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MONOTONE STABILITY OF QUADRATIC SEMIMARTINGALES
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In this paper, we study the stability and convergence of some general
quadratic semimartingales. Motivated by financial applications, we study si-
multaneously the semimartingale and its opposite. Their characterization and
integrability properties are obtained through some useful exponential sub-
martingale inequalities. Then, a general stability result, including the strong
convergence of the martingale parts in various spaces ranging from H! to
BMO, is derived under some mild integrability condition on the exponential
of the terminal value of the semimartingale. This can be applied in particular
to BSDE-like semimartingales.

This strong convergence result is then used to prove the existence of so-
lutions of general quadratic BSDEs under minimal exponential integrability
assumptions, relying on a regularization in both linear-quadratic growth of
the quadratic coefficient itself. On the contrary to most of the existing liter-
ature, it does not involve the seminal result of Kobylanski [Ann. Probab. 28
(2010) 558-602] on bounded solutions.

1. Introduction. The Backward Stochastic Differential Equations (BSDEs)
were first introduced by Peng and Pardoux [36] in 1990 in the Lipschitz continu-
ous framework, and then extended to continuous with linear growth framework by
Lepeltier and San Martin [28] in 1997. They have been soon recognized as power-
ful tools with many different possible applications. More recently, there has been
an accrued interest for quadratic BSDEs, with various fields of application such as
risk sensitive control problems or dynamic financial risk measures and indifference
pricing in mathematical finance.

In this case, the BSDE is an equation of the following type:

(1.1) —dY, =g, Y, Zy)dt — Z; dW;, Yr =§r,

where W. is a standard Brownian motion, and the coefficient g satisfies the follow-
ing quadratic structure condition Q(l., c., §):

1 I}
(1.2) |g(r,y,z>|sw,y,z)Egl,+ct|y|+5|z|2, dP @ dt-as.,
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where § > 0 is a given constant, and (/;), (¢;) are predictable nonnegative pro-
cesses.

The first result concerning the existence and uniqueness of solutions to these
equations was obtained in the bounded case in a Brownian filtration setting by
Kobylanski [26] in 2000. The proof first relies on an exponential transformation as
to come back to the better known framework of BSDEs with a coefficient with lin-
ear growth and then uses a regularization procedure to take the limit. The major dif-
ficulty is then about proving the strong convergence of the martingale parts without
having to impose too strong assumptions. This seminal paper has been extended in
several directions, to a continuous setting by Morlais [33], to unbounded solutions
by Briand and Hu [6] or more recently by Mochel and Westray [32]. Some other
authors have obtained further results in some particular situations (see, e.g., Hu
and Schweizer [25], Hu, Imkeller and Muller [24], Mania and Tevzadze [31] or
Delbaen, Hu and Richou [11]). Recently in 2008, Tevzadze [39] has given a direct
proof for the existence and uniqueness of a bounded solution in the Lipschitz-
quadratic case.

We adopt in this paper a completely different approach and consider a forward
point of view to treat directly the questions of convergence. To do so, we introduce
the notion of general quadratic semimartingales in Section 2 and study their char-
acterization with regards to their integrability properties under some interesting
exponential transformations in Section 3. Mainly motivated by financial applica-
tions, where a seller price and a buyer price have to be given simultaneously, we
apply systematically the same assumptions on the semimartingale and on its oppo-
site. Having both exponential integrability properties proves to be essential in the a
priori estimation of their quadratic variations. In Section 4, we obtain a general sta-
bility result, including the strong convergence of the martingale parts as presented
in Theorem 4.5. The result is very general and simply require the existence of ex-
ponential moment of the absolute value of (or quantities related to) the terminal
value of the semimartingales. Our approach allows us to obtain the strong conver-
gence of the martingale parts in H!. Stability results are also obtained in various
spaces, depending on the assumption made on the terminal values. It is interesting
to note that, on the contrary to most of the existing literature, the space of BMO
martingales does not play any particular role as the semimartingales are no longer
bounded. This stability result is completed, in the BSDE framework, by the con-
vergence in total variation of the finite variation part. In Section 5, existence results
become a possible application of this stability result. More precisely, coming back
to our initial motivation of quadratic BSDEs, we first regularize the quadratic co-
efficient of the BSDE through inf-convolution as to transform it into a coefficient
with linear-quadratic growth. This regularization as linear-quadratic, and not sim-
ply linear, allows us to consider situations which are typically not considered in the
literature. Applying the stability result of the previous section, we can pass to the
limit and prove the existence result for general quadratic BSDEs, under “minimal”
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integrability assumptions. The power of the forward point of view is striking as ex-
istence results are easily obtained in a more general framework than the classical
existing literature. However, uniqueness results requires stronger assumptions on
the solutions, as in Kobylanski [26] for the bounded case, or for convex BSDEs,
as in Briand and Hu [6] or more recently in Mochel and Westray [32] with expo-
nential moments of any order, or in Delbaen, Hu and Richou [11] under weaker
integrability assumptions.

This approach has also other potential applications that we will not discuss here
for lack of space. We can just mention numerical simulations of quadratic BSDE:s,
study in terms of risk measures and dual representation, solving of associated HIB-
type equations.

2. Quadratic semimartingales. Quadratic BSDEs have recently received a
lot of attention, mainly due to the wide range of possible applications, involving
optimization problems with an exponential criterion, such as risk-sensitive con-
trol problems introduced by Fleming in the 1980s (see Fleming and Sheu [19]
for financial applications, or El Karoui and Hamadeéne for an application to risk-
sensitive zero-sum stochastic functional games [15]).

Financial applications have generated a renewed interest for this type of BSDE:s,
particularly in connection with the theory of dynamic risk measures as in Barrieu
and El Karoui [5], or indifference pricing with exponential utility (see, e.g., Rouge
and El Karoui [38], Mania and Schweizer [30] or the recent book edited by Car-
mona [8] among many other references). Therefore, it is particularly relevant to
understand the structure of these processes, and to obtain conditions ensuring their
stability.

In the classical martingale theory, Burkolder-Davis—Gundy-type estimates are
crucial to obtain convergence results for martingales in H” from the convergence
of their terminal values. The study of classical BSDEs with linear growth re-
lies also on precise a priori estimates coming from the martingale theory, arising
from a forward point of view (see, e.g., in a general framework, El Karoui and
Huang [17]). In this section, after having defined quadratic BSDEs, we adopt a
forward point of view, introducing quadratic semimartingales, with a similar struc-
ture condition, studying their main properties and deriving some characterization
results, which depend on various integrability assumptions. These results will be
very useful to derive some stability and convergence results in the next section.

2.1. Definition of quadratic BSDEs and quadratic semimartingales. Let us
briefly recall the definition of a quadratic BSDE. Let (2, F, P, (¥;)) be a filtered
probability space, where the filtration (F;) satisfies the usual conditions of com-
pleteness and right-continuity. The o-field on  x RT generated by the adapted
and left continuous processes is called the predictable o-field and denoted by P.
In this paper, we only consider continuous filtered probability space, that is, a fil-
tered probability space such that any locally bounded martingale is a continuous
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martingale. A classical example is the probability space generated by a Brownian
motion, and satisfying the usual conditions.

Definition of quadratic BSDEs. A quadratic BSDE is an equation of the fol-
lowing type:

2.1 —dY, =g, Y, Z)dt — Z,dW;, Yr =%&r,

where T > 0 is a given time horizon (possibly F;-stopping time), W. is a standard
d-dimensional (P, (¥;))-Brownian motion, and Z; d W; simply denotes the scalar
product. The Fr-random variable &7 is the terminal condition,? and the coeffi-
cient g is a P ® B(R x RY) measurable process satisfying the following quadratic
structure condition Q(l, c,§):

1)
22) gC,t,y, D=k, y, )=l +cilyl + §|Z|2’ dP ® dt-a.s.,

where § > 0 is a given constant, and (/.), (c.) are predictable positive3 processes.

By solution to the BSDE(g, £7) defined in equation (2.1), we mean a pair of
predictable processes taking values in R x Re, (Y, Z) ={(Y;, Z,); t € [0, T}, such
that the paths of Y are continuous, fOT |Z;|2dt < o0, fOT lg(t, Y, Zy)|dt < o0, P-
a.s., and

T T
(2.3) Yy =&r —i—/ g(s, Y, Zg)ds — / ZdWs, P-a.s.
t t

Note that, in the rest of the paper, this type of equality between two processes has
to be understood as holding up to indistinguishability.

This minimal definition will be completed later on by some further integrability
assumptions.

Definition of quadratic semimartingales. Adopting a forward point of view,
a solution of a quadratic BSDE is a quadratic 1t6’s semimartingale Y., where the
predictable process with finite variation satisfies the same quadratic structure con-
dition (2.2). Such a condition needs to be further specified when considering the
more general framework of quadratic semimartingales defined on a continuous fil-
tered probability space.

ZAs pointed out by one referee, the random variable £7 has to be in fact F—-measurable as
terminal value of a continuous process.

3In the rest of the paper, we adopt the following European terminology: a positive random variable
X verifies P(X > 0) = 1, and a strictly positive random variable verifies P(X > 0) = 1. In the same
way, a cadlag process K. is said to be increasing when, for any ¢, s such that ¢ > s, the random
variable A; — Ay is positive and strictly increasing when A; — Aj is strictly positive.
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DEFINITION 2.1 (Quadratic semimartingale). Let Y. be a continuous semi-
martingale, with the decomposition Y. = Yy — V. + M., where V. is a predictable
process with finite total variation |V|. and M. is a local martingale with quadratic
variation (M)..

Y. is a quadratic semimartingale if there exist two adapted continuous increas-
ing processes A. and C. and a positive constant §, such that the structure condition
Q(A, C, d) holds true:

1 5
2.4) dIV| < SdA+1Y,]dC+ S d(M), dP-as.

