process plays a crucial role in many important statistical
applications].

In the dependent setting, the weak limiting behavior of the empirical process
RX has been studied by many authors in different cases. See, among many oth-
ers, the following: Dehling and Taqqu (1989) for stationary Gaussian sequences,
Giraitis and Surgailis (2002) for linear processes, Yu (1993) for associated se-
quences, Borovkova, Burton and Dehling (2001) for functions of absolutely regu-
lar sequences, Rio (2000) for strongly mixing sequences, Wu (2008) for functions
of i.i.d. sequences and Dedecker (2010) for β-dependent sequences.

Strong approximations of type (1.2), for the empirical process with dependent
data, have been less studied. Berkes and Philipp (1977) proved that, for functions
of strongly mixing sequences satisfying α(n) = O(n−8) [where α(n) is the strong
mixing coefficient of Rosenblatt (1956)], and if F is continuous, there exists a
two-parameter continuous Gaussian process KX such that

sup
s∈R,t∈[0,1]

∣∣RX

(
s, [nt])− KX

(
s, [nt])∣∣

(1.3)
= O

(√
n
(
ln(n)

)−λ) almost surely

for some λ > 0. The covariance function �X of KX is given by

�X

(
s, s′, t, t ′

)= min
(
t, t ′

)
�X

(
s, s′),

where

�X

(
s, s′)=∑

k≥0

Cov(1X0≤s,1Xk≤s′) +∑
k>0

Cov(1X0≤s′,1Xk≤s).(1.4)

As a corollary, Berkes and Philipp (1977) obtained that the sequence{
(2n ln lnn)−1/2RX

(
s, [nt]), n ≥ 3

}
of random functions on R × [0,1] is with probability one relatively compact for
the supremum norm, and that the set of limit points is the unit ball of the reproduc-
ing kernel Hilbert space (RKHS) associated with �X . Their result generalizes the
functional form of the Finkelstein’s law of the iterated logarithm. Next, Yoshihara
(1979) weakened the strong mixing condition required in Berkes and Philipp
(1977) and proved the strong approximation (1.3) assuming α(n) = O(n−a)

for some a > 3. However, this condition still appears to be too restrictive: in-
deed, Rio [(2000), Theorem 7.2, page 96] proved that the weak convergence of
n−1/2RX(s, n) to a Gaussian process holds in D(R) under the weaker condition
α(n) = O(n−a) for some a > 1. In view of this result, one may think that the
strong approximation by a Kiefer process, as given in (1.3), holds as soon as the
dependence coefficients are of the order of O(n−a) for some a > 1.

Since the classical mixing coefficients have some limited applicability, many
papers have been written in the last decade to derive limit theorems under various
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weak dependence measures [see, e.g., the monograph by Dedecker et al. (2007)].
Concerning the empirical process, Dedecker (2010) proved that the weak conver-
gence of n−1/2RX(s, n) to a Gaussian process holds in D(R) under a dependence
condition involving only indicators of a half line, whereas Wu (2008) obtained the
same result under conditions on, what he called, the predictive dependent mea-
sures. These predictive dependence measures allow coupling by independent se-
quences and are well adapted to some functions of i.i.d. sequences. However, they
seem to be less adequate for functionals of nonirreducible Markov chains or dy-
namical systems having some invariant probability. The recent paper by Berkes,
Hörmann and Schauer (2009) deals with strong approximations as in (1.3) in the
weak dependent setting by considering, what they called, S-mixing conditions. Ac-
tually, their S-mixing condition lies much closer to the predictive dependent mea-
sures considered by Wu (2008) and is also very well adapted to functions of i.i.d.
sequences. Roughly speaking, they obtained (1.3) as soon as F is Lipschitz con-
tinuous, the sequence (Xi)i∈Z can be approximated by a 2m-dependent sequence,
and one has a nice control of the deviation probability of the approximating error.

In this paper, we prove that the strong approximation (1.3) holds under a de-
pendence condition involving only indicators of a half line, which is quite natu-
ral in this context [see the discussion at the beginning of Section 2 in Dedecker
(2010)]. More precisely, if β2,X(n) = O(n−(1+δ)) for some positive δ, where the
coefficients β2,X(n) are defined in the next section, we prove that there exists a
continuous (with respect to its natural metric) centered Gaussian process KX with
covariance function given by (1.4) such that

sup
s∈R,t∈[0,1]

∣∣RX

(
s, [nt])− KX

(
s, [nt])∣∣= O

(
n1/2−ε) almost surely(1.5)

for some ε > 0. As consequences of (1.5), we obtain the functional form of Finkel-
stein’s law of the iterated logarithm and we recover the empirical central limit the-
orem obtained in Dedecker (2010). Notice that our dependence condition cannot
be directly compared to the one used in the paper by Berkes, Hörmann and Schauer
(2009).

In Theorem 3.1 we show that (1.5) also holds for the empirical process associ-
ated to an expanding map T of the unit interval with a neutral fixed point at 0, as
soon as the parameter γ belongs to ]0,1/2[ (this parameter describes the behavior
of T in the neighborhood of zero). Moreover, we shall prove that the functional law
of the iterated logarithm cannot hold at the boundary γ = 1/2, which shows that
our conditions are in some sense optimal (see Remark 3.2 for a detailed discussion
about the optimality of the conditions).

Let us now give an outline of the methods used to prove the strong approxi-
mation (1.5). We consider the dyadic fluctuations (RX(s,2L+1) − RX(s,2L))L≥0
of the empirical process on a grid with a number of points depending on L, let’s
say dL. Our proof is mainly based on the existence of multidimensional Gaussian
random variables in R

dL that approximate, in a certain sense, the fluctuations of
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the empirical process on the grid. These multidimensional Gaussian random vari-
ables will be the skeleton of the approximating Kiefer process. To prove the ex-
istence of these Gaussian random variables, we apply a conditional version of the
Kantorovich–Rubinstein theorem, as given in Rüschendorf (1985) (see our Sec-
tion 4.1.1). The multidimensional Gaussian random variables are constructed in
such a way that the error of approximation in L

1 of the supremum norm between
the fluctuations of the empirical process on the grid and the multidimensional
Gaussian r.v.’s is exactly the expectation of the Wasserstein distance of order 1
(with the distance associated to the supremum norm) between the conditional law
of the fluctuations of the empirical process on the grid and the corresponding multi-
dimensional Gaussian law [see Definition 4.1 and equality (4.5)]. This error can be
evaluated with the help of the Lindeberg method as done in Section 4.1.3 [a similar
approach has been used recently by Merlevède and Rio (2012) for the partial sum
process]. The oscillations of the empirical process, namely, the quantities involved
in (4.21) and (4.22), are handled with the help of a suitable exponential inequality
combined with the Rosenthal-type inequality proved by Dedecker (2010), Propo-
sition 3.1. Moreover, it is possible to adapt the method of constructing the skeleton
Kiefer process (by conditioning up to the future rather than to the past) to deal with
the empirical process associated to intermittent maps.

The paper is organized as follows: in Section 2 (resp., Section 3) we state the
strong approximation results for the empirical process associated to a class of sta-
tionary sequences (resp., to a class of intermittent maps). Section 4 is devoted to
the proof of the main results, whereas some technical tools are stated and proved
in the Appendix.

2. Strong approximation for the empirical process associated to a class
of stationary sequences. Let (Xi)i∈Z be a strictly stationary sequence of real-
valued random variables defined on the probability space (
, A,P). Assume that
(
, A,P) is large enough to contain a sequence (Ui)i∈Z = (δi, ηi)i∈Z of i.i.d.
random variables with uniform distribution over [0,1]2, independent of (Xi)i∈Z.
Define the nondecreasing filtration (Fi )i∈Z by Fi = σ(Xk :k ≤ i). Let F−∞ =⋂

i∈Z Fi and F∞ =∨
i∈Z Fi . We shall denote by Ei the conditional expectation

with respect to Fi .
Let us now define the dependence coefficients that we consider in this paper.

DEFINITION 2.1. Let P be the law of X0 and P(Xi,Xj ) be the law of (Xi,Xj ).
Let PXk |X0 be the conditional distribution of Xk given X0, PXk |F

be the condi-
tional distribution of Xk given F, and P(Xi,Xj )|F

be the conditional distribution

of (Xi,Xj ) given F. Define the functions ft = 1]−∞,t], and f
(0)
t = ft − P(ft ).
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Define the random variables

b(X0, k) = sup
t∈R

∣∣PXk |X0(ft ) − P(ft )
∣∣,

b1(F, k) = sup
t∈R

∣∣PXk |F
(ft ) − P(ft )

∣∣,
b2(F, i, j) = sup

(s,t)∈R2

∣∣P(Xi,Xj )|F

(
f

(0)
t ⊗ f (0)

s

)− P(Xi,Xj )

(
f

(0)
t ⊗ f (0)

s

)∣∣.
Define now the coefficients

β
(
σ(X0),Xk

)= E
(
b(X0, k)

)
, β1,X(k) = E

(
b1(F0, k)

)
and

β2,X(k) = max
{
β1(k), sup

i>j≥k

E
((

b2(F0, i, j)
))}

.

Define also

α1,X(k) = sup
t∈R

∥∥PXk |F0(ft ) − P(ft )
∥∥

1

and note that α1,X(k) ≤ β1,X(k) ≤ β2,X(k).

Examples of nonmixing sequences (Xi)i∈Z in the sense of Rosenblatt (1956)
for which the coefficients β2,X(n) can be computed may be found in the pa-
per by Dedecker and Prieur (2007). Let us give a first elementary example. Let
Xi = ∑

k≥0 akεi−k , where (εi)i∈Z is a sequence of i.i.d. random variables such
that E(|ε0|α) < ∞ for some α > 0, and ai = O(ρi) for some ρ ∈ ]0,1[. Let w be
the modulus of continuity of F . If

w(x) ≤ C
∣∣ln(x)

∣∣−a in a neighborhood of 0, for some a > 1,

then β2,X(n) = O(n−a) [see Remark 2.3 in Dedecker (2010)]. We shall present
another example in the next section.

Our main result is the following:

THEOREM 2.1. Assume that β2,X(n) = O(n−1−δ) for some δ > 0. Then:

(1) For all (s, s′) in R
2, the series �X(s, s′) defined by (1.4) converges abso-

lutely.
(2) For any (s, s′) ∈ R

2 and (t, t ′) in R
+ ×R

+, let �X(s, s′, t, t ′) = min(t, t ′) ×
�X(s, s′). There exists a centered Gaussian process KX with covariance func-
tion �X , whose sample paths are almost surely uniformly continuous with respect
to the pseudometric

d
(
(s, t),

(
s′, t ′

))= ∣∣F(s) − F
(
s′)∣∣+ ∣∣t − t ′

∣∣
and such that (1.5) holds with ε = δ2/(22(δ + 2)2).
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Note that we do not make any assumption on the continuity of the distribution
function F .

As in the paper of Berkes, Hörmann and Schauer (2009), we can formulate
corollaries to Theorem 2.1. The first one is direct. Let D(R × [0,1]) be the Sko-
rohod space equipped with the Skorohod topology, as described in Bickel and
Wichura (1971).

COROLLARY 2.1. Assume that β2,X(n) = O(n−1−δ) for some δ > 0. Then the
empirical process {n−1/2RX(s, [nt]), s ∈ R, t ∈ [0,1]} converges in D(R × [0,1])
to the Gaussian process KX defined in item (2) of Theorem 2.1.

To obtain the second one, we need to combine the strong approximation (1.5)
with Theorem 2 in Lai (1974).

COROLLARY 2.2. Assume that β2,X(n) = O(n−1−δ) for some δ > 0. Then,
with probability one, the sequence {(2n ln lnn)−1/2RX(s, [nt]), n ≥ 3} of random
functions on R × [0,1] is relatively compact for the supremum norm, and the set
of limit points is the unit ball of the reproducing kernel Hilbert space (RKHS)
associated with the covariance function �X defined in Theorem 2.1.

3. Strong approximation for the empirical process associated to a class of
intermittent maps. In this section we consider the following class of intermittent
maps, introduced in Dedecker, Gouëzel and Merlevède (2010):

DEFINITION 3.1. A map T : [0,1] → [0,1] is a generalized Pomeau–
Manneville map (or GPM map) of parameter γ ∈ ]0,1[ if there exist 0 = y0 <

y1 < · · · < yd = 1 such that, writing Ik = ]yk, yk+1[,
(1) The restriction of T to Ik admits a C1 extension T(k) to I k .
(2) For k ≥ 1, T(k) is C2 on I k , and infx∈I k

|T ′
(k)(x)| > 1.

(3) T(0) is C2 on ]0, y1], with T ′
(0)(x) > 1 for x ∈ (0, y1], T ′

(0)(0) = 1 and

T ′′
(0)(x) ∼ cxγ−1 when x → 0, for some c > 0.

(4) T is topologically transitive, that is, there exists some x in ]0,1[ such that
{T n(x) :n ∈ N} is a dense subset of ]0,1[.

