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Consider a branching random walk on R, with offspring distribution Z
and nonnegative displacement distribution W. We say that explosion occurs
if an infinite number of particles may be found within a finite distance of
the origin. In this paper, we investigate this phenomenon when the offspring
distribution Z is heavy-tailed. Under an appropriate condition, we are able
to characterize the pairs (Z, W) for which explosion occurs, by demonstrat-
ing the equivalence of explosion with a seemingly much weaker event: that
the sum over generations of the minimum displacement in each generation
is finite. Furthermore, we demonstrate that our condition on the tail is best
possible for this equivalence to occur.

We also investigate, under additional smoothness assumptions, the behav-
ior of M,,, the position of the particle in generation n closest to the origin,
when explosion does not occur (and hence lim;,—, o0 M;; = 00).

1. Introduction. Our aim in this paper is to give a classification of the dis-
placement random variables in heavy-tailed branching random walks in R for
which explosion—a concept we will define shortly—occurs. Thus, consider a
branching random walk on R. The process begins with a single particle at the
origin; this particle moves to another point of R according to a displacement dis-
tribution W, where it gives birth to a random number of offspring, according to a
distribution Z. This procedure is then repeated: the particles in a given generation
each take a single step according to an independent copy of the same distribu-
tion W, and then give birth to the next generation. We consider the case where W
is nonnegative (in which case the process is also called an age-dependent process;
the displacement of a particle can also be interpreted as a birthdate). Let I'; be the
number of particles with displacement at most ¢; then we say that explosion occurs
if I'; = oo for some finite ¢.

Alternatively, let M, be the displacement of the leftmost particle in the nth
generation. If the process dies out and there are no particles remaining in the nth
generation, then define M,, = co. Explosion is the event that lim,,_, oo M, < 00.
Note that, since M,, is monotone, it has a limit.
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Taking a tree view of the above process, denote by 7z a random Galton—Watson
tree with offspring distribution Z, and let Z,, be the number of children at level .
To avoid the trivial case, we assume throughout that P{Z = 1} < 1. Each edge of
Tz is then independently given a weight according to the nonnegative distribu-
tion W. The connection to the above process is that the displacement of a node is
simply the sum of the weights on the path from the root to that node. From this
perspective, which is the one we will take in this paper, explosion is the event that
there exists an infinite path for which the sum of the weights on the path is finite.

In the process of studying the event of explosion, we first consider the case
where the offspring distribution has finite mean. The different cases described in
the next paragraph show that we can either trivially solve the problem or reduce to
the most interesting case of an infinite mean.

Reduction to the case of an infinite mean. Consider a Galton—Watson pro-
cess with offspring distribution Z satisfying 0 < E{Z} < oco. We still assume
P{Z =1} < 1. Let W be a weight (or displacement) distribution on the edges
of the Galton—Watson tree.

Consider first the case where P{W = 0} = 1. In this case, explosion is equiv-
alent to the event that the Galton—Watson tree is infinite, that is, the survival of
the Galton—Watson process. In that case, if E{Z} < 1, there is no survival, and
if E{Z} > 1, there is a positive probability of survival [4]. From now on we will
assume that P{W = 0} < 1 and assume that the Galton—Watson process is super-
critical.

In the case of a supercritical Galton—Watson process, under the assumption
E{Z} < o0, the results of Hammersley [18], Kingman [22] and Biggins [6] show
the existence of a constant y such that, conditional on the nonextinction of the
process, M, /n tends to y almost surely. This shows that the random variables M,,,
conditional on survival, behave linearly in n, that is, M,, = yn + o(n). One con-
sequence of the Hammersley—Kingman-Biggins theorem is that if y > 0, then
explosion never happens. Now define

H :=E{Z}P{W =0).

It can be shown that y = 0 if and only if H > 1. We consider in fact three cases:
H<1,H>1and H=1.

e CASE I: H < 1. Here, as stated above, explosion occurs with probability
zero. This can be seen more simply as follows: fix an & > 0 such that P{W < ¢} <
(E{Z})~! and mark all edges with weight smaller than ¢. Then each component
in the forest of marked edges is a subcritical Galton—Watson tree, and hence has
finite size almost surely. Thus, any infinite path must contain an infinite number of
unmarked edges, and hence cannot be an exploding path.

e CASE II: H > 1. In this case, explosion happens with probability one. To
see this, take a sub-Galton—Watson tree by keeping only children for which W = 0.
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This tree is supercritical and thus survives with some positive probability p. It fol-
lows that with positive probability, there is an infinite path of length zero. Since,
conditional on survival, explosion is a 0—1 event (for a proof see later in this Intro-
duction), we infer that it happens with probability one. A theorem of Dekking and
Host [13] ensures the existence of an almost surely finite random variable M such
that M,, converges a.s. to M. Under the extra condition EZ? < oo, they determine
stronger results on the limit distribution M.

e CASE III: H = 1. This threshold case is the most intriguing—it was al-
ready considered in an earlier pioneering work of Bramson [10] and in the work
of Dekking and Host [13]. In this case, the occurrence of explosion is a delicately
balanced event that depends upon the behavior of the distribution of W near the
origin and on the distribution of Z.

Bramson’s main theorem is the following result on the behavior of M, under
the assumption that there exists a § > 0 such that E{Z**®} < co. For any fixed A,
defineoy , =p+(1— p)e‘kn where p = P{W =0} < 1. Then explosion happens
if and only if there exists some A > 1 such that Y 07, Fv;l(ak,n) < 00. In the
case of no explosion, and conditional on the survival of the branching process, the
following convergence result on the asymptotic of M, holds. Almost surely, we
have

M,

nll>rgo ZS(V!) F_I(CT =
k=11w 2,k)

(1.1)

1,

where s(n) = [loglogn/log27. We refer to [13] for a generalization of Bramson’s
theorem to the case of E{Z?} < oo, under some extra mild conditions.