The symbol < stands for the strong order of increasing processes, stating that
the difference is an increasing process. Sometimes we use the short notation
DMC(Y,8) = LA + Y| » C., and even simply D€ when there is no ambiguity.
At this stage, no particular integrability assumption is made on the processes A.
and C..

Comments: (1) Observe that if Y. is a quadratic semimartingale, then —Y. is also
a quadratic semimartingale.

(ii) More generally, if Y. is a quadratic semimartingale and § > 0, Y? = §Y.
is a semimartingale associated with M® = §M. with quadratic variation (M?%). =
82(M). and V% = 8V. Then the structure condition for the process 8Y. becomes
d\V3|, <« dA; + |Y;3| dC; + %d(M‘S)t. This property justifies our choice of re-
stricting our study to quadratic semimartingales with constant § = 1, without any
loss of generality.

(iii)) The following notation specify different classes of quadratic semimartin-
gales, Q(A, C, §) for the general case, Q(A, C) whend =1, Qwhen A. =0,C. =
0,6§=1.

2.2. Exponential transformations and algebraic characterization of quadratic
semimartingales.

Some recalls on semimartingales on a continuous probability space. (i) Let us
first recall the conventional notation for the exponential martingale of a continuous
(local) martingale M. with quadratic variation (M ).

(2.5) E(M) =exp(M. — 1(M).).

(ii) A right continuous left limited submartingale (cadlag in the French denom-
ination) S. is a cadlag optional process S. = So 4+ N. + K., where N. is a local mar-
tingale and K. a predictable cadlag increasing process. The pair (N., K.) is called
the additive decomposition of S. When S. is a positive submartingale, (M., A.)
is said to be the multiplicative decomposition of S. if S. = Sp&. (M)exp(A.),
where M. is a local martingale and A. a predictable cadlag increasing process.
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(iii) Dellacherie and Meyer [13] (in Appendix 1—Probabilités et Potentiel B)
have extended this definition to right and left limited submartingales (also known
as strong submartingales) when the increasing predictable process K. is only with
left and right limits (ladlag in the French denomination), with the following de-
composition K. = K! + K2, where K! is a cadlag predictable increasing process

and K2 _is the process of the left limits of a cadlag optional increasing process K 2.

Characterization of Q-semimartingales when A =C =0and § = 1. The sim-
plest Q-semimartingales are those for which the structure condition Q is saturated,
thatis, V. = % (M).orV = —% (M).. Because of their importance, we refer to them
as ¢ (resp., g¢) semimartingales, and denote them by

r.(ro, M) =ro+ M. — 3(M). = ro + r.(M),
r(ro,M)=ro+ M + %(M> =rog—r(—M).

The operator M — r.(M) is not an additive operator, nevertheless r.(M) +
r(MYy=r(M+ M)+ (M,M). and r.(M) —r.(M') =r. (M — M") — (M —
M, M.

Taking the exponential of r.(M) immediately leads to the exponential martin-
gale E(M) =€" (M) defined in (2.5), whilst the exponential of r (M) leads to
etM = (E(—M))~L

It will also be interesting to introduce some asymmetry in the previous defini-
tion of Q-semimartingales, with the notion of Q-submartingales, especially useful
when characterizing the former.

(2.6)

DEFINITION 2.2. A OQ-submartingale is a continuous (or ladlag) semimartin-
gale X. = Xo— V. 4+ M. such that A. = -V. + %(M). is a predictable increasing

process. Equivalently, eX- = ¢X0t4-€ (M) is a continuous (Iadlag) submartingale.

Obviously a Q-semimartingale is a Q-submartingale. Remarkably, applying
this property to both X and —X is sufficient to characterize Q-semimartingales.
From a financial point of view, this means that the same rules have to be used to
characterize both the buyer’s and the seller’s price.

THEOREM 2.3. Let X. be a ladlag optional process. Then, X. is a Q-
semimartingale if and only if both processes X and —X are Q-submartingales,
or equivalently if and only if exp(X.) and exp(—X.) are submartingales. In all
cases, X. is a continuous process.

PROOF. We only have to prove the sufficiency. Assume that exp(X.) and
exp(—X.) are two ladlag submartingales, with respective multiplicative decom-
position (M.,A), and (M, A). Taking the logarithm leads to two different de-
compositions of X,

X.=Xo+M. —A(M).+A and —X.=-Xo+M — (M) +A.



MONOTONE STABILITY OF QUADRATIC SEMIMARTINGALES 1837

Since the martingales and their quadratic variations are continuous, the jumps of X
are the same as the positive jumps of the increasing process A.. The same remark
holds true for the jumps of the process —X. As, the jumps of X are simultaneously
positive and negative, the process X. is continuous.

Moreover, from the uniqueness of the predictable decomposition of X. we
know that M. = —M.. Hence, (M) = (M) and A. + A. = (M).. From Radon—
Nikodym’s theorem, there exists a predictable process «., with 0 < oy < 2, such
that dA; = %ozt d(M);. Substituting A. into the decomposition of X., we getd X; =
—%(1 —o)d(M); +dM; with |1 — ;| < 1. Therefore, X. is a Q-semimartingale.

0

Characterization of Q(A, C, §)-semimartingales via exponential transforma-
tion. In the general structure condition (2.4), the presence of the term |Y.| x C.
makes the characterization of quadratic semimartingales more difficult to obtain.
Nevertheless the transformations proposed in the following proposition can par-
tially reduce the problem to Q-submartingales.

THEOREM 2.4. Let us introduce the following transformations of any adapted
(ladlag) process Y.:

t
@.7) XACY) =Y, + A+ fo 1Y]dCy =Y, + DMC(v),

t t
(2.8) UMC () =e" +/ e¥s dAs-i—/ eV |Y, | dCy.
0 0

Then, Y. isa Q(A, C, 8)-semimartingale if and only if X€ (8Y) and X € (—8Y)
are Q-submartingales, or equivalently if and only if both processes UMC (e%Y) and
U,A*C(e*‘w) are submartingales.

The link between the two transformations X*¢ and U™ is clear when Y
. . . . . AC, YN _phC€ XA’C(Y)
is a continuous semimartingale, since dU; "~ (e*) =e™ "t de”t (see proof
below). The motivation behind the transformation U,A’C(ey), first introduced by
Briand and Hu [6] will be presented later in Section 3.

PROOF OF THEOREM 2.4. We can assume § = 1 without any loss of general-
ity [refer in particular to Comment (ii) at the end of Section 2.1].

(i.a) Necessary condition: Let oV e[—1,1] be a predictable process such that
V.=a’ «(A.+|Y|«C.+ (M).). The semimartingale X*C(Y) =Y.+ A. +|Y|*
C. =Y. + DMC(Y) is associated with the martingale M. and the finite variation
process —VX where VX = V. — DAC(Y) = (¥ — 1)« DAC(Y) + o = (M)..
Since the process —-vX4 % (M). =1 —a)»(DMC(¥)+ %(M).) is an increasing
process, the semimartingale X*€(Y) is a Q-submartingale.
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(i.b) Assume now that both processes eX- and eX- are submartingales, where

X. =XMC(Y)and X = XAC(=Y). The processes X. and X satisfy the follow-
ing relations, where DAC = D,A*C(Y):

IX.—X)=Y and }(X.+X)=D*“=A+3X.—X|*C.

Using the same notation and arguments as above, the processes X. and X, whose
exponentials are submartingales, can only have positive jumps. This contradicts
the fact that their sum is a continuous increasing process. Hence, both processes
are continuous. For the same reasons, the sum M+ M. is identically equal to O,
and the sum of increasing processes %(A_ +A)=DMC ¢+ %(H). = %G,A’C.

There exists a predictable process «., with «. € [0, 2], such that A = %a_ *
GAC. Substituting A. in the decomposition of ¥. = 3(X. — X.), we get dY; =
—%(1 —ay) thA’C + dM,. Therefore, Y. is a Q(A, C)-semimartingale.

(ii.a) Let Y. be a Q(A, C)-semimartingale. Since XAC(y) =Y. + DMC, we
have e¥- = e*D-A’CeX-A’C(Y). From the classical It6’s formula,

AC A

A,C A,C
de'' =e P geXiT W _ o YrgphC and  qUfC(e¥) =P

€ g XM

Then when Y. is a continuous process, exp(X*€(Y)) is a submartingale iff
UMC(eY)isa submartingale.

(ii.b) Assume now that both processes U. (e¥) and U.(e™Y) are ladlag sub-
martingales. Let U.(e¥) = Uy + N. + K. and U.(e™¥) = Uy + N. + K be their
respective additive decompositions. As before, we can show that the process Y. is
continuous. The previous equivalence yields to the result. [J

3. Exponential uniform integrability and entropic inequalities. In the pre-
vious section, we have obtained a simple characterization of Q(A, C)-
semimartingales using an exponential transformation, leading naturally to positive
submartingales defined by their multiplicative or additive decomposition. When-
ever submartingales have good integrability properties, the existence of an addi-
tive decomposition is equivalent to the submartingale inequalities. It is the famous
Doob-Meyer decomposition. The main objective of this section is to precise such
integrability properties and the subsequent inequalities.

3.1. Uniform integrability, class (D) and their exponential equivalents.

The class Uexp. In the classical martingale theory, uniformly integrable (u.i.)
martingales (in particular the conditional expectation of some positive integrable
random variable) play a key role as martingale equalities are then valid between
two stopping times. The class of such martingales is denoted by U/.

In the exponential framework, any exponential martingale £(M). of a contin-
uous martingale M. is a positive local martingale, with expectation < 1, hence
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a supermartingale. The process £.(M) is a u.i. martingale on [0, T'] if and only
& (M) =E[Er(M)|F;] P-a.s. It is therefore natural to introduce the class Uexp of
continuous martingales M such that £ (M) is a uniformly integrable martingale.

The classes ]Léxp and (Dexp). A Fr-measurable random variable X7 belongs

to L! provided that E(|X7|) < oo and by definition belongs to Léxp if exp(Xr) €
L.

