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DISTANCE BETWEEN TWO SKEW BROWNIAN MOTIONS AS
A S.D.E. WITH JUMPS AND LAW OF THE HITTING TIME

BY ARNAUD GLOTER1 AND MIGUEL MARTINEZ

Université d’Évry Val d’Essonne and Université Paris-Est Marne-la-Vallée

In this paper, we consider two skew Brownian motions, driven by the
same Brownian motion, with different starting points and different skewness
coefficients. We show that we can describe the evolution of the distance be-
tween the two processes with a stochastic differential equation. This S.D.E.
possesses a jump component driven by the excursion process of one of the
two skew Brownian motions. Using this representation, we show that the lo-
cal time of two skew Brownian motions at their first hitting time is distributed
as a simple function of a Beta random variable. This extends a result by Bur-
dzy and Chen [Ann. Probab. 29 (2001) 1693–1715], where the law of coales-
cence of two skew Brownian motions with the same skewness coefficient is
computed.

1. Presentation of the problem. Consider (Bt )t≥0 a standard Brownian mo-
tion on some filtered probability space (�, F , (Ft )t≥0,P) where the filtration sat-
isfies the usual right continuity and completeness conditions. Recall that the skew
Brownian motion Xx,β is defined as the solution of the stochastic differential equa-
tion with singular drift coefficient,

X
x,β
t = x + Bt + βL0

t

(
Xx,β)

,(1.1)

where β ∈ (−1,1) is the skewness parameter, x ∈ R and L0
t (X

x,β) is the symmet-
ric local time at 0,

L0
t

(
Xx,β) = lim

ε→0

1

2ε

∫ t

0
1[−ε,ε]

(
Xx,β

s

)
ds.

It is known that a strong solution of equation (1.1) exists, and pathwise uniqueness
holds as well; see [3, 10]. Remark that in [5] it is shown that Xx,β can be obtained
as the limit of diffusion processes Xx,β,n with smooth coefficients. Indeed, if one
mollifies the singularity due to the local time, the following diffusion processes
can be defined:

X
x,β,n
t = x + Bt + 1

2
log

(
1 + β

1 − β

)∫ t

0
nφ

(
nXx,β,n

s

)
ds,
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where φ is any symmetric positive function with support on [−1/2,1/2] and hav-
ing unit mass. Then, the almost sure convergence of some sub-sequence Xx,β,nk to
Xx,β is shown in [5], Theorem 1.7.

The skew Brownian motion is an example of a process partially reflected at
some frontier. It finds applications in the fields of stochastic modelization and of
numerical simulations, especially as it is deeply connected to diffusion processes
with noncontinuous coefficients; see [12] and references therein. The structure of
the flow of a reflected, or partially reflected, Brownian motion has been the subject
of several works; see, for example, [2, 4]. The long time behavior of the distance
between reflected Brownian motions with different starting points has been largely
studied too; see, for example, [6, 8].

Actually, a quite intriguing fact about the solutions of (1.1) is that they do not
satisfy the usual flow property of differential equations, which prevents two solu-
tions with different initial positions from meeting in finite time. Indeed, it is shown
in [2] that, almost surely, the two paths t �→ X

x,β
t and t �→ X

0,β
t meet at a finite

random time. Moreover, the law of the values of the local times of these processes
at this instant of coalescence are computed in [5].

In this paper, we study the time dynamic of the distance between the two pro-
cesses X0,β1 and Xx,β2 where the skewness parameters β1, β2 are possibly dif-
ferent. We show that, after some random time change, the distance between the
two processes is a Markov process, solution to an explicit stochastic differential
equation with jumps; see Theorem 1 below. The dynamic of this stochastic dif-
ferential equation enables us to compute the law of the hitting time of zero for
the distance between the two skew Brownian motions. Consequently, we can draw
informations about the hitting time of the two skew Brownian motions.

More precisely, let us denote T � the first instant where Xx,β2 and X0,β1 meet
and define the quantity U� = L0

T �(X
0,β1). For x > 0, 0 < β1, β2 < 1, we show, in

Theorem 3 below, that the random variable x
β1U

� is distributed with a Beta law.
This extends the result of Burdzy and Chen [5] where the law of the hitting time
was computed under the restriction β1 = β2. We study also the situation where
−1 < β2 < 0 < β1 < 1 and x > 0. In this case, we show that the random variable
β1U

�

x
is distributed with a Beta law (Theorem 4).

The organization of the paper is as follows. In Section 2, we precisely state our
main results.

Sections 3 and 4 are devoted to the proofs of the results in the case 0 < β1,
β2 < 1. In Section 3, we introduce our fundamental tool, which is the process
u �→ X

x,β2

τ 0
u (X0,β1 )

, where τ 0
u (X0,β1) is the inverse local time of X0,β1 . This process

is a measurement of the distance between X0,β1 and Xx,β2 . We prove that this
process is solution of some explicit stochastic differential equation with jumps,
driven by the Poisson process of the excursions of X0,β1 . In Section 4, we show
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how the dynamic of this process enables us to compute the law of the hitting time
of the two skew Brownian motions.

In Section 5, we sketch the proofs of our results in the situation −1 < β2 <

0 < β1 < 1. For the sake of shortness, we will only put the emphasis on the main
differences with the case 0 < β1, β2 < 1.

Some of the technical results needed in the proofs are postponed to an Ap-
pendix.

2. Main results. Consider the two skew Brownian motions,

X
x,β2
t = x + Bt + β2L

0
t

(
X

x,β2
t

)
,(2.1)

X
0,β1
t = Bt + β1L

0
t

(
X

0,β1
t

)
,(2.2)

with x > 0. We introduce the cadlag process defined as

Zx,β1,β2
u = X

x,β2

τu(X0,β1 )
,(2.3)

where τu(X
0,β1) is the inverse of the local time, given as

τu

(
X0,β1

) = inf
{
t ≥ 0 | L0

t

(
X0,β1

)
> u

}
.

Note that, since X
0,β1

τu(X0,β1 )
= 0, we have Z

x,β1,β2
u = X

x,β2

τu(X0,β1 )
− X

0,β1

τu(X0,β1 )
. This

explains why we choose below to call Zx,β1,β2 the “distance process.” Our first re-
sult shows that the “distance process” is solution to a stochastic differential equa-
tion with jumps, driven by the excursion Poisson process of X0,β1 . We need some
additional notation before stating it. We introduce (eu)u>0, the excursion process
associated to X0,β1 ,

eu(r) = X
0,β1

τu−(X0,β1 )+r
for r ≤ τu

(
X0,β1

) − τu−
(
X0,β1

)
.

The Poisson point process (eu)u>0 takes values in the space C0→0 of excursions
with finite lifetime, endowed with the usual uniform topology. We denote nβ1 the
excursion measure associated with X0,β1 .