Following Bramson [10], we first transform the tree Tz into a new tree T’ as
follows. The roots are identical. First consider the sub-Galton—Watson tree rooted
at the root of 7z consisting only of children (edges) that have zero weight. This
subtree is critical. For any distribution of Z satisfying the threshold condition,
note that the size S of the sub-Galton—Watson tree is a random variable S > 1 with
E{S} = co. In some cases, we know more—for example, when Var{Z} = o’ e
(0, 00), then P{S > k} ~,/2/m o2k as k — oo (see, e.g., the book of Kolchin [23]).
All of the nodes in S are mapped to the root of the new tree 7. The children of that
root in 7" are all the children of the mapped nodes in Tz that did not have W = 0.

Let X; be the number of vertices of degree i in the sub-Galton—Watson tree. The
number of children of the root of 7 is distributed as

oo X

CZZZQ‘J,

i=0 j=1
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where ¢; 1, &2, . .. are i.i.d. random variables having distribution of a random vari-
able ¢;. In addition, the distribution of ¢; is given by

PG =k} =c; (k j i) (1 —P{W =0})'P{W = 0)'P(Z =k + i},

where ¢; is a normalizing constant. Note that > ;o X; = S.

For each child of the root in T”, repeat the above collapsing procedure. It is
easily seen that 7" itself is a Galton—Watson tree with offspring distribution ¢.
The moment generating function G (s) of ¢ is easily seen to satisfy the functional
equation

(1.2) G¢(s) =Gz((1 = P{W =0})s + P(W =0}G(s)).

Furthermore, the displacement distribution is W conditional on W > 0. Finally,
one can verify that E{¢} = co. More importantly, explosion occurs in 7z if and
only if explosion happens in 7”’. We have thus reduced the explosion question to
one for a new tree in which the expected number of children is infinite and in which
W does not have an atom at zero.

Observe that the transformation described in case III is valid whenever W has
an atom at the origin. In particular, this construction can also be used to eliminate
an atom at the origin when P{W = 0} > 0 and E{Z} = co. In this case, we still
have E{¢} = oo.

It follows from the above discussion that in the study of the event of explosion,
we need to consider only the (most interesting) case where

E{Z} =00, P{W=0}=0.

All our results below are concerned only with this case.

A simple necessary condition for explosion. There is a rather obvious neces-
sary condition for explosion. Let Y; be the minimum weight edge at level i in the
tree. Then the sum of weights along any infinite path is certainly at least Y 72 ¥;.
We say that a fixed weighted tree is min-summable if this sum is bounded; if a tree
is not min-summable, it cannot have an exploding path.

For any fixed, infinite, rooted tree 7', and distribution W on the nonnegative
reals, let TW denote a random weighted tree obtained by weighting each edge
with an independent copy of W. For a fixed tree T and weight distribution W, it
follows easily from Kolmogorov’s 0—1 law that explosion and min-summability of
TW are both 0—1 events. Thus, we make the following definitions.

DEFINITION 1.1. For any infinite rooted tree 7T':

(i) let WEex(T) be the set of weight distributions so that 7" contains an ex-
ploding path almost surely, and

(i1) let Wwms(T) be the set of weight distributions so that TV is min-summable
almost surely.
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In this new notation, the observation above is simply that Wex(T) € Wms(T),
for any tree 7. Unsurprisingly, in general, Wgx(T) may be strictly contained
within Wys(T'). For example, consider an infinite binary tree 7 and a uniform
weight distribution W on [0, 1]. Except with probability at most exp(—2//?), the
minimum of 2/ copies of W is at most 27//2. Thus, with positive probability
s Yi < Zi>12_i/2 < 3, and so W € W\s(Z). On the other hand, we may
easily prove that W ¢ Wgx(Z), that is, that the probability that there exists an
exploding path is zero. To see this, consider the event A; that there exists a path
from the root to level i of weight less than i/128. The existence of an exploding
path certainly implies that for all sufficiently large i, A; occurs. We now observe
that P{A;} <27/ Indeed, the event A; implies that there is a path from the root
to level i at least half of whose edges have weight less than &. Since there are

only 2! paths to level i and at most 2/ ways to choose a subset of the edges of a
fixed path, and since for each path and each fixed subset of at least 5 edges the

probability that all these edges have weight less than é is at most 8/, the bound
easily follows. The same proof shows that for the exponential distribution E, no
explosion can happen [however, E € Wys(T); this follows from example (iv) of
Section 4].

Main results. It may appear that, aside from some trivial cases, Wws(7T')
should always strictly contain Wex(T'). However, somewhat counterintuitively,
this is not the case; there are examples of trees with generation sizes growing very
fast (double exponentially) for which Wgx(T) = Wwms(T). Consider, for example,
the tree 7 defined as follows: all nodes of generation n have 22" children. In this
case, for a given weight distribution W, the distribution of the sum of minimum
weights of levels is

min Wi,
=1 15i=2¢7D
where each W,’; is an independent copy of W. Also, the path constructed by the
simple greedy algorithm, which, starting from root, adds at each step the lowest
weight edge from the current node to one of its children, has total weight dis-

tributed as
Z min W,i.

o= 1<i<22™D

The property of these sums being finite almost surely is clearly equivalent, so that
Wex(T) = Wnms(T'). Our main result is that this phenomenon is in fact quite gen-
eral in trees obtained by a Galton—Watson process with a heavy-tailed offspring
distribution. We call the distribution Z plump if for some positive constant ¢ the
inequality

(1.3) P{Z >m!'*¢) >

1
m
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holds for all m sufficiently large. Equivalently, Z is plump if its distribution func-
tion Fz satisfies F, 1-1 /m) > m!'T¢ for m sufficiently large. We remark that
EZ = oo for any plump Z.

EQUIVALENCE THEOREM. Let Z be a plump distribution. Let T be a ran-

dom Galton—Watson tree with offspring distribution Z , but conditioned on survival.
Then

Wex(T) = Wws(T) with probability 1.

