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RANDOM WALKS AT RANDOM TIMES: CONVERGENCE TO
ITERATED LÉVY MOTION, FRACTIONAL STABLE MOTIONS,

AND OTHER SELF-SIMILAR PROCESSES

BY PAUL JUNG1 AND GREG MARKOWSKY2

University of Alabama at Birmingham and Monash University

For a random walk defined for a doubly infinite sequence of times, we
let the time parameter itself be an integer-valued process, and call the orginal
process a random walk at random time. We find the scaling limit which gen-
eralizes the so-called iterated Brownian motion.

Khoshnevisan and Lewis [Ann. Appl. Probab. 9 (1999) 629–667] sug-
gested “the existence of a form of measure-theoretic duality” between iter-
ated Brownian motion and a Brownian motion in random scenery. We show
that a random walk at random time can be considered a random walk in “al-
ternating” scenery, thus hinting at a mechanism behind this duality.

Following Cohen and Samorodnitsky [Ann. Appl. Probab. 16 (2006)
1432–1461], we also consider alternating random reward schema associated
to random walks at random times. Whereas random reward schema scale to
local time fractional stable motions, we show that the alternating random re-
ward schema scale to indicator fractional stable motions.

Finally, we show that one may recursively “subordinate” random time
processes to get new local time and indicator fractional stable motions and
new stable processes in random scenery or at random times. When α = 2,
the fractional stable motions given by the recursion are fractional Brownian
motions with dyadic H ∈ (0,1). Also, we see that “un-subordinating” via
a time-change allows one to, in some sense, extract Brownian motion from
fractional Brownian motions with H < 1/2.

1. Introduction. Let B(i)(t), i = 1,2,3, be three independent Brownian mo-
tions, and let a two-sided Brownian motion be defined by

B̃(t) :=
{

B(1)(t), if t ≥ 0,
B(2)(−t), if t < 0.

(1)

In [4], Burdzy studied the process (B̃(B(3)(t)))t≥0 which he called an iterated
Brownian motion (IBM). It can be thought of as a two-sided Brownian motion
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which is nonmonotonically “subordinated” to another Brownian motion. This pro-
cess was also used by Deheuvels and Mason [7] to study the Bahadur–Kiefer pro-
cess. Also, a variant of IBM, where the pure imaginary process iB(2)(−t) was
substituted for t < 0, was utilized by Funaki [13] to study the PDE

∂u

∂t
= 1

8

∂4u

∂x4 .(2)

Recently, more general processes at random times called α-time Brownian mo-
tions and α-time fractional Brownian motions were introduced in [23, 24]. In these
works (along with several references therein), the connection between processes
at random times and various PDEs was studied, along with the local time and
path properties of the iterated processes. In a different direction, the scaling and
asymptotic density of a discretized version of IBM called iterated random walk
was analyzed in the physics literature [27].

In this work, we consider generalizations of the iterated random walk which
we call random walks at random times (RWRT) and dependent walks at random
times (DWRT) and relate them with a different portion of the probability litera-
ture concerning random walks in random scenery. This relation was first noted by
Khoshnevisan and Lewis [19] who stated that there was “a surprising connection
between the variations (of IBM) and H. Kesten and F. Spitzer’s Brownian motion
in random scenery.” Later, in [20], a form of measure-theoretic duality was shown
between the two processes. Here, we present a mechanism on the discrete level
which shows a connection between the two processes.

We show that under suitable conditions, the scaling limits of RWRT and DWRT
are (H -sssi)-time α-stable Lévy motions, a new class of processes at random times.
If X(t) is a two-sided α-stable Lévy motion defined similarly to (1), and Yt is an
independent α-stable Lévy motion, then we call X(Yt ) an iterated Lévy motion. If,
more generally, Yt is an independent H -self-similar, stationary-increment process
(sssi), then an (H -sssi)-time α-stable Lévy motion is given by X(Yt ). Assuming
0 < H < 1, we will see that X(Yt ) is an H/α-sssi process with Hurst exponent less
than 1/α. They naturally complement stable processes in random scenery which
are the limiting continuous processes of [17] and [28] and which have Hurst ex-
ponents greater than 1/α (Wang [28] considered only the case α = 2, but this was
extended to α < 2 by Cohen and Dombry [5]).

Random walks in random scenery (RWRS) and their scaling limits, stable pro-
cesses in random scenery, were first introduced independently in [2, 17]. The pur-
pose of [17] was to introduce a new class of sssi processes given by the scaling
limits of RWRS. The scaling limits have integral representations as stable integrals
of local time kernels (of a process Yt ). When the random scenery are α-stable laws,
they scale to the α-stable random measure against which the local time kernel is
integrated. In comparison, there is also an integral representation of (H -sssi)-time
α-stable Lévy motions given by the stable integration of random kernels of type
1[0,Yt ] against α-stable random measures.
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When Yt is a generic H -sssi process, the stable processes in random scenery
discussed above also include the model of [28]. Wang used “dependent walks”
to collect the scenery, instead of random walks, leading to a dependent walk in
random scenery (DWRS). In particular, the dependent walks he used were discrete-
time Gaussian processes known to scale to fractional Brownian motion (fBm).

Random reward schema are sums of independent copies of discrete processes
in random scenery. In [5, 6, 10] it was shown that the random reward schema
of RWRS and DWRS scale to H -sssi symmetric α-stable (SαS) processes called
local time fractional SαS motions (with H > 1/α). In this work, we show that the
scaling limits of random reward schema for RWRT and DWRT are H -sssi SαS
processes called indicator fractional SαS motions (with H < 1/α) which were
introduced in [16].

Note that fBm is the only sssi Gaussian process. Thus, when the scenery has fi-
nite variance and α = 2, local time fractional SαS motions and indicator fractional
SαS motions reduce to fBm with H > 1/2 and H < 1/2, respectively.

As will be seen in Section 2, the mechanism behind the connection between
local time and indicator fractional stable motions is the same as the mechanism
which connects Brownian motion in random scenery (BMRS) with IBM. In ef-
fect, the mechanism shows that the indicator kernels of the latter processes can be
thought of as “alternating” versions of the local time kernels of the former.

Together, local time fractional SαS motions and indicator fractional stable mo-
tions form a class of fractional stable motions (H -sssi SαS processes) which may
be thought of as one of several generalizations of fractional Brownian motion.
Their increment processes are stationary and have the ergodic-theoretic property of
being null conservative, a concept introduced in [25]. This property distinguishes
them from fractional stable motions which have dissipative or positive conserva-
tive increment processes. The most well-known examples of fractional stable mo-
tions with dissipative or positive conservative increment processes are the linear
fractional stable motions and the real harmonizable stable motions, respectively,
as can be seen in Figure 1.

We also consider single-scenery random reward schema introduced in [11].
Here we again take sums of identically distributed RWRTs or DWRTs. However,
the copies have a dependence structure since they use the same “single scenery.”

FIG. 1. α ∈ (1,2): LT = local time, I = indicator, L = linear, RH = real harmonizable.
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This dependence will be made more explicit below. The scaling limits of single-
scenery random reward schema of RWRS and DWRS no longer have stationary in-
crements; however, they are easily seen to be H -ss SαS processes with H > 1/α.
Similarly, the scaling limits of single-scenery random reward schema of RWRT
and DWRT are H -ss SαS processes with H < 1/α.

Finally, we also present a recursive construction of some local time and in-
dicator fractional stable motions. In particular, we show that at each step of the
recursion, the local times exist and are in L2(�× R). The recursively defined pro-
cesses give the first examples of local time fractional stable motions for which
the processes collecting the scenery are neither fBm nor β-stable Lévy motions.
In the case α = 2, the processes are given by integrals against Gaussian random
measures, and the recursion constructs fBm, of any dyadic Hurst parameter, us-
ing one Brownian motion and a countable family of independent random Gaussian
measures.