The third condition ensures that 0 is a neutral fixed point of T , with T (x) =
x + c′x1+γ (1 + o(1)) when x → 0. The fourth condition is necessary to avoid sit-
uations where there are several absolutely continuous invariant measures or where
the neutral fixed point does not belong to the support of the absolutely continu-
ous invariant measure. As a well-known example of a GPM map, let us cite the
Liverani, Saussol and Vaienti (1999) map (LSV map) defined by

T (x) =
{

x
(
1 + 2γ xγ

)
, if x ∈ [0,1/2],

2x − 1, if x ∈ (1/2,1].
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Theorem 1 in Zweimüller (1998) shows that a GPM map T admits a unique abso-
lutely continuous invariant probability measure ν, with density hν . Moreover, it is
ergodic, has full support, and hν(x)/x−γ is bounded from above and below.

Let Q be the Perron–Frobenius operator of T with respect to ν, defined by

ν(f · g ◦ T ) = ν
(
Q(f )g

)
(3.1)

for any bounded measurable functions f and g. Let (Xi)i∈Z be a stationary
Markov chain with invariant measure ν and transition Kernel Q. Dedecker and
Prieur [(2009), Theorem 3.1] have proved that

β2,X(n) = O
(
n−a) for any a < (1 − γ )/γ(3.2)

[this upper bound was stated for the Liverani–Saussol–Vaienti map only, but is
also valid in our context: see the last paragraph of the introduction in Dedecker
and Prieur (2009)]. As a consequence, if γ < 1/2, the stationary sequence (Xi)i∈Z

satisfies all the assumptions of Theorem 2.1.
Now (T , T 2, . . . , T n) is distributed as (Xn,Xn−1, . . . ,X1) on ([0,1], ν) [see,

e.g., Lemma XI.3 in Hennion and Hervé (2001)]. Hence, any information on the
law of the sums

∑n
i=1(f ◦ T i − ν(f )) can be obtained by studying the law of∑n

i=1(f (Xi) − ν(f )). However, the reverse time property cannot be used directly
to transfer the almost sure results for

∑n
i=1(f (Xi) − ν(f )) to the sum

∑n
i=1(f ◦

T i − ν(f )).
For any s ∈ [0,1] and t ∈ R, let us consider the empirical process associated to

the dynamical system T :

RT (s, t) = ∑
1≤i≤t

(
1T i≤s − Fν(s)

)
where Fν(s) = ν

([0, s]).(3.3)

For any ν-integrable function g, let g(0) = g−ν(g) and recall that fs = 1]−∞,s].
Our main result is the following:

THEOREM 3.1. Let T be a GPM map with parameter γ ∈ ]0,1/2[. Then:

(1) For all (s, s ′) ∈ [0,1]2, the following series converges absolutely:

�T

(
s, s′)=∑

k≥0

ν
(
f (0)

s · f (0)
s′ ◦ T k)+∑

k>0

ν
(
f

(0)
s′ · f (0)

s ◦ T k).(3.4)

(2) For any (s, s′) ∈ [0,1]2 and any (t, t ′) ∈ R
+ × R

+, let �T (s, s′, t, t ′) =
min(t, t ′)�T (s, s′). There exists a continuous centered Gaussian process K∗

T with
covariance function �T such that for some ε > 0,

sup
(s,t)∈[0,1]2

∣∣RT

(
s, [nt])− K∗

T

(
s, [nt])∣∣= O

(
n1/2−ε) almost surely.

REMARK 3.1. According to the proof of Theorem 3.1, item (2) holds for any
ε in ]0, (1 − 2γ )2/22[.
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REMARK 3.2. In the case γ = 1/2, Dedecker [(2010), Proposition 4.1]
proved that, for the LSV map with γ = 1/2, the finite-dimensional marginals of the
process {(n lnn)−1/2RT (·, n)} converge in distribution to those of the degenerated
Gaussian process G defined by

for any t ∈ [0,1] G(t) =
√

hν(1/2)
(
1 − Fν(t)

)
1t �=0Z,

where Z is a standard normal. This shows that an approximation by a Kiefer pro-
cess as in Theorem 3.1 cannot hold at the boundary γ = 1/2.

For the same reason, when γ = 1/2, the conclusion of Theorem 2.1 does not
apply to the stationary Markov chain (Xi)i∈Z with invariant measure ν and tran-
sition kernel Q given in (3.1). In fact, it follows from Theorem 3.1 in Dedecker
and Prieur (2009) that β2,X(k) > C/k for some positive constant C, so that the
Markov chain (Xi)i∈Z does not satisfy the assumptions of Theorem 2.1.

In the case γ = 1/2, with the same proof as that of Theorem 1.7 of Dedecker,
Gouëzel and Merlevède (2010), we see that, for any (s, t) ∈ [0,1]2 and b > 1/2,

lim
n→∞

1√
n(lnn)b

RT

(
s, [nt])= 0 almost everywhere.

This almost sure result is of the same flavor as in the corresponding i.i.d. case,
when the random variables have exactly a weak moment of order 2, so that the
normalization in the central limit theorem is (n lnn)−1/2: see the discussion in
Dedecker, Gouëzel and Merlevède (2010), last paragraph of Section 1.2.

4. Proofs. In this section we shall sometimes use the notation an � bn to
mean that there exists a numerical constant C not depending on n such that an ≤
Cbn, for all positive integers n.

4.1. Proof of Theorem 2.1. Notice first that for any (s, s′) ∈ R
2,∣∣Cov(1X0≤s,1Xk≤s′)

∣∣≤ ∥∥E0
(
1Xk≤s′ − F

(
s′))1X0≤s

∥∥
1 ≤ E

(
b(X0, k)

)≤ β1,X(k).

Since
∑

k≥0 β1,X(k) < ∞, item (1) of Theorem 2.1 follows.
To prove item (2), we first introduce another probability on 
. Let P

∗
0 be the

probability on 
 whose density with respect to P is

C(β)−1

(
1 + 4

∞∑
k=1

b(X0, k)

)
with C(β) = 1 + 4

∞∑
k=1

β
(
σ(X0),Xk

)
.(4.1)

Recall that P is the distribution of X0. Then the image measure P ∗ of P
∗
0 by X0 is

absolutely continuous with respect to P with density

C(β)−1

(
1 + 4

∞∑
k=1

b(x, k)

)
.(4.2)
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Let FP ∗ be the distribution function of P ∗, and let FP ∗(x − 0) = supz<x FP ∗(z).
Recall that the sequence (ηi)i∈Z of i.i.d. random variables with uniform distribu-
tion over [0,1] has been introduced at the beginning of Section 2. Define then the
random variables

Yi = FP ∗(Xi − 0) + ηi

(
FP ∗(Xi) − FP ∗(Xi − 0)

)
.(4.3)

Let PY be the distribution of Y0 and FY be the distribution function of Y0.
Some properties of the sequence (Yi)i∈Z are given in Lemma A.1 of the Ap-
pendix. In particular, it follows from Lemma A.1 that Xi = F−1

P ∗ (Yi) almost
surely, where F−1

P ∗ is the generalized inverse of the cadlag function FP ∗ . Hence,
RX(·, ·) = RY (FP ∗(·), ·) almost surely, where

RY (s, t) = ∑
1≤k≤t

(
1Yk≤s − FY (s)

)
, s ∈ [0,1], t ∈ R

+.

We now prove that, if β2,X(n) = O(n−1−δ) for some δ > 0, then the conclu-
sion of Theorem 2.1 holds for the stationary sequence (Yi)i∈Z and the associ-
ated continuous Gaussian process KY with covariance function �Y (s, s′, t, t ′) =
min(t, t ′)�Y (s, s′), where

�Y

(
s, s′)=∑

k≥0

Cov(1Y0≤s,1Yk≤s′) +∑
k>0

Cov(1Y0≤s′,1Yk≤s).(4.4)

This implies Theorem 2.1, since �X(s, s′, t, t ′) = �Y (FP ∗(s),FP ∗(s′), t, t ′).
The proof is divided in two steps: the construction of the Kiefer process with

the help of a conditional version of the Kantorovich–Rubinstein theorem and a
probabilistic upper bound for the error of approximation.

4.1.1. Construction of the Kiefer process. For L ∈ N, let m(L) ∈ N and
r(L) ∈ N

∗ be such that m(L) ≤ L and 4r(L) ≤ m(L). For j in {1, . . . ,2r(L) − 1},
let sj = j2−r(L) and define for any  ∈ {1, . . . ,2L−m(L)},

IL, = ]
2L + ( − 1)2m(L),2L + 2m(L)]∩ N

and

U
(j)
L, = ∑

i∈IL,

(
1Yi≤sj − FY (sj )

)
.

The associated column vectors UL, are then defined in R
2r(L)−1 by

UL, = (
U

(1)
L,, . . . ,U

(2r(L)−1)
L,

)′
.

Let us now introduce some definitions.
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DEFINITION 4.1. Let m be a positive integer. Let P1 and P2 be two prob-
abilities on (Rm, B(Rm)). Let d be a distance on R

m associated to a norm. The
Wasserstein distance of order 1 between P1 and P2 with respect to the distance d

is defined by

Wd(P1,P2) = inf
{
E
(
d(X,Y )

)
, (X,Y ) such that X ∼ P1, Y ∼ P2

}
= sup

f ∈Lip(d)

(
P1(f ) − P2(f )

)
,

where Lip(d) is the set of functions from R
m into R that are 1-Lipschitz with

respect to d; namely, for any x and y of R
m, |f (x) − f (y)| ≤ d(x, y).

DEFINITION 4.2. Let r be a positive integer. For any points x = (x(1), . . . ,

x(2r−1))′ and y = (y(1), . . . , y(2r−1))′, we set

dr(x, y) = sup
j∈{1,...,2r−1}

∣∣x(j) − y(j)
∣∣.

Let L ∈ N and  ∈ {1, . . . ,2L−m(L)}. Let

�Y,L = (
�Y (sj , sj ′)

)
j,j ′=1,...,2r(L)−1,

where the �Y (sj , sj ′) are defined in (4.4). Let G2m(L)�Y,L
denote the N (0,

2m(L)�Y,L)-law and PUL,|F2L+(−1)2m(L)
be the conditional distribution of UL,

given F2L+(−1)2m(L) .
According to Rüschendorf (1985) [see also Theorem 2 in Dedecker, Prieur

and Raynaud De Fitte (2006)], there exists a random variable VL, = (V
(1)
L,, . . . ,

V
(2r(L)−1)
L, )′ with law G2m(L)�Y,L

, measurable with respect to σ(δ2L+2m(L)) ∨
σ(UL,) ∨ F2L+(−1)2m(L) , independent of F2L+(−1)2m(L) and such that

E
(
dr(L)(UL,,VL,)

)
= E

(
Wdr(L)

(PUL,|F2L+(−1)2m(L)
,G2m(L)�L

)
)

(4.5)

= E sup
f ∈Lip(dr(L))

(
E
(
f (UL,)|F2L+(−1)2m(L)

)− E
(
f (VL,)

))
.

By induction on , the random variables (VL,)=1,...,2L−m(L) are mutually inde-
pendent, independent of F2L and with law N (0,2m(L)�Y,L). Hence, we have con-
structed Gaussian random variables (VL,)L∈N,=1,...,2L−m(L) that are mutually in-
dependent. In addition, according to Lemma 2.11 of Dudley and Philipp (1983),
there exists a Kiefer process KY with covariance function �Y such that for any
L ∈ N, any  ∈ {1, . . . ,2L−m(L)} and any j ∈ {1, . . . ,2r(L)−1},

V
(j)
L, = KY

(
sj ,2L + 2m(L))− KY

(
sj ,2L + ( − 1)2m(L)).(4.6)

Our construction is now complete.
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In Proposition 4.1 proved in Section 4.1.3, we shall give some upper bounds
for the quantities E(dr(L)(UL,,VL,)) for L ∈ N and  ∈ {1, . . . ,2L−m(L)}, show-
ing that under our condition on the dependence coefficients there exists a positive
constant C such that

E
(
dr(L)(UL,,VL,)

)≤ C2(m(L)+2r(L))/((2+δ)∧3)L2.(4.7)

In Section 4.1.2 below, starting from (4.7), we bound up the error of approximation
between the empirical process and the Kiefer process.

4.1.2. Upper bound for the approximation error. Let {KY (s, t), s ∈ [0,1], t ≥
0} be the Gaussian process constructed as in step 1 with the following choice of
r(L) and m(L). For ε < 1/10, let

r(L) = ([L/5] ∧ [2εL + 5 log2(L)
])∨ 1 and m(L) = L − r(L),(4.8)

so that, for L large enough,

22εL−1L5 ≤ 2r(L) ≤ 22εLL5 and
(4.9)

2L(1−2ε)L−5 ≤ 2m(L) ≤ 21+L(1−2ε)L−5.