We now state a second form of the Equivalence theorem. For this, we must ex-
tend the definition of WEgx and Wis to Galton—Watson offspring distributions. Let
Z be an offspring distribution and W a weight distribution. We have the following:

CLAIM 1.2. For a given offspring distribution Z and weight distribution W,
and conditioning on survival of the Galton—Watson process, explosion and min-
summability are 0-1 events.

PROOF. Let (W;)2, be a sequence of independent copies of W, let (5;)72, be
a random walk with jump distribution given by Z — 1, and let (X;)7°, be the in-
crements. In the usual way, this random walk can be thought of as representing (in
breadth-first fashion) a sequence of one or more Galton—Watson trees, with X; + 1
giving the number of children at step i and W; the weight of the ith edge. Since
EZ > 1, one of these trees T’ will be infinite with probability 1, and this tree is ex-
actly a Galton—Watson tree conditioned on survival. The sequence ((X;, W;))72,
clearly encodes all the information about 7”, and the two events under consider-
ation are tail events with respect to this sequence; thus, Kolmogorov’s 0-1 law
applies. The same argument holds for min-summability. [

We can thus define WEgx(Z) and Wys(Z) for an offspring distribution Z as
follows:

Wex(Z) := {W| W € Wex(Tz) almost surely conditioned on survival}
and
Wwus(Z) = {W| W € Wwms(Tz) almost surely conditioned on survival}.

The alternative (though slightly weaker) formulation of the Equivalence theorem
can now be stated as follows:

EQUIVALENCE THEOREM—SECOND VERSION. For a plump distribution Z,

Wex(Z) = Wwms(2).
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Min-summability is clearly a simpler kind of condition than explosion; in par-
ticular, it depends only on the generation sizes Z, rather than the full structure
of the tree 7z. Indeed, the Equivalence theorem becomes more interesting if one
observes that it is possible to derive the following quite explicit necessary and
sufficient condition for min-summability.

THEOREM 1.3. Given a plump offspring distribution Z, let mg > 1 be large
enough such that the condition (1.3) holds for all m > mg. Define the function
h:N— RT as follows:

(14) h(Q)=mg and h(n+1)= (1 —1/h(n)) foralln > 1.

Then for any weight distribution W, W € Wws(Z) and, hence, also W € WEgx(Z),
if and only if

ZF (h(m)™!) < c0.

Given the Equivalence theorem above, one may wonder if there is a way to
weaken the condition given in (1.3) such that the theorem still remains valid. We
show that this condition is to some extent the best we can ask for. More precisely,
we prove the following:

SHARPNESS OF CONDITION (1.3). Let g:N — N be an increasing function
satisfying

Then there is an offspring distribution Z satisfying P{Z > g(m)} > 1/m for all
m € N, but for which Wrx(Z) # Wws(Z).

So far our results concerned the appearance of the event of explosion, however,
it is also natural to ask how fast M, tends to infinity in the case there is a.s. no
exploding path. Although there is no reason to expect a convergence theorem in
the case of no explosion for general plump distributions in the absence of any
smoothness condition on the tails of Z, we show that a stronger plumpness prop-
erty allows to obtain precise information on the rate of convergence to infinity
of M,. To explain this, note that the plumpness assumption on Z is equivalent to
1 — Fz(k) > k" for n = +— and for all k sufficiently large. Consider now the
stronger smoothness condltlon

(1.5) 1 — Fz(k) =k~ "¢(k),

where £ is any continuous and bounded function which is nonzero at infinity.
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LIMIT THEOREM UNDER CONDITION (1.5). Let Z satisfy the smoothness
condition, and let W be any weight distribution with W ¢ Wgx(Z). Then a.s. con-
ditional on survival,

. M,
lim — — P =1
"0 Y k=1 Fw (exp(=(1 + &)%)

forall e > 0.

Applying a Tauberian theorem (see Section 6 for more details), we find that
condition (1.5) is equivalent to the condition
1
Kz():=1—-Gz(1 —5) ~as”£<—)
s
near s = 0 for some a > 0; recall Gz is the moment generating function of Z.
Going back to case III of the finite mean case and the transformation described
there, we observe that the use of the functional equation (1.2) allows to translate
the smoothness condition above, imposed on the modified offspring distribution

¢ of infinite mean (obtained after the transformation), to a smoothness condition
on Z, the original distribution of finite mean. In particular,

Ki(s)=1—-G¢(1—5)~ asl/(1+e)(1 + O(Sﬁ)) for s near zero
for some a, ¢, B > 0 is equivalent to a condition of the form
(1.6) Kz(s) ~E{Z}s —es' T (1 + 0(5°)) for s near zero

for some ¢, 5 > 0. We note that condition (1.6) assumes some regularity on the
tails of Z but the variance could be infinite, thus, the above result can be regarded
as a strengthening of Bramson’s theorem [10].

Further related work. The literature on explosion is partially surveyed by
Vatutin and Zubkov [34]. The early work deals with exponentially distributed
weights: in this case, there is no explosion almost surely if and only if

as 1
r; ny '_oP{Z>r} =

(see [19], Section V. 6, [14, 26]). This condition cannot be simplified; Grey [17]
showed that there does not exist any fixed function ¥ > O such that explosion
would be equivalent to E{1/(Z)} = oo.

