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Let S be a Polish space and (X, :n > 1) an exchangeable sequence of S-

valued random variables. Let o, (-) = P(X,,4+1 € - | X1, ..., Xp) be the pre-

.. o weak
dictive measure and o a random probability measure on S such that o, — «

a.s. Two (related) problems are addressed. One is to give conditions for o < A
a.s., where A is a (nonrandom) o -finite Borel measure on S. Such conditions
should concern the finite dimensional distributions £(X1q,..., X,), n > 1,
only. The other problem is to investigate whether ||o;, — of| a5 0, where
|l - || is total variation norm. Various results are obtained. Some of them do not
require exchangeability, but hold under the weaker assumption that (X) is
conditionally identically distributed, in the sense of [Ann. Probab. 32 (2004)
2029-2052].

1. Two related problems. Throughout, S is a Polish space and
X=(X1,X,...)

a sequence of S-valued random variables on the probability space (€2, A, P). We
let B denote the Borel o-field on S and S the set of probability measures on B.
A random probability measure on S is amap « : 2 — S such that o (o) C A, where
o (w) is the o-field on Q2 generated by w — «(w)(B) for all B € B.

For each n > 1, let o, be the nth predictive measure. Thus, o, is a random
probability measure on S, and o, (-)(B) is a version of P(X, 11 € B | X1,...,X,)
for all B € B. Define also ag(-) = P(X; € -).

If X is exchangeable, as assumed in this section, there is a random probability
measure ¢ on S such that

oy (w) &a]; o(w) for almost all w € 2.

Such an « can also be viewed as

Un () &ak o(w) for almost all w € 2,
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where w, = % '_; 8x, is the empirical measure. Further, o grants the usual rep-
resentation

P(XeB)= /a(a))oo(B)P(da)) for every Borel set B C S°°,

where a(w)® = a(w) X a(w) X ---.
Let A be a o-finite measure on B. Our first problem is to give conditions for

(D) a(w) KA for almost all w € Q2.

The conditions should concern the finite dimensional distributions £(X1, ..., X,),
n > 1, only.

While investigating (1), one meets another problem, of possible independent
interest. Let || - || denote total variation norm on (S, B). Our second problem is to
give conditions for

oy — ol = 0.

2. Motivations. Again, let X = (X1, X», ...) be exchangeable.

Reasonable conditions for (1) look of theoretical interest. They are of practical
interest as well thanks to Bayesian nonparametrics. In this framework, the starting
point is a prior 7 on S. Since 7 = P o ™!, condition (1) is equivalent to

n{veS:vkA}=1.

This is a basic information for the subsequent statistical analysis. Roughly speak-
ing, it means that the “underlying statistical model” consists of absolutely contin-
uous laws.

Notwithstanding the significance of (1), however, there is a growing literature
which gets around the first problem of this paper. Indeed, in a plenty of Bayesian
nonparametric problems, condition (1) is just a crude assumption and the prior
is directly assessed on a set of densities (with respect to A). See, for example,
[11] and references therein. Instead, it seems reasonable to get (1) as a consequence
of explicit assumptions on the finite dimensional distributions £(X1, ..., X,),
n > 1. From a foundational point of view, in fact, only assumptions on observ-
able facts make sense. This attitude is strongly supported by de Finetti, among
others. When dealing with the sequence X, the observable facts are events of the
type {(X1,..., X,) € B} for some n > 1 and B € B". This is why, in this paper,
the conditions for (1) are requested to concern £(X1, ..., X;), n > 1, only.

Some references related to the above remarks are [3] and [5-10]. In particular,
in [6] and [7], Diaconis and Freedman have an exchangeable sequence of indica-
tors and give conditions for the mixing measure (i.e., the prior ) to be absolutely
continuous with respect to Lebesgue measure. The present paper is much in the
spirit of [6] and [7]. The main difference is that we give conditions for the mixands
{a(w) : w € 2}, and not for the mixing measure r, to be absolutely continuous.
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Next, a necessary condition for (1) is
2) L(Xq,..., X)) <\ foralln > 1,

where A" = A x --- x A. Condition (2) clearly involves the finite dimensional dis-
tributions only. Thus, a (natural) question is whether (2) suffices for (1) as well.