Let N ∈ N
∗ and let k ∈ ]1,2N+1]. To shorten the notation, let KY = K and

RY = R. We first notice that

sup
1≤k≤2N+1

sup
s∈[0,1]

∣∣R(s, k) − K(s, k)
∣∣≤ sup

s∈[0,1]
∣∣R(s,1) − K(s,1)

∣∣+ N∑
L=0

DL,(4.10)

where

DL := sup
2L<≤2L+1

sup
s∈[0,1]

∣∣(R(s, ) − R
(
s,2L))− (K(s, ) − K

(
s,2L))∣∣.(4.11)

Notice first that sups∈[0,1] |R(s,1) − K(s,1)| ≤ 1 + sups∈[0,1] |K(s,1)|. Dedecker
(2010) (see the beginning of the proof of his Theorem 2.1) has proved that, for u

and v in [0,1] and any positive integer n,

Var
(
K(u,n) − K(v,n)

)≤ C(β)n|u − v|.(4.12)

Therefore, according to Theorem 11.17 in Ledoux and Talagrand (1991),
E(sups∈[0,1] |K(s,1)|) = O(1). It follows that for any ε ∈ ]0,1/2[,

sup
s∈[0,1]

∣∣R(s,1) − K(s,1)
∣∣= O

(
2N(1/2−ε)) a.s.(4.13)

To prove Theorem 2.1, it then suffices to prove that for any L ∈ {0, . . . ,N},
DL = O

(
2L(1/2−ε)) a.s. for ε = δ2/

(
22(δ + 2)2).(4.14)
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With this aim, we decompose DL with the help of several quantities. For any
K ∈ N and any s ∈ [0,1], let �K(s) = 2−K [2Ks]. Notice that the following de-
composition is valid: for any L ∈ N,

DL ≤ DL,1 + DL,2 + DL,3,(4.15)

where

DL,1 = sup
2L<≤2L+1

sup
s∈[0,1]

∣∣(R(s, ) − R
(
�r(L)(s), 

))
− (R(s,2L)− R

(
�r(L)(s),2L))∣∣,

DL,2 = sup
2L<≤2L+1

sup
s∈[0,1]

∣∣(K(s, ) − K
(
�r(L)(s), 

))
− (K(s,2L)− K

(
�r(L)(s),2L))∣∣,

DL,3 = sup
2L<≤2L+1

sup
s∈[0,1]

∣∣(R(�r(L)(s), 
)− R

(
�r(L)(s),2L))

− (K(�r(L)(s), 
)− K

(
�r(L)(s),2L))∣∣.

In addition,

DL,3 ≤ AL,3 + BL,3 + CL,3,(4.16)

where

AL,3 = sup
j∈{1,...,2r(L)−1}

sup
k≤2L−m(L)

∣∣∣∣∣
k∑

=1

(
U

(j)
L, − V

(j)
L,

)∣∣∣∣∣,
BL,3 = sup

j∈{1,...,2r(L)−1}
sup

k≤2L−m(L)

sup
∈IL,k

∣∣R(sj , ) − R
(
sj ,2L + (k − 1)2m(L))∣∣,

CL,3 = sup
j∈{1,...,2r(L)−1}

sup
k≤2L−m(L)

sup
∈IL,k

∣∣K(sj , ) − K
(
sj ,2L + (k − 1)2m(L))∣∣

with sj = j2−r(L).
Let us first deal with the terms DL,2 and CL,3 involving only the approximating

Kiefer process. For any positive λ,

P
(|DL,2| ≥ λ

)
≤

2r(L)∑
j=1

P

(
sup

2L<≤2L+1
sup

sj−1≤s≤sj

∣∣(K(s, ) − K
(
s,2L))

− (K(sj , ) − K
(
sj ,2L))∣∣≥ λ

)
.

Setting

X(u, v) = (
K
(
sj + u(sj+1 − sj ),2L + v2L)− K

(
sj + u(sj+1 − sj ),2L))

− (K(sj ,2L + v2L)− K
(
sj ,2L)),
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we have

P(DL,2 ≥ λ) ≤
2r(L)∑
j=1

P

(
sup

(u,v)∈[0,1]2

∣∣X(u, v)
∣∣≥ λ

)
.

Using (4.12), we infer that

E
∣∣X(u, v) − X

(
u′, v′)∣∣2 � 2L−r(L)(∣∣u − u′∣∣+ ∣∣v − v′∣∣)

and

sup
(u,v)∈[0,1]2

E
∣∣X(u, v)

∣∣2 � 2L−r(L).

Next, using Lemma 2 in Lai (1974), as done in Lemma 6.2 in Berkes and Philipp
(1977), and taking into account (4.9), we infer that there exists a positive constant
c such that, for L large enough,

P
(|DL,2| ≥ c2L(1/2−ε))� 2r(L) exp

(−L5/2
)
.

Therefore, ∑
L>0

P
(
DL,2 ≥ c2L(1/2−ε))< ∞.(4.17)

Consider now the term CL,3. For any positive λ,

P(CL,3 ≥ λ) ≤
2L−m(L)∑

k=1

P

(
sup

s∈[0,1]
sup

∈IL,k

∣∣K(s, ) − K
(
s,2L + (k − 1)2m(L))∣∣≥ λ

)
.

Setting X(s,u) = K(s,2L + (k − 1)2m(L) + u2m(L)) − K(s,2L + (k − 1)2m(L) +
u2m(L)) and using (4.12), we have that

E
∣∣X(s,u) − X

(
s′, u′)∣∣2 � 2m(L)(∣∣s − s′∣∣+ ∣∣u − u′∣∣)

and

sup
(s,u)∈[0,1]2

E
∣∣X(s,u)

∣∣2 � 2m(L).

Therefore, by using once again Lemma 2 in Lai (1974), as done in Lemma 6.3 in
Berkes and Philipp (1977), and taking into account (4.9), we infer that there exists
a positive constant c such that, for L large enough,

P

(
sup

s∈[0,1]
sup

∈IL,k

∣∣K(s, ) − K
(
s,2L + (k − 1)2m(L))∣∣≥ c2L(1/2−ε)

)
� exp

(−L5/2
)
.

Therefore, ∑
L>0

P
(
CL,3 ≥ c2L(1/2−ε))< ∞.(4.18)
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We now prove that ∑
L>0

P
(
AL,3 ≥ 2L(1/2−ε))< ∞.(4.19)

From the stationarity of the sequence ((UL,,VL,))=1,...,2L−m(L) ,

P
(
AL,3 ≥ 2L(1/2−ε))≤ 2L−m(L)2L(ε−1/2)

E
(
dr(L)(UL,1,VL,1)

)
.

Therefore, by using (4.7), we get that

P
(
AL,3 ≥ 2L(1/2−ε))� 2L(ε−1/2)2L−m(L)2m(L)+2r(L)/((2+δ)∧3)L2,

which together with (4.9) proves (4.19), provided that

ε <
δ ∧ 1

2(8 + 3(δ ∧ 1))
.(4.20)

We now show that ∑
L>0

P
(
BL,3 ≥ C2L(1/2−ε))< ∞.(4.21)

By stationarity, for any positive λ,

P(BL,3 ≥ λ) ≤ 2L−m(L)
2r(L)∑
j=1

P

(
sup

≤2m(L)

∣∣∣∣∣
∑

i=1

(
1Yi≤j2−r(L) − FY

(
j2−r(L)))∣∣∣∣∣≥ λ

)
.

By Lemma A.1, |Cov(1Y0≤j2−r(L) ,1Yi≤j2−r(L))| ≤ E(b(X0, i)) = β(σ(X0),Xi)

and, consequently, ∑
i∈Z

∣∣Cov(1Y0≤j2−r(L) ,1Yi≤j2−r(L))
∣∣≤ C(β).

Applying Theorem 1 in Dedecker and Merlevède (2010), we get that for any v ≥ 1,

P

(
sup

≤2m(L)

∣∣∣∣∣
∑

i=1

(
1Yi≤j2−r(L) − FY

(
j

2r(L)

))∣∣∣∣∣≥ 4λ

)

�
(

1 + λ2

2m(L)vC(β)

)−v/4

+
(

2m(L)

λ
+ λ

v

)
β2,X

([
λ

v

])
.

Applying this inequality with 4λ = 2L(1/2−ε) and v = L5/C(β) and taking into
account (4.9) together with our condition on the dependence coefficients, we derive
that for L large enough,

P

(
sup

≤2m(L)

∣∣∣∣∣
∑

i=1

(
1Yi≤j2−r(L) − FY

(
j2−r(L)))∣∣∣∣∣≥ 2L(1/2−ε)

)

� exp
(−c1L

5)+ L5δ2−L(1/2−ε)δ.
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Therefore, (4.21) holds provided that ε < δ/(8 + 2δ), which holds under (4.20).
Taking into account (4.17), (4.18), (4.19) and (4.21) together with the decom-

positions (4.15) and (4.16), the proof of (4.14) will be complete if we prove that,
for some positive constant A to be chosen later,∑

L>0

P
(
DL,1 ≥

√
AC(β)2L(1/2−ε))< ∞.(4.22)

To shorten the notation, we set, for  > m ≥ 0,

μ,m(s) = R(s, ) − R(s,m) and Z,m = dμ,m.

We start from the elementary decomposition

μ,2L(s) − μ,2L

(
�r(L)(s)

)
=

L∑
K=r(L)+1

(
μ,2L

(
�K(s)

)− μ,2L

(
�K−1(s)

))+ μ,2L(s) − μ,2L

(
�L(s)

)
.

Consequently,

sup
s∈[0,1]

∣∣μ,2L(s) − μ,2L

(
�r(L)(s)

)∣∣≤ L∑
K=r(L)+1

�K,,2L + �∗
L,,2L,(4.23)

where

�K,,m = sup
1≤i≤2K

∣∣Z,m

(]
(i − 1)2−K, i2−K])∣∣

and

�∗
L,,m = sup

s∈[0,1]
∣∣Z,m

(]
�L(s), s

])∣∣.
Note that

−( − 2L)
P
(
�L(s) < Y0 ≤ �L(s) + 2−L)≤ Z,2L

(]
�L(s), s

])
(4.24)

and

Z,2L

(]
�L(s), s

])≤ Z,2L

(]
�L(s),�L(s) + 2−L])

(4.25)
+ ( − 2L)

P
(
�L(s) < Y0 ≤ �L(s) + 2−L).

Applying Lemma A.1,

P
(
�L(s) < Y0 ≤ �L(s) + 2−L) ≤ C(β)P∗

0
(
�L(s) < Y0 ≤ �L(s) + 2−L)

(4.26)
= C(β)2−L.
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From (4.24), (4.25) and (4.26), we infer that �∗
L,,2L ≤ �L,,2L + C(β). Hence, it

follows from (4.23) that

sup
s∈[0,1]

∣∣μ,2L(s) − μ,2L

(
�r(L)(s)

)∣∣≤ C(β) + 2
L∑

K=r(L)+1

�K,,2L.

Therefore,

sup
2L<≤2L+1

sup
s∈[0,1]

∣∣μ,2L(s) − μ,2L

(
�r(L)(s)

)∣∣
≤ C(β) + 2

L∑
K=r(L)+1

sup
2L<≤2L+1

�K,,2L.

Hence, to prove (4.22), it suffices to show that

∑
L>0

P

(
L∑

K=r(L)+1

sup
2L<≤2L+1

�K,,2L >
√

AC(β)2L(1/2−ε)−2

)
< ∞.(4.27)

Let cK = (K(K +1))−1. Clearly, using the stationarity, (4.27) is true provided that

∑
L>0

L∑
K=r(L)+1

P

(
sup

0<≤2L

�K,,0 >
√

AC(β)cK2L(1/2−ε)−2
)

< ∞.(4.28)

We now give two upper bounds for the quantity

P

(
sup

0<≤2L

�K,,0 >
√

AC(β)cK2L(1/2−ε)−2
)
.

Choose p ∈ ]2,3] such that p < 2(1+δ). Applying Markov’s inequality at order p,
we have

P

(
sup

0<≤2L

�K,,0 >
√

AC(β)cK2L(1/2−ε)−2
)

� c
−p
K 2L(εp−p/2)

∥∥∥ sup
0<≤2L

�K,,0

∥∥∥p
p
.

Applying inequality (7) of Proposition 1 in Wu (2007) to the stationary sequence
(T

(j)
K,i)j∈Z defined by T

(j)
K,i = 1(i−1)2−K<Yj≤i2−K , we have

∥∥∥ sup
0<≤2L

�K,,0

∥∥∥
p

≤ 2L/p
L∑

j=0

2−j/p‖�K,2j ,0‖p.

Let 0 < η < (p − 2)/2. Dedecker (2010) [see the displayed inequality after (2.19)
in his paper] proved that

‖�K,2j ,0‖p
p � 2jp/2(2−K(p−2)/2 + 2−jη(2(1+δ)−p)/2 + 2jη−j (p−2)/2).
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Therefore,∥∥∥ sup
0<≤2L

�K,,0

∥∥∥p
p

(4.29)
� 2Lp/2(2−K(p−2)/2 + 2−ηL(2(1+δ)−p)/2 + 2ηL−L(p−2)/2).

On the other hand,

P

(
sup

0<≤2L

�K,,0 >
√

AC(β)cK2L(1/2−ε)−2
)

≤
2K∑
i=1

P

(
sup

0<≤2L

∣∣Z,0
(]

(i − 1)2−K, i2−K])∣∣>√
AC(β)cK2L(1/2−ε)−2

)
.