As mentioned above, RWRT and, in particular, its scaling limit are in some
sense nonmonotonically subordinated processes. Usually one may not undo a
subordination—for example, one can embed a stable process in Brownian mo-
tion, but cannot extract Brownian motion from the stable process since the filtra-
tion is strictly smaller. However, we will see that when the scaling limit of the
random time process, Yt , is fBm, one can undo the subordination using the time-
change τs = inft≥0{t :Yt = s}. Extending such a time-change procedure to the ker-
nels of indicator fractional stable motions when α = 2, we find that one can, in
some sense, extract Brownian motion from fractional Brownian motions satisfy-
ing H < 1/2.

The rest of the paper is arranged as follows. In Section 2 we describe RWRTs
and RWRSs. We also describe their respective random reward schema and scal-
ing limits. The section ends with a statement describing new scaling limit results.
The proofs of the scaling weak convergence results are given in Section 3. In Sec-
tion 4, we describe the recursive construction mentioned above, and complete the
nontrivial task of showing that the recursion produces processes that are well de-
fined. The main component of this task is showing that the local times exist and are
in L2(� × R). Finally, in Section 5 we explain how to extract Brownian motion
from fBm with any Hurst parameter satisfying H < 1/2.

2. Discrete and continuous models.

2.1. Random walks at random times and alternating random reward schema.
We start with a simple description of RWRS. Let {ηα(k)}k∈Z be a set of i.i.d.
symmetric random variables in the domain of attraction of an SαS law, α ∈ (0,2]
with scale parameter σ = 1. The family {ηα(k)} depicts the scenery associated to
the vertices of Z. Let

W(n) :=
n∑

k=1

ξβ(k)(3)



2686 P. JUNG AND G. MARKOWSKY

be a symmetric random walk on Z with steps ξβ(k) in the domain of attraction of
an SβS law, β ∈ (1,2]. The random walk roams amidst the scenery {ηα(k)} which
are independent from the steps {ξβ(k)}.

The cumulative scenery process

Zn = Zn(ηα,W) :=
n∑

k=1

ηα

(
W(k)

)
(4)

is called a random walk in random scenery. The scenery {ηα(k)} can alternatively
be thought of as random reward collected by the random walk when it visits ver-
tex k.

We note that some authors call the pair (W,ηα(W)) a RWRS process (e.g., [8]).
Since most of the papers cited in this work refer to (4) as the RWRS, we stick with
this notation.

Wang [28] considered a slight modification of RWRS by using a discrete ap-
proximation of a Gaussian process instead of a random walk:

Zn = Zn(ηα,GH) :=
n∑

k=1

ηα

(⌈
GH(k)

⌉)
.(5)

Here �·� is the ceiling function, and GH(k) is the partial sum of a stationary Gaus-
sian process Xk with correlations r(j − k) = EXjXk satisfying

n∑
j=1

n∑
k=1

r(j − k) ∼ n2H ,(6)

where 0 < H < 1. In addition to (5), there have been myriad generalizations of (4),
and we refer the reader to the introduction of [15] for a nice summary of such
generalizations.

We refer to (5) as a dependent walk in random scenery (DWRS). In general,
we consider Zn(ηα,WH) for which the collecting process WH(n) has stationary
increments and also satisfies the following scaling limit properties:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(i) lim
n→∞n−HWH

(	nt
) ⇒ Yt , in D
([0,∞)

)
,

(ii) Yt is a nondegenerate H -sssi process
(Y0 = 0 by self-similarity),

(iii) E|Yt | < ∞,

(SLP)

where D([0,∞)) is equipped with the usual Skorohod topology (also called the
J1-topology).

The condition that Yt be sssi guarantees that Zn scales to an sssi process as well,
and this was in fact the original motivation of introducing Zn in [17]. Note that
we use the stable parameter α ∈ (0,2] for the scenery/reward and consequently
the increments of the RWRS/DWRS; however, we reserve the stable parameter
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β ∈ (1,2] for the increments of the collecting process (note that we require β > 1
in order to guarantee E|Yt | < ∞).

We introduce a variant of Zn in which the reward alternate in sign and are asso-
ciated with edges instead of vertices. In our variant of RWRS, we use symmetric
reward {ηα(e)} together with signs {σe}, σe ∈ {−1,+1}, associated to the edge set
of Z. At time zero, all signs are plus one, σe(0) = +1; however, (σe(n))n≥0 is a
process determined by the collecting process in a manner discussed below.

Consider a discrete collecting process WH(n) satisfying condition (SLP). Note
that our definition allows |WH(n) − WH(n − 1)| to be greater than one. Let En be
the set of connected edges traversed on the nth step of WH(n), that is, the set of
edges between WH(n−1) and WH(n) [thus En has cardinality |WH(n)−WH(n−
1)|]. At the nth step, the process WH(n):

• earns the signed reward σe(n − 1) · ηα(e) of all edges e ∈ En and then
• reverses the sign σe of each e ∈ En so that it will receive the exact opposite

reward the next time it traverses e.

A (dependent) random walk at random time (DWRT/RWRT) with a nonmono-
tonic subordinating random time process WH(n) is a process

An = An(ηα,WH) :=
n∑

k=1

∑
e∈Ek

σe(k − 1) · ηα(e),(7)

where σe(k) ∈ {−1,+1} is the sign of e at time k.
To explain the name of the process, consider that in an RWRT, due to cancel-

lation, each reward ηα(e) contributes either one or zero net terms to the sum (7).
When e is to the right of the origin, the number of net terms is one if and only if
WH(n) is to the right of e, and when e is to the left of the origin, the number of net
terms is one if and only if WH(n) is to the left of e. It follows that

An = ∑
e∈[0,WH (n)]

ηα(e),(8)

where e ∈ [0, x] means that e lies between 0 and x regardless of the sign of x.
The partial sum of reward

∑
e∈[0,n] ηα(e) is just a random walk Sα(n). If we let

Sα(0) = 0 and extend the random walk to negative times in the natural way, then
thinking of time being determined by the location of WH(n), we have

An = Sα

(
WH(n)

)
.(9)

As an aside, if we take (8) as our initial definition rather than (7), then the reward
may equally well be placed on the vertices instead of the edges. The reader may
therefore choose to visualize this process in any of several ways according to his
or her own aesthetic preference.

The relationship between Zn and An should be clear. In particular, when the
collecting process is a simple random walk W(n), a relation is made by using a
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bijection which assigns to each vertex k either the edge lying to its left whenever
the previous step of W(n) was in the positive direction (right), or the edge lying to
its right whenever the previous step of W(n) was in the negative direction (left). To
extend the relation to other random walks, one must use a modified version of Zn

which, when going from x to y on the nth step, collects a reward not only from y,
but all vertices between x and y. In view of this relationship between Zn and An,
if Ps is the measure for the random scenery, and P′ is the measure for WH , then
the processes Zn and An can be defined on the same product space with measure
Ps × P′.

There is a further relationship between Zn and the variations of An which mir-
rors the connection between BMRS and the variations of IBM as presented in [20].
In order to explain this relationship, it will be convenient to let the collecting walk
W(n) be a simple random walk and to have the reward for both Zn and An be at-
tached to the edges of Z, rather than to the vertices. For p ∈ N, let the pth variation
of An be defined as

V (p)
n :=

n∑
i=1

(Ai − Ai−1)
p.(10)

THEOREM 2.1. Suppose the i.i.d. reward {ηα(e)} are symmetric and have fi-
nite pth moments. If p is odd, then V

(p)
n is another RWRT, while if p is even, then

V
(p)
n −nE[ηp

α ] is a RWRS. In both cases, the reward collected by the processes are
given by {ζ (p)(e)} where

ζ (p)(e) := ηα(e)p − E
[
ηα(e)p

]
.