The answer is yes provided o can be approximated by the predictive measures
oy, in some stronger sense. In fact, condition (2) can be written as

ap(w) K A for all n > 0 and almost all w € Q.
Hence, if (2) holds and ||« — | 25 0, the set
A={llan —a|| = 0} N {a, < A for all n > 0}
has probability 1. And, for each w € A, one obtains
a(w)(B) = lignozn (w)(B)=0 whenever B € B and A(B) =0.

Therefore, (1) follows from (2) and ||« — || 2% 0. In addition, a martingale
argument implies the converse implication, that is,

a&ras. & |og—af =50 and L(X1,...,X,) <\ for all n;

see Theorem 1. Thus, our first problem turns into the second one.

The question of whether |, — || 2% 0 is of independent interest. Among
other things, it is connected to Bayesian consistency. Surprisingly, however, this
question seems not answered so far. To the best of our knowledge, ||o;, — || 250
in every example known so far. And in fact, for some time, we conjectured that
llo, — ]| 2% 0 under condition (2). But this is not true. As shown in Example 5,
when S = R and A = Lebesgue measure, it may be that £(X1, ..., X,) < A" for
all n, and yet « is singular continuous a.s. Indeed, the (topological) support of
o (w) has Hausdorff dimension O for almost all w € €.

Thus, (2) does not suffice for (1). To get (1), in addition to (2), one needs some
growth conditions on the conditional densities. We refer to forthcoming Theorem 4
for such conditions. Here, we mention a result on the second problem. Actually,

for ||a;, — o] 2% 0, it suffices that
Plo:a.(w) <A} =1,

where o (w) denotes the continuous part of «(w); see Theorem 2.
Finally, most results mentioned above do not need exchangeability of X, but the
weaker assumption

X1, Xny Xng2) ~ (X1, -0, Xy Xag1) foralln > 0.

Those sequences X satisfying the above condition, investigated in [2], are called
conditionally identically distributed (c.i.d.).
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3. Mixtures of i.i.d. absolutely continuous sequences. In this section, Gy =
{2,Q},G,=0(X1,...,Xp) forn > 1and Goo = 0 (U,, G»). If 1t is arandom prob-
ability measure on S, we write w(B) to denote the real random variable p(-)(B),
B € B. Similarly, if #: S — R is a Borel function, integrable with respect to u(w)
for almost all w € Q, we write (k) to denote [ h(x)u(-)(dx).

3.1. Preliminaries. Let X = (X1, X2, ...) be c.i.d., as defined in Section 2.
Since X needs not be exchangeable, the representation P(X € ) =
[ a(w)®(-) P(dw) can fail for any o. However, there is a random probability mea-
sure @ on S such that

3) o(a@) CGo and o, (B)=E{a(B)|G,} a.s.

for all B € B. In particular, o, &ak a a.s. Also, letting
1 n
Mn = — Z SXI'
i

.. . Kk . .
be the empirical measure, one obtains p, T @ as. Such an « is of interest for
one more reason. There is an exchangeable sequence Y = (Y1, Y2, ...) of S-valued
random variables on (L2, A, P) such that

Xy Xnsts ) -5 v and P(Ye-):[oz(a))oo(-)P(da)).

See [2] for detalils.

We next recall some known facts about vector-valued martingales; see [14]. Let
(Z, ||l - ll+) be a separable Banach space. Also, let 7 = (F;,) be a filtration and (Z,,)
a sequence of Z-valued random variables on (2, .4, P) such that E||Z,]« < co
for all n. Then, (Z,) is an F-martingale in case (¢(Z,)) is an F-martingale for
each linear continuous functional ¢ : Z — R. If (Z,) is an F-martingale, (|| Z,|«)
is a real-valued F-submartingale. So, Doob’s maximal inequality yields

p
E{supuznnﬁ}g(L) sup E{||Z,]|I?}  forall p> 1.
n P 1 n

The following martingale convergence theorem is available as well. Let Z: Q — Z
be F-measurable and such that E||Z|. < oo, where Foo = 0o (U,, Fr). Then,

Z, 27z provided ¢ (Z,)) = E{¢(Z) | F,} a.s. for all n and all linear continuous
functionals ¢ : Z — R.