We now apply Theorem 1 in Dedecker and Merlevède (2010), taking into account
the stationarity: for any x > 0, v ≥ 1, and s2

L ≥ 2L∑2L

j=0 |Cov(T
(0)
K,i, T

(j)
K,i)|,

P

(
sup

0<≤2L

∣∣Z,0
(]

(i − 1)2−K, i2−K])∣∣> 4x
)

�
((

1 + x2

vs2
L

)−v/4

+ 2L

(
1

x
+ 2x

vs2
L

)
β2,X

([
x

v

]))
.

Applying Lemma A.1, we have |Cov(T
(0)
K,i, T

(j)
K,i)| ≤ 2E(T

(0)
K,ib(X0, j)). Hence,

∞∑
j=0

∣∣Cov
(
T

(0)
K,i, T

(j)
K,i

)∣∣≤ C(β)P∗
0
(
(i − 1)2−K < Y0 ≤ i2−K)= C(β)2−K.(4.30)

It follows that, for K ≥ r(L),
∞∑

j=0

∣∣Cov
(
T

(0)
K,i, T

(j)
K,i

)∣∣≤ C(β)2−r(L).

For L ≥ 2, let x = xK,L = √
AC(β)cK2L(1/2−ε)−4, s2

L = C(β)2L−r(L) and v =
vL = 4L. Taking into account (4.9) and noting that cK ≥ (L(L+1))−1 for K ≤ L,
we obtain for L large enough and K ≤ L,(

1 + x2

vs2
L

)−v/4

≤
(

1 + A2L(1−2ε)

210L3(L + 1)22L−r(L)

)−L

≤ 3−L,

the last bound being true provided A is large enough. Hence, for L large enough
and r(L) ≤ K ≤ L,

P

(
sup

0<≤2L

∣∣Z,0
(]

(i − 1)2−K, i2−K])∣∣> 4xK,L

)
(4.31)

�
(

1

3L
+ L5+3δ2Lε(2+δ)

2Lδ/2

)
.
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From (4.29) and (4.31), we then get that for L large enough and any κ ≤ 1,

L∑
K=r(L)+1

P

(
sup

0<≤2L

�K,,0 >
√

AC(β)cK2L(1/2−ε)−2
)

�
[κL]∑

K=r(L)+1

2K

(
1

3L
+ L5+3δ2Lε(2+δ)

2Lδ/2

)

+ 2εLpL2p
L∑

K=[κL]+1

(
2−K(p−2)/2 + 2−ηL(2(1+δ)−p)/2 + 2−L(p−2)/2+ηL).

Take κ = κ(ε) = 1 ∧ 2ε(p + 1)/(p − 2). It follows that (4.27) [and then (4.22)]
holds provided that the following constraints on ε are satisfied:

ε <
p − 2

2(p + 1)
, ε

(
2 + δ + 2(p + 1)

p − 2

)
< δ/2, εp <

p − 2

2
− η

and

εp < η(1 + δ − p/2).

Let us take

η = p − 2

4 + 2δ − p
and p = 3 ∧ (2 + δ/2).

Both the above constraints on ε and (4.20) are satisfied for ε = δ2/(22(δ + 2)2).
Therefore, (4.22) holds, and Theorem 2.1 follows.

4.1.3. Gaussian approximation.

PROPOSITION 4.1. For L ∈ N, let m(L) ∈ N and r(L) ∈ N
∗ be such that

m(L) ≤ L and 4r(L) ≤ m(L). Under the assumptions of Theorem 2.1 and the
notation of Section 4.1.1, the following inequality holds: there exists a positive
constant C not depending on L such that, for any  ∈ {1, . . . ,2L−m(L)},

E
(
dr(L)(UL,,VL,)

)≤ C2(m(L)+2r(L))/((2+δ)∧3)L2.

PROOF. From the stationarity of the sequence ((UL,,VL,))=1,...,2L−m(L) , it
suffices to prove the proposition for  = 1. Let L ∈ N and K ∈ {0, . . . , r(L) − 1}.
To shorten the notation, let us define the following set of integers:

E (L,K) = {
1, . . . ,2r(L)−K − 1

}∩ (2N + 1),

meaning that if k ∈ E (L,K), then k is an odd integer in [1,2r(L)−K − 1].
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For K ∈ {0, . . . , r(L) − 1} and k ∈ E (L,K), define

BK,k =
]
(k − 1)2K

2r(L)
,

k2K

2r(L)

]
and Z

(K,k)
L = ∑

i∈IL,1

(
1Yi∈BK,k

− PY (BK,k)
)
.

The associated column vector ZL in R
2r(L)−1 is then defined by

ZL = ((
Z

(i,ki)
L , ki ∈ E (L, i)

)
i=0,...,r(L)−1

)′
.

Notice that for any j ∈ {1, . . . ,2r(L) − 1},

U
(j)
L,1 =

r(L)−1∑
K=0

∑
kK∈E(L,K)

bK,kK
(j)Z

(K,kK)
L(4.32)

with bK,kK
(j) = 0 or 1. This representation is unique in the sense that, for j fixed,

there exists only one vector (b(K,kK)(j), kK ∈ E (L,K))K=0,...,r(L)−1 satisfying
(4.32). In addition, for any K in {0, . . . , r(L) − 1}, ∑k∈E(L,K) bK,k(j) ≤ 1. Let
the column vector b(j,L) and the matrix PL be defined by

b(j,L) = ((
bK,kK

(j), kK ∈ E (L,K)
)
K=0,...,r(L)−1

)′
and

PL = (
b(1,L), b(2,L), . . . , b

(
2r(L) − 1,L

))′
.

PL has the following property: it is a square matrix of R
2r(L)−1 with determinant

equal to 1. Let us denote by P−1
L its inverse. With this notation, we then notice that

ZL = P−1
L UL,1.(4.33)

Let now a2 be a positive real and V = (V (1), . . . , V (2r(L)−1))′ be a random variable
with law N (0, a2PLPT

L). According to the coupling relation (4.5), we have that

E
(
dr(L)(UL,1,VL,1)

)= E
(
Wdr(L)

(PUL,1|F2L
,G2m(L)�L

)
)

≤ E
(
Wdr(L)

(PUL,1|F2L
∗ PV ,G2m(L)�L

∗ PV )
)

(4.34)

+ 2E
(
dr(L)(V ,0)

)
,

where ∗ stands for the usual convolution product. Since V (j) is a centered real
Gaussian random variable with variance v2

j = a2∑r(L)−1
K=0

∑
k∈E(L,K) bK,k(j), ac-

cording to inequality (3.6) in Ledoux and Talagrand (1991), we derive that

E
(
dr(L)(V ,0)

)= E

(
max

j∈{1,...,2r(L)−1}
∣∣V (j)

∣∣)
≤ (

2 + 3
(
log
(
2r(L) − 1

))1/2) max
j∈{1,...,2r(L)−1}

vj .
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Since v2
j ≤ a2r(L) ≤ a2L, we then get that

E
(
dr(L)(V ,0)

)≤ 5aL.(4.35)

Let us now give an upper bound for the quantity E(Wdr(L)
(PUL,1|F2L

∗ PV ,

G2m(L)�L
∗ PV )) in (4.34). Let (Ni,L)i∈Z be a sequence of independent random

variables with normal distribution N (0,�L). Suppose, furthermore, that the se-
quence (Ni,L)i∈Z is independent of F∞ ∨ σ(ηi, i ∈ Z). Denote by I2r(L)−1 the

identity matrix on R
2r(L)−1 and let N be a N (0, a2I2r(L)−1)-distributed random

variable, independent of F∞ ∨ σ(Ni,L, i ∈ Z) ∨ σ(ηi, i ∈ Z). Set ÑL = N1,L +
N2,L + · · · + N2m(L),L. We first notice that

E
(
Wdr(L)

(PUL,1|F2L
∗ PV ,G2m(L)�L

∗ PV )
)

(4.36)
= E sup

f ∈Lip(dr(L))

(
E
(
f (UL,1 + PLN)|F2L

)− E
(
f (ÑL + PLN)

))
.

Introduce now the following definition:

DEFINITION 4.3. For two column vectors

x = ((
x(i,ki ), ki ∈ E (L, i)

)
i=0,...,r(L)−1

)′
and y = ((y(i,ki), ki ∈ E (L, i))i=0,...,r(L)−1)

′ of R
2r(L)−1, let d∗

r(L) be the following
distance:

d∗
r(L)(x, y) =

r(L)−1∑
K=0

sup
k∈E(L,K)

∣∣x(K,k) − y(K,k)
∣∣.

Let also Lip(d∗
r(L)) be the set of functions from R

2r(L)−1 into R that are Lips-

chitz with respect to d∗
r(L), namely, |f (x)−f (y)| ≤∑r(L)−1

K=0 supk∈E(L,K) |x(K,k)−
y(K,k)|.

Let x = (x(1), . . . , x(2r(L)−1))′ and y = (y(1), . . . , y(2r(L)−1))′ be two column
vectors of R

2r(L)−1. Let now u = P−1
L x and v = P−1

L y. The vectors u and v

of R
2r(L)−1 can be rewritten u = ((u(i,ki), ki ∈ E (L, i))i=0,...,r(L)−1)

′ and v =
((v(i,ki ), ki ∈ E (L, i))i=0,...,r(L)−1)

′. Notice now that if f ∈ Lip(dr(L)), then∣∣f (x) − f (y)
∣∣

≤ dr(L)(x, y) = sup
j∈{1,...,2r(L)−1}

∣∣b(j,L)′u − b(j,L)′v
∣∣

≤ sup
j∈{1,...,2r(L)−1}

r(L)−1∑
K=0

∑
kK∈E(L,K)

bK,kK
(j)
∣∣u(K,kK) − v(K,kK)

∣∣
≤ sup

j∈{1,...,2r(L)−1}

r(L)−1∑
K=0

∑
kK∈E(L,K)

bK,kK
(j) sup

i∈E(L,K)

∣∣u(K,i) − v(K,i)
∣∣.
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Since for any K ∈ {0, . . . , r(L) − 1} and any j ∈ {0, . . . ,2r(L) − 1},∑
k∈E(L,K)

bK,k(j) ≤ 1,

it follows that if f ∈ Lip(dr(L)),

∣∣f (x) − f (y)
∣∣= ∣∣f ◦ PL(u) − f ◦ PL(v)

∣∣≤ r(L)−1∑
K=0

sup
k∈E(L,K)

∣∣u(K,k) − v(K,k)
∣∣

= d∗
r(L)(u, v).

Therefore, starting from (4.36) and taking into account (4.33), we get

E
(
Wdr(L)

(PUL,1|F2L
∗ PV ,G2m(L)�L

∗ PV )
)

(4.37)
≤ E sup

f ∈Lip(d∗
r(L))

(
E
(
f (ZL + N)|F2L

)− E
(
f
(
P−1

L ÑL + N
)))

.

Let Lip(d∗
r(L), F2L) be the set of measurable functions g : R2r(L)−1 × 
 → R

wrt the σ -fields B(R2r(L)−1) ⊗ F2L and B(R), such that g(·,ω) ∈ Lip(d∗
r(L)) and

g(0,ω) = 0 for any ω ∈ 
. For the sake of brevity, we shall write g(x) in place
of g(x,ω). From Point 2 of Theorem 1 in Dedecker, Prieur and Raynaud De Fitte
(2006), the following inequality holds:

E sup
f ∈Lip(d∗

r(L))

(
E
(
f (ZL + N)|F2L

)− E
(
f
(
P−1

L ÑL + N
)))

(4.38)
= sup

g∈Lip(d∗
r(L),F2L)

E
(
g(ZL + N)

)− E
(
g
(
P−1

L ÑL + N
))

.

We shall prove that if a ∈ [L,L2m(L)], there exists a positive constant C not de-
pending on (L, a), such that

sup
g∈Lip(d∗

r(L),F2L)

E
(
g(ZL + N)

)− E
(
g
(
P−1

L ÑL + N
))

≤ Ca−3L5/22m(L)

(4.39)
+ CL−122r(L) + Ca−1−δLδ22r(L)+m(L)

+ Ca−2L222r(L)+m(L) + Ca−1L22r(L).

Gathering (4.39), (4.38), (4.37), (4.34) and (4.35), and taking

a = L2(m(L)+2r(L))/((2+δ)∧3),

Proposition 4.1 will follow.
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Let then a ∈ [L,L2m(L)] and continue the proof by proving (4.39). For any

i ≥ 1, let Yi,L be the column vector defined by Yi,L = (Y
(1)
i,L , . . . , Y

(2r(L)−1)
i,L )′, where

Y
(j)
i,L = 1Y

i+2L≤sj − FY (sj ). Notice then that

ZL =
2m(L)∑
i=1

Zi,L where Zi,L = P−1
L Yi,L.

Therefore,

Zi,L = ((
Z

(K,kK)
i,L , kK ∈ E (L,K)

)
K=0,...,r(L)−1

)′
,

where Z
(K,k)
i,L = 1Y

i+2L∈BK,k
− PY (BK,k).