PROOF. For i ≥ 1 we let Ei denote the edge between W(i − 1) and W(i). We
then have

Zn =
n∑

i=1

ηα(Ei ), An = ∑
e∈[0,W(n)]

ηα(e).(11)

Note that

(Ai − Ai−1)
p1{Ei=e} = (

σe(i − 1)ηα(e)
)p1{Ei=e}.(12)

If p = 2q is even, then the sign (σe(i − 1))2q in (12) is irrelevant. Therefore,

V (2q)
n − nE

[
η2q

α

] =
(

n∑
i=1

(Ai − Ai−1)
2q

)
− nE

[
η2q

α

] =
n∑

i=1

ζ (2q)(Ei ).(13)

Comparing with (11) shows this to be a RWRS with reward given by {ζ (p)(e)}.
On the other hand, if p = 2q + 1 is odd, then the sign (σe(k)(i − 1))2q+1 =

σe(k)(i − 1) in (12) causes the same cancellation as we have with RWRT, and since
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ηα is symmetric, there is no longer a need to subtract the expectation. Thus, (12)
yields

V (2q+1)
n =

n∑
i=1

(Ai − Ai−1)
2q+1 = ∑

e∈[0,WH (n)]
ζ (2q+1)(e).(14)

Comparing again with (11) shows this to be a RWRT with reward given by
{ζ (p)(e)}. �

We now compare this with the results of [20]. Let Is denote an IBM, fix an
interval [0, t], and let

V (p)
n (t) =

2nt∑
k=1

(
I (Tk+1,n) − I (Tk,n)

)p
,(15)

where {Tk,n : 1 ≤ k ≤ 2nt} is an induced random partition of the interval [0, t];
see [20], Section 1, for details. Among other things, Khoshnevisan and Lewis
showed that, when properly renormalized, V

(p)
n (t) converges in distribution to

IBM when p is odd and BMRS when p is even; see Theorems 3.2, 4.4, 4.5 and
the discussion in the middle of page 631. If we consider the natural association
between BMRS and RWRS on the one hand and between IBM and RWRT on the
other, we see that the simple Theorem 2.1 provides an intuitive backdrop for the
much more difficult results concerning the continuous case in [20].

We now return to study of An in the general case. We will need processes ex-
tended to noninteger times, and we will therefore denote the linear interpolation of
An as

At = A	t
 + (
t − 	t
)(A�t� − A	t
).(16)

Let us now describe the two different random reward schema we will use. Let
us start with an alternating version of the random reward schema introduced in [6].
Let {(W(i)

H (n))n≥0}i∈N be independent copies of WH(n) which are also indepen-

dent from independent copies of the reward {{η(i)
α (e)}e∈Z}i∈N. If (cn) is a sequence

of integers such that cn → ∞, then
cn∑

i=1

At

(
η(i)

α ,W
(i)
H

)
(17)

is an alternating random reward scheme.
If we instead follow the single-scenery schema of [11] and use the same single

copy of reward {η(1)
α (e)}e∈Z for each copy of W

(i)
H (n), then

cn∑
i=1

At

(
η(1)

α ,W
(i)
H

)
(18)

is a single scenery alternating random reward scheme.
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2.2. Scaling limits of random reward schema. In this section we state some
known results concerning the scalings of RWRS and DWRS to stable integral rep-
resentations. These will motivate our results concerning the scalings of RWRT and
DWRT.

Let us first recall an important definition. Suppose m is a σ -finite measure on a
measurable space (E, B), and that

B0 = {
A ∈ B :m(A) < ∞}

.

DEFINITION 2.2. A SαS random measure M with control measure m is a
σ -additive set function on B0 such that for all Ai ∈ B0:

(1) M(A1) ∼ Sα(m(A1)
1/α);

(2) M(A1) and M(A2) are independent whenever A1 ∩ A2 = ∅,

where Sα(σ ) is an SαS random variable.
In particular, if f ∈ Lα(E, B,m), then∫

E
f (x)M(dx) ∼ Sα

(∥∥f (x)
∥∥
Lα

)
.(19)

Section 3.3 of [26] contains an introduction to this topic. The immediate impor-
tance to us is that the scaling limits of RWRS and DWRS are integrals with respect
to stable random measures, where the integral kernel is the local time of a prop-
erly scaled collecting process W̃H ′ (linearly interpolated) which is either GH ′ or
Sβ with β ∈ (1,2]. The process 1

nH ′ W̃H ′(nt) converges weakly to a scaling limit,

denoted by Ỹt , which is, respectively, fBm-H ′ in C([0,∞)) or a β-stable Lévy
motion in D([0,∞)). Let (�′, F ′,P′) be the probability space of Ỹt . It is known
that Ỹt has a jointly continuous local time �

Ỹ
(t, x); this was shown for β-stable

Lévy motions in [3] and for fBm in [1]. Moreover, for all t ≥ 0 and all α ∈ (0,2],
Ỹt satisfies

E′
∫

R

∣∣�
Ỹ
(t, x)

∣∣α dx < ∞(20)

by Theorem 3.1 in [6] and Lemma 2.1 in [10]. Here we interpret �
Ỹ
(t) as the

increasing family of random functions which satisfy the occupation time formula∫ t

0
1A(Ỹs) ds =

∫
A

�
Ỹ
(t, x) dx(21)

for any Borel set A.
Let M0(dx) be an SαS random measure with Lebesgue control measure which

is independent from Ỹt . Throughout this subsection we will let

H = 1 − H ′ + H ′/α.(22)
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A stable process in random scenery is an H -sssi SαS process given by

�H
t (M0, Ỹ ) :=

∫
R

�
Ỹ
(t, x)M0(dx), t ≥ 0,(23)

which is well defined by (20); see Chapter 3 of [26]. Recall that ηα(k) is in the
domain of attraction of an SαS law. It was shown in [5, 17, 28] that the following
weak convergence holds in C([0,∞)):

1

nH
Znt (ηα, W̃H ′) ⇒ �H

t (M0, Ỹ ).(24)

Henceforth we will use H ′ for the Hurst parameter of the collecting process and
H for the Hurst parameter of the resulting stable process in random scenery.

The Hurst exponent H = 1 − H ′ + H ′/α can be explained by using the local
time scaling relation

(
�
Ỹ
(ct, x), x ∈ R, t ≥ 0

) d= (
c1−H ′

�
Ỹ

(
t, x/cH ′)

, x ∈ R, t ≥ 0
)
.(25)

In [6], weak convergence in C([0,∞)) was shown for a properly normalized
random reward scheme

c−1/α
n

cn∑
i=1

n−(α+1)/(2α)Znt

(
η(i)

α , S
(i)
2

)
,

where Zt is the linear interpolation of Zn in the same manner as (16). The
{
S

(i)
2 (n)

}
i∈N

are independent copies of mean zero, finite variance (β = 2) random walks which
have H ′ = 1/2 explaining the exponent H = α+1

2α
. They collect independent copies

of i.i.d. reward {η(i)
α (k)}i∈N which are also independent from the random walks.

Cohen and Samorodnitsky called the limiting process an fBm-1/2 local time frac-
tional stable motion. In [5], the discrete collecting process was generalized to GH ′
and convergence to fBm-H ′ local time fractional stable motions for any H ′ ∈ (0,1)

was proved. In [10], a collecting process scaling to β-stable Lévy motion (β > 1)
was used, and consequently, other local time fractional stable motions were ob-
tained in the limit. Let us now explicitly state these collective results.