Let us define T � = inf{t ≥ 0 | X
0,β1
t = X

0,β2
t } ∈ [0,∞] and U� = L0

T �(X
0,β1
t ).

Since Xx,β2 and X0,β1 are driven by the same Brownian motion, it is easy to see
that they can only meet when X0,β1 = 0. As a consequence, we have

U� = inf
{
u ≥ 0 | Zx,β1,β2

u = 0
} ∈ [0,∞] and Zx,β1,β2 > 0 on [0,U�).

Our first result about Zx,β1,β2 is the following.

THEOREM 1. Assume x > 0 and 0 < β1, β2 < 1. Almost surely, we have for
all t < U�,

Z
x,β1,β2
t = x − β1t + ∑

0<u≤t

β2�
(
Z

x,β1,β2
u− , eu

)
,(2.4)
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where � : (0,∞) × C0→0 → [0,∞) is a measurable map.
For h > 0, we can describe the law of e �→ �(h, e) under nβ1 by

nβ1

(
�(h, e) ≥ a/β2

) = 1 − β1

2h

(
1 + a

h

)−(1+β2)/(2β2)

∀a > 0.(2.5)

COROLLARY 1. Assume x > 0 and 0 < β1, β2 < 1. We have for all t < U�,

Z
x,β1,β2
t = x − β1t +

∫
[0,t]×(0,∞)

aμ(du, da),(2.6)

where μ(du, da) is the random jumps measure of Zx,β1,β2 on [0,U�) × (0,∞).
The compensator of the measure μ(du, da) is du × ν(Z

x,β1,β2
u− , da) with

ν(h, da) = κ

h2

(
1 + a

h

)−γ

1{a>0} da,(2.7)

where κ = (1−β1)(1+β2)
4β2

and γ = 1+3β2
2β2

.

REMARK 1. Theorem 1 fully details the dynamic of the “distance process”
before it (possibly) reaches 0. The “distance process” decreases with a constant
negative drift, and has positive jumps. Moreover, the value of a jump at time u is
a function of the level Z

x,β1,β2
u− and of the excursion eu. The image of the excur-

sion measure under this function, with a fixed level h > 0, is given by the explicit
expression (2.5).

In [2, 5] it is shown that the processes X0,β1 and Xx,β2 meet in finite time under
some appropriate conditions for the skewness coefficients.

THEOREM 2. Assume x > 0 and 0 < β1, β2 < 1 with β1 >
β2

1+2β2
. Then the

hitting time T � = inf{t > 0 | X0,β1
t = X

x,β2
t } is almost surely finite.

REMARK 2. Actually, in [2] the case β1 = β2 is considered with x > 0. In [5]
the situation β1 	= β2 is treated in the case x = 0 and with the condition β2

1+2β2
<

β1 < β2; see [5], Theorem 1.4(iii). Nevertheless, it is rather clear that the additional
condition β1 < β2 is mainly related to the choice x = 0 and could be removed if
x > 0. We will give below a new proof of Theorem 2.

In [5] the law of U� = L0
T �(X

0,β1) is computed in the particular situation β1 =
β2. In the following theorem, we compute the law without this restriction.
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THEOREM 3. Assume x > 0 and 0 < β1, β2 < 1 with β1 >
β2

1+2β2
. Denote

U� = L0
T �(X

0,β1). Then the law of U� has the density

pU�(x, du) = 1

b(1 − ξ�, (1 − β1)/(2β1))

β1

x

(
β1u

x

)ξ�−2

(2.8)

×
(

1 − x

β1u

)(1−3β1)/(2β1)

1[x/β1,∞)(u) du,

where b(a, b) = ∫ 1
0 ua−1(1 − u)b−1 du = 
(a)
(b)


(a+b)
and ξ� = 1

2β1
− 1

2β2
.

Hence, x
β1U

� is distributed as a Beta random variable B(1 − ξ�,
1−β1
2β1

).

REMARK 3. For β1 = β2 we retrieve the result of [5]. However, in [5] the cu-
mulative distribution function of U� was explicitly derived using a max-stability
argument for the law of U�. By (2.8) we see that for β1 	= β2 the cumulative distri-
bution function cannot be computed explicitly. Actually, arguments similar to [5]
do not seem to apply directly here.

The following proposition deals with the finiteness of the hitting time of X0,β1

and Xx,β2 when one of the skewness parameters is negative. It can be easily derived
from Theorem 2; a proof is given in Section 5.

PROPOSITION 1. Assume x > 0 and −1 < β2 < 0 < β1 < 1. Then T � is al-
most surely finite.

Assume x > 0 and −1 < β1 < 0 < β2 < 1. Then T � = ∞ almost surely.

We can compute the law of the hitting time when the skewness parameters have
different signs.

THEOREM 4. Assume x > 0 and −1 < β2 < 0 < β1 < 1; then the law of U� =
L0

T �(X
0,β1) has the density

pU�(x, du) = 1

b((β2 − 1)/(2β2), (1 − β1)/(2β1))

β1

x

(
β1u

x

)−(1+β2)/(2β2)

(2.9)

×
(

1 − β1u

x

)(1−3β1)/(2β1)

1[0,x/β1](u) du.

Hence, β1U
�

x
is distributed as a Beta random variable B(

β2−1
2β2

,
1−β1
2β1

).

It remains to study the case where β1 < 0, β2 < 0. We have the following result,
which will be deduced from the previous ones.
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COROLLARY 2. Assume x > 0 with −1 < β1, β2 < 0 and |β2| >
|β1|

1+2|β1| .

Then T � is finite and (1 − β1L
0
T � (X0,β1 )

x
)−1 is distributed as a product of two in-

dependent Beta variables.

REMARK 4. Remark that the condition x > 0 in the previous results is essen-
tially irrelevant. Indeed if x < 0, we may set X̃x = −Xx , X̃0 = −X0, β̃1 = −β1

and β̃2 = −β2. This simple transformation reduces the situation to one of those
studied in Theorems 3 and 4 or Corollary 2.

Throughout the paper, the parameter β1 is associated to the process starting
from 0 and β2 to the one starting from x > 0, so we will, from now on, suppress
the dependence upon the skewness parameters and write X0, Xx , Zx for X0,β1 ,
Xx,β2 , Zx,β1,β2 . Moreover, we shall only consider the inverse of local time for the
process X0, and hence we shall write τu for τu(X

0) when no confusion is possible.
Let us introduce, for u ≥ 0, the sigma field

Gu = Fτu.(2.10)

With these notation, the process (Zx
u)u≥0 is (Gu)u≥0 adapted. Moreover we can

see that its law defines a Markov semi group. Indeed, we can use the a.s. relation
τl(X

0
τh+·) = τh+l(X

0) − τh(X
0) to get

Zx
h+l = Xx

τh+l (X
0)

= Xx

τh(X0)+τl(X
0
τh+·)

.(2.11)

Then, using the pathwise uniqueness for the skew equations, we see that the law
of (Xx

τh+·,X0
τh+·), conditional on Fτh

, is the law of solutions to (2.1) and (2.2)
starting from (Xx

τh
,X0

τh
) = (Xx

τh
,0). This fact with (2.11) shows that the law of

(Zx
u)u≥0 defines a Markov semi group.
Consequently, we remark that U� = inf{u ≥ 0 | Zx

u = 0} is the a hitting time of
a Markov process. This is the crucial fact that allows us to compute the law of U�.