NOTATION 4.1. Let ϕa be the density of N and let for x = ((x(i,ki), ki ∈
E (L,K))i=0,...,r(L)−1)

′,

g ∗ ϕa(x,ω) =
∫

g(x + y,ω)ϕa(y) dy.

For the sake of brevity, we shall write g ∗ϕa(x) instead of g ∗ϕa(x,ω) (the partial
derivatives will be taken wrt x). Let also

S0,L = 0 and for j > 0, Sj,L =
j∑

i=1

Zi,L.

We now use the Lindeberg method to prove (4.39). We first write that

E
(
g(ZL + N) − g

(
P−1

L ÑL + N
))

=
2m(L)∑
i=1

E

(
g

(
Si−1,L + Zi,L +

2m(L)∑
j=i+1

P−1
L Nj,L + N

)

− g

(
Si−1,L + P−1

L Ni,L +
2m(L)∑
j=i+1

P−1
L Nj,L + N

))
(4.40)

≤
2m(L)∑
i=1

sup
g∈Lip(d∗

r(L),F2L)

E
(
g(Si−1,L + Zi,L + N)

− g
(
Si−1,L + P−1

L Ni,L + N
))

.

Let us introduce some notation and definitions.

DEFINITION 4.4. For two positive integers m and n, let Mm,n(R) be the set
of real matrices with m lines and n columns. The Kronecker product (or Tensor
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product) of A = [ai,j ] ∈ Mm,n(R) and B = [bi,j ] ∈ Mp,q(R) is denoted by A⊗B

and is defined to be the block matrix

A ⊗ B =
⎛⎜⎝ a1,1B · · · a1,nB

...
...

am,1B · · · am,nB

⎞⎟⎠ ∈ Mmp,nq(R).

For any positive integer k, the kth Kronecker power A⊗k is defined inductively by
A⊗1 = A and A⊗k = A ⊗ A⊗(k−1).

If ∇ denotes the differentiation operator given by ∇ = ( ∂
∂x1

, . . . , ∂
∂xm

)′ acting on
the differentiable functions f : Rm → R, we define

∇ ⊗ ∇ =
(

∂

∂x1
◦ ∇, . . . ,

∂

∂xm

◦ ∇
)′

and ∇⊗k by ∇⊗1 = ∇ and ∇⊗k = ∇ ⊗ ∇⊗(k−1). If f : Rm → R is k-times differ-
entiable, for any x ∈ R

m, let Dkf (x) = ∇⊗kf (x), and for any vector A of R
m, we

define Dkf (x).A⊗k as the usual scalar product in R
mk

between Dkf (x) and A⊗k .

For any i ∈ {1, . . . ,2m(L)}, let Gi,L = P−1
L Ni,L,

�1,i,L(g) = g ∗ ϕa(Si−1,L + Zi,L) − g ∗ ϕa(Si−1,L) − 1
2D2g ∗ ϕa(Si−1,L).G⊗2

i,L

and

�2,i,L(g) = g ∗ ϕa(Si−1,L + Gi,L) − g ∗ ϕa(Si−1,L) − 1
2D2g ∗ ϕa(Si−1,L).G⊗2

i,L.

With this notation,

E
(
g(Si−1,L + Zi,L + N) − g

(
Si−1,L + P−1

L Ni,L + N
))

(4.41)
= E

(
�1,i,L(g)

)− E
(
�2,i,L(g)

)
.

By the Taylor integral formula, noticing that E(G⊗3
i,L) = 0, we get∣∣E(�2,i,L(g)

)∣∣≤ 1

6

∣∣∣∣E∫ 1

0
D4g ∗ ϕa(Si−1,L + tGi,L).G⊗4

i,L dt

∣∣∣∣.
Applying Lemma A.5, we then derive that∣∣E(�2,i,L(g)

)∣∣
� a−3

E

((
r(L)−1∑
K=0

sup
k∈E(L,K)

∣∣G(K,k)
1,L

∣∣)(r(L)−1∑
K=0

∑
kK∈E(L,K)

(
G

(K,kK)
1,L

)2)3/2)
(4.42)

� a−3

(
E

(
r(L)−1∑
K=0

sup
k∈E(L,K)

∣∣G(K,k)
1,L

∣∣)4)1/4

×
(

E

(
r(L)−1∑
K=0

∑
kK∈E(L,K)

(
G

(K,kK)
1,L

)2)2)3/4

.
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Notice that

r(L)−1∑
K=0

sup
k∈E(L,K)

∣∣G(K,k)
1,L

∣∣≤ r(L)−1∑
K=0

( ∑
kK∈E(L,K)

(
G

(K,kK)
1,L

)2)1/2

(4.43)

≤√r(L)

(
r(L)−1∑
K=0

∑
kK∈E(L,K)

(
G

(K,kK)
1,L

)2)1/2

.

Moreover,

E

(
r(L)−1∑
K=0

∑
kK∈E(L,K)

(
G

(K,kK)
1,L

)2)2

≤
(

r(L)−1∑
K=0

∑
kK∈E(L,K)

(
E
(
G

(K,kK)
1,L

)4)1/2
)2

≤ 3

(
r(L)−1∑
K=0

∑
kK∈E(L,K)

E
((

G
(K,kK)
1,L

)2))2

and ∑
k∈E(L,K)

E
((

G
(K,k)
1,L

)2)= ∑
k∈E(L,K)

(
Var
(
Z

(K,k)
1,L

)+ 2
∑
i>0

Cov
(
Z

(K,k)
1,L ,Z

(K,k)
i+1,L

))
.

Arguing as to get (4.30), we then obtain that∑
k∈E(L,K)

E
((

G
(K,k)
1,L

)2)≤ C(β)
∑

k∈E(L,K)

2K−r(L) ≤ C(β).

From the above computations, it follows that

E

(
r(L)−1∑
K=0

∑
kK∈E(L,K)

(
G

(K,kK)
1,L

)2)2

≤ 3
(
C(β)r(L)

)2
.(4.44)

Therefore, starting from (4.42), taking into account (4.43), (4.44) and the fact that
r(L) ≤ L, we then derive that∣∣E(�2,i,L(g)

)∣∣� a−3L5/2.(4.45)

Let now

R1,i,L(g) = g ∗ ϕa(Si−1,L + Zi,L) − g ∗ ϕa(Si−1,L) − Dg ∗ ϕa(Si−1,L).Zi,L

− 1
2D2g ∗ ϕa(Si−1,L).Z⊗2

i,L

and

D1,i,L(g) = Dg ∗ ϕa(Si−1,L).Zi,L + 1
2D2(g ∗ ϕa)(Si−1,L).Z⊗2

i,L

− 1
2D2g ∗ ϕa(Si−1,L).E

(
G⊗2

i,L

)
.
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With this notation,

E
(
�1,i,L(g)

)= E
(
R1,i,L(g)

)+ E
(
D1,i,L(g)

)
.(4.46)

By the Taylor integral formula,

∣∣E(R1,i,L(g)
)∣∣≤ ∣∣∣∣E∫ 1

0

(1 − t)2

2
D3g ∗ ϕa(Si−1,L + tZi,L).Z⊗3

i,L

∣∣∣∣.
Applying Lemma A.5 and using the fact that supk∈E(L,K) |Z(K,k)

i,L | ≤ 2 and∑
k∈E(L,K)(Z

(K,k)
i,L )2 ≤ 2, we get that∣∣E(R1,i,L(g)

)∣∣� a−2(r(L)
)2 � a−2L2.(4.47)

Let

�(i, j)(g) = D2g ∗ ϕa(Si−j,L) − D2g ∗ ϕa(Si−j−1,L)(4.48)

and

uL = [
aL−1].(4.49)

Clearly, with the notation X(0) = X − E(X),

D2g ∗ ϕa(Si−1,L).
(
Z⊗2

i,L

)(0) =
(uL∧i)−1∑

j=1

�(i, j)(g).
(
Z⊗2

i,L

)(0)

(4.50)
+ D2g ∗ ϕa(Si−(uL∧i),L).

(
Z⊗2

i,L

)(0)
.

For any j ≤ (uL ∧ i) − 1, write

E
(
�(i, j)(g).

(
Z⊗2

i,L

)(0))= E
(
�(i, j)(g).Ei−j+2L

((
Z⊗2

i,L

)(0)))
and notice that, by Lemma A.6,

E
(
�(i, j)(g).Ei−j+2L

(
Z⊗2

i,L

)(0))
≤ sup

t∈[0,1]
∣∣E(D3g ∗ ϕa(Si−j−1,L + tZi−j,L).

(
Zi−j,L ⊗ Ei−j+2L

(
Z⊗2

i,L

)(0)))∣∣
� a−2

∑
K1,kK1

∑
K2,kK2

∑
K3,kK3

E
(∣∣ZK1,kK1

i−j,L

∣∣∣∣Ei−j+2L

(
Z

K2,kK2
i,L Z

K3,kK3
i,L

− E
(
Z

K2,kK2
i,L Z

K3,kK3
i,L

))∣∣),
where Ki ∈ {0, . . . , r(L) − 1} and kKi

∈ E (L,Ki), for any i ∈ {1,2,3}. Applying
Lemma A.1, we infer that∣∣Ei−j+2L

(
Z

K2,kK2
i,L Z

K3,kK3
i,L − E

(
Z

K2,kK2
i,L Z

K3,kK3
i,L

))∣∣≤ 4b1
(

Fi−j+2L, i + 2L).
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Since
∑r(L)−1

K1=0
∑

kK1∈E(L,K1)
|ZK1,kK1

i−j,L | ≤ 2r(L) and E(b1(Fi−j+2L, i + 2L)) ≤
β1,X(j), we then derive that

E
(
�(i, j)(g).

(
Z⊗2

i,L

)(0))� a−2r(L)22r(L)β1,X(j).(4.51)

On the other hand, by using Lemma A.6, we infer that

E
(
D2g ∗ ϕa(Si−(uL∧i),L).

(
Z⊗2

i,L

)(0))
= E

(
D2g ∗ ϕa(Si−(uL∧i),L).Ei−(uL∧i)+2L

(
Z⊗2

i,L

)(0))
� a−1

∑
K1,kK1

∑
K2,kK2

E
(∣∣Ei−(uL∧i)+2L

(
Z

K1,kK1
i,L Z

K1,kK1
i,L

− E
(
Z

K1,kK1
i,L Z

K1,kK1
i,L

))∣∣).
Using the same arguments as to get (4.51), we obtain that

E
(
D2g ∗ ϕa(Si−(uL∧i),L).

(
Z⊗2

i,L

)(0))� a−122r(L)β1,X(uL ∧ i).(4.52)

Starting from (4.50) and taking into account (4.51), (4.52), the choice of uL and
the condition on the β-dependence coefficients, we then derive that

2m(L)∑
i=1

E
(
D2g ∗ ϕa(Si−1,L).

(
Z⊗2

i,L

)(0))
(4.53)

� 22r(L)a−1
(

2m(L)L1+δ

a1+δ
+ 2m(L) L

a

)
.

To give now an estimate of the expectation of Dg ∗ ϕa(Si−1,L).Zi,L, we write

Dg ∗ ϕa(Si−1,L) = Dg ∗ ϕa(0) +
i−1∑
j=1

(
Dg ∗ ϕa(Si−j,L) − Dg ∗ ϕa(Si−j−1,L)

)
.

Hence,

E
(
Dg ∗ ϕa(Si−1,L).Zi,L

)
= E

(
Dg ∗ ϕa(0).Zi,L

)
(4.54)

+
i−1∑
j=1

E
((

Dg ∗ ϕa(Si−j,L) − Dg ∗ ϕa(Si−j−1,L)
)
.Zi,L

)
.

Applying Lemma A.1,∣∣E(Dg ∗ ϕa(0).Zi,L

)∣∣= ∣∣E(Dg ∗ ϕa(0).E2L(Zi,L)
)∣∣

≤ E

(
r(L)−1∑
K=0

∑
kK∈E(L,K)

∣∣∣∣ ∂g ∗ ϕa

∂x(K,kK)
(0)

∣∣∣∣b1
(

F2L, i + 2L)).
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Notice now that by inequality (A.3), for any K in {0, . . . , r(L) − 1}, the random
variable ∑

k∈E(L,K)

∣∣∣∣∂g ∗ ϕa

∂x(K,k)
(0)

∣∣∣∣
is a F2L -measurable random variable with infinite norm less than one. Therefore,∣∣E(Dg ∗ ϕa(0).Zi,L

)∣∣� r(L)β1,X(i).(4.55)

We give now an estimate of
∑i−1

j=1 E((Dg∗ϕa(Si−j,L)−Dg∗ϕa(Si−j−1,L)).Zi,L).
By Lemmas A.6 and A.1, for any i ≥ j + 1,∣∣E((Dg ∗ ϕa(Si−j,L) − Dg ∗ ϕa(Si−j−1,L)

)
.Zi,L

)∣∣
= ∣∣E((Dg ∗ ϕa(Si−j,L) − Dg ∗ ϕa(Si−j−1,L)

)
.Ei−j+2L(Zi,L)

)∣∣
≤ sup

t∈[0,1]
∣∣E(D2g ∗ ϕa(Si−j−1,L + tZi,L).