3.2. Results. In the sequel, A is a o-finite measure on 5. When S = R, it may
be natural to think of A as the Lebesgue measure, but this is only a particular case.
Indeed, A could be singular continuous or concentrated on any Borel subset. In
addition, X is c.i.d. (in particular, exchangeable), and « is a random probability

k . . k
measure on S such that «;, e aas. Equivalently, o can be obtained as u, i Y
a.s. It can (and will) be assumed o (o) C Goo.
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THEOREM 1. Suppose X = (X1, X2, ...) is c.i.d. Then, « < X\ a.s. if and only
if lan — all =5 0 and L(X1, ..., X,) <A™ for all n.

PROOF. The “if” part can be proved exactly as in Section 2. Conversely,
suppose @ < A a.s. It can be assumed a(w) K A for all w € Q2. We let L, =
L,(S,B,)) foreach 1 < p <oo.

Let f:Q x S — [0, 00) be such that a(w)(dx) = f(w, x)A(dx) for all w € Q.
Since B is countably generated, f can be taken to be A ® B-measurable (see [4],
V.5.58, page 52) so that

1= / 1dP = // (@, x)A(dx)P(dw) = / E{f (- 0)}A(dx).
Thus, given n > 0, E{f (-, x) | G, } is well defined for A-almost all x € S. Since X
is c.i.d., condition (3) also implies

[ L0 Gulian = E{ [ e.nnan 16,

= E{a(B) |Gy} =an(B) a.s. for fixed B € B.
Since B is countably generated, the previous equality yields
on()(dx) = E{f(-,x) | Gn}(@)A(dx) for almost all w € .

This proves that £(X1, ..., X,) < A" for all n. In particular, up to modifying «;,
on a P-null set, it can be assumed o, (w)(dx) = f,(w, x)A(dx) for all n > 0, all
w € , and suitable functions f,: Q2 x § — [0, 00).

Regard f, f,,: 2 — L as Lj-valued random variables. Then, f:Q — L is
Goo-measurable for [h(x) f (-, x)A(dx) = a(h) is Goo-measurable for all & € L.
Clearly, || f (@, )L, = I fa(w, )|, =1 for all n and w. Finally, X c.i.d. implies

EL/MMf@XMMﬂI%}=EMMHQd=aAm

_ fh(x)fn(-,x),\(dx) as. forall h € L.

By the martingale convergence theorem (see Section 3.1) f, 25 f in the
space L1, that is,

1
|t (@) — ()| = 3 /Ifn(w,X) — f(w,x)|A(dx) — 0
for almost all w € Q2.
O

In the exchangeable case, the argument of the previous proof yields a little bit
more. Indeed, if X is exchangeable and o < X a.s., then

sup [ P{(Xus1, . Xok) € B | Ga) = o (B)| 2350,
BeBk
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where k > 1 is any integer and o =« x - -+ x a.

The next result deals with the second problem of Section 1. For each v € S, let v,
and v, denote the continuous and discrete parts of v, that is, vy(B) = >, cp v{x}
forall B e Band v, =v — vy.

THEOREM 2. Suppose X = (X1, X3,...) is c.i.d. and P{w:o.(w) K A} = 1.
Then, |lan — || =5 0 if and only if

there is a set Ay € A such that P(Ag) = 1 and
ap(@){x} — a(w){x} forall x € S and w € Ay.

)

(Recall that A denotes the basic o -field on 2). Moreover, condition (4) is automat-

ically true if X is exchangeable, so that |« — || 250 provided X is exchange-
able and a. < A a.s.

PROOF. The “only if” part is trivial. Suppose condition (4) holds. For each
n > 0, take functions 8, and y,, on 2 such that 8, (w) and y, (w) are measures on
B for all w € Q2 and

Bn(B) = E{ac(B) | Gu}, ¥n(B) = E{aa(B) | G} a.s.
for all B € B. Since X is c.i.d., condition (3) yields «,, = 8,, + ¥ a.s.