In the next section, we will study the dynamics of the Markov process Zx and,
in particular, give the proof of Theorem 1. For simplicity, we have decided to focus
the paper mainly on the situation 0 < β1, β2 < 1. This restriction especially holds
true in the Sections 3 and 4 below.

3. Stochastic differential equation with jumps characterization of Zx (case
0 < β1,β2 < 1). In this section we assume that we are in the situation 0 <

β1, β2 < 1. We will show that Zx is solution to some stochastic differential equa-
tion governed by the excursion point Poisson process of X0.

First, we recall some basic facts about the excursion theory.
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3.1. Excursions of a skew Brownian motion. Consider X0,β a skew Brownian
motion starting from 0, and introduce the inverse of its local time τu(X

0,β) =
inf{t ≥ 0 | L0

t (X
0,β) > u}. Recall that the excursion process (eu)u>0 associated to

X0,β is eu(r) = X
0,β

τu−(X0,β )+r
, for r ≤ τu(X

0,β) − τu−(X0,β). The Poisson point
process (eu)u>0 takes values in the space C0→0 of excursions. For e ∈ C0→0 we
denote R(e) the lifetime of the excursion and recall that by definition e does not
hit zero on (0,R(e)), and e(r) = 0 for r ≥ R(e).

If we denote nβ the excursion measure of the X0,β , we have the formula, for
any Borel subset A of C0→0,

nβ(A) = (1 + β)

2
n|B.M.|(A) + (1 − β)

2
n|B.M.|(−A),(3.1)

where n|B.M.| is the excursion measure for the absolute value of a Brownian mo-
tion. Let us recall some useful facts on the excursion measure n|B.M.|, that are
immediate from well-known properties of the excursion measure of a standard
Brownian motion.

First, we recall the law of the height of an excursion (e.g., see Chapter 12
in [13]),

n|B.M.|(e reaches h) = 1

h
for h > 0.(3.2)

Second, we recall that in the case of a standard Brownian motion, the law of the
excursion after reaching some fixed level h, is the same as the law of a Brownian
motion starting from h before it hits 0.

In the sequel, we will use these properties in a context that we now describe.
Let G : C([0,∞),R) → R+ be some measurable functional on the canonical

Wiener space. For h ∈ R denote T h(e) = inf{s | es = h}, and let wh
r := wh

r (e) :=
eT h(e)+r − h for r ≤ R(e) − T h(e) = T −h(wh(e)) be the shifted part of the excur-
sion after T h. Then by Theorem 3.5, page 491 in [13], for h > 0,

n|B.M.|[G(e(T h(e)+·)∧R(e) − h)1{e reaches h}]
n|B.M.|[e reaches h]

=
n|B.M.|[G(wh

·∧T −h(wh)
)1{e reaches h}]

n|B.M.|[e reaches h]
=

∫
C([0,∞),R)

G(w·∧T −h(w)) dW(w),

where W is the standard Wiener measure.
Using (3.1) we deduce that for h 	= 0,

nβ[G(wh
·∧T −h(wh)

)1{e reaches h}]
nβ[e reaches h] =

∫
C([0,∞),R)

G(w·∧T −h(w)) dW(w).(3.3)
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3.2. Representation of the local time of Xx as a functional of the excursion pro-
cess of X0. The next proposition shows that L0

τu
(Xx) is a functional of (eu)u>0

the excursion process of X0 [recall that τu = τu(X
0,β1)].

PROPOSITION 2. Almost surely, one has the representation for all t < U�,

L0
τt

(
Xx) = ∑

0<u≤t

�
(
Xx

τu−, eu

)
,(3.4)

where � : (0,∞) × C0→0 → [0,∞) is a measurable map.
For h > 0, we can describe the law of e �→ �(h, e) under nβ1 by

nβ1

(
�(h, e) ≥ a

) = 1 − β1

2h

(
1 + β2a

h

)−(1+β2)/(2β2)

∀a > 0.(3.5)

PROOF. Before turning to a rigorous proof, let us give some insight about the
representation (3.4). Given u > 0 such that τu − τu− > 0, using (2.2), we have for
r ≤ R(eu),

eu(r) = X0
τu−+r = X0

τu− + Bτu−+r − Bτu− + β1
[
L0

τu−+r

(
X0) − L0

τu−
(
X0)]

= Bτu−+r − Bτu− .

Recalling (2.1), we deduce

Xx
τu−+r = Xx

τu− + Bτu−+r − Bτu− + β2
[
L0

τu−+r

(
Xx) − L0

τu−
(
Xx)]

= Xx
τu− + eu(r) + β2

[
L0

τu−+r

(
Xx) − L0

τu−
(
Xx)]

(3.6)

= Xx
τu− + eu(r) + β2L

0
r

(
Xx

τu−+·
)
.

Relation (3.6) shows that (Xx
τu−+r )r<R(eu) satisfies a skew Brownian motion type

of equation, but governed by the excursion path eu, and starting from the value
Xx

τu− . By solving this equation, we will show that the process (Xx
τu−+r )r<R(eu)

can be obtained as a functional of the excursion eu and of the initial value Xx
τu− .

As a consequence, the local time L0
τu

(Xx) − L0
τu−(Xx) will be written too as a

functional �(Xτx
u−, eu). We give a rigorous proof of these facts in the first two steps

below. Remark that in general, it is not true that equation X̂r = h+e(r)+β2L
0
r (X̂)

admits a unique solution for all h ∈ R and all e ∈ C0→0. This makes the rigorous
construction a bit delicate. We shall perform this construction in Step 1 below.

Step 1: Construction of solutions to the skew equation driven by a single excur-
sion.

Consider C([0,∞),R) the canonical space endowed with W the measure of
the standard Brownian motion (starting at zero). Since the skew Brownian motion
equation admits a unique strong solution, we know that there exists a solution
(Xr )r≥0 to the equation

Xr (ω) = ωr + β2L
0
r

(
X (ω)

)
(3.7)
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as long as ω ∈ �̂ where �̂ is some subset of C([0,∞),R) with W(�̂) = 1. More-
over, we may assume that

∀ω ∈ �̂,∀r > 0 Xr (ω) = Xr (ω·∧r ).(3.8)

For h > 0, define T h(ω) = inf{u > 0 | wu = h}, and one can easily see that,
for any h > 0, the process X·∧T h(ω)(ω) is some functional of ω·∧T h(ω). (It can be
seen, e.g., and up to restricting �̂, using that (3.7) is a limit of S.D.E. with smooth
coefficients; for this last point, see [5] Theorem 1.7.) With slight abuse of notation,
we write X·∧T h(ω)(ω) = X·∧T h(ω)(ω·∧T h(ω)).