(
Zi−j,L ⊗ Ei−j+2L(Zi,L)

))∣∣
� a−1

r(L)−1∑
K1=0

∑
kK1∈E(L,K1)

r(L)−1∑
K2=0

∑
kK2∈E(L,K2)

E
(∣∣ZK1,kK1

i−j,L

∣∣b1
(

Fi−j+2L, i + 2L)).
We then infer that for any i ≥ j + 1,∣∣E((Dg ∗ ϕa(Si−j,L) − Dg ∗ ϕa(Si−j−1,L)

)
.Zi,L

)∣∣
(4.56)

� a−1r(L)2r(L)β1,X(j).

From now on, we assume that j < i ∧ uL. Notice that(
Dg ∗ ϕa(Si−j,L) − Dg ∗ ϕa(Si−j−1,L)

)
.Zi,L

− D2g ∗ ϕa(Si−j−1,L).(Zi−j,L ⊗ Zi,L)

=
∫ 1

0
(1 − t)D3g ∗ ϕa(Si−j−1,L + tZi−j,L).

(
Z⊗2

i−j,L ⊗ Zi,L

)
dt.

By using Lemmas A.6 and A.1, we infer that∣∣∣∣E(∫ 1

0
(1 − t)D3g ∗ ϕa(Si−j−1,L + tZi−j,L).

(
Z⊗2

i−j,L ⊗ Zi,L

)
dt

)∣∣∣∣
� a−2

r(L)−1∑
K1=0

∑
kK1∈E(L,K1)

r(L)−1∑
K2=0

∑
kK2∈E(L,K2)

r(L)−1∑
K3=0

∑
kK3∈E(L,K3)

E
(∣∣ZK1,kK1

i−j,L

∣∣∣∣ZK2,kK2
i−j,L

∣∣b1
(

Fi−j+2L, i + 2L)).
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Therefore,∣∣∣∣E(∫ 1

0
(1 − t)D3g ∗ ϕa(Si−j−1,L + tZi−j,L).

(
Z⊗2

i−j,L ⊗ Zi,L

)
dt

)∣∣∣∣
(4.57)

� a−2(r(L)
)22r(L)β1,X(j).

In order to estimate the term E(D2g ∗ ϕa(Si−j−1,L).(Zi−j,L ⊗ Zi,L)), we use the
following decomposition:

D2g ∗ ϕa(Si−j−1,L)

=
(j−1)∧(i−j−1)∑

l=1

(
D2g ∗ ϕa(Si−j−l,L) − D2g ∗ ϕa(Si−j−l−1,L)

)
+ D2g ∗ ϕa(S(i−2j)∨0,L).

For any l ∈ {1, . . . , (j − 1) ∧ (i − j − 1)}, using the same arguments as to get
(4.57), we obtain that∣∣E((D2g ∗ ϕa(Si−j−l,L) − D2g ∗ ϕa(Si−j−l−1,L)

)
.(Zi−j,L ⊗ Zi,L)

)∣∣
(4.58)

� a−2(r(L)
)22r(L)β1,X(j).

As a second step, we bound up |E(D2g ∗ ϕa(S(i−2j)∨0,L).(Zi−j,L ⊗ Zi,L)(0))|.
Assume first that j ≤ [i/2]. Clearly, using the notation (4.48),

D2g ∗ ϕa(Si−2j,L) =
(uL−1)∧(i−j−1)∑

l=j

�(i, l + j)(g) + D2g ∗ ϕa(S(i−j−uL)∨0,L).

Now for any l ∈ {j, . . . , (uL − 1) ∧ (i − j − 1)}, by using Lemma A.6, we get that∣∣E(�(i, l + j).(Zi−j,L ⊗ Zi,L)(0))∣∣
� a−2

∑
K1,kK1

∑
K2,kK2

∑
K3,kK3

E
∣∣ZK1,kK1

i−j−l,LEi−j−l+2L

(
Z

K2,kK2
i−j,L Z

K3,kK3
i,L

− E
(
Z

K2,kK2
i−j,L Z

K3,kK3
i,L

))∣∣.
Applying Lemma A.1, we infer that∣∣Ei−j−l+2L

(
Z

K2,kK2
i−j,L Z

K3,kK3
i,L − E

(
Z

K2,kK2
i−j,L Z

K3,kK3
i,L

))∣∣
≤ 4b2

(
Fi−j−l+2L, i − j + 2L, i + 2L).

Therefore,∣∣E(�(i, l + j).(Zi−j,L ⊗ Zi,L)(0))∣∣� a−2r(L)22r(L)β2,X(l).(4.59)
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If j ≤ i − uL, with similar arguments,∣∣E(D2g ∗ ϕa(Si−j−uL,L).(Zi−j,L ⊗ Zi,L)(0))∣∣� a−122r(L)β2,X(uL).(4.60)

Now if j > i − uL, we infer that∣∣E((D2g ∗ ϕa(0)
)
.(Zi−j,L ⊗ Zi,L)(0))∣∣� a−122r(L)β2,X

([i/2])(4.61)

by using also the fact that, since j ≤ [i/2], β2,X(i − j) ≤ β2,X([i/2]). Assume
now that j ≥ [i/2] + 1. For any j ≤ i, we get∣∣E((D2g ∗ ϕa(0)

)
.Zi−j,L ⊗ Zi,L

)∣∣� a−1r(L)2r(L)β1,X

([i/2]).(4.62)

Starting from (4.54), adding inequalities (4.55)–(4.62) and summing on j and l,
we then obtain∣∣∣∣∣E(Dg ∗ ϕa(Si−1,L).Zi,L

)

−
uL−1∑
j=1

E
(
D2g ∗ ϕa(Si−2j,L)

)
.E(Zi−j,L ⊗ Zi,L)1j≤[i/2]

∣∣∣∣∣
� r(L)β1,X(i) + a−1L2r(L)

i∑
j=uL

β1,X(j) + a−122r(L)uLβ2,X(uL)

+ a−122r(L)uLβ2,X

([i/2])+ a−2L22r(L)
uL∑
j=1

jβ2,X(j).

Next, summing on i and taking into account the condition on the β-dependence
coefficients and the choice of uL, we get that

2m(L)∑
i=1

∣∣∣∣∣E(Dg ∗ ϕa(Si−1,L).Zi,L

)

−
uL−1∑
j=1

E
(
D2g ∗ ϕa(Si−2j,L)

)
.E(Zi−j,L ⊗ Zi,L)1j≤[i/2]

∣∣∣∣∣(4.63)

� L−122r(L) + a−1−δLδ22r(L)+m(L) + a−2L222r(L)+m(L).

It remains to bound up

Ai :=
∣∣∣∣∣
uL−1∑
j=1

E
(
D2g ∗ ϕa(Si−2j )

)
.E(Zi−j,L ⊗ Zi,L)1j≤[i/2]

−
∞∑

j=1

E
(
D2g ∗ ϕa(Si−1)

)
.E(Zi−j,L ⊗ Zi,L)

∣∣∣∣∣.
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We first notice that by Lemma A.6, for any positive integer j ,∣∣E(D2g ∗ ϕa(Si−1)
)
.E(Zi−j,L ⊗ Zi,L)

∣∣
� a−1

r(L)−1∑
K1=0

∑
kK1∈E(L,K1)

r(L)−1∑
K2=0

∑
kK2∈E(L,K2)

∣∣E(ZK1,kK1
i−j,L Ei−j+2L

(
Z

K2,kK2
i,L

))∣∣.
Therefore,∣∣E(D2g ∗ ϕa(Si−1)

)
.E(Zi−j,L ⊗ Zi,L)

∣∣� a−1r(L)2r(L)β1,X(j).(4.64)

On an other hand, applying Lemma A.6, we obtain for any i ≥ 2 and any j ∈
{1, . . . , [i/2]},∣∣E(D2g ∗ ϕa(Si−1) − D2g ∗ ϕa(Si−2j )

)
.E(Zi−j,L ⊗ Zi,L)

∣∣
� a−2

r(L)−1∑
K1=0

∑
kK1∈E(L,K1)

r(L)−1∑
K2=0

∑
kK2∈E(L,K2)

r(L)−1∑
K3=0

∑
kK3∈E(L,K3)

2j−1∑
=1(

E
∣∣ZK1,kK1

i−,L

∣∣)∣∣E(Z
K2,kK2
i−j,L Ei−j+2L

(
Z

K3,kK3
i,L

)∣∣,
which implies that

uL−1∑
j=1

∣∣E(D2g ∗ ϕa(Si−1) − D2g ∗ ϕa(Si−2j )
)
.E(Zi−j,L ⊗ Zi,L)

∣∣1j≤[i/2]

(4.65)

� a−2(r(L)
)22r(L)

uL∑
j=1

jβ1,X(j).

Therefore, (4.64) together with (4.65), the choice of uL and the condition on the
β-dependence coefficients entail that

2m(L)∑
i=1

Ai � a−1L22r(L) + a−2L32r(L)+m(L) + a−1−δL1+δ2r(L)+m(L).(4.66)

Taking into account (4.40)–(4.47), (4.53), (4.63) and (4.66), the bound (4.39) fol-
lows. �

4.2. Proof of Theorem 3.1. Let (Xi)i∈Z be a stationary Markov chain with
transition Kernel Q defined in (3.1). Notice that for all (s, s′) ∈ [0,1]2,

ν
(
f (0)

s · f (0)
s′ ◦ T k)= Cov(1Xk≤s,1X0≤s′).

Since β2,X(k) satisfies (3.2), according to the proof of item (1) of Theorem 2.1, it
follows that item (1) of Theorem 3.1 holds true.

As at the beginning of the proof of Theorem 2.1, we start by considering the
probability P ∗

ν whose density with respect to ν is given by (4.2). Let F ∗
ν be the
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distribution function of P ∗
ν (F ∗

ν is continuous since ν is absolutely continuous
with respect to the Lebesgue measure). Let now T̃i = F ∗

ν (T i) and Yi = F ∗
ν (Xi).

Let FY be the distribution function of Y0. Clearly, RT (·, ·) = RT̃ (F ∗
ν (·), ·) almost

surely, where

RT̃ (s, t) = ∑
1≤k≤t

(
1T̃k≤s − FY (s)

)
, s ∈ [0,1], t ∈ R

+.

Theorem 3.1 will then follow if we can prove that there exists a two-parameter
Gaussian process K ∗̃

T
with covariance function �T̃ given by �T̃ (s, s′, t, t ′) =

min(t, t ′)�T̃ (s, s′), where

�T̃

(
s, s′)=∑

k≥0

ν
(
f (0)

s · f (0)
s′ ◦ F ∗

ν

(
T k))+∑

k>0

ν
(
f

(0)
s′ · f (0)

s ◦ F ∗
ν

(
T k)).(4.67)

For L ∈ N, let m(L) and r(L) be the two sequences of integers defined by (4.8).
For any integer j , let sj = j2−r(L). As for the proof of Theorem 2.1, we start by
constructing the approximating Kiefer process K ∗̃

T
with covariance function �T̃ .

With this aim, we first define for any  ∈ {1, . . . ,2L−m(L)},
IL, = ]

2L + ( − 1)2m(L),2L + 2m(L)]∩ N

and

U
∗(j)
L, = ∑

i∈IL,

(
1T̃i≤sj

− FY (sj )
)
.

The associated column vectors U∗
L, are then defined in R

2r(L)−1 by the equality

U∗
L, = (U

∗(1)
L, , . . . ,U

∗(2r(L)−1)
L, )′. Let

�T̃ ,L = (
�T̃ (sj , sj ′)

)
j,j ′=1,...,2r(L)−1,

where the �T̃ (sj , sj ′) are defined in (4.67). Let G2m(L)�T̃ ,L
denote the N (0,

2m(L)�T̃ ,L)-law, and for any  ∈ {1, . . . ,2L−m(L)}, let PU∗
L,|G2L+2m(L)+1

be

the conditional law of U∗
L, given G2L+2m(L)+1, where Gm = σ(T i, i ≥ m).

By the Markov property, the following equality holds: PU∗
L,|G2L+2m(L)+1

=
P

U∗
L,|T 2L+2m(L)+1 .

According to Rüschendorf (1985), there exists V ∗
L, = (V

∗(1)
L, , . . . , V

∗(2r(L)−1)
L, )′

with law G2m(L)�T̃ ,L
, measurable with respect to σ(δ2L+2m(L)) ∨ σ(U∗

L,) ∨
G2L+2m(L)+1, independent of G2L+2m(L)+1, and such that, with the notation of Sec-
tion 4.1.1,

E
(
dr(L)

(
U∗

L,,V
∗
L,

))= E
(
Wdr(L)

(PU∗
L,|G∗

2L+2m(L)+1
,G2m(L)�T̃ ,L

)
)
.(4.68)

By induction on , the random variables (V ∗
L,)=1,...,2L−m(L) are mutually inde-

pendent, independent of G2L+1+1 and with law N (0,2m(L)�T̃ ,L). Hence, we have
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constructed Gaussian random variables (V ∗
L,)L∈N,=1,...,2L−m(L) that are mutually

independent. In addition, according to Lemma 2.11 of Dudley and Philipp (1983),
there exists a Kiefer process K ∗̃

T
with covariance function �T̃ such that for any

L ∈ N, any  ∈ {1, . . . ,2L−m(L)} and any j ∈ {1, . . . ,2r(L)−1},
V

∗(j)
L, = K ∗̃

T

(
sj ,2L + 2m(L))− K ∗̃

T

(
sj ,2L + ( − 1)2m(L)).(4.69)

Thus, our construction is now complete.
Notice now that, by stationarity, for any  ∈ {1, . . . ,2L−m(L)},

E
(
dr(L)

(
U∗

L,,V
∗
L,

))= E
(
dr(L)

(
U∗

L,1,V
∗
L,1
))

.