Recall that (�′, F ′,P′) is the probability space of Ỹt . Suppose M1(dω′, dx)

is an SαS random measure that has control measure P′ × Lebesgue, but lives on
some other probability space (�, F ,P). As above, W̃H ′ is either GH ′ or Sβ with
β ∈ (1,2]. Letting H be as in (22), in light of (20) we define a local time fractional
stable motion as the process

�H
t (M1, Ỹ ) :=

∫
�′×R

�
Ỹ

(
t, x;ω′)M1

(
dω′, dx

)
, t ≥ 0.(26)
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Let (cn) be an integer sequence with cn → ∞, and let {η(i)
α (k)} be independent

copies of i.i.d. reward in the domain of attraction of an SαS law. The following
weak convergence holds in C([0,∞)) as n → ∞:

c−1/α
n

cn∑
i=1

1

nH
Znt

(
η(i)

α , W̃
(i)
H ′

) ⇒ �H
t (M1, Ỹ ) (independent scenery).(27)

Let M2 be a stable random measure with Lebesgue control measure with the
restriction that α ∈ (1,2], and again let H be as in (22). We may use (20) and
Hölder’s inequality to define

�H
t (M2, Ỹ ) :=

∫
R

E′�
Ỹ

(
t, x;ω′)M2(dx), t ≥ 0.(28)

Note that the scale parameter at time t for (28) is

σ = ∥∥E′�
Ỹ

(
t, x;ω′)∥∥

Lα(R)(29)

versus σ = ‖�
Ỹ
(t, x;ω′)‖Lα(�′×R) for (26). For α ∈ (1,2], a convergence result (in

finite-dimensional distributions) with respect to the single scenery case was given
in Theorem 4.2 of [11]:

c−1
n

cn∑
i=1

1

nH
Znt

(
η(1)

α , W̃
(i)
H ′

) f.d.d.�⇒ �H
t (M2, Ỹ ) (single scenery).(30)

As stated earlier, the process on the right-hand side is H -ss, but using (29) one can
see that this process does not in general have stationary increments.

It is convenient to write (26) and (28) as renormalized sums of (23) which appeal
to the stable central limit theorem and the law of large numbers, respectively; see
[5, 10, 11]. The former renormalization is applied to the entire integral in (23), and
the convergence is in C([0,∞)) whereas the latter renormalization applies only to
the integral kernel

n−1/α
n∑

i=1

(
�H

t

)(i) ⇒ �H
t ,(31)

∫
R

(
n−1

n∑
i=1

�
(i)

Ỹ
(t, x)

)
M2(dx)

f.d.d.�⇒ �H
t .(32)

2.3. Scaling limits of alternating random reward schema. We are now ready
to state our results concerning the scaling limits of A(t) and its associated random
reward schema (17) and (18).

Throughout this subsection we assume that the discrete collecting process
WH ′(n) is extended to continuous time by linear interpolation and that it has the
scaling limit Yt as given in condition (SLP). Independent copies of i.i.d. reward
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{η(i)
α (k)}i∈N are, as usual, in the domain of attraction of an SαS law (scale pa-

rameter σ = 1) and independent from the random walks. The space (�′, F ′,P′)
supports Yt , and the SαS random measures Mi are as in the previous subsection.
Define the processes

�H(t) = �H(t;M0, Y ) :=
∫

R

1[0,Yt (ω′)](x)M0(dx), t ≥ 0,(33)

�H(t) = �H(t;M1, Y ) :=
∫
�′×R

1[0,Yt (ω′)](x)M1
(
dω′, dx

)
, t ≥ 0,(34)

�H(t) = �H(t;M2, Y ) :=
∫

R

E′1[0,Yt (ω′)](x)M2(dx), t ≥ 0,(35)

which are analogous to (23), (26) and (28).
The above are all self-similar with common index H = H ′/α, and (34) and (35)

are SαS processes. One can also observe (see Theorem 2.2 in [16]) that both (33)
and (34) have stationary increments. We call (33) an (H ′-sssi)-time α-stable Lévy
motion or more generally a stable process at random time. If X(t) is a two-sided
α-stable Lévy motion, then we may also write (33) as X(Yt ). The process (34) is
an indicator fractional stable motion as introduced in [16]. The process (35) is the
alternating analog of the scaling limit of a single scenery random reward scheme
introduced in [11].

THEOREM 2.3. Let H = H ′/α, and let cn → ∞ as n → ∞.

• The following convergence holds in f.d.d.:

n−HSα

(
WH ′(nt)

) ⇒ �H(t;M0, Y ).(36)

If the reward are symmetric with finite variance (α = 2), and n−H ′
WH ′(nt)

converges weakly in D([0,∞)) (C([0,∞))), then (36) also holds weakly in
D([0,∞)) (C([0,∞)), resp.).

• If n−H |WH(	nt
)| is uniformly integrable, then

c−1/α
n

cn∑
i=1

n−HAnt

(
η(i)

α ,W
(i)
H ′

)
(37)

f .d.d.�⇒ �H(t;M1, Y ) (independent scenery).

• If α > 1, then

c−1
n

cn∑
i=1

n−HAnt

(
η(1)

α ,W
(i)
H ′

) f .d.d.�⇒ �H(t;M2, Y ) (single scenery).(38)

The interest of the first convergence result [to (H ′-sssi)-time α-stable Lévy mo-
tion] lies in the fact that this seems to be the first such Donsker-type theorem for
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iterated processes where the random time process is not a subordinator, that is, not
an increasing Lévy process. In the case where the random time process is a subor-
dinator, similar convergence results are well known. In fact, in Section 2.2 of [24],
such results are extended to the case where the scenery have a certain dependence
structure. Their Donsker-type theorem shows convergence to an α-time fractional
Brownian motion.

It is not hard to see that �H(t),�H (t), and �H(t) are all continuous in proba-
bility. However, by Theorem 10.3.1 in [26], when α < 2, �H(t) and �H(t) are not
sample continuous. In those cases, the best we can hope for is weak convergence
in D([0,∞)). We will see in the remark at the end of Section 3, that even this
is a lot to ask. In that remark, it is argued that even in the simplest cases, �H(t)

is not even in D([0,∞)). In particular, the weak convergence in C([0,∞)) and
D([0,∞)) given in the first part of Theorem 2.3 depends heavily on the fact that
α = 2. In this case, the scaling limit of Sα is continuous since it is simply Brownian
motion.

The condition that n−H ′
WH ′(	nt
) is uniformly integrable holds when WH ′ is

either GH ′ or Sβ , β > 1. The former follows from a Gaussian concentration in-
equality which bounds n−H ′

WH ′(	nt
) in Lp for all p ≥ 1 (see [22], page 60),
and the latter follows from equation (5.s) in [21] and the bound E(|X|1A) ≤
‖X‖p(P(A))1/q .

3. Proof of Theorem 2.3. A convenient tool in proving convergence of the
finite-dimensional distributions is a diagonal convergence theorem of [9]. In order
to state this theorem, we require some definitions.

As usual ηα(k) is in the domain of attraction of the SαS law with scale pa-
rameter σ = 1, and it is the reward on the edge between k and k + 1. For fixed
positive h, define μh to be the random signed measure on R which is a.s. abso-
lutely continuous with respect to Lebesgue measure and whose random density is
given by

dμh

dx
(x) = h−1+1/α

∑
k∈Z

ηα(k)1(hk,h(k+1)](x).(39)

For a locally integrable function f ∈ L1
loc, define

μh[f ] =
∫

f dμh := ∑
k∈Z

ηα(k)h−1+1/α
∫ h(k+1)

hk
f (x) dx.(40)

For 0 < α < 1, we will say that (fn)n∈N converges to f in Dα if the following two
conditions hold:

• for any compact K ⊂ R, fn1K converges to f 1K in L1(R);
• there is some η > α−1 such that fn(x) = o(|x|−η) and f (x) = o(|x|−η) as x →

∞.
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Let F α = Lα(R) if 1 ≤ α ≤ 2 and F α = Dα if 0 < α < 1. The following di-
agonal convergence is shown in Proposition 3.1 of [9]; see also Proposition 3.1
of [11].