Some general properties of the event of explosion were obtained in [29] by con-
sidering the generating functions of the number of particles born before time ¢,
parametrized by ¢, and looking at the nonlinear integral equation satisfied by these
generating functions. By using this analytic approach and under some smoothness
conditions on the distribution function Fy of the displacement W, Sevast’yanov
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[29, 30], Gel’fond [16] and Vatutin [31, 32] obtain necessary and sufficient con-
ditions on the event of explosion. The result of Vatutin [32] can be stated as fol-
lows. Consider the case P{W = 0} = 0 and suppose that zero is an accumulation
point of W, that is, the distribution function Fy of W satisfies Fy (w) > 0 for all
w > 0. Assume the following regular variation style condition holds: there exists
A € (0, 1) such that
-1 -1
Fy, (At) Fy, (A1) -1

(1.7) 0 < liminf = <limsup —~
110 F () 110 Fp' ()

Then explosion does not occur if and only if for all € > 0,

e [ s ds
(9 |5 () 5=

Condition (1.7) basically forces Fw to behave in a polynomial manner near the
origin. Indeed, if Fy (w) ~ w® for some o > 0 as w |, 0, then F‘Z,l(t) ~ 1/ ag
t | 0, and so (1.7) holds. The exponential law corresponds to o = 1, for example.
The criterion given by (1.8) was earlier proved to be necessary and sufficient for
nonexplosion by Sevast’yanov [29, 30] and Gel’fond [16] under the slightly more
restrictive condition that Fy (w)/w* € [a, b] for all w, where 0 < a < b < oo and
o > 0. As soon as we leave that polynomial oasis, Vatutin’s condition is violated.
Examples include Fy (w) ~ exp(—1/w?) and Fy (w) ~ 1/log*(1/w) for o > 0.
A quite general sufficient (but not necessary) condition without any explicit
regularity assumption on W was proved by Vatutin [33] for explosion in nonho-
mogenous branching random walks. In the homogenous case, the result states that
if there exists a sequence of nonnegative reals (y,),en such that lim, y, =0 and

Z FVT/I()’n/KZn ()’n)) < 00,
n=1

then explosion occurs. This result is close in spirit to our Equivalence theorem,
but we stress that the results are distinct—we see no way in which one may be
deduced from the other.

More precise information on the behavior and convergence to infinity of M,, can
be obtained in the finite mean case and under extra conditions. Recall that in the
finite mean case, M,, = yn + o(n) for some y > 0. McDiarmid showed in [24] that
M, —yn = O(logn) if E{Z?} < oo and W has an exponential upper tail. Recently,
Hu and Shi [20] proved that if the displacements are bounded and E{Z!*¢} < oo
for any ¢ > 0, then, conditional on survival, (M,, — yn)/logn converges in prob-
ability but, interestingly, not almost surely. (We note in passing that this work and
the recent work of Aidekon and Shi [3] provide Seneta—Heyde norming results [7]
in the boundary case.) Under the extra assumption that Z is bounded, Addario-
Berry and Reed [1] calculate E{M,} to within O(1) and prove exponential tail
bounds for P{|M, — E{M,}| > x}. Extending these results, Aidekon [2] proves
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the convergence of M, centered around its median for a large class of branch-
ing random walks. For tightness results in general, under some extra assumptions
on the decay of the tail distribution or weight distribution, see Bachmann [5] and
Bramson and Zeitouni [8, 9].

Organization of the paper. Section 2 will concern some preliminaries, mostly
involving what we call the speed of an offspring distribution. In Section 3, we
prove the Equivalence theorem. The proof is somewhat algorithmic in nature and
shows that a certain (infinite) algorithm will always find an exploding path under
the given conditions. In Section 4, we prove Theorem 1.3 and give some exam-
ples calculating the condition for specific cases. In Section 5 we provide a generic
counterexample that shows that the equivalence does not hold if we weaken the
conditions in any substantial way, proving the sharpness of condition (1.3). Fi-
nally, in Section 6 we prove the limit theorem under condition (1.5).

2. Preliminaries. In this section we present some definitions and results
needed for the proof of the Equivalence theorem. That theorem (in its second
form) is concerned with the equivalence of Wys(Z) and Wex(Z) for certain off-
spring distributions Z. Thus, it will be important to have a good characterization
of whether a weight distribution W belongs to Wws(Z), in other words, whether
Y sl min{Wnl, e, WnZ "} is finite, each W,’; being an independent copy of W. To
do this, we will introduce two notions. The first is the concept of the speed of
a branching process, from which we will obtain an understanding of the growth
of the generation sizes Z,. The second is the concept of summability with re-
spect to an integer sequence, which concerns the behavior of sums of the form
donsl min{W,}, ..., Wy} for a given integer sequence (0y,),eN-

Speed of a Galton—Watson branching process. We introduce the concept im-
mediately and then give a number of examples.

DEFINITION 2.1. An increasing function f:N — R™, taking only strictly
positive values, is called a speed of a Galton—Watson offspring distribution Z if
there exist positive integers a and b such that with positive probability

Znja < f(n) < Zpy for alln € N.
(Here, we set Z, = Z || forx e R.)
Note that there is a small issue of extinction here, and that is why we insist that

f is strictly positive, otherwise f(n) =0 would be a speed for any distribution
with P{Z =0} > 0.
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Examples of speeds. Here we give examples of speeds for various distribu-
tions Z:

(1) If E{Z} <1, then almost surely Z,, = 0 for all sufficiently large n, and so
Z does not have a speed.

(i) If E{Z} =m € (1, 00), then Doob’s limit law states that the random vari-
ables V,, = Z,,/m" form a martingale sequence with EV,, =1, and V, — V al-
most surely, where V is a nonnegative random variable. Furthermore, in the case
that Z is bounded, the limit random variable V has mean 1 (and so, in partic-
ular, P{V > 1} > 0). From this we may easily verify that m" is a speed of Z.
Indeed, Doob’s limit law implies that the inequality Z, < (M + 1)m" holds for all
n large enough, with probability at least P(V < M). Taking M sufficiently large,
this probability may be made arbitrarily close to 1. For the lower bound, one may
consider a truncation Z’ of Z such that E{Z’} > /m. Since Z' is bounded, we de-
duce that in the truncated branching process associated with Z’ there is a positive
probability that Z/, > m"/? /2 for all sufficiently large n. Since there is a natural
coupling such that Z,, > Z, for all n, this completes our proof that m" is a speed
of Z.