In addition, on the probability space ([0,1], ν), the random variable (T 2L+1,

T 2L+2, . . . , T 2L+1
) is distributed as (X2L+1,X2L+1−1, . . . ,X2L+1). Let U

(j)
L, =∑

i∈IL,
(1Yi≤sj − FY (sj )), and let UL, be the associated column vectors in

R
2r(L)−1 defined by UL, = (U

(1)
L,, . . . ,U

(2r(L)−1)
L, )′. According to the coupling re-

lation (4.5), we get that

E
(
Wdr(L)

(PU∗
L,1|G2L+2m(L)+1

,G2m(L)�T,L
)
)

= E sup
f ∈Lip(dr(L))

(
E
(
f
(
U∗

L,1
)|T 2L+2m(L)+1)− E

(
f
(
V ∗

L,1
)))

(4.70)

= E sup
f ∈Lip(dr(L))

(
E
(
f (UL,2L−m(L))|X2L+1−2m(L)

)− E
(
f
(
V ∗

L,1
)))

.

Let us construct the Gaussian random variables VL, associated to the UL, as
in Section 4.1.1. Notice that since the covariance function �T̃ is the same as
the covariance function �Y defined by (4.4), for any measurable function f ,
E(f (V ∗

L,1)) = E(f (VL,2L−m(L))). Therefore, starting from (4.68) and taking into
account (4.70) together with (4.5), we get that

E
(
dr(L)

(
U∗

L,1,V
∗
L,1
))

= E sup
f ∈Lip(dr(L))

(
E
(
f (UL,2L−m(L))|F2L+1−2m(L)

)− E
(
f (VL,2L−m(L))

))
(4.71)

= E
(
dr(L)(UL,2L−m(L), VL,2L−m(L))

)
.

Setting �r(L)(s) = 2−r(L)[s2r(L)] and mimicking the notation of Section 4.1.2, let
now

D∗
L,1 = sup

2L<≤2L+1
sup

s∈[0,1]
∣∣(RT̃ (s, ) − RT̃

(
�r(L)(s), 

))
− (RT̃

(
s,2L)− RT̃

(
�r(L)(s),2L))∣∣,

B∗
L,3 = sup

j∈{1,...,2r(L)−1}
sup

1≤k≤2L−m(L)

sup
∈IL,k

∣∣RT̃ (sj , ) − RT̃

(
sj ,2L + (k − 1)2m(L))∣∣,
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and let DL,1 and BL,3 be the same quantities with RY replacing RT̃ . Using once

again that, on ([0,1], ν), the random variable (T 2L+1, T 2L+2, . . . , T 2L+1
) is dis-

tributed as the random variable (X2L+1,X2L+1−1, . . . ,X2L+1), we infer that for
any positive λ,

P
(
D∗

L,1 ≥ λ
)≤ P(2DL,1 ≥ λ) and P

(
B∗

L,3 ≥ λ
)≤ P(2BL,3 ≥ λ).(4.72)

Proceeding as in Section 4.1.2 of the proof of Theorem 2.1, using the fact that the
covariance function �T̃ is the same as the covariance function �Y defined by (4.4)
(so that all the quantities involving only the Kiefer process K ∗̃

T
can be computed as

in Section 4.1.2) and taking into account (4.71), (4.72) and the fact that the Markov
chain (Xi)i∈Z satisfies the assumptions of Theorem 2.1, Theorem 3.1 follows.

APPENDIX

A.1. Properties of the random variables Yi . For the next lemma, we keep
the same notation as that of Definition 2.1 and of the beginning of Section 4.1.
Recall that the random variables Yi have been defined in (4.3).

LEMMA A.1. The following assertions hold:

(1) The image measure of P
∗
0 by the variable Y0 is the uniform distribution over

[0,1].
(2) The equality F−1

P ∗ (Yi) = Xi holds P-almost surely. Moreover, P-almost
surely,

b(X0, k) ≥ sup
t∈R

∣∣PYk |X0(ft ) − PY (ft )
∣∣,

b1(F, k) ≥ sup
t∈R

∣∣PYk |F
(ft ) − PY (ft )

∣∣,
b2(F, i, j) ≥ sup

(s,t)∈R2

∣∣P(Yi,Yj )|F

(
f

(0)
t ⊗ f (0)

s

)− P(Yi,Yj )

(
f

(0)
t ⊗ f (0)

s

)∣∣.
PROOF. As in Definition 2.1, define

b(Xi, k) = sup
t∈R

∣∣PXk |Xi
(ft ) − P(ft )

∣∣.
On 
, we introduce the probability P

∗
i whose density with respect to P is

C(β)−1

(
1 + 4

∞∑
k=i+1

b(Xi, k)

)
(A.1)

with C(β) = 1 + 4
∞∑

k=1

β
(
σ(X0),Xk

)
.



STRONG APPROXIMATION FOR THE EMPIRICAL PROCESS 3691

By stationarity of (Xi)i∈Z, the image measure of P
∗
i by Xi is again P ∗. It follows

from Lemma F.1, page 161, in Rio (2000) that the image measure of P
∗
i by the

variable Yi is the uniform distribution over [0,1] [proving item (1)], and that the
equality F−1

P ∗ (Yi) = Xi holds P
∗
i -almost surely. Since the probabilities P and P

∗
i

are equivalent, it follows that the equality F−1
P ∗ (Yi) = Xi holds P-almost surely,

proving the first point of item (2).
Now, note that Yi = g(Xi, ηi), where the function x → g(x,u) is nondecreasing

for any u ∈ [0,1]. Since (X0,Xk) is independant of ηk ,∣∣PYk |X0(ft ) − PY (ft )
∣∣

=
∣∣∣∣∫ 1

0

{
E
(
ft

(
g(Xk,u)

)|X0
)− E

(
ft

(
g(Xk,u)

))}
du

∣∣∣∣ almost surely.

The function x → g(x,u) being nondecreasing, we infer that∣∣E(ft

(
g(Xk,u)

)|X0
)− E

(
ft

(
g(Xk,u)

))∣∣≤ b(X0, k) almost surely,

in such a way that∣∣PYk |X0(ft ) − PY (ft )
∣∣≤ b(X0, k) almost surely.

The two last inequalities of item (2) may be proved in the same way. �

A.2. Some upper bounds for partial derivatives. Let x and y be two column
vectors of R

2r(L)−1 with coordinates

x = ((
x(i,ki ), ki ∈ E (L, i)

)
i=0,...,r(L)−1

)′
and

y = ((
y(i,ki), ki ∈ E (L, i)

)
i=0,...,r(L)−1

)′
,

where E (L, i) = {1, . . . ,2r(L)−i − 1}∩ (2N+ 1). Let f ∈ Lip(d∗
r(L)), meaning that

∣∣f (x) − f (y)
∣∣≤ r(L)−1∑

K=0

sup
k∈E(L,K)

∣∣x(K,k) − y(K,k)
∣∣

[the distance d∗
r(L) is defined in Definition 4.3]. Let a > 0 and ϕa be the density of

a centered Gaussian law of R
2r(L)−1 with covariance a2I2r(L)−1 (I2r(L)−1 being the

identity matrix on R
2r(L)−1). Let also

‖x‖∞,L =
r(L)−1∑
K=0

sup
k∈E(L,K)

∣∣x(K,k)
∣∣

and

‖x‖2,L =
(

r(L)−1∑
K=0

∑
kK∈E(L,K)

(
x(K,kK))2)1/2

.

For the statements of the lemmas, we refer to Notation 4.4.
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LEMMA A.2. The partial derivatives of f exist almost everywhere and the
following inequality holds:

sup
y∈R2r(L)−1

sup
u∈R2r(L)−1,‖u‖∞,L≤1

∣∣Df (y).u
∣∣≤ 1.(A.2)

In addition,

sup
K∈{0,...,r(L)−1}

∑
kK∈E(L,K)

∣∣∣∣ ∂f

∂x(K,kK)
(y)

∣∣∣∣≤ 1.(A.3)

PROOF. The first part of the lemma follows directly from the fact that f is
Lipschitz with respect to the distance d∗

r(L) together with the Rademacher theorem.
We prove now (A.3). For any K ∈ {0, . . . , r(L) − 1}, we consider the column
vector uK = ((u

(i,ki)
K , ki ∈ E (L, i))i=0,...,r(L)−1)

′ with coordinates given by

u
(i,ki)
K = sign

(
∂f

∂x(i,ki)
(y)

)
1i=K.

Applying inequality (A.2) together with the fact that ‖uK‖∞,L = 1, we get that∑
k∈E(L,K)

∣∣∣∣ ∂f

∂x(K,k)
(y)

∣∣∣∣= ∣∣Df (y).uK

∣∣≤ 1

and (A.3) follows. �

LEMMA A.3. Let X and Y be two random variables in R
2r(L)−1. For any

positive integer m and any t ∈ [0,1],∣∣E(Dmf ∗ ϕa(Y + tX).X⊗m)∣∣≤ E
(∥∥Df (·).X∥∥∞ × ∥∥Dm−1ϕa(·).X⊗m−1∥∥

1

)
.

PROOF. For any positive integer m and any x, y ∈ R
2r(L)−1, it follows, from

the properties of the convolution product, that

Dmf ∗ ϕa(y).x⊗m = (
Df (·).x) ∗ (Dm−1ϕa(·).x⊗m−1)(y),

where Df (·).x :y �→ Df (y).x and Dm−1ϕa(·).x⊗m−1 :y �→ Dm−1ϕa(y).x⊗m−1.
The lemma then follows immediately. �

LEMMA A.4. Let X be a random variable in R
2r(L)−1. For any nonnegative

integer m, there exists a positive constant cm depending only on m such that∥∥Dmϕa(·).X⊗m
∥∥

1 ≤ cma−m‖X‖m
2,L.(A.4)

PROOF. In order to simplify the proof, and to avoid the double indexes
(K, kK) for the coordinates of a column vector of R

2r(L)−1, we set d = 2r(L) − 1
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and we denote by x = (x1, . . . , xd)′ an element of R
d . Proceeding by induction on

m, we infer that for any u,x in R
d and any integer m,

Dmϕa(u).x⊗m = 1

(2πa2)d/2
(A.5)

× exp

(
− 1

2a2

d∑
i=1

u2
i

) [m/2]∑
=0

cm,

a2

(
d∑

i=1

x2
i

)( d∑
i=1

uixi

a2

)m−2

with the following recurrence relations between the cm,:

cm,0 = (−1)m for any m ≥ 0, c2,1 = −1,

cm+1, = (m − 2 + 2)cm,−1 − cm,

for  ∈ {1, . . . , [m/2]} and m ≥ 2,

cm+1,[(m+1)/2] = cm,[m/2] if m is odd,

cm+1,[(m+1)/2] = cm+1,[m/2] if m is even.

Starting from (A.5) and setting ‖x‖2,d = (
∑d

i=1 x2
i )1/2, we get that for any inte-

ger m,∫
Rd

∣∣Dmϕa(u).x⊗m
∣∣du

≤ ‖x‖m
2,d

am(2πa2)d/2

∫
Rd

exp

(
− 1

2a2

d∑
i=1

u2
i

)
m∑

=0

∣∣∣∣∣cm,

(
d∑

i=1

uixi

a‖x‖2,d

)m−2∣∣∣∣∣
d∏

i=1

dui

≤ ‖x‖m
2,d

am

∫
Rd

1

(2π)d/2 exp

(
−1

2

d∑
i=1

u2
i

)
m∑

=0

∣∣∣∣∣cm,

(
d∑

i=1

uixi

‖x‖2,d

)m−2∣∣∣∣∣
d∏

i=1

dui.

Now, for any integer k, we have that

1

(2π)d/2

∫
Rd

exp

(
−1

2

d∑
i=1

u2
i

)∣∣∣∣∣
d∑

i=1

uixi

‖x‖2,d

∣∣∣∣∣
k d∏

i=1

dui = E
(|N |k),

where N ∼ N (0,1). Therefore,∫
Rd

∣∣Dmϕa(u).x⊗m
∣∣du ≤ a−m‖x‖m

2,d

[m/2]∑
=0

|cm,|E(|N |m−2),
which completes the proof of (A.4). �

LEMMA A.5. Let X and Y be two random variables with values in R
2r(L)−1.