PROPOSITION 3.1 (Dombry). Suppose M0(dx) is an α-stable random mea-
sure, α ∈ (0,2] and (fn)n∈N converges to f in F α . If hn → 0 as n → ∞, then the
random variables μhn[fn] converge weakly as n → ∞ and in particular,

μhn[fn] ⇒
∫

R

f M0(dx).(41)

We now start by showing convergence in f.d.d. for Theorem 2.3. However, to
reduce notation and simplify the presentation, we only prove convergence of the
one-dimensional distributions for some fixed t > 0. The extension to f.d.d. in all
three cases follows easily using the Cramér–Wold device; see, e.g., Theorem 3.9.5
in [12].

Also without loss of generality we use n−HA	nt
 instead of the linear inter-
polation n−HAnt since they differ by at most n−Hηα(k) which goes a.s. to 0 as
n → ∞.

Convergence in f.d.d. for (36). Fix t ∈ [0,∞). Let Xn(t) = 1
nH ′ WH ′(	nt
). Ac-

cording to assumption (SLP), Xn(t) ⇒ Y(t). By Skorohod’s representation theo-

rem, there is a common probability space on which X̄n
d= Xn(t), Ȳ

d= Y(t) live and
such that X̄n(ω̄) → Ȳ (ω̄) for all ω̄ ∈ �̄ (note that the bar includes the dependence
on t).

Fix an ω̄ and recall that H = H ′/α and that for a < 0, we let [0, a] := [a,0].
We have

μ
n−H ′ [1[0,X̄n(ω̄)]]

= nH ′−H ′/α ∑
k∈Z

ηα(k)

∫ (k+1)n−H ′

kn−H ′ 1[0,X̄n(ω̄)](x) dx

(42)
= nH ′−H ′/α ∑

k∈Z

ηα(k)n−H ′
1{W̄H ′ (	nt
)>k≥0}∪{W̄H ′ (	nt
)≤k<0}(ω̄)

= n−HA	nt

(
ηα, W̄H ′(ω̄)

)
.

By Proposition 3.1 and the fact that 1[0,X̄n(ω̄)] → 1[0,Ȳ (ω̄)] in F α , we have that
the one-dimensional distributions of n−HA	nt
(ηα,WH ′) converge to those of
�H(t;M0, Y ).

Convergence in f.d.d. for (38). For multiple independent walkers in the same
scenery, we follow the arguments of Proposition 2.4 in [11]. Fix t ∈ [0,∞). As in
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the proof of (36), using Skorohod’s representation theorem and Proposition 3.1,
we have for α ∈ (1,2],

1

cn

cn∑
i=1

n−H ′/αA	nt

(
ηα, W̄

(i)
H ′

) = μ
n−H ′

[
c−1
n

cn∑
i=1

1[0,X̄
(i)
n (ω̄)]

]
,

where X̄
(i)
n (ω̄) → Ȳ (i)(ω̄) for each i ∈ N and for all ω̄ ∈ �̄ (the bar includes the

dependence on t).
We need only show the following converges in probability to zero as n → ∞:∥∥∥∥∥ 1

cn

cn∑
i=1

(1[0,X̄
(i)
n (ω̄)]) − 1[0,Ȳ (i)(ω̄)] + 1[0,Ȳ (i)(ω̄)] − E′1[0,Yt ]

∥∥∥∥∥
Lα(R)

,(43)

where for fixed n, the random variables X̄
(i)
n ,1 ≤ i ≤ cn are i.i.d. Also, for each

fixed i, X̄
(i)
n converges a.s. to Ȳ (i). We first show that as n → ∞,∥∥∥∥∥ 1

cn

cn∑
i=1

(1[0,X̄
(i)
n (ω̄)] − 1[0,Ȳ (i)(ω̄)])

∥∥∥∥∥
Lα(R)

(44)

≤ 1

cn

cn∑
i=1

‖1[0,X̄
(i)
n (ω̄)] − 1[0,Ȳ (i)(ω̄)]‖Lα(R)

p−→ 0.

Consider a triangular array such that for each fixed n, there are cn i.i.d. random
variables (

U
(n)
i

)
1≤i≤cn

:= (‖1[0,X̄
(i)
n (ω̄)] − 1[0,Ȳ (i)(ω̄)]‖Lα(R)

)
1≤i≤cn

in each row, and for each fixed i, the column of random variables (U
(n)
i )n∈N con-

verges weakly to zero. For such triangular arrays, the following weak law holds
(see Proposition 2.4 in [11]):

1

cn

cn∑
i=1

U
(n)
i

p−→ 0 as n → ∞,(45)

thus proving (44).
Since E‖1[0,Yt ]‖Lα(R) < ∞, the strong law of large numbers for Banach space

valued random variables implies that the following converges a.s. in Lα(R):

1

cn

cn∑
i=1

1[0,Ȳ (i)(ω̄)] → E′1[0,Yt ],(46)

thus completing the proof of one-dimensional weak convergence for (38).

Convergence in f.d.d. for (37). We will mimic the arguments of [5, 10, 17]. Let

1{WH ′ (nt;k)}
(
ω′) := 1{WH ′ (	nt
)>k≥0}∪{WH ′ (	nt
)≤k<0}

(
ω′).
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Using the last equality in (42), we have

E exp

(
cn∑

�=1

iθc−1/α
n n−HA	nt


(
η(�)

α ,W
(�)
H ′

))

= E exp

(
cn∑

�=1

iθc−1/α
n n−H

∑
k∈Z

η(�)
α (k)1{W(�)

H ′ (nt;k)}
(
ω′))(47)

=
(

E′
[∏
k∈Z

φηα

(
vn

(
ω′, k

))])cn

,

where φηα is the real-valued characteristic function of a symmetric reward ηα and

vn

(
ω′, k

) = θc−1/α
n n−H 1{WH ′ (nt;k)}

(
ω′), k ∈ Z.(48)

Suppose φα(v) = exp(−|v|α) is the characteristic function of the SαS law of
scale parameter σ = 1. We show that the following asymptotic holds as n → ∞:

E′
[∏
k∈Z

φηα

(
vn

(
ω′, k

))] = E′
[∏
k∈Z

φα

(
vn

(
ω′, k

))] + o
(
c−1
n

)
.(49)

If (xi)i∈Z and (x′
i )i∈Z are sequences in [−1,1] with only finitely many terms not

equal to one, then ∣∣∣∣∏
i∈Z

x′
i − ∏

i∈Z

xi

∣∣∣∣ ≤ ∑
i∈Z

∣∣x′
i − xi

∣∣.(50)

Letting

g(y) = sup
|x|≤y

|x|−α
∣∣φηα(x) − φα(x)

∣∣, x �= 0,(51)

we have

cn

∣∣∣∣∏
k∈Z

φηα

(
vn

(
ω′, k

)) − ∏
k∈Z

φα

(
vn

(
ω′, k

))∣∣∣∣
≤ cn

∑
k∈Z

∣∣φηα

(
vn

(
ω′, k

)) − φα

(
vn

(
ω′, k

))∣∣
≤ g

(
sup
k∈Z

∣∣vn

(
ω′, k

)∣∣)∑
k∈Z

cn

∣∣vn

(
ω′, k

)∣∣α(52)

= g
(
θc−1/α

n n−H )∑
k∈Z

∣∣n−Hθ1{WH ′ (nt;k)}
(
ω′)∣∣α

= g
(
θc−1/α

n n−H )|θ |αn−H ′ ∣∣WH ′
(	nt
;ω′)∣∣.