The optional processes X for which the absolute value is dominated by a
uniformly integrable martingale are said to be in the class* (D). They are
also characterized by the fact that the family of random variables {X,;o <
T, o stopping times} is uniformly integrable. When adopting the exponential point
of view, we can extend this notion into:

X. is said to be in the class (Dexp) if X belongs to the class (D).

Observe that | X.| belongs to the class (Dexp) if and only if X. and —X. belong to
the class (Dexp). The sufficient condition is based on the intermediate result that
cosh(X.) = cosh(|X.|) is in the class (D).

(D)-submartingales and conditional inequalities. A submartingale S. (as de-
fined in its general form in Section 2.2), which is in the class (D), satisfies the
following conditional “submartingale inequality”

for any stopping times 0 <t <T Se <E[S:]Fs], a.s.

Conversely, it is well known that any cadlag process in the class (D) satisfying
these inequalities admits a Doob—Meyer decomposition into a martingale and a
predictable cadlag increasing process (see Protter [37], Chapter 3), that is, is a
submartingale in the previous sense. The less standard ladlag case, motivated by
optimal stopping problems, has been established by Dellacherie and Meyer [13].

3.2. Entropic inequalities and quadratic semimartingales.

Entropic submartingales. When considering a positive (D)-submartingale S.,
the logarithm X. =In §. is a Q-submartingale in the class (Dexp) and satisfies the
so-called entropic inequality:

Vo<t <T X5 < po(Xo)
3.1
a.s. where p, (X;) = InE[exp(X{)|Fs].

The operator p. is known as the entropic process and has been intensively studied
in the framework of risk measures (see, e.g., Barrieu and El Karoui [4] or [5]).

4p A, Meyer used the term “class (D),” in the honor of J. L. Doob.
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Since conversely, any Q-submartingale in the class (Deyxp) satisfies the entropic
inequalities, we refer to it as entropic submartingale.

An example of entropic submartingale is the simple process r.(M) defined in
equation (2.6) with M. € Uexp. In this case, expr.(M) = £.(M) is a positive u.i.
martingale, equal to the conditional expectation of its terminal value exp(rr(M)).
Since &7 = rp(M) € L!, . we can recover r; (M) from its terminal condition from

exp’
the following identity” based on the entropic process p.(£7):
(3.2) ri(M) =InE[exp(§7)|F:]1 = p: (67), Er=rr(M).

The conditional properties of the u.i. martingale exp(r;(M)) = Elexp(§7)|F:] =
Elexp(7)]1& (M) are translated into the time consistency property of the en-
tropic process over any pair of stopping times (o, ) such that o < 7, ps(€7) =
Po (P (§1))-

Finally, let us observe that p.(£7) is the smallest g-semimartingale X. = X +
r.(N) with the terminal value X7 = £r. This is a simple consequence of the fact
that exp(X.) is a positive local martingale and hence a supermartingale.

Entropic inequalities and Q-semimartingales. 'We are now able to give another
formulation for the characterization of Q-semimartingales in the class (Dexp) in
terms of inequalities involving the entropic process. This formulation will prove
to be better suited than that of Theorem 2.4 when taking limits as we will see in a
later section.

THEOREM 3.1. Let X. be a ladlag optional process such that | Xr| € Léxp.

Then X. is a Q-semimartingale such that | X.| € (Dexp) if and only if X. and —X.
are entropic submartingales, or equivalently if for any pair of stopping times 0 <
o<t<T,

(3.3) —po(=X)=p (Xo) = X5 = po(X7), P-a.s.

PROOF. Thanks to Section 3.1, when [X7]| € ]Léxp, the following equivalences
hold true [X. is a Q-semimartingale such that X. and —X. are in the class (Dexp)]
is equivalent to [¢X" and e~X are (D)-submartingales] that is equivalent to (e

and e~ X satisfy the submartingale inequalities). [

Entropic inequalities and Q(A, C)-semimartingales. The same type of char-
acterization applied to the processes X [T\ ’C(Y) or U? ’C(eY ) involves inequalities
depending on the process Y. itself and therefore is often difficult to use. A pos-
sible (but not equivalent) way is to work with the process X*C(|Y|) defined as
}_(tA’C(lY|) =% Y| + fot eCsdAg as a generalization of |Y.| by assuming that the
process exp()_(_A’C(lYl)) is in the class (D).

5Note that the identity ps (§7) =1t (po(ET), M) has suggested the notation r; (M) for the logarithm
of some exponential martingale.
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PROPOSITION 3.2.  Let X C(|Y[) = eS|V, | + J§ € dA,.

(i) Let Y be a Q(A, C) semimartingale. Then the process XACY) isa Q-
submartingale.
(i1) Let Y be an optional ladlag process with XA 7 (|Y ) e Lexp

Then the process X € (|Y|) is an entropic submartingale if and only if the fol-
lowing inequalities hold true for any pair of stopping times 0 < o <t < T, where
fort <u,Cr,=Cy —Cy,

T
(3.4) Y, | < pg(eC”|Yt|+ / eC(”dA,>, P-a.s.
o

PROOF. For the sake of simplicity, we omit Y in )_(,A’C(|Y|) and DAC(|Y)).

(i) By It6-Tanaka formula involving the sign function [sign(x) = x/|x|],
with sign(0) = 0, and the local time L.(Y) of Y. at 0, |Y.| = |Yo| + sign(Y) «
Y.+ L.(Y)=|Yo| + M’ —V*+ L(Y), where dM; = sign(Y);dM; and dV} =
sign(Y); d V;. This decomposition leads to the following representation of the dif-
ferential of XAC =€ V.| +¢C x A.:

dXMC = OV, dC, +d A, +dME —dV, +dL,(V)]
=G [dDMC + Ld(M), —dV? +dL,(Y)] + € (M — Ld(m),).

Observe that AS = DMC 4 %(M). — V5 + L.(Y) is an increasing process.
The martingale part of X2 €(|Y]) is MC = e « M with quadratic variation
(M€Y, = &2 « (M).. So the following decomposition shows that X2Cisa O-
submartingale since e¢- — 1 > 0,

dXMC = eC[dAY + 1 — 1) d(M).] +dr.(eC « M*).

(ii.a) The assumption that exp()? ACy s a (D)-submartingale implies in par-
ticular that X AC ¢ ]LéX , and that )_(é\ ¢ = Yol < po(X IT\ ’C) The same inequality
holds true if we start at time o with horizon t by considering the o-conditional
expectation of XA C = ¢Cor|y,| +[F eCor d A, so that | Yy | < ,oa(X .

(ii.b) Conversely, assume inequality (3.4), |Ys| < po (XA o . Observe that the
entropic process ps;(§1) = %pt(SET) is increasing with respect to the param-
eter § (from the Holder inequality for the exponential). Then, since eCo > 1,
we have: ,oa(eC”|Yr| + [TeCordAy) < e Copy(eCOr|Ye| + [T eC0rdA,). So
XMC = eC Y. +eC x A. satisfies the entropic inequalities X2C < p, (e€0r| Y, |+
foe Cor, dA; + [ €01 dA;) = pe (XAC). Taking T = T, it follows that X*C is
dominated by the (Dexp)-process p.(X IT\ ’C) and so is an entropic submartingale.
Hence, the result. [
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The properties of the dominating process p.(eC-7|Y7| + [ T Cus dAg) are
therefore essential to obtain results for the process Y.. The nonadapted pro-
cess ¢.7(|Yr]) = eC-7|Yr| 4+ [T eCs d Ay with initial condition ¢ 7(|Y7|) =
X IT\ ’C(|Y|), first introduced in Briand and Hu [6], Lemma 1, is the positive de-
creasing solution of the ordinary differential equation, with terminal condition
1Y/,

(3.5 dey = —(dA; +1¢:1dCy), ér = [Yr|.

In order words, the nonadapted process UMC(e?T) = .7 + Jo ePTdAg +
Jo e¢rY-T|¢S,T|dCS is constant and equal to ¢®.7. This property is the main mo-
tivation for introducing the U+C transformation.

The decreasing property of exp(¢. r) explains the supermartingale property of
the process ®.(|Yr|) defined as the optional projection of exp(¢. 7):

@, (1Y7]) = Elexp(do, 7 (1Y7)|Fo]

T
= exp(pa (eC“’TlYTl —i—/ eCot dA,)).
o

Note that, for the sake of clarity, we often omit the reference to Yr in ¢. 7(|Y7|),
@.(|¥r]) or X7"(|¥7)).

(3.6)

THEOREM 3.3.  Assume E[exp(X2'C (|Yr]))] = Elexp(¢o.7)] < 0.

(1) The process ®. is a (D)-supermartingale dominated by the martingale
E[e®0.7|F] = N,O, with the additive decomposition ®. = &g+ N® — A% The pre-
dictable increasing process is A® = Jo®sdAs + [y Ele?s 7 |¢s.7||Fs1dCs, when
the process N2 is a uniformly integrable martingale.

(ii) The process UMC () = . + Jo®sdAs + [y @sIn(Dy)dCy is a positive
(D)-supermartingale, associated with the same w.i. martingale N®, and the in-
creasing process AY = fd(E[e"&&T |ps. 1| Fs] — Ps In(Py)) dCs.

(iii) Assume inequality (3.4) for the process |Y.|. The processes U™C (e¥) and
UMNC(e™Y) are two (D)-submartingales dominated by the (D)-supermartingale
UMC(D).

REMARK 1. The positive quantity ant(e¢S»T) = E[ed’SsT(bs,T | Fs]— Dy In(Dy)
appearing in AV is well known in statistics as the conditional Shannon entropy of
the random variable e?s7 . Its properties will be studied in the next subsection when
considering integrability properties of the supremum.

PROOF OF THEOREM 3.3.  As observed by Briand and Hu [6], Lemma 1, since
¢;. 1 18 a positive solution of the differential equation d¢; = —(dA; + ¢; dC;), the

nonadapted process U,A’C(e¢'~T) is constant, UtA’C(e‘l’"T) =T 4 fé eP T dAg +
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fo efs.T lps.71dCs = e?0.7 | with do.1r = A = Léxp The dynamics of the super-
martingale ®; = E[e? 7| F;] is obtained by taking conditional expectation in this
relation.