Define �̂h = {(ωr∧T h(ω))r≥0 | ω ∈ �̂}, by construction,

W
({

ω ∈ C
([0,∞),R

) | ω·∧T h(ω) ∈ �̂h}) = W(�̂) = 1.(3.9)

Now, we construct a solution of the skew equation driven by the “generic” ex-
cursion e and starting from an arbitrary value h > 0 as follows.

For h > 0 and e ∈ C0→0:

• If e does not reach −h, we simply set

X̂r(h, e) = h + e(r) for r ∈ [
0,R(e)

]
.(3.10)

• If e reaches −h and w−h ∈ �̂h, we denote

T −h(e) = inf
{
r | e(r) = −h

}
and ω−h· = e

(
T −h(e) + ·) + h.

Note that ω−h
0 = 0, that ω−h· = ω−h

·∧T h(ω−h)
, and that R(e)−T −h(e) = T h(ω−h).

In this case, we set

X̂r (h, e) =
{

h + e(r), for r ≤ T −h(e),
Xr−T −h(e)

(
ω−h

·∧T h(ω−h)

)
, for r ∈ (

T −h(e),R(e)
]
.

(3.11)

• If e reaches −h and w−h /∈ �̂h, we arbitrarily set

X̂r (h, e) = h for all r ∈ [
0,R(e)

]
.(3.12)

Remark that (3.11) simply means that after the excursion reaches −h, we use
the solution of the skew equation defined on the canonical space, treating the part
of the excursion after T −h(e) as the realization of the Brownian motion when such
construction is feasible.

Remark that, in cases where X̂ is defined by (3.10) and (3.11), one may write
with a slight abuse of notation

X̂r (h, e) = X̂r

(
h, e(· ∧ r)

) ∀r > 0,(3.13)

where we used (3.8).
Since for ω ∈ �̂, X (ω) satisfies (3.7), and the local time of X̂(e, h) does not

increase before T −h(e), we have ∀e ∈ C0→0, such that e reaches −h with ω−h ∈
�̂h:

X̂r(h, e) = h + e(r) + β2L
0
r

(
X̂(h, e)

) ∀r ≤ R(e).(3.14)



HITTING TIME OF SKEW BROWNIAN MOTIONS 1637

We now show that for h > 0 fixed, the nβ1 measure of the set of excursions e
where (3.14) is possibly not satisfied is zero. Indeed, using the fundamental prop-
erty (3.3) of the excursion measure,

nβ1

(
e
(
T −h(e) + ·) + h /∈ �̂h | e reaches − h

)
(3.15)

= nβ1

(
ω−h

·∧T h(ω−h)
/∈ �̂h | e reaches − h

)
= W

({
ω | ω·∧T h(ω) /∈ �̂h}) = 0,(3.16)

where we have used (3.9).
We finally define the local time of X̂(h, e) during the lifetime of the excursion

in the following way:

• If e does not reach −h, we simply set

�(h, e) = 0.(3.17)

• If e reaches −h and w−h ∈ �̂h,

�(h, e) =

⎧⎪⎪⎨⎪⎪⎩
0, for R(e) ≤ T −h(e),
L0

R(e)−T −h(ω−h)

(
X

(
ω−h

·∧T h(ω−h)

))
,

for r ∈ (
T −h(e),R(e)

]
.

(3.18)

• If e reaches −h and w−h /∈ �̂h, we arbitrarily set

�(h, e) = 0.(3.19)

Step 2: Proof of relation (3.4).
For s < T �, we have Xx

s > X0
s , and we deduce that the local time of Xx does

not increase on the set {s < T � | X0
s = 0} = [0, T �) \ ⋃

u<U�]τu−, τu[. Hence, we
have for t < U� the relation

L0
τt

(
Xx) = ∑

0<u≤t

[
L0

τu

(
Xx) − L0

τu−
(
Xx)]

.

Now it is clear that (3.4) will be proved if we show that almost surely,

L0
τu

(
Xx) − L0

τu−
(
Xx) = �

(
Xx

τu−, eu

)
for all u with τu − τu− > 0.(3.20)

In Appendix A.1, we show that it is possible to construct X̃x satisfying (3.20),
and such that X̃x and Xx are indistiguishable up to time T �. This is enough to
prove (3.4).

Step 3: Law of e �→ �(h, e) under the excursion measure (h > 0 fixed).
Let a > 0, using the fundamental property (3.3) of the excursion measure and

the definitions (3.7), (3.18), we have

nβ1(�(h, e) > a; e reaches − h)

nβ1(e reaches − h)
= W

(
L0

T h(ω)

(
X (ω)

)
> a

)
,(3.21)
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where X solves Xr = ωr + β2L
0
r (X ), and (ωr)r≥0 is a standard Brownian motion

under W. We can compute

W
(
L0

T h(ω)

(
X (ω)

)
> a

)
= W

(
no excursion of X· crossed over h + β2L

0· (X )

before L0· (X ) reaches a
)

= exp
(
−

∫ a

0
nβ2

[
e reaches level (h + β2u)

]
du

)
,

where in the last line we have used that the measure of excursion of the process X
is nβ2 , together with standard computations on Poisson processes. Recalling (3.1)–
(3.2), we have nβ2[e reaches level (h + β2u)] = 1+β2

2(h+β2u)
and we easily get that

W
(
L0

T h(ω)

(
X (ω)

)
> a

) =
(

1 + β2a

h

)−(1+β2)/(2β2)

.(3.22)

Finally, we remark that

nβ1

(
�(h, e) > a

)
= nβ1

(
�(h, e) > a; e reaches −h

)
= nβ1(e reaches −h)

(
1 + β2a

h

)−(1+β2)/(2β2)

using (3.21)–(3.22),

= 1 − β1

2h

(
1 + β2a

h

)−(1+β2)/(2β2)

by (3.1)–(3.2).

The proof of the Proposition 2 is complete. �

3.3. Representation of the “distance process” as a jump Markov process (proof
of Theorem 1 and Corollary 1).

PROOF OF THEOREM 1. Using (2.1) we have Zx
t = Xx

τt
= x + Bτt +

β2L
0
τt
(Xx). Now from (2.2), 0 = X0

τt
= Bτt + β1t , and we deduce

Zx
t = x − β1t + β2L

0
τt

(
Xx)

.