By assumption, n−H ′ |WH ′(	nt
;ω′)| converges weakly and is bounded in L1,
so to prove (49) we need only show that g(θc

−1/α
n n−H) is bounded and converges
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in probability to 0. Since ηα is in the domain of attraction of the SαS law with
σ = 1, by the stable central limit theorem, we have that as v → 0,

φηα(v) = φα(v) + o
(|v|α).

Thus g is bounded, continuous and vanishes at 0. Equation (49) follows since
θc

−1/α
n n−H goes to zero.
Let {(ζ (�)

α (k))k∈Z}�∈N be independent copies of i.i.d. reward such that ζ
(0)
α (1)

has an SαS law with scale parameter σ = 1. Using (49), the cnth root of (47) is
equal to

E exp
(
iθc−1/α

n n−HA	nt

(
η(1)

α ,W
(1)
H ′

))
= E exp

(
iθc−1/α

n n−HA	nt

(
ζ (1)
α ,W

(1)
H ′

)) + o
(
c−1
n

)
= E′ exp

(
−c−1

n n−H ′ ∑
k∈Z

(
θ1{WH ′ (nt;k)}

(
ω′))α) + o

(
c−1
n

)
(53)

= E′ exp
(−c−1

n n−H ′ ∣∣WH ′
(	nt
;ω′)∣∣θα) + o

(
c−1
n

)
= E′(1 − c−1

n n−H ′ ∣∣WH ′
(	nt
;ω′)∣∣θα + o

(
c−1
n

))
.

If bn is such that cnbn → λ, then (1 + bn)
cn → eλ. Letting

bn = −c−1
n E′(n−H ′ ∣∣WH

(	nt
)∣∣)θα

and using the assumption of uniform integrability, we have that(
1 − c−1

n E′(n−H ′ ∣∣WH

(	nt
)∣∣)θα + o
(
c−1
n

))cn → e−|θ |αE′|Yt |(54)

as required.

Tightness in D([0,∞)) and C([0,∞)) for (36). Suppose that α = 2 so that
n−1/αSα(n1/αt) converges weakly in C(R) to a two-sided Brownian motion B̃t .
By (SLP) and the independence of Sα(t) and WH ′(t), the joint process(

n−H ′
Sα

(
nH ′

t
)
, n−H ′

WH ′(nt)
)

converges weakly to (B̃t , Yt ) in C(R) × D([0,∞)). The weak convergence of
n−H ′

Sα(WH ′(nt)) in D([0,∞)) therefore follows from the continuous mapping
theorem, provided that (x, y) −→ x ◦ y is continuous from C(R) × D([0,∞)) to
D([0,∞)).

The topologies on C(R) and D([0,∞)) are first countable, so proving sequential
continuity suffices. Suppose xn −→ x in C(R) and yn −→ y in D([0,∞)), and
let T be a continuity point of y. By the definition of convergence on D([0,∞)),
we must show that there is a sequence of homeomorphisms λT

n from [0, T ] onto
[0, T ] such that λT

n converges uniformly to the identity and xn ◦ yn ◦ λT
n converges

uniformly to x ◦ y.
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Let ε > 0 be given. Since yn → y in D([0,∞)), there are homeomorphisms
λT

n from [0, T ] onto [0, T ] such that λT
n converges uniformly to the identity, and

yn ◦ λT
n converges uniformly to y. The set A = ⋃

n yn([0, T ]) is bounded, so xn

converges uniformly to x on Ā. Thus, x is uniformly continuous on Ā, and thus
on A.

Choose δ > 0 such that |x(y1) − x(y2)| < ε
2 for y1, y2 ∈ A and |y1 − y2| < δ.

Next, find M1 > 0 such that supt∈[0,T ] |yn ◦ λH
n (t) − y(t)| < δ whenever n > M1,

and find M2 > 0 such that supy∈A |xn(y) − x(y)| < ε
2 whenever n > M2. Then,

whenever n > max(M1,M2), we have∣∣xn ◦ yn ◦ λH
n (t) − x ◦ y(t)

∣∣
≤ ∣∣xn ◦ yn ◦ λH

n (t) − x ◦ yn ◦ λH
n (t)

∣∣ + ∣∣x ◦ yn ◦ λH
n (t) − x ◦ y(t)

∣∣(55)

≤ ε

2
+ ε

2
= ε

for all t ∈ [0, T ]. Thus, xn ◦yn ◦λH
n converges uniformly to x ◦y showing continu-

ity of the composition map. The same argument holds if n−H ′
WH ′(nt) converges

weakly in C([0,∞)), except that proving the continuity of the composition map
on C(R) × C([0,∞)) is even simpler.

REMARK. We thank an anonymous referee for the above tightness proof
which simplifies our original proof. The referee also noticed the following infor-
mative observation. If α < 2, then Sα scales to an α-stable Lévy motion, X(t). Fix
ε > 0 and let τε > 0 be the first positive time such that |X(τε)− limt→τ−

ε
X(t)| > ε.

Consider the simple case where WH ′ scales to a Brownian motion, Bt . Let τ be the
first time Bt −τε hits 0. As is well known, Bt −τε oscillates around 0 immediately,
thus limt→τ+ X(Bt) does not exist a.s. This argument, which can be made rigor-
ous, shows that even in the elementary case where the collecting process scales to
Brownian motion, the process X(Bt) is not cadlag.

4. A recursive construction of some fractional stable motions. Throughout
this section we will suppose that α ∈ (1,2]. We present two related recursive con-
structions of some H -sssi processes. The first recursion produces stable processes
in random scenery, while the second recursion produces local time and indica-
tor fractional stable motions. Note that only the second recursion leads to SαS
processes. Since fBm is the only sssi Gaussian process, when α = 2 the second
construction gives us fBm. In particular, if on the first step of the recursion we
use Brownian motion as the collecting process (or random time process), then we
obtain fBm of any dyadic Hurst parameter.

Although the first construction does not in general lead to α-stable processes,
we will see that the finite-dimensional distributions of the processes have finite α

moments, and thus one can appeal to the stable central limit theorem and normalize
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partial sums of independent copies of the stable processes in random scenery in
order to get honest stable processes [in a manner similar to (31)].

Let Y∅
t be an H -sssi process satisfying the four conditions of Theorem 4.1

below. Consider the vector v = (v1, . . . , vn) with coordinates vj ∈ {+,−}. Let us
use the notation v̂ to denote v truncated by removing the last element, that is,
v̂ = (v1, . . . , vn−1). The empty set ∅ will denote the empty vector.

We define the process Y v
t recursively from Y v̂

t and an α-stable random measure
M0(dx), with α ∈ (1,2], assumed to be independent from Y v̂

t . If vn = (+), we let

Yv
t :=

∫
R

�Y v̂ (t, x)M0(dx),(56)

and if vn = (−), we let

Yv
t :=

∫
R

1[0,Y v̂
t ](x)M0(dx).(57)

The second recursive procedure is defined similarly. We again use vectors, now
denoted w = (w1, . . . ,wn), with coordinates taking one of two different values.
However, in order to distinguish between the two procedures, we let wj ∈ {∗,×}.
As before, we let ŵ = (w1, . . . ,wn−1).