For any positive integer m and any t ∈ [0,1], there exists a positive constant cm−1
depending only on m such that∣∣E(Dmf ∗ ϕa(Y + tX).X⊗m)∣∣≤ cm−1a

1−m
E
(‖X‖∞,L × ‖X‖m−1

2,L

)
.
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PROOF. Applying Lemmas A.3 and A.4 and using the fact that, by (A.2),∥∥Df (·).X∥∥∞ = ‖X‖∞,L sup
y∈R2r(L)−1

∣∣∣∣Df (y).
X

‖X‖∞,L

∣∣∣∣≤ ‖X‖∞,L,

the result follows. �

LEMMA A.6. For any y ∈ R
2r(L)−1 and any integer m ≥ 1, there exists a pos-

itive constant cm depending only on m such that

sup
(Ki,kKi

),i=1,...,m

∣∣∣∣ ∂mf ∗ ϕa∏m
i=1 ∂x(Ki,kKi

)
(y)

∣∣∣∣≤ cma1−m,

where the supremum is taken over all the indexes Ki ∈ {0, . . . , r(L)−1} and kKi
∈

E (L,Ki) for any i = 1, . . . ,m.

PROOF. Notice first that by the properties of the convolution product,

∂mf ∗ ϕa∏m
i=1 ∂x(Ki,kKi

)
(y) =

(
∂f

∂x(K1,kK1 )
∗ ∂m−1ϕa∏m

i=2 ∂x(Ki,kKi
)

)
(y).

Therefore, by using (A.3),∣∣∣∣ ∂mf ∗ ϕa∏m
i=1 ∂x(Ki,kKi

)
(y)

∣∣∣∣≤ ∥∥∥∥ ∂f

∂x(K1,kK1 )

∥∥∥∥∞
∥∥∥∥ ∂m−1ϕa∏m

i=2 ∂x(Ki,kKi
)

∥∥∥∥
1

(A.6)

≤
∥∥∥∥ ∂m−1ϕa∏m

i=2 ∂x(Ki,kKi
)

∥∥∥∥
1
.

Let now ha be the density of the N (0, a2) distribution, and let

Sm =
{
(1, . . . , m) ∈ {0, . . . ,m}⊗m such that

m∑
i=1

i = m

}
.

With this notation, we infer that∥∥∥∥ ∂m−1ϕa∏m
i=2 ∂x(Ki,kKi

)

∥∥∥∥
1
≤ sup

(1,...,m−1)∈Sm−1

m−1∏
i=1

∥∥h(i)
a

∥∥
1,

where h
(i)
a is the i th derivative of ha . Since for any real u, h

(i)
a (u) =

a−(i+1)h
(i)
1 (u/a), it follows that ‖h(i)

a ‖1 = a−i‖h(i)
1 ‖1. Therefore,∥∥∥∥ ∂m−1ϕa∏m

i=2 ∂x(Ki,kKi
)

∥∥∥∥
1
≤ a1−m sup

(1,...,m−1)∈Sm−1

m−1∏
i=1

∥∥h(i)
1

∥∥
1.(A.7)

Starting from (A.6) and using (A.7), the lemma is proved, with

cm = sup
(1,...,m−1)∈Sm−1

m−1∏
i=1

∥∥h(i)
1

∥∥
1. �



STRONG APPROXIMATION FOR THE EMPIRICAL PROCESS 3695

REFERENCES

BERKES, I., HÖRMANN, S. and SCHAUER, J. (2009). Asymptotic results for the empirical process
of stationary sequences. Stochastic Process. Appl. 119 1298–1324. MR2508575

BERKES, I. and PHILIPP, W. (1977). An almost sure invariance principle for the empirical distribu-
tion function of mixing random variables. Z. Wahrsch. Verw. Gebiete 41 115–137. MR0464344

BICKEL, P. J. and WICHURA, M. J. (1971). Convergence criteria for multiparameter stochastic
processes and some applications. Ann. Math. Statist. 42 1656–1670. MR0383482

BOROVKOVA, S., BURTON, R. and DEHLING, H. (2001). Limit theorems for functionals of mixing
processes with applications to U -statistics and dimension estimation. Trans. Amer. Math. Soc.
353 4261–4318. MR1851171

CASTELLE, N. and LAURENT-BONVALOT, F. (1998). Strong approximations of bivariate uniform
empirical processes. Ann. Inst. Henri Poincaré Probab. Stat. 34 425–480. MR1632841

DEDECKER, J. (2010). An empirical central limit theorem for intermittent maps. Probab. Theory
Related Fields 148 177–195. MR2653226

DEDECKER, J., GOUËZEL, S. and MERLEVÈDE, F. (2010). Some almost sure results for unbounded
functions of intermittent maps and their associated Markov chains. Ann. Inst. Henri Poincaré
Probab. Stat. 46 796–821. MR2682267

DEDECKER, J. and MERLEVÈDE, F. (2010). On the almost sure invariance principle for station-
ary sequences of Hilbert-valued random variables. In Dependence in Probability, Analysis and
Number Theory 157–175. Kendrick Press, Heber City, UT. MR2731073

DEDECKER, J., PRIEUR, C. and RAYNAUD DE FITTE, P. (2006). Parametrized Kantorovich-
Rubinštein theorem and application to the coupling of random variables. In Dependence in Prob-
ability and Statistics. Lecture Notes in Statistics 187 105–121. Springer, New York. MR2283252

DEDECKER, J. and PRIEUR, C. (2007). An empirical central limit theorem for dependent sequences.
Stochastic Process. Appl. 117 121–142. MR2287106

DEDECKER, J. and PRIEUR, C. (2009). Some unbounded functions of intermittent maps for which
the central limit theorem holds. ALEA Lat. Am. J. Probab. Math. Stat. 5 29–45. MR2475605

DEDECKER, J., DOUKHAN, P., LANG, G., LEÓN R., J. R., LOUHICHI, S. and PRIEUR, C. (2007).
Weak Dependence: With Examples and Applications. Lecture Notes in Statistics 190. Springer,
New York. MR2338725

DEHLING, H. and TAQQU, M. S. (1989). The empirical process of some long-range dependent
sequences with an application to U -statistics. Ann. Statist. 17 1767–1783. MR1026312

DUDLEY, R. M. and PHILIPP, W. (1983). Invariance principles for sums of Banach space valued
random elements and empirical processes. Z. Wahrsch. Verw. Gebiete 62 509–552. MR0690575

FINKELSTEIN, H. (1971). The law of the iterated logarithm for empirical distributions. Ann. Math.
Statist. 42 607–615. MR0287600

GIRAITIS, L. and SURGAILIS, D. (2002). The reduction principle for the empirical process of a
long memory linear process. In Empirical Process Techniques for Dependent Data 241–255.
Birkhäuser, Boston, MA. MR1958784

HENNION, H. and HERVÉ, L. (2001). Limit Theorems for Markov Chains and Stochastic Properties
of Dynamical Systems by Quasi-Compactness. Lecture Notes in Math. 1766. Springer, Berlin.
MR1862393

KIEFER, J. (1972). Skorohod embedding of multivariate rv’s, and the sample df. Z. Wahrsch. Verw.
Gebiete 24 1–35. MR0341636

KOMLÓS, J., MAJOR, P. and TUSNÁDY, G. (1975). An approximation of partial sums of indepen-
dent RV’s and the sample DF. I. Z. Wahrsch. Verw. Gebiete 32 111–131. MR0375412

LAI, T. L. (1974). Reproducing kernel Hilbert spaces and the law of the iterated logarithm for Gaus-
sian processes. Z. Wahrsch. Verw. Gebiete 29 7–19. MR0368121

LEDOUX, M. and TALAGRAND, M. (1991). Probability in Banach Spaces: Isoperimetry and Pro-
cesses. Ergebnisse der Mathematik und Ihrer Grenzgebiete (3) [Results in Mathematics and Re-
lated Areas (3)] 23. Springer, Berlin. MR1102015

http://www.ams.org/mathscinet-getitem?mr=2508575
http://www.ams.org/mathscinet-getitem?mr=0464344
http://www.ams.org/mathscinet-getitem?mr=0383482
http://www.ams.org/mathscinet-getitem?mr=1851171
http://www.ams.org/mathscinet-getitem?mr=1632841
http://www.ams.org/mathscinet-getitem?mr=2653226
http://www.ams.org/mathscinet-getitem?mr=2682267
http://www.ams.org/mathscinet-getitem?mr=2731073
http://www.ams.org/mathscinet-getitem?mr=2283252
http://www.ams.org/mathscinet-getitem?mr=2287106
http://www.ams.org/mathscinet-getitem?mr=2475605
http://www.ams.org/mathscinet-getitem?mr=2338725
http://www.ams.org/mathscinet-getitem?mr=1026312
http://www.ams.org/mathscinet-getitem?mr=0690575
http://www.ams.org/mathscinet-getitem?mr=0287600
http://www.ams.org/mathscinet-getitem?mr=1958784
http://www.ams.org/mathscinet-getitem?mr=1862393
http://www.ams.org/mathscinet-getitem?mr=0341636
http://www.ams.org/mathscinet-getitem?mr=0375412
http://www.ams.org/mathscinet-getitem?mr=0368121
http://www.ams.org/mathscinet-getitem?mr=1102015


3696 J. DEDECKER, F. MERLEVÈDE AND E. RIO

LIVERANI, C., SAUSSOL, B. and VAIENTI, S. (1999). A probabilistic approach to intermittency.
Ergodic Theory Dynam. Systems 19 671–685. MR1695915

MERLEVÈDE, F. and RIO, E. (2012). Strong approximation of partial sums under dependence condi-
tions with application to dynamical systems. Stochastic Process. Appl. 122 386–417. MR2860454

RIO, E. (2000). Théorie Asymptotique des Processus Aléatoires Faiblement Dépendants. Mathéma-
tiques & Applications (Berlin) [Mathematics & Applications] 31. Springer, Berlin. MR2117923

ROSENBLATT, M. (1956). A central limit theorem and a strong mixing condition. Proc. Natl. Acad.
Sci. USA 42 43–47. MR0074711

RÜSCHENDORF, L. (1985). The Wasserstein distance and approximation theorems. Z. Wahrsch.
Verw. Gebiete 70 117–129. MR0795791

SHORACK, G. R. and WELLNER, J. A. (1986). Empirical Processes with Applications to Statistics.
Wiley, New York. MR0838963

WU, W. B. (2007). Strong invariance principles for dependent random variables. Ann. Probab. 35
2294–2320. MR2353389

WU, W. B. (2008). Empirical processes of stationary sequences. Statist. Sinica 18 313–333.
MR2384990

YOSHIHARA, K.-I. (1979). Note on an almost sure invariance principle for some empirical pro-
cesses. Yokohama Math. J. 27 105–110. MR0560618

YU, H. (1993). A Glivenko–Cantelli lemma and weak convergence for empirical processes of asso-
ciated sequences. Probab. Theory Related Fields 95 357–370. MR1213196

ZWEIMÜLLER, R. (1998). Ergodic structure and invariant densities of non-Markovian interval maps
with indifferent fixed points. Nonlinearity 11 1263–1276. MR1644385

J. DEDECKER

LABORATOIRE MAP5
UNIVERSITÉ PARIS DESCARTES

SORBONNE PARIS CITÉ

UMR 8145 CNRS
45 RUE DES SAINTS-PÈRES

F-75270 PARIS CEDEX 06
FRANCE

E-MAIL: jerome.dedecker@parisdescartes.fr

F. MERLEVÈDE

UNIVERSITÉ PARIS-EST

LAMA (UMR 8050)
UPEMLV, CNRS, UPEC
F-77454 MARNE-LA-VALLÉE

FRANCE

E-MAIL: florence.merlevede@univ-mlv.fr

E. RIO

LABORATOIRE DE MATHÉMATIQUES

UNIVERSITÉ DE VERSAILLES

UMR 8100 CNRS
BÂTIMENT FERMAT

45 AVENUE DES ETATS-UNIS

F-78035 VERSAILLES

FRANCE

E-MAIL: emmanuel.rio@uvsq.fr

http://www.ams.org/mathscinet-getitem?mr=1695915
http://www.ams.org/mathscinet-getitem?mr=2860454
http://www.ams.org/mathscinet-getitem?mr=2117923
http://www.ams.org/mathscinet-getitem?mr=0074711
http://www.ams.org/mathscinet-getitem?mr=0795791
http://www.ams.org/mathscinet-getitem?mr=0838963
http://www.ams.org/mathscinet-getitem?mr=2353389
http://www.ams.org/mathscinet-getitem?mr=2384990
http://www.ams.org/mathscinet-getitem?mr=0560618
http://www.ams.org/mathscinet-getitem?mr=1213196
http://www.ams.org/mathscinet-getitem?mr=1644385
mailto:jerome.dedecker@parisdescartes.fr
mailto:florence.merlevede@univ-mlv.fr
mailto:emmanuel.rio@uvsq.fr

	Introduction
	Strong approximation for the empirical process associated to a class of stationary sequences
	Strong approximation for the empirical process associated to a class of intermittent maps
	Proofs
	Proof of Theorem 2.1
	Construction of the Kiefer process
	Upper bound for the approximation error
	Gaussian approximation

	Proof of Theorem 3.1

	Appendix
	Properties of the random variables Yi
	Some upper bounds for partial derivatives

	References
	Author's Addresses