Hence, relation (3.4) yields to (2.4). Equation (2.5) appears as an immediate con-
sequence of (3.5). �

PROOF OF COROLLARY 1. Representation (2.6) is just the usual way to
rewrite the stochastic differential equation with jumps: we transform (2.4) into
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(2.6) by defining μ(du, da) as the sum of Dirac masses
∑

u<U�,Zx
u−	=Zx

u
δ(u,�Zx

u),
and (2.7) appears as a direct consequence of (2.5) and �Zx

u = β2�(Z
x
u−, eu). �

REMARK 5. From Corollary 1 we deduce that the rate for the jumps of Zx is
given by

P
(
Zx jumps on [t, t + dt] | Zx

t− = h
) = 1 − β1

2h
dt.(3.23)

Conditionally on Zx
t− = h, the law of the jumps is given by

1 + β2

2β2h

(
1 + a

h

)−γ

1(0,∞)(a) da.(3.24)

Remark that the jumps intensity of the process Zx is proportional to 1/Zx . If a
jump occurs at time t , then the size of the jump is proportional to Zx

t−. Informally,

�Zx
t

law= Zx
t−J where J has the density (3.24) with h = 1.

REMARK 6. As a consequence of Remark 5, the number of jumps on [0, t] is
finite for t < U� since the jump activity is bounded when Zx > ε.

From Corollary 1 , we can deduce that (Zx
t )t<U� is a local submartingale (resp.,

supermartingale) if β2 > β1 (resp., β2 < β1). Indeed, with simple computations∫
C0→0

β2�(h, e) dnβ1(e) = ∫ ∞
0 aν(h, da) = β2

1−β1
1−β2

is independent of h. Hence, we
can write

Zx
t = x − β1t + β2

1 − β1

1 − β2
t

+ ∑
u≤t

β2�
(
Zx

u−, eu

) −
∫ t

0

∫
C0→0

β2�
(
Zx

u−, e
)
dnβ1(e) du

:= x + β2 − β1

1 − β2
t + Mt,

where (Mt)t is a compensated jump process, and hence a local martingale. Remark
that for β1 = β2 the process Zx is a local martingale.

4. Hitting time of the two skew Brownian motions (case 0 < β1,β2 < 1,
β1 > β2

1+2β2
). In this section we prove the results of Section 2 corresponding to

the situation 0 < β1, β2 < 1, β1 >
β2

1+2β2
. We start by giving a new proof of Theo-

rem 2 [2, 5] relying on the dynamic of the process Zx .
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4.1. Finiteness of the hitting time (proof of Theorem 2). Let us show that if
β1 >

β2
1+2β2

, then U� < ∞ almost surely. We apply Ito’s formula to the semi-
martingale ln(Zx

t ) for t < U�,

ln
(
Zx

t

) = ln(x) +
∫ t

0

dZx
u

Zx
u−

+ ∑
u≤t

{
ln

(
Zx

u− + �Zx
u

) − ln
(
Zx

u−
) − �Zx

u

Zx
u−

}
(4.1)

= ln(x) −
∫ t

0

β1du

Zx
u

+ ∑
u≤t

ln
(

1 + �Zx
u

Zx
u−

)
by (2.4).

Consider the jump process

Jt = ∑
u≤t

ln
(

1 + �Zx
u

Zx
u−

)
= ∑

u≤t

ln
(

1 + β2�(Z
x
u−, eu)

Zx
u−

)
.

Its compensator can be easily computed using (2.6) and (2.7). Indeed, we have∫
C0→0

ln
(

1 + β2�(h, e)
h

)
dnβ1(e) =

∫ ∞
0

ln
(

1 + a

h

)
ν(h, da) = (1 − β1)β2

(1 + β2)h
,

and hence J̃t = Jt − (1−β1)β2
(1+β2)

∫ t
0

du
Zx

u
is a compensated jump process. Using (4.1),

we can write

ln
(
Zx

t

) = ln(x) + θ

∫ t

0

du

Zx
u

+ J̃t ,(4.2)

with θ = (1−β1)β2
(1+β2)

− β1 = β2−β1(1+2β2)
1+β2

< 0.

The process J̃ is a quadratic pure jumps local martingale, and its bracket is
clearly given by

[J̃ , J̃ ]t = ∑
u≤t

ln
(

1 + β2�(Z
x
u−, eu)

h

)2

.

With the help of (2.7), we compute∫
C0→0

ln
(

1 + β2�(h, e)
h

)2

dnβ1(e) =
∫ ∞

0
ln

(
1 + a

h

)2

ν(h, da) = c

h

for some constant c > 0. We deduce 〈J̃ , J̃ 〉t = c
∫ t

0
du
Zx

u
. Using (4.2), we get

ln(Zx
t )

〈J̃ , J̃ 〉t = ln(x)

〈J̃ , J̃ 〉t + θ

c
+ J̃t

〈J̃ , J̃ 〉t .(4.3)

Suppose now we are on the event {U� = ∞}. Then, either {∫ ∞
0

ds
Zx

s
< ∞} or

{∫ ∞
0

ds
Zx

s
= ∞}.
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On the set {∫ ∞
0

ds
Zx

s
= ∞}, we have 〈J̃ , J̃ 〉∞ = ∞, and using Kronecker’s

lemma (see Lemma 3 in the Appendix A.2),

ln(Zx
t )

〈J̃ , J̃ 〉t
t→∞−→ θ

c
< 0.

Thus, P a.s. on the set 〈J̃ , J̃ 〉∞ = ∞, there exist t0 and η > 0 such that ln(Zx
t ) ≤

−η
∫ t

0
du
Zx

u
for all t ≥ t0. In view of Lemma 4 in Appendix A.3, this is not possible.

On the set {∫ ∞
0

du
Zx

u
< ∞} = {〈J̃ , J̃ 〉∞ < ∞}, using Kronecker’s lemma

and (4.3), we see that ln(Zx
t ) converges as t → ∞. This is clearly in contradiction

with the finiteness of the integral
∫ ∞

0
du
Zx

u
.

Hence, by contradiction, we have proved that U� < ∞ a.s., and thus Theorem 2
is shown.

4.2. Computation of the law of the hitting time (proof of Theorem 3). The main
tool in order to compute the law of U� is Zx . Let us denote A the generator of the
process Zx given by

Af (h) = −β1f
′(h) +

∫ ∞
0

[
f (h + a) − f (h)

]
ν(h, da),(4.4)

= −β1f
′(h) +

∫ ∞
0

[
f (h + a) − f (h)

] κ

h2

(
1 + a

h

)−γ

da(4.5)

for h > 0 and f an element of C 1(0,∞) bounded on [0,∞). Using representa-
tion (2.6)–(2.7), it is clear that f (Zx

t ) − ∫ t
0 Af (Zx

u) du with t < U� is a compen-
sated jump process and thus a local martingale.