We first prove |8, — ol 2% 0. It can be assumed ac(w) K A for all w € €2,
so that o (w)(dx) = f(w, x)A(dx) for all w € 2 and some function f:Q2 x § —
[0, 00). For fixed B € B3, arguing as in the proof of Theorem 1, one has

g8 = E| [ £60m@n 16} = [ B0 1600 as

By standard arguments, it follows that B, < A a.s. Again, it can be assumed
Bn(@)(dx) = fru(w, x)A(dx) for all w € Q2 and some function f, : 2 x S — [0, 00).
Define L1 = L{(S, B, 1) and regard f,, f:Q2 — L as Li-valued random vari-

ables. By the same martingale argument used for Theorem 1, one obtains f;, 25 f
in the space L. Thatis, |8, — .|| 2%0.
We next prove ||y, — a4l 2% 0. Take Ag as in condition (4), and define

Ar={lim | f, = flle, =0and @, = B, + y forall n > 0}.
Then, P(AgN A1) =1 and
aq(@){x} =a(@){x} — ac(w){x} = a(w){x} — f(®, x)A{x}
= lim(ay (@){x} = fu(@, ¥)A{x}) =lim(a, (@) {x} — By (@) {x})
= limy;, (w){x}
for all w € AgN Aq and x € S. Define also
A=A)N AN {ya(S) — aq(5)}.
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Since y,(S) =1 — B,(S) 25 1 — ae(S) = ag(S), then P(A) = 1. Fix w € A and
let D, ={x € S:a(w){x} > 0}. Then
a4(@)(Dy) < liminfy, () (D)
since D,, is countable and oy (w){x} = lim, y,, (w){x} for all x € D,,. Further,
1imnsup Yn(@)(Dy) < 1imnsup Yn(@)(S) = ag (@) (S) = ag(w)(Dy).

Therefore, lim,, ||y, (@) — aqg(w)]| = 0 is an immediate consequence of

Y (@){x} — ag(w){x} for each x € D,,,
2a(@)(Dy) = limy,(@)(Dy),  aa(w)(Dg) =limy,(w)(D;) =0.

Finally, suppose X is exchangeable. We have to prove condition (4). If S is
countable, condition (4) is trivial for o, (B) 25 a(B) for fixed B e B.If S =R,
the Glivenko—Cantelli theorem yields sup, |u,(Ix) — a(ly)] 25 0, where I, =
(—oo, x]and u, = % "_| 8x; is the empirical measure. Hence, (4) follows from

supla, (1) — pn (1) | =5 0;
X

see Corollary 3.2 of [1]. If S is any uncountable Polish space, take a Borel isomor-
phism ¥ : § — R. (Thus 1 is bijective with ¥ and v ~! Borel measurable). Then
(¥ (X,)) is an exchangeable sequence of real random variables, and condition (4)
is a straightforward consequence of

P{y(Xp1) € BIY (XD, ..., ¥(Xp)} = P{Y(Xp+1) € B| Gy}

—a,(y'B)  as.
for each Borel set B C R. This concludes the proof. [

When X is c.i.d. (but not exchangeable) ||, — o¢|| 2% 0 needs not be true even
if o, <K A as.

EXAMPLE 3. Let (Z,) and (U,) be independent sequences of independent
real random variables such that Z, ~ N(0,b, — b,_1) and U, ~ N (0,1 — b,),
where 0 =bg <b) <by <---<land) ,(1—b,) < oo.Asshownin Example 1.2
of [2],

n
Xn=>_Zi+ U,
i=1

is c.i.d. and X, 2% V for some real random variable V. Since Un Vial)( Sy a.s.,
then @« = §y and o, < A a.s. (in fact, o = 0 a.s.). However, condition (4) fails.
In fact, £(X1,..., X)) < A" for all n, where A is Lebesgue measure. Hence,
o, (w){V (w)} =0 while a(w){V (w)} = 1 for all n and almost all w € 2.
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We now turn to the first problem of Section 1. Recall that condition (2) amounts
to o, < A a.s. for all n > 0. Therefore, up to modifying «,, on a P-null set, under
condition (2) one can write

ap(w)(dx) = fu(w, x)A(dx)
for each w € 2, each n > 0 and some function f,: 2 x § — [0, 00). We also let

K ={K : K compact subset of S and A(K) < oo} and
Ag(:) =A(-NB) for all B € B.

THEOREM 4. Suppose X = (X1, X2,...) is c.id. and L(X1,..., X)) <K\
forall n. Then a < A a.s. if and only if, for each K € IC,

(5) the sequence (f,(w, -):n > 1) is uniformly integrable,
in the space (S, B, L), for almost all w € Q2.