(iii) If Z is defined by P{Z >m + 1} = m~P for each m > 1, where Be@,1),
then Z is plump [one may take ¢ = /3_1 — 1 in condition (1.3)] and the double
exponential function f(n) = 270" is a speed of Z. Heuristically, this follows
from the fact that, conditioned on the value of Z,, one would expect Z, 1 to be

of the order Z,’f l. A formal proof follows from Theorem 2.4 together with the
observation that the function s appearing in that theorem is equivalent to f as a
speed [i.e., there exist a’, b’ € N such that the inequalities f(|n/a’]) < h(n) <
f(&'n) hold for all n]. Indeed, as we will explain in Section 6, a much stronger
statement holds in this case.

(iv) If Z is defined by P{Z > m} = 1/log, m for each m > 2, then Z is plump.
Applying Theorem 2.4, we find that the tower function s (n) defined by A(0) =2
and h(n + 1) =2"® for n > 0 is a speed of Z.

Summable weight distributions with respect to an integer sequence. Let W be
a random variable with nonnegative values. Let 0 = (0,),en be a sequence of

positive integers and W,/ be a family of independent copies of W for n, j € N.
Define the sequence of minima
Ap = mi /.
" lfn}lsnan Wi
The random variable W is called o -summable if there is a positive probability that
> n Ay is finite.

Note that the event in the above definition is a 0-1 event. Thus, if W is o-
summable, then ), min;<;<,, W, is finite with probability one. For a charac-
terization of o -summable weight distributions see Proposition 4.1. Examples are
given at the end of Section 4.
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We note that if W is o -summable and 7-summable, then W is o U T-summable,
and if 0, < 1, for all n, o-summability implies T-summability. We also have the
following:

LEMMA 2.2. Let o be any increasing sequence, and let T be defined by t, =
oyn for some constant y, a positive integer. Then W is o-summable iff it is -
summable.

PROOF. Writto =c?Uc!U---Uo?™!, where 0! := {oyn+i:n € N}. Since
o is increasing, if W is o'-summable and i < j, then W is o/ -summable. So if
W is T = o%-summable, then it is o-summable for all 0 <i < y — 1, and thus
o-summable. The other direction follows trivially since t Co. [

The following proposition relates the condition of the Equivalence theorem to
the notion of o -summability under the presence of a speed function for the Galton—
Watson distribution.

PROPOSITION 2.3. Let W be a weight distribution and Z an offspring distri-
bution. Suppose that f :N — RT is a speed for Z. Then W € Wys(Z) if and only
if W is o -summable for the sequence o = (f (n)),eN.

PROOF. Since f is a speed for Z, the event
R:={Zua < f (1) < Zp, for all n)

occurs with positive probability. Let 0 be the sequence given by o = f(an),
and o the sequence defined by cf,f’ = f(ln/b]). Suppose W is o-summable; then
by Lemma 2.2, W is o?-summable. Whenever R occurs, Z, > or,f for all n and,
hence, Tz has the min-summability property almost surely. Thus, W € Wus(T2)
with positive probability, and hence W € Whs(Z).

Conversely, if W is not o-summable, then again by Lemma 2.2, it is not o“-
summable. Thus, even when conditioning on survival, W ¢ Whs(7Tz) with posi-
tive probability, and hence W ¢ W\s(Z). U

Definition of a speed function for plump distributions Z. We are now in a
position to partially explain the mysterious function 4 defined in (1.4), which recall
was defined by

h(O)=mo and h(n+1)=F;'(1—1/h®n)).
It will turn out that this function defines a speed function for the offspring dis-

tribution Z in the sense of Definition 2.1.

THEOREM 2.4. If the offspring distribution Z is plump, then the function h is
a speed of Z.
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Although it is possible to present a proof at this stage, to avoid redundancy, we
postpone it until Section 3.

It will actually be convenient in our proofs to consider a slight variation on 4.
Let o = (1 4 ¢)~/2, and define f by

2.1) fO) =iy and f+1)=F;'(1—-fn)™),

where mg is the least integer such that condition (1.3) holds with mo = mg,
and the following inequalities hold: iy~ > 16(1 — &)~! + 16 and nag’l—l >
gl =D 1+1

The functions /& and f are essentially equivalent as far as we are concerned. The
following lemma demonstrates their equivalence as speeds.

LEMMA 2.5. For any plump distribution Z, h is a speed for Z if and only if
fis.

PROOF. Since 4 is increasing, for some constant ¢ we have h(c) > ng = f(0).
Inductively, we then have f(n) < h(n + ¢) for all n. Since Z is plump, we have
from the definition of f that

f+1)> fm)*1+ = fn)l/ for any n.
Thus,
f+2)=F;'(1- f(a+1)"%) > F;'(1- fm™h).

It follows that if f(n) > h(m), then f(n + 2) > h(m + 1). So by induction, we
have f(2n) > h(n).

Considering the definition of a speed for Z, we see that if one is a speed, so is
the other. [

In the following lemma, we state some direct consequences of condition (1.3)
(i.e., the assumption Z is plump) and the definition of f, that will be helpful later.

LEMMA 2.6. Let Z be a plump distribution and let f(n) be defined as in
2.1).

(i) Foralln,
(2.2) fn+2)=F; ' (1=1/fm)).

) f(n+1)> 4”+1f(n)f0r all n > 0. In particular, f(n)l_“ > 16n + 16 for
all n > 1, and for any positive r, f(n) = Q@").
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(iii) For each k > 2 and for all n,
(2.3) f(n+2[logk/log(1+¢)]) = f(m) .

PROOF. Part (i) follows immediately from the proof of Lemma 2.5. To prove
part (ii), we begin by noting that the ratio f(n + 1)/f(n) is at least f (n)"‘_l_l,
as a(l + &) = a~!. We therefore prove that f(n)‘)‘_l_1 > 4"+ for all n. Let
no = [(@~' —1)717, and note that since ﬂg_l_l > 41@ =D+ e inequal-
ity f(n)"‘fl_1 > 4"+ holds trivially for n < ng. For n > ng, the result follows
easily by induction as

f(n)ailil > (4nf(n _ 1))0‘_1_1 :4(057171)71](‘(” _ 1)0[7171

>4f(n—1)* .