(i) First, observe that the assumption e?0.7 € L' implies that ¢7.7 € L! and
that the nonadapted increasing process B = fé e T dA, + fé e?s.7 | 7| dCy
is integrable. Since ®. is the optional projection of e¢®7, and since both in-
creasing processes A. and C. are adapted, the dual predictable projection of
B,d’ is the continuous process A,‘D = fé O, dAg + fé E[e‘/’SvT|¢S,T||]-"S]dCS, gen-
erating the same conditional variation, E[Bf T Af’) r1F:] = 0. So the process

= E[B? — AqT>|.7-'t] = E[be — Af’|.7-',] is a uniformly integrable martingale.
Then, taking the conditional expectation of the constant process US> (¢?-7) im-
plies that &, + A® + N/ = N?, and N® = N? — N/

(i1) To show that U,A C(CD) is also a supermartingale, we use that the Shannon
entropy (see Remark 3.3) Hf“‘(e%T) = E[e¥s.T |ps. T || Fs] — @5 In(Dy) is positive,
and the process AV = JoH, ent(e‘z’A 'T)dCj is increasing. Then, some simple calcu-
lation shows that U C(CID) + AY = &, + A® = N2 is a positive u.i. martingale,
that provides the Doob—-Meyer decomposition of the supermartingale U € (®).

(iii) This last statement is a straightforward consequence of the inequality
<. O

REMARK 2. The key condition to obtain these properties is that the process
UMC(@(|Yr)) is a (D)- supermartingale. Note that this is also true if we replace
|Y7| by any Fr-random variable |n7| > |Y7|, such that e€7 7| + fT CdAg e
Lexp-

REMARK 3. As observed by Briand and Hu [6], extending the results of Le-
peltier and San Martin in [29], the linear growth condition in Y., |Y.| x C., may
replaced by a superlinear growth A(|Y.|) x C., where & is an increasing convex C'!
function, with 2(0) > 0, satisfying the integrability condition fo du h'f‘ul) ~+o0.
The function ¢ () is then replaced by the solution of the ODE ¢’ (¢t) = —h(¢;)
with a terminal condition ¢ (T) =z > 0.

Maximal exponential integrability and L1log L-condition. When® looking for
entropic inequalities, assuming that the exponential of the processes is in the
class (D) is a minimal assumption. However, it is sometimes interesting to ob-
tain estimates on the exponential of the maximum of these processes. Entropic in-
equalities reduce the problem to the estimation of the running supremum of some

This paragraph can be omitted for a first reading.
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entropic processes, or equivalently to the running supremum of some positive mar-
tingales, for which we can apply standard Burkholder—Davis—Gundy (BDG) mar-
tingale inequalities. An excellent presentation of the different martingale inequal-
ities may be found in Lenglart, Lepingle and Pratelli [27].

From now on, we adopt the following nonstandard notation for the run-
ning supremum of some measurable process X: max |X;| = maxo<,<; |Xy| and
max | X ;| = maxs<,<; | X, — X|. The space of semimartingales X. such that
max |X7| € L? (p > 1) is denoted by S”. For continuous local martingales, the
relevant quantity is the quadratic variation and we denote by H? the space of
martingales with a quadratic variation in IL”. Moreover, for any continuous lo-
cal martingale M., such that My = 0, the BDG inequality gives some estimates of
its maximum in terms of with its quadratic variation as, for any 0 < p < oo, there
exist two positive constants ¢, and C, such that:

forany0 < p<co  ¢,EI(M)7"] < Elmax |M|7] < C,E[(M)7].

The following Doob inequalities, based on the terminal condition and only true
for p > 1, are more classical:

forany p>1  k,E(M)Y?I <E[MIP] < KEL(M)L).

So, for p > 1, E[max |[M|}] < oo if and only ]E[(M)g/z] < 00. In other words,
the spaces S” and H? coincide.
In terms of exponential martingale L. = £.(M), these results become

Vp>1 L eS8’ <= Lr=exprr(M))el’

T 1/2
— (/ Lfd(M)s) el”.
0

When p < 1, a similar maximal inequality holds true for exponential martin-
gales or more generally for positive supermartingales [27],

E((Lo)?)

1—p =

When p = 1 and the local martingale is positive, we have to use the following
Llog L-condition.

Vp<1  ElmaxLi]<

PROPOSITION 3.4. Let L. =exp(M. — %(M).) be a positive continuous locale
martingale and max L; its running supremum.

(1) (Doob) Assume that L. is a u.i. martingale. Then
E(max L7) — 1 =E(LyIn(max L)) > E(L7In(L7))
and

E(LrIn(L7)) =E(L75(M)T).
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(i) (Harremoés) The following inequality is sharp:
(3.7) E@maxL7)—1—In(E(maxL7)) <E(L7In(L7)) = H™(L7).

The martingale L. belongs to S if and only if E(L7 In(L7)) < 00.

(iii) Let U. be a positive (D)-submartingale with deterministic initial condi-
tion Uy and m = E(Ut) > Uy. The previous Harremoés inequality becomes, when
Up(x)=x —m—mln(x),

U (E(max Ur)) — um(Up) < E(Ur In(Ur)) — E(Ur) In(E(Ur)) = H*"(U).

In particular, E(max Ur) is dominated by an increasing function of H*™(Ur) +
um (Vo).

PROOF. The proof is based on Dellacherie [12] and Harremogs [22].

(1) Since L. is a continuous process, max L. only increases on the set {L. =
max L.} and max L, =1 + fotdmast =1+ fé maLx‘Ls dmax Lg. Taking the ex-
pectation (after stopping at some stopping time bounding max L. on [0, T'] if nec-
essary) and using the fact that L. is the conditional expectation of its terminal value
leads to E(max L7) — 1 =E(L7 In(max L7)).

(i.a) Since In(max L7) > In(L7)", and L;In(L;)™ < 1/e, then |L7In(L7)| €
L' when max L7 € L. This establishes the necessary condition.

(i) To prove that finite entropy implies integrability of the max, we show
inequality (3.7). We start by studying E(L7 In(max L7)) —E(L7 In(L7)) from the
concavity of the function In. Given that x* = E(max L7) = Eg(max L7 /L7) if
Q=Lr.P, Eg(In(max L7 /L7)) <In(Eg(max L7/L7)) = Inx*. Inequality (3.7)
is then easily obtained. An example of cadlag martingale satisfying the equality
may be found in Harremoés [22].

(iii) The extension to U. being a positive submartingale does not present any
specific difficulties other than purely computational, since E(maxUr) — Uy <
E(U7 In(max Ur /Up)). Taking now Q = (Ur/m).P, x*/m = E(maxUr)/m =
Eg(max L7/Lt), the convexity inequality becomes: Eg(In(maxUr/Ur)) <
In(Eg(max Ur/Ur)) = In(x*/m). Some elementary algebra gives the final result.
Observe that u,, is convex and minimal at z = m. Since mqo < m, u,,, (Ug) > u, (m).
Then since the entropy is positive, u,, (Up) + H*™(Ur) belongs to the range of
{um (2); z = m} and E(max Ur) < u,," (um (Uo) + H™(UT)).

(i.b) We now show the link between entropy and quadratic variation. As-
sume that L7 In(L7) € L!. Let Tk be an increasing sequence of stopping times,
such that In(L;) = M; — %(M )¢ is bounded by K. The sequence Tk is increas-
ing and goes to infinity with K. Thanks to the Girsanov theorem, NQ = M. —
(M). is a local martingale with respect to the probability measure Q = L7.P,
and E(L15(M)7) =limg E(L7 5 (M)11¢) = limg E(L7A7¢ 3 (M) T ATY)- Using




1846 P. BARRIEU AND N. EL KAROUI
E(Lrar N2 .. ) =0
TATgANT AT — Y5

E(L7are s (M) 1Aty ) = E(LTAT) (M AT, — (M)T AT + 5(M)TATL))
=E(Lrate In(LTATR)) S EMax Lyary) — 1

<E(maxL7)— 1.

Then NQ is a square integrable Q-martingale and Eg(In(L7)) = EQ(%(M )T),
which is is the desired equality. [J

Let us now come back to the question of maximal inequalities for Q(A, C)-
semimartingales. The various results are based on the behaviour of the entropic
process ,o.()_(ZT\’C(lYT |)) also denoted p.()_(é\’c). To give a concise form to the var-
ious but similar estimates, we introduce the following family of positive increasing
functions v, defined on R* by ¢,(z) =z if p# 1 and ¥1(z) =zlnz —z + 1.
Note that, as in the previous subsections, we consider separately the case of en-
tropic submartingales.

PROPOSITION 3.5. (i) Assume X. = Xo — V. + M. to be an entropic sub-
martingale (| X1| € ]Léxp), such that yr,(exp Xr) € L! provided that p > 1. Then,
both processes exp(X.) and E(M). belong to S?, and their SP norm are dominated
by some increasing function of E(v,(exp X)) for p > 1, and of , (E(exp X7))
for p < 1.

(ii) Let Y. be a Q(A, C)-semimartingale such that v, (exp X IT\ ’C) e L' when
p > 1. The processes exp(,o.(f(?’c)), O.(|Y7)), exp(eC‘IY.l + fo'ec‘ dAy) and
E(e€ x M). belong to SP and their SP norms are dominated by some increasing

function of E(Yr, (exp )_(ZT\’C))for p=1ory,(E(exp )_(ZT\’C))for p<l.