Before turning to the heart of the proof, we need to prove several lemmas in the
next section.

4.2.1. Dynkin’s formula. Our first lemma shows a “Dynkin’s formula” that
relates the generator of the process with U�.

For λ > 0 we denote uλ(x) = Ex[e−λU�] where the subscript x emphasizes the
dependence upon the starting point of the process Zx .

LEMMA 1 (Dynkin’s formula). (1) The function x �→ uλ(x) is C∞(0,∞) and
satisfies limx→0 uλ(x) = 1, and |uλ(x)| ≤ e−λx/β1 . Moreover, the derivatives of uλ

decay exponentially near ∞ and satisfy xku
(k)
λ (x) = O(1) near 0 (for any k ≥ 0).

(2) The function uλ is solution to the integro-differential equation

Auλ(x) = λuλ(x) for all x > 0.(4.6)

PROOF. (1) First we show that x �→ uλ(x) is a smooth function. Denote (Ux
n )n

the successive jumps of (Zx
u)u<U�,x , where again we stress the dependence upon x

as we write U�,x = U� = supn Ux
n .
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Since Zx evolves with the constant negative drift −β1 dt and jumps with the
infinitesimal probability (3.23), we can easily compute the law of Ux

1 .

P
(
Ux

1 ≥ t
) =

(
1 − β1t

x

)(1−β1)/(2β1)

.(4.7)

As a result the law of Ux
1 is equal to the law of xU1

1 . Moreover, the law of the
jump of Zx

t is proportional to Zx
t− (see Remark 5), and this implies that the law of

Zx
Ux

1
and xZ1

U1
1

are equal. Consequently, we deduce that the processes (Zx
t )t≤Ux

1

and (xZ1
t/x)t≤xU1

1
have the same law. Then, by induction, it can be seen that the

two processes (Zx
t ) and (xZ1

t/x) have the same law up to their respective nth jump
time. Letting n tend to infinity, we deduce(

Zx
t

)
t<U�,x

law= (
xZ1

t/x

)
t<xU�,1 and U�,x = xU�,1.(4.8)

Now, by definition uλ(x) = E[e−λU�,x ] = E[e−λxU�,1]. In turn, x �→ uλ(x) is
clearly a C∞(0,∞) function. Moreover, using U�,1 < ∞ almost surely, and

Lebesgue’s theorem we get uλ(x)
x→0−→E[e0] = 1.

Next, by (2.4) and the positivity of the jumps of Zx , one must have U�,x ≥
x/β1 a.s. and thus uλ(x) = E[e−λU�,x ] ≤ e−λx/β1 . In the same way, from u

(k)
λ (x) =

E[(−λU�,1)ke−λxU�,1] we easily deduce the exponential decay of u
(k)
λ near ∞.

Finally, the boundedness xku
(k)
λ (x) is clear too from the latter representation of

u
(k)
λ (x).

(2) We now prove equation (4.6). Recall notation (2.10) and consider the mar-
tingale (Mt)t≥0 defined as Mt = E[e−λU�,x | Gt∧U�,x ] for t ≥ 0. We can write

Mt1{t<U�,x} = E
[
e−λU�,x | Gt∧U�,x

]
1{t<U�,x}

= E
[
e−λU�,x

1{t<U�,x} | Gt∧U�,x

]
1{t<U�,x}(4.9)

= E
[
e−λU�,x

1{t<U�,x} | Gt

]
1{t<U�,x}.

For t > 0, denote U�(Zx
t+·) = inf{s ≥ 0 | Zx

t+s ≤ 0}, and remark that on
the set U�,x > t we have U�(Zx

t+·) = U�,x − t and thus e−λU�,x
1{t<U�,x} =

e−λ[U�(Zx
t+·)+t]1{t<U�,x}. As a result, using (4.9) with the Markov property at time t ,

we deduce

Mt1{t<U�,x} = uλ

(
Zx

t

)
e−λt1{t<U�,x}.(4.10)

We now consider Mt1{t≥U�,x}. We can write Mt1{t≥U�,x} = E[e−λU�,x |
Gt∧U�,x ]1{t≥U�,x} = E[e−λU�,x | GU�,x ]1{t≥U�,x} = e−λU�,x

1{t≥U�,x}. Using
uλ(Z

x
U�,x ) = 1 and (4.10), we deduce

Mt = uλ

(
Zx

t∧U�,x

)
e−λ(t∧U�,x).(4.11)
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Relation (4.11) shows that (uλ(Z
x
t∧U�,x )e

−λ(t∧U�,x))t≥0 is a martingale. We apply
Ito’s formula to the process t �→ uλ(Z

x
t )e−λt and find for t < U�,x ,

uλ

(
Zx

t

)
e−λt = uλ(x) +

∫ t

0
e−λs[Auλ

(
Zx

s

) − λuλ

(
Zx

s

)]
ds + Nt,(4.12)

where Nt = ∑
0≤s≤t [uλ(Z

x
s− + �sZ

x) − uλ(Z
x
s−)] − ∫ t

0
∫ ∞

0 [uλ(Z
x
s− + a) −

uλ(Z
x
s−)]ν(Zx

s , da) ds is a local martingale. By uniqueness of the Doob–Meyer
decomposition, the predictive finite variation part is zero in representation (4.12),
and we deduce∫ t

0
e−λs[Auλ

(
Zx

s

) − λuλ

(
Zx

s

)]
ds = 0 ∀t < U�,x almost surely.

Differentiating the latter and using the almost sure continuity of s �→ Zx
s at zero,

we finally obtain Auλ(x) = λuλ(x) for all x > 0. �

REMARK 7. In the proof of Lemma 1 we have shown that the laws of the
processes t �→ Zx

t and t �→ xZ1
t/x coincide until they reach zero. This is not sur-

prising, since one can show using (2.7) that the compensator of the point processes
t �→ Zx

t + β1t and t �→ x(Z1
t/x + β1t/x) are the same. For point processes with

finite intensities, it is known that the compensator characterizes the law of the pro-
cess; see Theorem 1.26 in Chapter III of [11].

We now show that the integro-differential equation (4.6) can be transformed into
an ordinary differential equation. Related techniques were used in [7] for comput-
ing the ruin time of Levy processes. In [7], a crucial fact is that the generator of
a Levy process acts as a multiplier in the Fourier domain. Such simplifications in
the Fourier domain do not occur for the generator of the process Zx ; however,
the multiplicative invariance of the process (see Remark 7) suggests the use of the
Mellin transform.

LEMMA 2. The function x �→ uλ(x) is the solution to

β1xu′′
λ(x) + u′

λ(x)
(
λx + β1ξ

�) − λ(γ − 2)uλ(x) = 0 for all x ∈ (0,∞),

where ξ� = 1
2β1

− 1
2β2

and the constant γ was defined in Corollary 1.