To conclude the proof of part (ii), we have to show f (n)!=* > 16n + 16 for all n.
Forn<(l —a)~!, we trivially have

f)'" > F0) " =ml* = 16(1 —a)” +16.

Forn>(1—a)~ '+ 1, wehave f(n)'~%/f(n — 1)!=% > 4, and the result easily
follows by induction.
To prove part (iii), we note that

f+2)=F;'(1-1/f(m) > fm)'*e.

An inductive argument now easily yields that

Fn+20) > f)+o

for any n and £. It follows that f(2n) > mélﬂ)n_ We conclude by setting £ =

logk/log(l1+¢)]. O

3. Proof of the Equivalence theorem. In this section we prove the Equiva-
lence theorem. We first prove it in the second (technically weaker) form and then
describe how the first form may be deduced.

Let Z be a plump offspring distribution, and let & and mq be such that condition
(1.3) holds for the triple Z, ¢ and mg. Fix an arbitrary W € Wys(Z). We shall
prove that W € WEgx(Z) (and the theorem will follow). We define an algorithm
which selects a path in the tree in a very precise way; then using the properties
of W, we prove that with positive probability this path is an exploding path. Since,
conditioned on survival, the event that there is an exploding path is a 0—1 event,
this is enough to prove the theorem.

The algorithm depends on a parameter «, defined in the previous section: « :=

(1 + &)~1/2. The reason for this choice of exponent will be clarified later in the
proof.
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Algorithm FINDPATH:
Let xq be the root of the tree.
Forn=0,1,2,...:

— Consider node x,, which is the lowest node in the candidate exploding path we
are constructing. Let Y, 1 denote the number of children of x,,.

— Order the children of x;,, by how many children they in turn have, from largest
to smallest. Let X, 41 := [ (Y, U= /27]. We define the options from x, to be
the first X4+ children of x, in the ordering.

— If X, 11 =0, the algorithm terminates in failure. Otherwise, of the X, 4 choices,
pick the option whose edge from x, has the smallest weight, and set x,+ to be
this child.

The analysis of the algorithm, and the proof that it provides with positive prob-
ability an exploding path, will be based on the following assertion.

CLAIM 3.1. There exists a positive integer a such that, with positive proba-
bility, Z, < f(an) and Y, > f(n) hold simultaneously for all n € N, where f is

the function defined in equation (2.1).

Indeed, given this, we may deduce immediately that with positive probability
Znja < f(n) < Zy, for all n € N, implying that f(n) is a speed of Z. Further-
more, since X,, the number of options of x,_1, is defined by X, = [Yn(l_“) /21,
there is a positive probability that X, > f(n — y) for all n € N, where y =
2Mog (1 — )~ /log(1 4 €)1 + 1 [this follows from Lemma 2.6(iii)].

We now observe that, conditional on the inequality X, > f(n — y) holding
for all n € N, the path xg, x1, x2,... is an exploding path almost surely. The
distribution of the sum of weights along the path xo, x1, x3, ..., dependent on
X1, X2, X3, ..., 1s given by

> min{w,,..., W},

n>1

where the W,/ are ii.d. with distribution W. Thus, conditional on the event
that X, > f(n — y) for all n € N, this sum is stochastically smaller than
Zn>1min{W,},...,W,f("_V)}. Moreover, Lemma 2.2 implies that W is o-
summable for the sequence o = (f(n)),eN, and since the contribution of any
finite number of terms is finite, W is also o-summable for the sequence o =
(f(m — ¥))nen. This proves that xq, x1, X2, ... is an exploding path almost surely.

So it remains to prove Claim 3.1, which we will do for the choice a = 3 +
2[log2/log(1+ ¢)].

Define the two families of events {A,},>1 and {B,},>1 by

Ap={Y, < f(n)}, By :={Z, > f(an)}.
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We are led to prove that there is a positive probability that none of the events A, or
B, occur. Let C = A{ N Bf. The definition of f implies that Z assigns a positive
probability to the range [ (1), f(a)], so that P{C} > 0. We will show below that

(3.1)  P{A)C}<1/16 and P{A,41|AS) <47 forn>2;
(32)  P{BC}<1/16 and P{B,(|BS}<4""'  forn>2.

Assuming the above inequalities, we infer that

{CﬂﬂAn+1} P{C} [ [ P{AG, 1 1AG, AS_y. ..., AS, C}
n>1 n>1
=P(CIP{ASIC} [ | P{Ag 145}
n>2
(since the sequence Y1, Y2, Y3, ... is Markovian)
> <1 — 24”1>P{C}.
n>1

In the same way, we obtain P{C N (,>; B, 1} > (1 — 3,5, 47"~ HP{C}. Since
both the events C N (),>; Ay, ; and C N(,>; B, are contained in C, we con-
clude that with positive probability none of the events A,, and B, occur, finishing
the proof of the claim.

All that remains is to prove inequalities (3.1) and (3.2). We first prove the bound
on P{A,+1|A;} (it will be seen that the bound on P{A,|C} follows by the same
proof). Call a child of x,, good if it has at least f(n 4 1) children, and write G,
for the number of good children of x,. We note that, given Y;,, the distribution of
G, is Bin(Y,, p), where p, the probability that a given child is good, is at least
1 — Fz(f(n+ 1)) = f(n)~*. By the way the algorithm chooses the vertex x,1,
we also note that A,4+; can occur only if G, < Yn] ~%/2. Thus, conditional on
Y, > f(n),if A,y occurs, then

Gn <Y 7%/2 <Y, f(n)"/2 <E{G,}/2.