PROOF. (i) The proof relies on the multiplicative decomposition of the sub-
martingale exp(X.) = exp(Xo + A.)E(M).. Then exp(X.) and £(M). have the
same maximal properties. The proof is a simple consequence of the entropic in-
equalities (3.2), BDG inequalities and the maximal estimates given in Proposi-
tion 3.4;

(i1)) The maximal estimates of exp(,o.()_( IT\’C)) are a simple consequence of (i),
and yield to the other estimates since the different process are dominated by
exp(,o.()_([T\’C)). For the process E(e€ x M)., we have to use the decomposition
of the entropic submartingale ¢ Y. + Jo eCsda,. O

Change of probability measures and entropy. Let L be a positive local martin-
gale with Lo = 1. The condition E(L7 In(L7)) = H*™(L) < oo naturally appears
when considering the martingale L as the likelihood of a probability measure Q
equivalent to P, as it measures the positive Shannon entropy H"'(dQ/dP) =
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E(dQ/dPIn(dQ/dP)) of Q with respect to IP. The previous result states that
H®"(dQ/dP) is finite if and only if the martingale density L. is in S'.

This interpretation is particularly interesting when using the variational formu-
lation of the the entropic risk measure pg(§7) (see, e.g., Frittelli [21], Follmer and
Schied [20])

(3.8) po(€r) = S%P{EQ(ST) — H™(@Q/P)|H (Q/P) < +00}.

1
exp’

S'-norm is bounded by K, we have an uniform estimate of Eo(ér) given by
Eg7) < poér) +E(LTIn(L7)) < poé7) + K.

Moreover, when the random variable &7 itself is associated with a finite relative
entropy probability measure Q57 defined by its density LSTT = eEr=r0E1) we can
prove by a simple verification that the supremum is attained for Q%7 . Very recently,
Choulli and Schweizer [9] have developed applications to mathematical finance of
the Llog L condition.

In other words, when &7 € ! | for any martingale density L2 € S! whose the

4. Quadratic variation estimates and stability results. We are now capa-
ble to establish the main contribution of this paper, that is, some stability results,
which require some uniform estimation of key quantities, including quadratic vari-
ation and running supremum. In order to use the previous inequalities, we need the
family of Q(A, C)-semimartingales we consider to be uniformly dominated. Fol-
lowing Remark 2, we can replaced Y7 by a generic random variable nr such that
InT| = |YT| and X g’A (InT|) satisfies an appropriate integrability condition. There-
fore, it seems natural to introduce the following class Sg(In7|, A, C), and to work
within this class of quadratic semimartingales:

DEFINITION 4.1. Let |[n7| be a Fr-random variable, such that )_(g’A(lnTl) =
eCTInTI + fOT S dAg belongs to L! . The class So(lnrl, A, C) is the set of

exp*

Q(A, C)-semimartingales Y. defined on [0, T'], such that |Y.| < p.(e“ T |nr| +
T cC.
e s dAy) as.

4.1. Quadratic variation estimates. We now study the quadratic variation of
Q(A, C)-semimartingale Y. when Y. belongs to So(|nr|, A, C). Following Koby-
lanski [26], the best way to do so is to use the function v(x) = ¢* — 1 — x instead
of the simple exponential function. This function is indeed positive, convex, and
increasing for x > 0, and satisfies v”/(x) — v’(x) = 1. In the following, we use the
short notation )_(E’A(|nr|) = )_(g’A.

THEOREM 4.2 (Quadratic variation estimates). Let Y. € So(Int|, A, C).
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(1) Then, the quadratic variation (M). of the Q(A, C)-semimartingale Y. =
Yo + M. — V. satisfies for any stopping times o <T,

@.1) IE[(M)o.11F6] < @6 (I¥7D) (o<} < E[exp(X 5" (In7 )10 <1 F5 ]-
In particular, the martingale M. is in H?, with the uniform estimate
(4.2) E[3(M)r] < Elexp(X7 " (Inr ).

(ii) Let p" = sup{p: Elexp(pX 5" (Inr])] < +00). Then p" > 1 and Vp €
[1, p"[, the martingale M belongs to H??, and

(4.3) E[(M)2] < 2p)PElexp(pXS 2 (Inr)].

(i) If ®;(Inr]) = Elexp(e“-T|nr| + f,T eCru d A Fil is uniformly bounded
int <T, then the conditional quadratic variation %E[(M Yo7 | Fol is uniformly
bounded. Hence M. is a BMO-martingale.

PROOF. By analogy with the previous notation, when using the function
() = e — 1 —x, we set VAC(el) = v(¥,) + i v/ (Vs (dA, + Y] dCy) =
(YD) + [ v' (1Y) dDAC. S0, USNC (e = v C ey = 1+ 1Y, |+ DM C (YD),
and both processes UAC and VA€ are in the class (D) since Y. € So(lnrl, A, C).

(i.1) As we see in the proof of Proposition 3.2, the semimartingale |Y.| is
associated with the martingale M° = sign(Y.) * M., the finite variation process
VS5 =sign(Y.) » V. and the local time at {0}, that disappears in the Itd6’s formula
since v'(0) = 0. Using similar calculation to those of the previous section, and

the identity v”(x) — 1 = v'(x), we obtain that the process V€ (e!"1) — %(M)t =
v(IYol) + o v (Y5 dMS + [§v' (1Y) (@DMC —dVE + 5 d(M)y) is a submartin-
gale, and since VA€ s in the class (D), for any 0 < T, ]E[%(M)U,Tlf(,] <

E[o(1Y7]) —v(1Ye]) + [, v'(1Ys]) dDA-C|F, .
(i.2) Since, by definition, Vx > 0,0 < v(x) < ¢* and v'(x) < €*,

T T
/ v'(|Ys])dDMC 5/ @y (dAg +In|dg|dCs)  foranyo <T.
o o

Thanks to the supermartingale property of U € (®) [Proposition 3.3(ii)] and
the inequality ®. > exp(|Y.|) [implying in particular ®7 = exp(|n|) > v(|YT])],
we have E[[] ®,(dA, +In|®,|dCy)|Fy] < E[®, — ®r|F,] and

E[3(M)o.71F5] < Ev(1¥Y7]) — v(|¥s]) — (D1 — )| Fs]
=E[(—(®7 — v(IY7]) + v(|Ys ) + @0 ) Lo <7} | Fo]
= ®ol{a<T} =< E[GXP X$’C1{0<T}|fa]-



MONOTONE STABILITY OF QUADRATIC SEMIMARTINGALES 1849

(i) As observed in Lenglart, Lépingle and Pratelli [27], the final result is a
simple consequence of the so-called Garsia—Neveu lemma (Lemma 4.3) (see, e.g.,
Neveu [35]) recalled below.

(iii) This is a straightforward consequence of the inequality IE[% (M)o.T|Fol <
Os(Inr). U

LEMMA 4.3 (Garsia—Neveu lemma). Let A. be a predictable cadlag increas-

ing process and U a random variable, positive and integrable. If for any stopping
timeso <T,E[Ar — Ag|Fs] < IE:[U1{<7<T}|]:¢7],

Vp=1  E[AP]< pPE[U”].

More generally, E[F(AT)] < E[F(pU)] for any convex function F such that
p=sup,_ox(nF) (x)) < +oo.

Here we apply this lemma to the random variable U = exp(X ?’C(| nt|)) for any
p > 1 such that U € L. As a corollary of this result, uniform estimates may be
obtained for the total variation of the process V..

COROLLARY 4.4. Let Y. € So(Inrl, A, C). The total variation of the pro-
cess V. such that Y. = Yo+ M. — V. satisfies for 1 < p < p"

(4.4) E[|V|}] < 2p)PElexp(pXS™)].

When @.(|In7|) = Elexp(e€-Tn7| + [ eCrudA,)|F] is bounded by K¢, then
E[lV]e,r|Fs] < 2Kc.

PROOF. Since V. satisfies the structure condition Q(A, C), E[|V|e.17|Fs] <

ElAor + [F1Y1dCy + 1Mo 7|51 < 2E[exp(X 2 )15 271|F5]. Indeed,
ElAo.1 + []|Ys|dCs|Fo] < BLJT &Ml d Ay + |Ys1dCs) | Fo) < B[(®y — 7))
Fsl < E[exp()_(IT\’c)l{a<T}|fa]. We conclude with Lemma 4.3. [

4.2. Stability results for Q(A, C)-semimartingales. We can start by noticing
that the class Sp(|nrl, A, C) is stable by a.s. convergence, since the submartin-
gale property of both processes U.(e¥) and U.(e”Y), dominated by the (D)-
supermartingale U.(®), is stable by a.s. convergence. Moreover, Theorem 2.4 im-
plies that the limit process is continuous and is also in Sp(|nr|, A, C). However,
previous estimates of both quadratic variation and finite variation processes sug-
gest that a better stability result may hold true, in particular regarding the strong
convergence of the martingale parts. The space of martingales, where this conver-
gence takes place, depends essentially on the exponential integrability properties
of the random variable X IT\ € (InT]). The method is very similar to that of Lepeltier
and San Martin [28]. When the Q(A, C)-semimartingales are bounded, this type
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of results has already been obtained for the H?-convergence by Kobylanski [26]
and Morlais [33]. Our stability result is novel and direct, and gives better conver-
gence results with the H' convergence. This result, that appears here for the first
time in a BSDE framework, is based on an old result of Barlow and Protter [3] on
the convergence of semimartingales.

THEOREM 4.5. Assume the sequence (Y") of So(Inrl, A, C) semimartin-
gales is a Cauchy sequence for the a.s. uniform convergence, that is, sup, <7 |Y{" —

Y,n+p| tends to 0 almost surely when n — o0o. Then the limit process Y. is a
Solnrl, A, C)-semimartingale Y. = Yo+ M. — V..

Different types of convergence hold true for the processes (M", V") of the de-
composition Y" =Yg + M" — V.

(i) Martingales convergence of (M™) to M..
(a) The sequence (M™) converges to M. in H!.
(b) If for some p > 1 )_(IT\’C(|777|) € ]Lé’xp, the sequence (M") converges to M.
in H??, and in the BMO-space if ®s(|nt]) is bounded.
(ii) The sequence of finite variation processes (V') converges at least in S' to the
process V. satisfying the structure condition Q(A, C).