PROOF. The main idea is that the generator A acts as a kind of multiplier for
the Mellin transform. Let us recall that for f : [0,∞) → R, one defines the Mellin
transform of f as

M[f ](ξ) =
∫ ∞

0
xξ−1f (x) dx

for all ξ ∈ C such that the latter integral is well defined. It is clear that if f is
bounded and with exponential decay near ∞, then ξ �→ M[f ](ξ) is well defined
and holomorphic on the half plane {ξ ∈ C | Re(ξ) > 0}.
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For such functions f , we recall the four following properties which are easily
derived from the definition of the Mellin transform:

M
[
x �→ f

(
x(1 + y)

)]
(ξ) = (1 + y)−ξ M[f ](ξ) for Re(ξ) > 0;(4.13)

M
[
x �→ f (x)/x

]
(ξ) = M[f ](ξ − 1) for Re(ξ) > 1;(4.14)

M
[
f ′](ξ) = (1 − ξ)M[f ](ξ − 1)

(4.15)
if f ∈ C 1(0,∞) and Re(ξ) > 1;

M
[
x �→ xf ′(x)

]
(ξ) = −ξ M[f ](ξ)

(4.16)
if f ∈ C 1(0,∞) and Re(ξ) > 0.

Now, using the expression of the generator (4.5) with a simple change of variable,
we have

Af (x) = −β1f
′(x) +

∫ ∞
0

[
f

(
x(1 + y)

) − f (x)
]κ
x

(1 + y)−γ dy.

Using Fubini’s theorem and properties (4.13)–(4.15) we deduce that for Re(ξ) > 1,

M[Af ](ξ) = β1(ξ − 1)M[f ](ξ − 1)

+
(
κ

∫ ∞
0

[
(1 + y)−ξ+1 − 1

]
(1 + y)−γ dy

)
M[f ](ξ − 1)

=
[
β1(ξ − 1) + κ

ξ + γ − 2
− κ

γ − 1

]
M[f ](ξ − 1)

= Q(ξ)M[f ](ξ − 1)

with Q(ξ) being the rational function Q(ξ) = β1(ξ−1)(ξ−ξ�)
(ξ+γ−2)

and ξ� = 1
2β1

− 1
2β2

.
Now we turn back to the solution of the equation Auλ = λuλ and apply the

Mellin transform on both sides of this equality. We deduce

Q(ξ)M[uλ](ξ − 1) = λM[uλ](ξ) ∀ξ with Re(ξ) > 1.

From the definition of Q, we obtain

β1(ξ − 1)
(
ξ − ξ�)M[uλ](ξ − 1) = λ(ξ + γ − 2)M[uλ](ξ),

and using (4.15)–(4.16) this equation can be transformed into

−β1ξ M
[
u′

λ(x)
]
(ξ) + β1ξ

�M
[
u′

λ

]
(ξ)

= λ(γ − 2)M[uλ](ξ) − λM
[
x �→ xu′

λ(x)
]
(ξ), Re(ξ) > 1.

We apply again (4.16) with the choice f = u′
λ. Remark that, even if f = u′

λ is not

bounded near 0, it is easy to see that property (4.16) is still valid, using u′
λ(x)

x→0=
O(1/x) and Re(ξ) > 1. We deduce the following relation for all ξ with Re(ξ) > 1:

β1M
[
x �→ xu′′

λ(x)
]
(ξ) + β1ξ

�M
[
u′

λ

]
(ξ)

(4.17)
= λ(γ − 2)M[uλ](ξ) − λM

[
x �→ xu′

λ(x)
]
(ξ).
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Since equality (4.17) holds true for any ξ in the half plane Re(ξ) > 1, we may
invert the Mellin transform, and we deduce the lemma. �

4.2.2. Proof of Theorem 3. By Lemma 2, the function uλ(x) = Ex[e−λU�] is
the solution to the equation β1xu′′

λ(x) + u′
λ(x)(λx + β1ξ

�) − λ(γ − 2)uλ(x) = 0,
for all x ∈ (0,∞). Then, if we define

wλ(x) = λ

β1
uλ

(
−xβ1

λ

)
for x < 0,(4.18)

it is simple to check that wλ is solution to Kummer’s equation

xw′′
λ(x) + w′

λ(x)
[
ξ� − x

] + (γ − 2)wλ(x) = 0 for all x ∈ (−∞,0).(4.19)

Moreover, from Lemma 1, this solution wλ satisfies the boundary condition
limx→0 wλ(x) = λ

β1
and |wλ(x)| ≤ λ

β1
e−|x| for x < 0.

We know from [1] that Kummer’s equation (4.19) admits two independent so-
lutions,

y1(x) = M
(
2 − γ, ξ�, x

)
,(4.20)

y2(x) = exU
(
ξ� + γ − 2, ξ�,−x

)
= 1


(ξ� + γ − 2)

∫ ∞
1

ext t1−γ (t − 1)ξ
�+γ−3 dt,(4.21)

where M and U are the confluent hypergeometric functions; for the definition
of these functions see formulas 13.1.2 and 13.1.3 in Chapter 13 of [1], and see
formula 13.2.6 of [1] for the integral representation of U . The asymptotic behavior
of the fundamental solutions can be found, using equation 13.1.5 in [1],

y1(x) ∼x→−∞

(ξ�)


(ξ� + γ − 2)
(−x)γ−2,

and using equation 13.5.2 in [1],

y2(x) ∼x→−∞ ex(−x)2−γ−ξ�

.

From the exponential decay of wλ, we deduce that wλ is proportional to y2. Hence,
using (4.21) we get

wλ(x) = cy2(x) = c


(ξ� + γ − 2)

∫ ∞
1

ext (t − 1)ξ
�+γ−3t1−γ dt

for some c ∈ R.
The condition β1 >

β2
1+2β2

, equivalent to ξ� < 1, is sufficient for the finiteness

of U(ξ� +γ −2, ξ�,0) and U(ξ� +γ −2, ξ�,0) = 
(1−ξ�)

(γ−1)

(see formulas 13.5.10–

13.5.12 in [1]). We deduce that c = 
(γ−1)

(1−ξ�)

λ
β1

and

wλ(x) = 
(γ − 1)


(1 − ξ�)
(ξ� + γ − 2)

λ

β1

∫ ∞
1

ext (t − 1)ξ
�+γ−3t1−γ dt.(4.22)
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From (4.18) and (4.22), we deduce

Ex

[
e−λU�]
= uλ(x)

= 
(γ − 1)


(1 − ξ�)
(ξ� + γ − 2)

λ

β1

∫ ∞
1

e−λxt/β1(t − 1)ξ
�+γ−3t1−γ dt

= 
(γ − 1)


(1 − ξ�)
(ξ� + γ − 2)

∫ ∞
x/β1

e−λu

(
β1u

x
− 1

)ξ�+γ−3(
β1u

x

)1−γ

du,

where the last line comes from a simple change of variable.
Identification of the Laplace’s transform shows that the law of U� admits the

density pU�(x,du)

du
= 
(γ−1)


(1−ξ�)
(ξ�+γ−2)
(
β1u
x

− 1)ξ
�+γ−3(

β1u
x

)1−γ 1{u≥x/β1}. Expres-

sion (2.8) is obtained with simple algebra and recalling γ = 1+3β2
2β2

.