Hence,
. 11—«
PlAnil45) < PGy = 2|1, = s
—f(n)““)
< 7
< exp( g
< yrES) [by Lemma 2.6(ii)].

We now prove P{B,,11|B;;} < 4~@+D (the proof bounding P{ B,|C} being iden-
tical). Note that by Lemma 2.6(iii),

flan +a) > f(an) f(an + 3).
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Thus, in order for the event Z,+| > f(an + a) to occur, conditional on Z, <
f (an), there must be some node in generation »n having at least f (an + 3) children.
Taking Z(i) to be an independent copy of Z for each i, the probability of this is
bounded as follows:

P{max{Z(1), ..., Z(f(an))} > f(an +3)}
< fan)P{Z > f(an+3)}
< flan)(1 — Fz(f(an +3)))
< f(an)fan+1)~"  [by Lemma 2.6(i)]

< yTES [by Lemma 2.6(ii)].

The proof of the Equivalence theorem (in its second form) is complete. Note that
in the process, we have also proved that f is a speed of Z; thus, by Lemma 2.5,
Theorem 2.4 also follows.

First form of the Equivalence theorem. One might hope that the first form of
the Equivalence theorem could be deduced from the second by some very simple
reasoning, perhaps considering for each weight distribution W the set of trees T
for which Wex (T') # Wwms(T). However, the fact that there are uncountably many
possible weight distributions seems to be problematic for such a direct approach.

Taking T to be a random Galton—Watson tree with offspring distribution Z con-
ditioned to survive, we will prove that the following chain of containments holds
almost surely:

Wwus(T) € Wwms(Z) € Wex(T).

From this the Equivalence theorem in its first form immediately follows.

That the first inclusion holds almost surely follows from the fact that the rate
of growth of generation sizes of T may almost surely be bounded in terms of the
speed f of Z. Specifically, taking a = 3 4 2[log2/log(1 + €)1 as in Claim 3.1,
we will show that almost surely there exists a constant ¢ such that Z, < f(an +
c¢) for all n. For z € N, let r(z) denote the greatest » for which z > f(r). If no
bound of the form Z,, < f(an + ¢) holds, then there must be infinitely many n
for which 7 (Z,, 1) > r(Z,) + a. However, our proof of (3.2) demonstrates that the
probability that Z,,+1 > f(r + a) given that Z,, < f(r) is at most 4" Since f is
a speed of Z, the sequence of probabilities 4~ (%») is summable almost surely, and
so this event has probability zero.

That the second inclusion holds almost surely follows from the fact that we
may apply the above algorithmic approach to finding an exploding path to any
rooted subtree of T which survives. For a node v, let T, denote the subtree of its
descendants. Denote by s(7) the number of nodes of generation n for which T, is
infinite. As T is conditioned on survival, the function s(n) is unbounded almost
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surely ([4], Chapters 10-12). Let now W € W\s(Z). The above algorithm, applied
independently to each node of generation n for which T, is infinite, has positive
probability p > 0 of producing an exploding path in each. Thus, the probability of
no exploding path is at most (1 — p)* for all s, and so is 0.

The set of weights of infinite rooted paths. The following theorem character-
izes the set of all possible values the weights of infinite rooted paths can take
conditioned on the survival of the Galton—Watson tree. Note that the theorem is
valid in general and does not require the plumpness condition.

THEOREM 3.2. Let Z be an offspring distribution and W a nonnegative
weight distribution which is not a.s. zero. Then almost surely conditioned on sur-
vival, the set of weights of infinite rooted paths is [A, o0], where A is the infimum
weight of infinite rooted paths.

PROOF. By applying the transformation discussed in the Introduction if nec-
essary, we may assume that W has no atom at zero. Note that clearly the transfor-
mation does not change the weights of infinite rooted paths.

The theorem is clearly true if W ¢ Wgx(Z) since in this case, conditioned on
survival, all infinite rooted paths have infinite weight. So in the following we as-
sume W € Wgx(Z2).

By a straightforward compactness argument, it suffices to show that for any
¢’ > 0, there exists (almost surely) an infinite path with weight in [a, a + &', for
alla > A.

Let ¢ < ¢&’/4 be such that P{W € (g, 2¢)} > 0; such an & must exist since W €
Wex(Z) and W has no atom at zero. Define the path-weight pw(v) of a node v to
be the sum of the edge weights on the path from v to the root. Now let

Si={veT|pw() € [ie, (i + De)}.

The choice of ¢ is such that if v € §;, then for any given child w of v, w € S;41 U
Si+> with a constant positive probability.

Since explosion occurs, there is some least integer £ such that S, is infinite; we
then have A > £¢. We may explore Sp, Si, ... in turn, each time uncovering all
of S;, as well as all children of nodes in S;. In the process of exploring S;, each
node we explore whose parent is in Sy will have a constant positive probability
of being in S¢4+1 U Sp42, thus, a.s. at least one of Sy and S¢4- is infinite too.
Moreover, since explosion occurs, each such node will have a positive probability
of being the root of an infinite path of length at most €. Thus, Sy U Se42 U Se43
must contain an infinite path a.s. Continuing inductively, we find that a.s. for any
integer j > £, one of the sets S; or §; 1 should be infinite, and there is an infinite
path of total weightin [je, (j +4)¢e).
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Now choosing j suchthata € [je, (j+ 1)¢), we infer the existence of an infinite
path with length in the interval [a,a + 4¢] C [a,a +¢&']. O

4. Equivalent conditions for min-summability. In the previous section,
we proved an Equivalence theorem between explosion and min-summability for
branching processes with plump offspring distributions. Though the existence of
such a result is certainly nice in its own right, one may wonder if the property of
min-summability is in any sense substantially simpler than that of explosion. The
aim of this section is to answer this question in the affirmative by proving Theo-
rem 1.3, which provides a necessary and sufficient condition for min-summability
that involves a calculation based only on the distributions. We then provide some
examples at the end of this section.