PROOF. We proceed’ in several steps to prove this convergence result. We
first introduce some notation and make some elementary calculations. For s <1,
let Y,/ =i — v/ M =M — M] and Yo =i—-vl)— ¥/ —v{), and the
short notation first introduced in Section 3.2, sup,_, <, Yy — Yo | =
Then for any stopping times o <7 <T,

male /1.

PR PR T P ..
(M")ge = Vid P =2 [ ¥i avi
(e
PR PR T .. . .
<ivpiP =2 [ viiami 2 [CvEiaqvi 4 v,
o
Using either the fact that Y lf is bounded, or a uniform localization procedure,
the stochastic integral | (f” Yé:é dMy’ has null conditional expectation for a well-

chosen stopping time 7,,. Then, thanks to the monotonicity of (M) and Corol-
lary 4.4, with B/ =2(|V!| +|V/]),

E[(M")o,1|F6] < E[max Y, P Lo <1 +/ maxIY(’y’,fvldBé”‘fo]
g

< E[(max Yy} * + max | Yy 7| B3 ) Lo <1y | Fo ).

7 An earlier proof of this result in the BMO case is due to Nicolas Cazanave, a former Ph.D. student
at Ecole Polytechnique.
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We now start with the proof corresponding to the assumption X IT\ ’C(|nT ) e Lgxp,
since it is very similar to the proof in the linear growth case (see Lepeltier and San
Martin [28]).

(i.b) Thanks to the Garsia—Neveu lemma (Lemma 4.3), forr > 1,

E[(M"/)}] < r"E[(max | Yy }* + max |Yy ]| B')']
< 1@ {El(max |Y5 ] )] + E[(max | Yy} By ).

Then, since B;j belongs to L7, by Holder inequalities, for any p and ¢ such that
%—}—%zl,andl§r<p,ifKr:%(2r)’

El(max |Yy | By’)"] < (EL(max |Yy 7))/ EL(BF)P /P,
E[(M"/)7] < K, (Elmax | Yy} ”']
+ (E[(max | Yy I/ (EL(BF)P)/P).

From the monotonicity of both sides of this inequality with respect to r, we can
take r = p. We have used that max |Y6:JT| has finite moments of all orders since as
shown in Section 3.2 max |Y67T| and max |Y(’;’T| are in ]Lffxp. Hence, we have the
desired convergence.

(i.c) In the bounded case, thanks to Corollary 4.4, the conditional total variation
E[|V"|s 1|Fs] are uniformly bounded by Cy. To obtain the BMO convergence,
we have to modify the previous proof, by using an integration by parts formula
involving the conditional variation of B’/

]E[/UT max |Y(§:{|dB£’f|]-'a] - ]E[/UT d,, max |Y(§;{;|<EUMT dBj’j‘]-'uD \fg}
< 2CyE[max |Y, }]|F, ],
and so
E{M™)o.71F5] < 2CyElmax Y, | Fo 1 + EL Y2 R %1 Fo 1.

Then, the BMO-convergence holds true.

(i.a) The proof of the general case requires a different argument, based on a
result of Barlow and Protter [3] on the convergence of semimartingales. In the
framework of quadratic semimartingales, the key points are the uniform estimates
of both the quadratic variation and the total variation given in Theorem 4.2, equa-
tion (4.2) and Corollary 4.4. The proof given in [3] of the H'-convergence of the
martingales is based on the square root of the inequality given at the beginning of



1852 P. BARRIEU AND N. EL KAROUI

the proof,
. .. to. . . t .. .
a9y, <GP =2 [l 12 [ aBy,

The first step is to estimate the square root of max|Y’" v % M(l)’]T| using

1

the Burkolder—Davis—Gundy inequalities for continuous martlngales for p= 2,

that have been recalled in Section 3.2: E[max|Y0?_' * M’T]|1/2] < CE[(Y,
M )1T/ 4 where C is a universal constant. Then, since E[(Y(’):J * M)
E[(max Yy} ) /2 (M),

1/4] <

E[\/(Mi)7] < E[max Yy} |1 + v2CE[max | Yy 11/ 2E[/ (M) 7]

+ v2E[max Y 1 [1V2E[ By 12,

Since E[,/(M#/)r] and E[B;j] are uniformly bounded, and E[max |Y;’j|] goes

to 0, then E[,/(Mi-/)7] also goes to 0. The H'-convergence of the martingale part
is established.

(i) The next point is to study the convergence of the sequence (V") to
a process V. satisfying the same structure condition Q(A, C). Since, the se-
quence (Y, M", (M”).l/z) converges in Slto (Y., M., (M).l/z), the sequence (V)
also converges in S'. Therefore, we can extract a subsequence, still denoted
(e, mm, e, (mm)!?
most surely.

(iii) This point is obvious since, as observed at the beginning of this section, the
class S(|nr|) is stable by a.s. convergence. [

), such that the sequence converges uniformly in time al-

Stability results for BSDE-like quadratic semimartingales. 'To obtain the con-
vergence of the finite variation processes in total variation, we need to make addi-
tional assumption on the processes V", as in the BSDE framework. We adopt the
general setting where the reference to the Brownian framework is relaxed as in El
Karoui and Huang [17].

DEFINITION 4.6 (BSDE-like quadratic semimartingale). Let us consider a
continuous predictable increasing process K., a d-dimensional continuous orthog-
onal martingale N. = (N,i)f: 1» with quadratic variation (N iy, strongly dominated
by K. such that d(N'), = y,i dK;, two increasing processes A. and C. also dom-
inated by K. such that dA; = [, dK; and dC; = ¢; dK;, such that all processes
y!, 1., c. are bounded by k (e.g., K. = Z ).+ A.+ C. and k = 1). The co-
efficient g(-, y,z) is a P ® B(R x RY) measurable process, often assumed to be
continuous with respect to (y, z).
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A semimartingale Y. with the decomposition Y. = Yy — V. + M. is said to have
a quadratic coefficient g if dY; = —dV; + d M;, with
dVi=g(t, Y, Zy)dK;,
dM, =Z,dN, +dM;}  Vid(N',M*), =0,

1 1) 2
(4.5) |g(thtaZt)|fglt+|ytlct+§’\/7tzt}

’

d
7,z =S vi1Zi.

i=l

The local martingale Z % N is the orthogonal projection of the local martingale M.
onto the space of stochastic integrals generated by the local martingale N., and
d{(Z x N); < d{M);, so that d|V|; < %dA, + |Y¢|dC; + §d(M); and Y. is a
quadratic semimartingale.

When considering sequences of BSDE-like quadratic semimartingales under
mild assumptions on the sequence of coefficients, the sequence of finite variation
processes is converging in total variation in the appropriate space, and the limit is
still a BSDE-like quadratic semimartingale.

The uniform convergence of the quadratic semimartingales needed for these
convergence results may seem very strong. We know however from Theorem 2.4
that all the processes obtained by a.s. convergence are continuous. Thanks to Dini’s
theorem, the monotone convergence implies uniform convergence for continuous
functions on compact spaces. Therefore, by a localization procedure, we can prove
the following very strong result.

THEOREM 4.7. Let assume the sequence (Y*) to be a monotone sequence of
So(Inrl, A, C)-semimartingales converging almost surely to a process Y..

(i) Then, the limit process Y. is a continuous S (Int|, A, C)- semimartingale, the
convergence is locally uniform and all properties given in Theorem 4.5 hold
(locally) true. In particular, there exists a subsequence of martingales M" =
Z" x N. + M™+ converging in H' and almost surely to M. = Z x N. + M.

(ii) Suppose in addition that the processes (Y") are BSDE-like quadratic semi-
martingales, associated with a sequence of monotone coefficients g, converg-
ing almost surely to g, having the following properties:

(a) The monotone sequence g, have uniform quadratic growth:

1 5
g0 (1. Y] ZDI < Sl 417 e + 5|\/7tz,"|2, dP x dK. a.s.

(b) The sequence g, (-, Y", Z") converges to g(-,Y., Z.),dP x dK. a.s.
Then, the limit process Y. is a BSDE-like So(|nr|, A, C)-semimartingale with
coefficient g(t,y,z) =limg,(t,y, z).
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PROOF. Note the characterization of Sp(|nr|, A, C)-semimartingales given
in Theorem 2.4 passes to the limit, since all processes U*-C (el”"!) are domi-
nated by the (D)-process U,A*C(CD(lnTl)). The limit process Y is a continuous
So(nrl, A, C)-semimartingale, with decomposition Y. =Yy + M. — V..

(i) The localization procedure is based on the family (Tx) of stopping times
as to bound the u.i. martingale Nt0 = E[exp(¢o(InT])|F:] by K. By the characteri-
zation of u.i. continuous martingale (see, e.g., Azema, Gundy and Yor [2]), the se-
quence Tk goes to oo and for K > K, large enough, P(Tx < T) < &. Therefore,
the sequence (Y,"ATK) lives on a compact set where the monotone convergence to
a continuous process is uniform. The sequence of martingales (M f’ATK )n strongly
converges in the appropriate space to the martingale M.,7, . The same property
holds true for the sequence V.?\TK. Thanks to the previous estimates, for all these
processes Y, M", V" the convergence is uniform on [0, T A Tx] in probability.

(i) Let Z"® = Z"1;<1,, in such way that (Z" x N).n7, = Z"K « N.. Since
the sequence (M ,”ATK),, strongly converges, the sequences of orthogonal martin-
gales (M,'XJT‘K)n and (Z™X x N.),, also strongly converge in the appropriate space,
and at least in H!.