In particular, @ < A a.s. provided, for each K € IC, there is p > 1 such that
(6) sup/ fulw, x)PA(dx) < 00 for almost all w € 2.
n JK

Moreover, for condition (6) to be true, it suffices that

supE{f fnpdk} < 0.
n K

PROOF. If o <« A a.s., Theorem 1 yields |la;, — || 250. Thus, f,(w, ) con-
verges in L1(S, B, 1), for almost all w € €2, and this implies condition (5). Con-
versely, we now prove that ¢ < A a.s. under condition (5).

Fix a nondecreasing sequence By C By C - - such that B, € B, A(B,,) < oo, and
U, Bn = S. Since A(B1) < oo and S is Polish, there is K1 € IC satisfying K1 C B
and A(B; N K{) < 1. By induction, for each n > 2, there is K, € K such that
K,—1CK,CB,and A(B,NK}) < 1/n. Since X is c.i.d., condition (3) implies

a(K,) = liy{nE{ot(Km) |G} = lir{nan(Km) a.s. forall m > 1.
Define H =J,,, Km and Ay ={a(H) =1}. If w € Ay, then
a(w)(B) =a(w)(BN H)=supa(w)(BN K,) for all B € B.
m
Moreover, P(Ag) = 1. In fact, A\(H¢) = 0 and o, < A a.s. for all n, so that
ot(H):li}{nE{oz(H)|gn}=li’£noen(H)=l a.s.

Thus, to prove o < A a.s., it suffices to see that a(- N K,;;) < A a.s. for all m.
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Suppose (5) holds. Fix m > 1, define K = K,,, and take a set A € A such that
P(A) =1 and, for each w € A,

a(@)(K) =lima,@)(K),  an@) "> ().

(fn (w,):n>1) is uniformly integrable in (S, B, Ag).

Let w € A. Since Ax(S) = A(K) < oo and (f,(w,-):n > 1) is uniformly inte-
grable under Ak, there is a subsequence (n;) and a function ¥, € L1(S, B, Ag)
such that fnj (w, ) — V¥, in the weak-topology of L{(S, B, Ax). This means that

| dordn =tim [ f @ 0rdn) =lima, @B K)
BNK j JBNK J
for all B € B.

Therefore,

| Vo) =tima,, @)(K) =a@)(K) and
J

f Vo (X)A(dx) =limay; (w)(F N K) < a(w)(FNK)
FNK J )

for each closed F' C S.

By standard arguments, the previous two relations yield
a(w)(BNK)= f Yo (x)A(dx) forall B € B.
BNK

Thus, «(w)(- N K) < A. This proves that condition (5) implies o << A a.s.

Next, since p > 1, it is obvious that (6) = (5). Hence, it remains only to see
that condition (6) follows from sup,, E{/ fPdxr) < oo.

Fix B € B, p > 1, and suppose sup,, E{ /5 ff dA} < co.Let L, = L, (S, B, )
for all r. It can be assumed [ fn(w, x)PA(dx) < oo forall w € 2 and n > 1. Thus,
each f,: €2 — L, can be seen as an L ,-valued random variable such that

E( Al b =£{( [ f,{’dk>1/p} < (E{Afnpdx})l/p <.

Further, [ f, (-, x)h(x)Ap(dx) = a, (Iph) is G,-measurable for all # € L,, where
g =p/(p—1). Since X is c.i.d., condition (3) also implies

E{ [ friCoonGnp@n | gn}

= E{ay4+1(Igh) | Gn}
= E{E(a(Iph) | Gut1) | Gn}
= E{a(IBh) | gn} =an(Iph)

= / Jn G, x)h(x)Ap(dx) as.forallh e L.
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Hence, (f;) is a (G,)-martingale. By Doob’s maximal inequality,

E{s;lp/Bfnpdx}:E{sgpnfnnip}

<q”swp E{ll ful] } =¢" supE{/ fn”d/\} < 0.
n n B
In particular, sup,, [z fi¥ dx < oo a.s., and this completes the proof. [

Some remarks on Theorem 4 are in order.