Let W be a random variable taking values in [0, co) and let o = (0;);>0 be a
sequence of positive integers. Then we have the following:

PROPOSITION 4.1. The nonnegative random variable W is o-summable if
and only if the following two conditions are satisfied:

@) > (P{W >1})™ <oo and

n

(ii) Z/Ol(IP’{W > 1)) dt < oo.

PROOF. As in Section 2, let W,{ be an independent copy of W foreach n, j €
N and let

Ay = min W].
lfjf(rn

Clearly, A, is a sequence of nonnegative and independent random variables. By
Kolmogorov’s three-series theorem (see, e.g., Kallenberg [21] or Petrov [25]), we
have ), A, < oo almost surely if and only if

ZIP’{An > 1} < o0,
n

ZE{Anl[Anfl]} <0
n

and

Z Var{A,1{5,<1]} < 00.
n

Since W is nonnegative, random variables A, 1[5,<1] take value in [0, 1], and so
the third condition follows from the second one. Now, P{A, > 1} = (P{W > 1})°»,
and E{A 15, <11} = (fo1 (P{W > t})°» dt) —P{A, > 1}, thus proving the theorem.

Il
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In the case of a random integer sequence given by the generation sizes, it is also
possible to give a result analogous to Proposition 4.1 (whose proof is omitted).

PROPOSITION 4.2. Let {Z,} be a Galton—Watson process with an offspring
distribution Z, satisfying Z > 1 almost surely. Let A\, be the minimum weight of
the nth generation. We have

P{XH:A" <oo}:1

if and only if the following two conditions are satisfied.

(i) P{Z(P{W > 1)) < oo} =1 and

n

1
(i) P{Z/O (P(W > 1)) 2 dr < oo} —1.
Otherwise, P{}", A, < oo} =0.

The two above propositions are likely the most general form of necessary and
sufficient conditions on min-summability one may hope for. However, under some
extra conditions on the sequence o, it is possible to unify the two conditions of
Proposition 4.1 into one single and simpler condition.

COROLLARY 4.3. Let o be a sequence of integers such that there exists ¢ > 1
with the property that for all large enough values of n, 0,41 > ¢ - oy (think of
the speed function f; see Lemma 2.6). Then W is o-summable if and only if

p Fv;l(é) < 00.

PROOF. Note that, under the assumption of the corollary on the growth of o,
condition (i) of Proposition 4.1 always holds, provided that P{W > 1} < 1.

Let o be a sequence satisfying the condition 0,41 > c -0, forall n. Let ag =0
and a, = FVT,I (é) forn > 1, and suppose that }_, - a, < 0. In this case, trivially
P{W > 1} < 1. We show that condition (ii) of Proposition 4.1 holds. We have
/OI(IP’{W 1)) dt = /Oa" ‘W )i+ [ W > dn)™

Aapn—1

<ap-1+ Z am—l((P{W > am})on - (P{W > am—l})an)

m=1

n
<1+ Y am_1(1—1/0y)".

m=1
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Thus,

1
Z/O (P{W > )7 dt < an+ Y am—1 ) (1 —1/0y)™

n n=m

<Dan+Y amt y_ (1= 1/a)" "o
n m

n>m

oo .
= Zan + Zam—l Ze—c/
n m j=0

=0(1)) a, <oo.

This shows that W is o -summable.
To prove the other direction, suppose that W is o-summable, so that by Propo-
sition 4.1,

Z/(;l(]P’{W > 1)) dt < 0.

Since W is o-summable, we have Fy (1) > 0 and so there exists an integer N
such that forn > N, a,, < 1. Thus,

Z/I(P{W>t})o”dt >y fa"(IP’{W>t})"" dt
—Jo - 0

n>N

> /Oan(l —P{W <a,})”" dt

n>N

It follows that ), a, < oo and the corollary follows. [J

Combining the above corollary with Theorem 2.4 and Proposition 2.3, we infer
a proof of Theorem 1.3.

Examples and special cases. Here we give a family of examples of applica-
tions of Proposition 4.1. The notation is that of Proposition 4.1. (In particular,
A, is the minimum of o, copies of the weight distribution W.)

(i) If W > a > 0, then condition (ii) of Proposition 4.1 does not hold, and so
> u A = oo. (This also trivially follows from A, > a.) This example shows that
the only interesting cases occur when 0 is an accumulation point of the distribution.
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(i) If W = 0 with probability p > 0, then both the conditions of Proposi-
tion 4.1 hold if >_,(1 — p)?" < 0o. On the other hand, >, A, < oo implies that
> (1 —p—¢e)° < oo forevery ¢ € (0, p). This case is not of prime interest either.
The case p =0 with 0 being an accumulation point of W is the most interesting.

(iii) If W is uniform on [0, 1], then the conditions of Proposition 4.1 are equiv-
alent to
1

P

n

(iv) If W is exponential, then A, £E /on, where E is exponential. The se-
quence A, has almost surely a finite sum if and only if

1

<o
n On
(v) For the sequence o;, = n, assuming that there is no atom at the origin and
that 0 is an accumulation point for W, it is easy to verify that ), A, < oo almost
surely if and only if

o
—___ _di<oo.
/o Pw>n T

(vi) For the sequence o, ~ ¢, with ¢ > 1 a positive constant, and assuming no
atom at the origin, but with 0 an accumulation point for W, it is easy to verify that
> » An < 00 almost surely if and only if

/Olln<m) dt < 00.

5. Sharpness of the condition in the Equivalence theorem. The main result
of this article, the Equivalence theorem, gives a sufficient condition on a distribu-
tion Z for the equality Wgx(Z) = Wwms(Z) to occur. This condition, that for some
& > 0 the inequality P{Z > m'*#} > 1/m holds for all sufficiently large m € N, de-
mands that Z has a heavy tail and, furthermore, that the tail is consistently heavy.
This condition ensures that the generation sizes (equivalently, the speed) of 