Once again Yw
t is defined recursively from Y ŵ

t and an α-stable random measure
M1 with α ∈ (1,2]; however, the control measure of M1 is no longer Lebesgue
measure as it was in the case of M0. Suppose that (�′, F ′,P′) is the proba-
bility space of Y ŵ

t . Then, just as in (26), M1(dω′ × dx) has control measure
P′ × Lebesgue and lives on some other probability space (�, F ,P). If wn = (∗),
we let

Yw
t :=

∫
�′×R

�Y ŵ (t, x)
(
ω′)M1

(
dω′ × dx

)
,(58)

and if wn = (×), we let

Yw
t :=

∫
�′×R

1[0,Y ŵ
t (ω′)](x)M1

(
dω′ × dx

)
.(59)

We must show that the above recursions makes sense, that is, that the integrals
are well defined. In general, it is known that H -sssi SαS processes have L2(R)

local times almost surely. This almost gets us to where we want to be; however,
there are two separate issues with which we must deal.

According to (19) we need that the integral kernels of (56) and (57) are in Lα(R)

[which easily follows if they are in L2(R)], but (56) and (57) are not in general SαS
processes, and thus we need an extra argument to show that they have L2(R) local
times almost surely.

The second issue concerns (58) and (59) which are SαS processes, but are well
defined only if the local times are in Lα(�′ × R). In other words, we will need the
αth moment of the local times to be integrable. To solve these two issues, we use
the following result.



RANDOM WALKS AT RANDOM TIMES 2701

THEOREM 4.1. Suppose Yt = Yt (ω
′) is an H ′-sssi process which satisfies:

(a) 0 < E|Y1| < ∞.
(b) Yt has a local time satisfying 0 < E

∫
R

�Y (t, x)2 dx < ∞.
(c) Y1 has a bounded continuous density.
(d) E[supt∈[0,1] |Yt |] < ∞.

Then the processes

Y
(+)
t =

∫
R

�Y (t, x)M0(dx),(60)

Y
(−)
t =

∫
R

1[0,Yt ](x)M0(dx),(61)

Y
(∗)
t =

∫
�′×R

�Y (t, x)
(
ω′)M1

(
dω′ × dx

)
,(62)

Y
(×)
t =

∫
�′×R

1[0,Yt (ω′)](x)M1
(
dω′ × dx

)
(63)

are well-defined H -sssi processes satisfying (b)–(d), where H = 1 − H ′ + H ′/α
for Y (+) and Y (∗) and H = H ′/α for Y (−) and Y (×). Moreover, all four processes
have finite α moments which implies they also satisfy (a).

REMARKS. (1) For the proof, we need that �Y satisfies the occupation time
formula ∫ t

0
1A(Ys) ds =

∫
A

�Y (t, x) dx

for any Borel set A. This follows from definition (21).
(2) The processes Y

(+)
t and Y

(−)
t are not generally stable. However, as men-

tioned above, when they have finite α moments, one can use the stable central
limit theorem and normalize partial sums of independent copies of these processes
to get stable processes.

PROOF OF THEOREM 4.1. Well-defined H -sssi processes with finite αth mo-
ments. To see that the Y •

t are well defined and satisfy (a), we have

E
[(

Y
(−)
1

)α] = E
[(

Y
(×)
1

)α] = E′
∫

R

∣∣1[0,Y1](x)
∣∣α dx = E′|Y1|,(64)

which is positive and finite since Yt satisfies (a). Also,

E
[(

Y
(+)
1

)α] = E
[(

Y
(∗)
1

)α] = E′
∫

R

�Y (1, x)α dx.(65)

To see that (65) is finite and nonzero, note that E′ ∫
R

�Y (1, x) dx = 1 by the occu-
pation time formula and E′ ∫

R
�Y (1, x)2 dx < ∞ by (b), thus �Y ∈ Lα(�′ × R) for

α ∈ (1,2].
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To see that the Y • are H -sssi, we refer the reader to Theorem 3.1 in [6] and
Theorem 2.2 in [16].

Property (b). Next we use Theorem 21.9 of [14] which implies condition (b)
under the assumption that∫

R

∫ T

0

∫ T

0
E
[
eiθ(Y •

t −Y •
s )]ds dt dθ < ∞.(66)

Let us show (b) for Y
(∗)
t . We have

E
[
eiθ(Y

(∗)
t −Y

(∗)
s )] = exp

(
−θαE′

∫
R

∣∣�Y (t, x) − �Y (s, x)
∣∣α dx

)
.(67)

Using �Y (t, x − Bs) − �Y (s, x − Bs)
d= �Y (t − s, x) and

�Y

(
ct, cH ′

x
) d= c1−H ′

�Y (t, x)(68)

we see that∫
R

∣∣�Y (t, x) − �Y (s, x)
∣∣α dx

d=
∫

R

�Y (t − s, x)α dx

(69)
d=

∫
R

|t − s|α(1−H ′+H ′/α)�Y (1, u)α du.

Substituting v = θ · |t −s|1−H ′+H ′/α(E′ ∫
R

�Y (1, u)α du)1/α we get that (66) equals
(

E′
∫

R

�Y (1, u)α du

)−1/α ∫
R

e−vα
∫ T

0

∫ T

0
|t − s|−1+H ′−H ′/α ds dt dv,(70)

which is finite since E′ ∫
R

�Y (1, u)α du > 0 by the occupation time formula.

To show (b) for Y
(+)
t , write

E
[
eiθ(Y

(+)
t −Y

(+)
s )] =

∫
�′

∫
�

exp
(
iθ

∫
R

(
�Y (t, x) − �Y (s, x)

)
M0(dx)

)
dωdω′

(71)

= E′ exp
(
−θα

∫
R

∣∣�Y (t, x) − �Y (s, x)
∣∣α dx

)
.

Using (69) and (71), we have that, in this case, (66) is∫ T

0

∫ T

0
E′

[∫
R

exp
(
−θα

∫
R

|t − s|α(1−H ′+H ′/α)�Y (1, u)α du

)
dθ

]
ds dt.

Substituting v = θ · |t − s|1−H ′+H ′/α(
∫
R

�Y (1, u)α du)1/α and integrating we
obtain, for some constant c > 0,

cE′
[(∫

R

�Y (1, u)α du

)−1/α]∫ T

0

∫ T

0

ds dt

|t − s|1−H ′+H ′/α .(72)
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To show that this is finite we need only show that E′[(∫
R

�Y (1, u)α du)−1/α] < ∞.
We have �Y (1, x)(ω′) = 0 for

|x| > A
(
ω′) := sup

t∈[0,1]
∣∣Yt

(
ω′)∣∣,(73)

so by Holdër’s inequality,∫ ∞
−∞

�Y (1, x)
(
ω′)dx =

∫ A(ω′)

−A(ω′)
�Y (1, x)

(
ω′)dx

(74)

≤ (
2A

(
ω′))(α−1)/α

(∫ A(ω′)

−A(ω′)

(
�Y (1, x)

(
ω′))α dx

)1/α

.

By the occupation time formula, the left-hand side of (74) equals 1 a.s. so that

E′
(∫

R

�Y (1, x)α dx

)−1/α

≤ E′(2A)(α−1)/α.(75)

Property (d) of Yt completes the proof of (b) for Y (+).
Moving on to Y

(×)
t , we have

E
[
eiθ(Y

(×)
t −Y

(×)
s )] = exp

(
−θαE′

∫
R

1[Ys,Yt ] dx

)
(76)

= exp
(−θαE′|Yt−s |) = exp

(−θα|t − s|H ′
E′|Y1|).