First, for S = [0, 1] and a particular class of exchangeable sequences, results
similar to Theorem 4 are in [12] and [13].

Second,

f (CL) ) — gn—H(Xl(w)» ey X}’l(a))’ )

gn(X1(@), ..., Xp(®))

where each g, :S" — [0, 00) is a density of £L(X1,..., X,) with respect to A".
Thus, more concretely, one obtains

/ f[)d)\‘:ngn+l(le~~-9Xn9x)p)"(dx)
k" gn(X1, ..., Xp)P

Third, suppose X exchangeable, and fix any random probability measure y on S
such that P(X € ) = [y (@)*°(-) P(dw). Then y <« A a.s. under the assumptions
of Theorem 4. In fact, @ and y have the same probability distribution, when re-
garded as S-valued random variables.

A last (and important) remark deals with condition (2). Indeed, even if X is ex-
changeable, condition (2) is not enough for & < A a.s. We close the paper showing
this fact.

for almost all w € 2,

EXAMPLE 5. Let § =R and A = Lebesgue measure. All random variables
are defined on the probability space (2, .4, P). We now exhibit an exchangeable
sequence X such that £(X1,..., X,) < A" foralln > 1 and yet P(a¢ < 1) =0. In
fact, the support of «(w) has Hausdorff dimension O for almost all w € €.

Two known facts are to be recalled. First, if T and Z are independent R”-valued
random variables, then

P(T+ZeB) :/P(T +z € B)P(d2),

where B € B" and Pz is the distribution of Z. Hence, L(T + Z) < A" provided
L(T) < A". The second fact is the following:

THEOREM 6 (Pratsiovytyi and Feshchenko). Let Z1, Z, ... be i.i.d. random
variables with P(Z1 =0)= P(Z1=1)=1/2and by > by > - -- > 0 real numbers
such that Y, by, < 0o. Then the support of L(3_,, bmZm) has Hausdorff dimen-
sion O whenever limy, (3_ -, bj)_lbm = 00.
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Theorem 6 is a consequence of Theorem 8 of [15] (which is actually much more
general).
Next, let U, and Y, , be independent real random variables such that:

e U, is uniformly distributed on (m i m) for each m > 1;
¢ P(Yuy=0)=PYp,=1)=3forallmn>1
Define V,, = U} and

H—ZU’" mn—Zv Yonon-

m=1

Then, X = (X1, X2, ...) is conditionally i.i.d. given V = o (V], V3, ...). Precisely,
for w € Q and B € B, define

a(w)(B) = P{u €Q:) V(@)Y 1(u) € B}.

Then, o(B) is a version of P(X; € B|V) and P(X € -) = [ a(w)*°(-) P(dw). In
particular, X is exchangeable. Moreover, u, veik & as. for

weak

P(u, —a|V)=1 a.s.

The (topological) support of «(w) has Hausdorff dimension O for almost all
w € Q. Define in fact b,, = V,(w) and Z,, = Y}, 1. By Theorem 6, it suffices to
verify that
Vin (@)
(7) Iim ———— = for almost all w € Q2.
moy; j>m V (w)
And condition (7) follows immediately from

G+ <Vy<j/ and
(m—l—l)m
Vi< /< /= S.
YvisY s Ymeni="0
j>m j>m j>m

We finally prove that £(X1, ..., X,;) < A" for all n > 1. Given the array y =
Ymp:m,n > 1), with y,, , € {0, 1} for all m, n, define

Xn,y = Z mem,n-
m

Fix n > 1 and denote I, the n x n identity matrix. If y satisfies
Ym+1,1 -+ Ym+1ln

(8) =1, for some m > 0,
Ym+n,1 -+ Ym+n,n
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then

(Xl,y, ---,Xn,y) = (Vm—l—l» cees Vm+n) + (Rla cees Rn)
with (Ry, ..., R,) independent of (Vy41, ..., Vintn).

In this case, since L(Vpyi1,..., Vipn) < A", then L(Xqy,..., Xpy) < A"
Hence, letting Y = (Y, , : m, n > 1), the conditional distribution of (X1, ..., Xp)
given Y = y is absolutely continuous with respect to A" as far as y satisfies (8). To
complete the proof, it suffices to note that

P(Y =y for some y satisfying (8)) = 1.
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