Therefore, we can extract a subsequence still denoted Z™X converging a.s. By
assumption, for ¢ < Tk the sequence g" (¢, /", Z?’K) goesto g(t,Y:, Zy) dK. @dP
a.s. It now remains to show that the convergence is also true in expectation. Ob-
serve that E[fOTK lgn(s, Yg', Z™M)s — g(s, Y5, Zs)|1{jzn1<cy d K] goes to 0, by dom-
inated convergence, since ®. and Y are bounded on [0, Tk ]. Moreover, since the
sequence in n of the quadratic variations at time Tx, (Z"X « N )Tx 1s bounded
inL!, fors < Tk, |gn(s, Y/, Z!) — g(s, Y5, Z5)| < Wy + 3| Z7%, with W, 1 <7y) €

L'(dP ® dKy) and P(|Z"| > C) < éE(|Z?|2). Hence, E[fOTK lgn(s, Y, ZY) —
g(s, Yy, Zo) |1y zn>cy d K] goes to O when C goes to oo, uniformly in 7. As a con-
sequence, the process V. in the decomposition of the quadratic semimartingale Y.

is given by dV; = g(t,Y:, Z;)dK; on [0, Tg] forany K. [J

REMARK 4. Delbaen, Hu and Bao show in [10] that increasing the growth
of the coefficient into a superquadratic growth yields to ill-posed problems. In
particular, monotone stability does not hold any more. For classical BSDEs,
when the coefficient simply depends on z, superquadratic growth means that
limsup g(z)/|z|*> = oo.

5. Existence result for quadratic BSDEs. The question of existence of
bounded solutions for the classical quadratic BSDEs in Brownian framework has
been solved by Kobylanski [26], using an exponential transformation as to come
back to the standard framework of a coefficient with linear growth. A detailed re-
view of the literature including the comparison theorem and different applications
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may be found in El Karoui, Hamadéne and Matoussi [16]. Most of the recent pa-
pers focusing on financial applications of quadratic BSDEs consider the situation
where the martingale M. is BMO (see, e.g., the recent papers by Hu, Imkeller and
Muller [24], Ankirchner, Imkeller and Reis [1], [34], or the Ph.D. thesis of dos
Reis [14]). From Theorem 4.2, such a framework is equivalent to look at bounded
solutions. Briand and Hu [6] have been the first to extend the previous results to
unbounded solutions. In all these papers, as in Kobylanski [26], the main difficulty
is however to prove the strong convergence of the martingale part.

The stability result we have obtained in the previous section opens a new pos-
sible direction to tackle this question. The idea is to approximate monotonically
the coefficient itself by coefficients with a linear and quadratic growth, for which
there are some results on the existence of solution but also for which it is possible
to take the limit thanks to the stability Theorem 4.7. In our approach, we do not
need this BMO framework and have a stability result prevailing in a wider context,
moving away from the bounded case to the case where the terminal condition has
exponential moment. Indeed, having bounded solutions is naturally replaced by
belonging to the class Sp(In7|, A, C) as in the previous section, which reduces
to an exponential moment condition for |nr|, when A and C = 0. Recall that this
last condition is equivalent to have the absolute value of the solution in the class
(Dexp) when the coefficient does not depend on y [and g(z, 0, 0) = 0].

We start this section by looking more closely at the interrelationship between
quadratic BSDEs and quadratic semimartingales, when the quadratic structure con-
dition is saturated.

5.1. A canonical example: qs-BSDE and entropic process. We are focusing
on simplest quadratic BSDEs when the structure condition is saturated and the
coefficient is simply denoted by ¢s. This framework has a particular importance in
finance as it corresponds to that of indifference pricing in incomplete markets when
using an exponential utility criterion (in general, in the bounded case) as in Rouge
and El Karoui [38], and many other papers (see, e.g., Mania and Schweizer [30])
or the recent book on indifference pricing edited by Carmona [8].

In this simple framework, it is interesting to consider the various possible points
of view. In particular, note that the two following problems coincide in a Brownian
framework:

(i) First, finding a quadratic gs-semimartingale Y; = Yo+ M; — %(M )¢ with ter-
minal condition Y7 = &7. We refer to the solution as a GBSDE(gs, £7)-solution,
where G stands for “generalized.” The process —Y is a GBSDE-solution associ-
ated with (15’ —&7).

(ii) In the second case, corresponding to the BSDE general framework (Def-
inition 4.6), the problem is to find (Y., M. = Z % N. + M’), such that dY; =
—%lﬁZ,lZdK, — Z;dN; — alMtL with terminal condition Y7 = &7. The simi-
lar equation with the opposite process will be also considered. In the following,
we refer to this situation as g-BSDE.



1856 P. BARRIEU AND N. EL KAROUI

Based on the previous results, we will consider these two questions in parallel
in the paragraphs below.

Summary of previous results on GBSDEs. The entropic process p;(£1) de-
fined earlier in equation (3.2) as In E[exp(é7)|F;] = p:(§7) appears naturally when

studying such (g, or ¢)-GBSDEs. Indeed, as presented in the following proposi-

tion, if the terminal condition &7 € Léxp, then p.(§7) is a (Dexp)-solution of g-

GBSDE. The stronger assumption on the terminal condition |£7| € Léxp is used
for the estimates of the quadratic variation or for some stability result.

PROPOSITION 5.1.

(1) Assume that &1 € ]Léxp. Then the entropic process p.(&r) is the unique (Dexp)-
solution of the quadratic GBSDE(q, &7), that is, there exists a martingale
M’ e Uexp such that

dpi(67) = —Ld(MP), +dM{,  prr) =&r.

Moreover, p.(§1) is minimal in the class of solutions Y.: p.(§7) <Y..
(i1) Assume that —&t € Léxp. The negative entropic process p (§r) is a solution
of the GBSDE(q, é7), i.e., there exists a martingale M” such that

dp,(Er) =3d(MP), +dM],  p,(Er) =ér,
but in general p (§1) is not a (Dexp)-solution.
(iii) When |E7| € L., then:

exp’
(a) P, (E7) is thefj maximal solution of the GBSDE(q, &1).
(b) The martingales MP and MP are in H? and if &7 is bounded, they are
BMO-martingales.
(¢) If in addition |&r| + In(|&r]) € L! the rv. max|po,r(&7)| and

exp’
max | Py, 7 G1)l belong to ]Lfl:xp. Moreover, the following variational rep-

resentation holds true:

5.1 pi(Er) = esssup(Eq(er — 3(M %), 1) FlBQ((M) ) < +oo}.
M

PROOF. (i) From Section 3 and as p (§7) = po(é7) + r.(M), p.(€7) is the
unique (Dexp)-solution for the GBSDE(qg, £7), and the smallest in the class of the
g-semimartingale with the same terminal value.

(i) Since —&7 € Léxp, the process p.(—&r) is well defined in (Dexp) and
—p.(=§&r) is solution of the g-GBSDE, but not in general in the class (Dexp).

(iii)) Assume both variables &7 and —&7 in Léxp. Using the convexity of p,

its follows that 0 = p.(0) < %(p.(éf) — p.(§1)). Then, p.(§7) € (Dexp) implies
B(ET) € (Dexp)~
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The comparison with the other solutions is a simple consequence of the fact
that —Y is a solution of GBSDE(g, —&7), and therefore bigger than p.(—&7) =
—p (7). The rest of (iii) is a straightforward consequence of Theorem 4.2. [J

For lack of space, we will not further develop the variational point of view, but
this approach can be extended to ¢-BSDEs, using in particular approximations
based on the solutions of convex BSDEs with linear growth (see, e.g., El Karoui,
Hamadéne and Matoussi [16]).

(q or q)-BSDEs. The question of the existence of solutions of the (g or g)-
BSDE:s is more delicate to tackle and does not admit explicit representation. These
difficulties also appear in the Brownian framework when the vector martingale N
is defined from a limited number of components of the generating Brownian mo-
tion. Different methods can be used, the first one is based on linear growth ap-
proximating solutions, whilst the second one uses the convexity of the coefficient
and represents solutions as value function of some optimization problems. We now
develop the first point of view.

In this case, the approximation is based on the coefficients ¢, (z) = %(|z|2 —(z—

n)t?) = %(Izlzl{min} + (n|z] — %n2)1{|z|>n}) with linear and quadratic growth,
increasing to ¢(z) when n goes to infinity. For &7 € 1.2, using by the classical
theory, the BSDE(g,,, £&7) has a unique solution in 82, bounded if &7 is bounded.

PROPOSITION 5.2. Let |n7| € Léxp, and (§7) a sequence of increasing r.v.,

bounded by |nt| and converging a.s. to &r.

(i) Denote by (Y", Z", M") e H2(RT) @ HE(R) the unique solution of the
BSDE(qy, &1). The process Y" is a Q-semimartingale satisfying the entropic in-
equality |Y"'| < p.(InTl).

(ii) The sequence (¢",Y", Z", M™1) satisfies the hypothesis of Theorem 4.7
and strongly converges to (Y., Z., MY), minimal solution of BSDE(q, £7) such
that |Y.| < p.(InT|), with the variational representation

(5.2) Y, (E7) =ess sgp{EQu (fT — %/IT|ﬂvs|2sz|ﬁ>},

where QV is the probability with density E£.(v x N) with finite entropy
Egr (fy |/7rvil?dK;) < +00.

(iii) Uniqueness holds in the class of solutions Y such that |Y.| < p.(|7]), and
|&7| is bounded or such that ps(|éT]) for any 6§ > O.

PROOF. (i) Its is clear that Y" is a Q-semimartingale, bounded if &7 is
bounded. Then |Y| belongs to the class (Dexp) and satisfies the entropic inequal-
ity |Y"| < p.(J€r]). Since both processes Y" (¢7) and p.(£7) are monotone with
respect to their terminal condition (by approximating £7) by bounded random vari-

ables, the entropic inequality holds at the limit under the assumption |£7| € Léxp.
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(i) The first result is a direct consequence of the stability result given in The-
orem 4.7. The variational representation for Y” is as in (5.2) with the restriction
that v is bounded by n. That is a standard result on convex BSDEs with uniformly
linear growth (see, e.g., El Karoui, Peng and Quenez [18] or Theorem 8.7 in El
Karoui, Hamadene and Matoussi [16]). Thanks to entropy result in Section 3.2,
the representation (5.2) pass to the limit, since &7 is Q"-integrable.