Thus (66) reduces to∫
R

∫ T

0

∫ T

0
exp

(−θα|t − s|H ′
E′|Y1|)dt ds dθ

(77)

= C

∫ T

0

∫ T

0
|t − s|−H ′/α dt ds < ∞,

where C = ∫
R

exp(−uαE′|Y1|) du.
Finally, let us consider Y (−). We may mimic steps (67) through (72) in order to

reduce (66) to showing

E′
[(∫

R

1[0,Y1](x) dx

)−1/α]
= E′[|Y1|−1/α] < ∞.(78)

But this follows from assumption (c) on Yt , since we may simply integrate |x|−1/α

against the bounded continuous density of Y1 which will give a finite value. This
establishes (b) for Y (−).

Property (c). In the course of showing property (b) for Y •
t , we showed that

in all cases Y •
t possesses a nonnegative and integrable characteristic function, and

thus (c) follows from Theorem 3.3.5 in [12].

Property (d). Consider first α = 2. Property (d) is known for Y
(∗)
t and Y

(×)
t

since they are sssi Gaussian processes, that is, fractional Brownian motions.
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For Y
(+)
t , let B̃t be a two-sided Brownian motion. We use Proposition 2.2 in

[18] which is essentially a corollary of Slepian’s lemma. It implies that for each
fixed ω′,

P
(

sup
t∈[0,1]

∫
R

1[0,Yt (ω′)](s) dB̃s > y

)
≤ 2P

(∫
R

1[0,Y1(ω
′)](s) dB̃s > y

)
.(79)

Integrating over �′, property (d) for Y
(+)
t follows from property (d) for Yt .

For Y
(−)
t , let Y ∗ := supt∈[0,1] Yt , and Y∗ := inft∈[0,1] Yt . We have

E
[

sup
t∈[0,1]

∣∣Y (−)
t

∣∣] ≤ E
[

sup
t∈[0,1]

Y
(−)
t + sup

t∈[0,1]
(−Y

(−)
t

)]

≤ 2E′
[

sup
t∈[0,1]

∫
R

1[0,Yt ](s) dB̃s

]
(80)

≤ 2E′
[

sup
T ∈[Y∗,Y ∗]

∫
R

1[0,T ](s) dB̃s

]

≤ 8E′(Y ∗).
The last inequality follows since the integral in the second to last line is just a
two-sided Brownian motion at time T and E′(Y ∗) = E′(−Y∗) < ∞. We thus get
property (d) for Y

(−)
t since property (d) holds for Yt .

Let us now suppose that 1 < α < 2. Theorem 10.5.1 of [26] states that if

Yt =
∫
E

ft (x)M(dx)(81)

for some family of Lα(E,m) functions {ft (x)}t≥0, where m is the control measure
of M , then there is a constant C such that

P
(

sup
t∈[0,1]

|Yt | > y
)

≤ C

yα

∫
E

sup
t∈[0,1]

∣∣ft (x)
∣∣αm(dx)(82)

for any y > 0.
We can therefore obtain (d) for Y •

t by showing that

E′
∫

R

sup
t∈[0,1]

(
�Y (t, x)α

)
dx = E′

∫
R

�Y (1, x)α dx(83)

and

E′
∫

R

sup
t∈[0,1]

(
1[0,Yt ](x)α

)
dx = 2E′( sup

t∈[0,1]
Yt

)
(84)

are both finite. As seen in (65) and the argument thereafter, (83) is finite since Yt

satisfies (b). Also (84) is finite since Yt satisfies (d). �
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For fixed α ∈ (1,2], define

φ+(x) := 1 − x + x/α and φ−(x) := x/α.(85)

Applying Theorem 4.1 recursively, we have the following corollary:

COROLLARY 4.2. If Y∅
t is an H ′-sssi process satisfying (a)–(d) of Theo-

rem 4.1, then Y
(v1,...,vn)
t and Y

(w1,...,wn)
t [as defined in (56)–(59)] are H -sssi pro-

cesses with

H = φvn ◦ · · · ◦ φv1

(
H ′).

Moreover, Y
(w1,...,wn)
t is an SαS process.

5. Brownian motion extracted from fBm, H < 1/2. Suppose α = 2. Then
the family of stochastic integrals, (Y

(×)
t )t≥0, is an H ′-sssi Gaussian process, thus

it is precisely fBm with Hurst exponent H ′ < 1/2. In this section, we show that
Brownian motion can be extracted from Y

(×)
t by time-changing its integral kernels.

In order to motivate our time-changed kernels, we first show that Brownian motion
can also be extracted from a stable process at random time, Y

(−)
t , using a time-

change.
To keep things simple, we assume in this section that the random time process

Yt is itself an fBm. Thus it is a.s. continuous and satisfies the property that for each
s > 0,

τs = inf
t≥0

{t :Yt = s} < ∞ a.s.(86)

Heuristically, time-changing the kernel of Y •
t undoes the subordination of Y •

t

to the process Yt , leaving us with a process (M(At))t≥0. We then observe that
As ⊂ At for s < t , and that m(At) is linearly increasing (here m is the control
measure). One need only check that such a procedure gives us what we want,
by looking at the finite-dimensional distributions. Since our interest is in the case
α = 2, we have that M0, M1 are Gaussian random measures on R and �′ × R,
respectively, and we in fact need only check covariances.

Let us start by presenting the time-change of Y
(−)
t .

PROPOSITION 5.1. Let the random time process Yt be a fractional Brownian
motion. If Y

(−)
t is defined as in (61) with α = 2, then Y

(−)
τt is a Brownian motion.

PROOF. We have

Y (−)
τt

=
∫

R

1[0,Yτt ](x)M0(dx) =
∫

R

1[0,t](s) dB̃s = B̃t ,(87)
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where B̃t is a two-sided Brownian motion. For the covariances, if s < t , we have

E
(
Y (−)

τs
Y (−)

τt

) = E
(∫

R

1[0,s](r) dB̃r ·
∫

R

1[0,t](r) dB̃r

)
(88)

=
∫

R

(
1[0,s](r)

)2
dr = s. �

In the case of

Y
(×)
t =

∫
�′×R

1[0,Yt (ω′)](x)M1
(
dω′ × dx

)
,

we cannot look at “Y (×)
τt ” since τt lives on the same probability space as M1. We

address this issue by instead time-changing the kernel 1[0,Yt ]. Let us define

Y
(×)τ
t :=

∫
�′×R

1[0,Yτt (ω
′)](x)M1

(
dω′ × dx

)
.(89)

A good way to think about the above integral is in terms of a central limit theorem
similar to (31):

n−1/2
n∑

i=1

�H

(
τ

(i)
t

)(i) f.d.d.�⇒
∫
�′×R

1[0,Yτt (ω
′)](x)M1

(
dω′ × dx

)
.(90)

Here, τ (i) is measurable with respect to the σ -field of �
(i)
H . By Proposition 5.1, the

�H(τ
(i)
t )(i) are independent Brownian motions. The next proposition shows that

the right-hand side is also a Brownian motion thus proving (90).

PROPOSITION 5.2. Let the random time process Yt be a fractional Brownian
motion. If Y

(×)
t is defined as in (63) with α = 2, then Y

(×)τ
t is a Brownian motion.

PROOF. We have

Y
(×)τ
t =

∫
�′×R

1[0,Yτt ](x)M1
(
dω′ × dx

)
(91)

=
∫
�×R

1[0,t](x)M1
(
dω′ × dx

) = M1
(
�′ × [0, t]),

which is a Gaussian random variable with variance P′ × Leb(�′ × [0, t]) = t . For
the covariances we analyze second moments. If s < t , we have

E
(
Y (×)τ

s + Y
(×)τ
t

)2 = E
(∫

�′×R

(2 · 1[0,s] + 1[s,t])M1
(
dω′ × dx

))2

=
∫
�′×R

(2 · 1[0,s] + 1[s,t])2P′ × Leb
(
dω′ × dx

)
(92)

=
∫

R

(4 · 1[0,s] + 1[s,t]) dx

= 3s + t
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