(iii) Let Y be a solution satisfying |Y.| < p.(|€7]). We first assume that |£7| is
bounded, so that all solutions are bounded and the associated martingales M., M+
and M. — M+ are BMO-martingales.

Denote by Y/ and Y/ two solutions satisfying the entropic inequalities with
two bounded terminal conditions. Using the same notation than in the proof of
Theorem 4.5, we observe that the difference Y. = =Y — v/ verifies a linear BSDE,
with linear growth condition with respect to another probability measure,

av/’ =Y\ mzil - | vzl ) dk, +am;?
1
2

=Wz Jvi(Zi+ Z))dK, + Z)7 AN, +dM]
th_

i,j,L

= Zp (N, = Ly7i(ZE + 2]y dK,) + aM;

Smce Y! and Y/ are bounded solutions, by Theorem 4.2, the martmgales M!, and
M are BMO-martingales, implying that the quadratic variation of 4 5(Z: itz )*N.
is also conditionally bounded, and then 5 L(Z' + Z%) « N.is a BMO- martlngale. By
Girsanov theorem, £ (%(Z,1 +Z%H % N). is a u.i. exponential martingale defining a
new probability measure QUF/) such that dN'") = dN, — Wz + zydkK,)
is a QU*/)-local martingale with the same quadratic variation as N.. More-
over, M s still a QU+ _local martingale, orthogonal to NP, Then, yH
is a bounded Q@*/) local martingale, and so a true martingale and Y =
Egai+ (Y;’j |F.). Uniqueness and comparison theorem are easily deduced of this
property.

In the general case, the difficulty is to show directly that £ (% (Z'+Z%)« N). is
u.i. martingale, given that £(M"). and £(M/). are uniformly integrable.

Under the assumptions of exponential moments of any order, uniqueness has
been proved first by Briand and Hu [7] and Mocha and Westray [32]. [

5.2. Existence result for BSDEs in the class So(|nr], A, C). We are now in-
terested in quadratic BSDEs satisfying the general structure condition
lgC,t,y,2)| <«k(t,y,2) = || + cly| + %|z|2,d]P’ ® dK. a.s., and are looking
for solution in the class So(Inr|, A, C) only. As before, the method relies on
a regularization of the quadratic coefficient it-self through inf-convolution as to
transform it into a coefficient with both linear and quadratic growth. This double
structure of the transformed coefficient leads to results both in terms of existence
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and estimation. The previous stability Theorem 4.5 can then be applied to obtain
the existence of a solution, after having proved that the approximate solutions are
also Sg(Inrl, A, C)-semimartingales.

Regularization of the coefficient through inf-convolution. The proof of this
fundamental result is based on the following lemma involving classical regulariza-
tion by inf-convolution techniques introduced by Lepeltier and San Martin [28] in
a BSDEs framework. Let us first observe that the appropriate regularization when
dealing with ¢(z) = —%Izl2 is a sup-convolution since g(z) is concave. To over-
come this difficulty, we proceed in two steps, by first assuming that g is bounded
from below by some basic function with both a linear and quadratic growth « ,,

where —k (1, y,2) =kp(t,y,2) =l + ¢yl +qp(2) with gp(2) = %|Z|21{|z|§p} +

(plzl = 3PP 1{zj>p)- When p = 1, k1 (t, y,2) =k(t, y,2) =1 + ¢yl +q(z) with
_ 1,02

q(2) = 51z|~

LEMMA 5.3. Let g : R xR" — R be a continuous function with linear growth
iny, and quadratic growth in z, bounded from below by some function k ,(t, y, z) =
—(; +cilyl +qp(2)) and from above by k(t,y, z):

(5.3) kpt,y,z) <g(t,y,z) <«(t,y,2),

where the processes c. and l. are bounded by some universal constant C.

The regularizing functions are the convex functions with linear growth
bp(u, w) = nlu| + nlw|.The sequences k, ,, kn and g, are defined, respectively,
as the inf-convolution of the functions k ,, k and g with the function b,

&n,p(t’ yaZ) =£prn(I’ y’Z)a Kn(t’ y,Z) =KDbn(t’yaZ)v
gn(t, y,Z) =g‘:’bn(t7 y’Z) =£nuf;(g(t,1/l, w) +n|y _I’ll +l’l|Z - w|)

have the following properties, for n > sup(C, p):

() kn(t,9,2) = I + cilyl + an@ < I + clyl + 3zl k, (7. 2) =
Kp(t,y,2);
(1) |gn(t, y,2)| <1t + ctlyl + sup(qp(2), gn(2)) = kn(t, y,2) <l + |yl +
3zl
(iii) the sequences g, and k, are increasing;
(iv) the Lipschitz constant of functions g, is n;
(V) if (Vn, 2n) = (¥, 2), then g, (t, yn, 2n) — &(1, ¥, 2).

In this lemma, the various functions are regularized through the Lipschitzian
regularization, whist the function «,, is the Moreau—Yoshida regularization of b,,
(see Hiriart-Urruty and Lemaréchal [23], Chapter E, for more details).
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Existence result. The important point now is to prove that the solutions to
the BSDEs(g,,&7) which are Lipschitz with linear growth, are in the class
So(Inrl, A, €) when Elexp(X7" (In7 )] < +o0.

LEMMA 5.4. Let g and g,, k and k, as in Lemma 5.3. The coefficients g,
and Ky, are standard uniformly Lipschitz coefficients. For any |&r| < |nt|, let
(ym, zm, M.”*L) and (U™, V", W,”’J-) be the unique solution of the BSDE(g,, 1)
and BSDE(x,, |nTl) in the appropriate space.

(1) The sequences (Y"") and (U") are increasing, and satisfy the entropic in-
equality, |Y"| <U" < p.(eS7nr|+ [T S dA).as.

Both sequences (Y") and (U") are So(Intl, A, C)-quadratic semimartingales.

(ii) The sequence (Y", Z", ML) converges uniformly in probability to a min-
imal solution (Y., Z., M,J-) of the BSDE(g, &7).

PROOF. The proof relies on classical properties of BSDEs solutions associ-
ated with standard coefficients (with linear growth), in a Hz—space. In particular,
existence, uniqueness and comparison hold true in this case, that implies (i).

(i) First, assume that X é\ 'C is bounded. The solutions U”" are bounded and
the entropic inequality is valid. Since these inequalities are stable when taking
increasing limit with respect to A, C, n, the same inequalities hold still true un-
der the assumption X IT\’C(nT) € ]Léxp. Then, by construction, (¥Y”*) and (U") are
So(nrl, A, C)- quadratic semimartingales.

(i1) Finally, using Theorem 4.5, we obtain the convergence of this sequence to
a solution of the BSDE(g, £7) in the space Sp(Inr|, A, C). O

It remains to overcome the assumption made on the coefficient of a linear
quadratic growth lower bound. Given a coefficient g with decomposition g =
gt — g~, where both positive functions g+ and g~ have the same quadratic
structure. Let g, = g™ — ¢~ Ob,. Then g, satisfies Condition (5.3), and the
BSDE(g, £7) admits a minimal solution; the sequence of solutions Y ? is decreas-
ing, and belongs to the space Sp(Inr|, A, C). Once again, we use the stability the-
orem to conclude that the sequence Y? converges to a solution of the BSDE(g, &7).
We summarize the general form of our results in the following theorem.

THEOREM 5.5. Let us consider a general BSDE(g, £7), where &1 be a Fr-
random variable such that E[exp(eCT |67 | + fOT eCs dAy)] < 400.

The coefficient g(t, y, z) is satisfying the quadratic structure condition (2.2),
1gCot, 3, D1 < 51l +clyl + Szl

Then, there exists at least a solution (Y, Z, M‘) in So(é7l, A, C, 8) of the
BSDE(g, &7).



MONOTONE STABILITY OF QUADRATIC SEMIMARTINGALES 1861

REMARK 5. When both A, C =0, as in the framework of cash additive risk
measures, the theorem simply states: if |g(-, ¢, ¥, z2)| < %|z|2, and E[exp(8|&7|)] <
+00, their exists at least a solution in the class (Dexp).

Comment on the uniqueness of the solution. The question of the uniqueness of
the solution to a general quadratic BSDE is not trivial. In the standard framework
where the terminal condition is bounded, Kobylanski [26] obtains the uniqueness
of the solution under some Lipschitz style assumptions. Recently, Tevzadze [39]
gives a direct proof of uniqueness still in the bounded case. In the case of an un-
bounded terminal condition, Briand and Hu [7] work under the additional assump-
tion that the coefficient g is convex with respect to the variable z. This allows
them to derive the comparison theorem, which is needed to obtain the uniqueness.
Their methodology can be adapted and generalized to our framework without any
particular difficulty. In a very recent paper [32], Mocha and Westray have con-
sidered general quadratic BSDEs under some stronger assumptions of exponential
moment of order p > 1 and boundedness of the increasing processes. They obtain
some interesting results for the uniqueness of the solution. The convex case has
been also studied in Delbaen, Hu and Richou [11] under weaker assumptions.

In this paper, we study the stability and convergence of some general quadratic
semimartingales. The general stability result (Theorem 4.5), including the strong
convergence of the martingale parts in various spaces ranging from H! to BMO, is
derived under some mild integrability condition on the exponential of the terminal
value of the semimartingale. This strong convergence result is then used to prove
the existence of solutions of general quadratic BSDEs under minimal exponen-
tial integrability assumptions, relying on a regularization in both linear-quadratic
growth of the quadratic coefficient itself. On the contrary to most of the existing
literature, it does not involve the seminal result of Kobylanski [26] on bounded
solutions. As previously mentioned, this approach has also other potential appli-
cations such as numerical simulations of quadratic BSDEs, study in terms of risk
measures and dual representation, solving of associated HJB-type equations....
The various results obtained in the paper can be extended to jump processes.
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