5. Case of negative skewness coefficients. In this section, we give sketches
of the proofs of the results of Section 2 corresponding to the situations where one
of the skewness parameters may be negative.

5.1. Proof of Proposition 1. We will use the following comparison result (see
Theorem 3.1 in [5]): if Xx,β and Xx,β ′

are two solutions of the skew Brownian
motion equation (1.1) with −1 < β < β ′ < 1, then P(X

x,β
t ≤ X

x,β ′
t ,∀t ≥ 0) = 1.

In the case β1 > 0, choose β = β2 and β ′ such that 0 < β ′ and β ′
1+2β ′ < β1 (this

is always possible since β1 > 0). The comparison Xx,β2 ≤ Xx,β ′
ensures that the

hitting time of Xx,β2 and X0,β1 is smaller than the hitting time of Xx,β ′
and X0,β1 .

The result of Proposition 1, in the case β2 < 0 < β1, follows then from Theorem 2.
In the case β1 < 0 < β2, it is clear that Xx,β2 − X0,β1 remains greater than x

and thus T � = ∞ almost surely.

5.2. Sketches of the proof of Theorem 4. The proof of Theorem 4 follows the
same route as the proof of Theorem 3: we first determine the dynamic of Zx and
then characterize the solution of the associated Dynkin equation with help of the
Mellin transform. Finally, we identify the Laplace transform of the law of U� with
an explicit solution of Kummer’s equation. Let us give some more details.

In the case −1 < β2 < 0 < β1 < 1, by a proof similar to the one of Proposition 2,
we can show that

L0
τt

(
Xx) = ∑

0<u≤t

�
(
Xx

τu−, eu

)
,

where the law of the functional � under the excursion measure is

nβ1

(
�(h, e) ≥ a

) = 1 − β1

2h

(
1 + β2a

h

)−(1+β2)/(2β2)

1[0,h/|β2|](a) ∀a > 0.
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We deduce that the dynamic of the process Zx
t = Xx

τt
is as follows:

Zx
t = x − β1t + ∑

0<u≤t

β2�
(
Zx

u−, eu

)
= x − β1t −

∫
[0,t]×(0,∞)

aμ(du, da),

where the compensator of the random measure μ(du, da) is du×ν(Zx
u−, da) with

ν(h, da) = |κ|
h2

(
1 − a

h

)−γ

1[0,h](a) da, κ = (1 − β1)(1 + β2)

4β2

and

γ = 1 + 3β2

2β2
.

Remark that both the drift and jumps of Zx are negative, yielding to an almost
sure finite hitting time of the level 0. Especially, it is clear that the support of U�

is included in [0, x
β1

]. The generator of the process Zx now writes

Af (h) = −β1f
′(h) +

∫ h

0

[
f (h − a) − f (h)

] |κ|
h2

(
1 − a

h

)−γ

da for h > 0.

Consider uλ(x) = E[e−λU�,x ] where we use the notation of the proof of Lemma 1.
Exactly as in Lemma 1, we can prove that uλ satisfies Dynkin’s formula Auλ =
λuλ. Moreover, as in Lemma 1, we can check that U�,x and xU�,1 have the
same law and hence uλ(x) = E[e−λxU�,1]. As a result, the function x �→ uλ(x)

is the Laplace transform of the law of a random variable with the compact support
[0, λ

β1
].

Then, the integro-differential equation Auλ = λuλ can be transformed to an
ordinary differential equation by applying Mellin’s transform as in the proof of
Lemma 2. One finds exactly the same equation as in the case of positive skewness
coefficients,

β1xu′′
λ(x) + u′

λ(x)
(
λx + β1ξ

�) − λ(γ − 2)uλ(x) = 0
(5.1)

for all x ∈ (0,∞),

with ξ� = 1
2β1

− 1
2β2

and γ = 1+3β2
2β2

.
Let us stress that some additional technical difficulties arise for the application

of Mellin’s transform when β2 < 0. Indeed, contrary to the case of Section 4,
we cannot show the exponential decay of uλ (due to the different shape of the
support of the law of U�). In order to define and manipulate Mellin’s transform
of uλ on some sufficiently large strip, some preliminary bounds on the decay of
uλ have to be established. Lemma 5 of the Appendix ensures that all the necessary
computations are allowed.
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As in Section 4.2.2, if one sets wλ(x) = λ
β1

uλ(−xβ1
λ

) for x < 0, then wλ is solu-
tion to Kummer’s equation (4.19). A fundamental system of solution to Kummer’s
equation is given by y1 and y2; see (4.20)–(4.21). For β2 < 0, the solution y1 ad-
mits an integral representation (see Formula 13.2.1 in [1]),

y1(x) = 
(ξ�)


(ξ� + γ − 2)
(2 − γ )

∫ 1

0
ext t1−γ (1 − t)ξ

�+γ−3 dt.(5.2)

Comparing (4.21) and (5.2) with the fact that uλ is the Laplace transform of some
function with compact support, we deduce that wλ is proportional to y1. From the
condition wλ(0) = λ

β1
uλ(0) = λ

β1
, we get

wλ(x) = λ

β1


(ξ�)


(ξ� + γ − 2)
(2 − γ )

∫ 1

0
ext t1−γ (1 − t)ξ

�+γ−3 dt.(5.3)

Using Ex[e−λU�] = uλ(x) = β1
λ

wλ(−λx
β1

) with a few computations, one can de-
duce (2.9).

5.3. Proof of Corollary 2 (x > 0, β1 < 0, β2 < 0). Set X̃−x = −Xx , X̃0 =
−X0 and B̃ = −B , then

X̃−x
t = −x + B̃t + |β2|L0

t

(
X̃−x)

,

X̃0
t = B̃t + |β1|L0

t

(
X̃0)

,

so that we are now dealing with positive skewness coefficients, but a negative
starting value −x. Denote T 0 = inf{t > 0 | X̃−x

t = 0}. We define X̂0
t = X̃−x

T0+t ,

X̂t = X̃0
T 0+t

and B̂t = B̃T 0+t − B̃T 0 . These processes are solutions to

X̂t = X̂0 + B̂t + |β1|L0
t (X̂),

X̂0
t = B̂t + |β2|L0

t

(
X̂0)

,

where X̂0 is independent of (B̂t )t≥0. Note that for these new processes the role
of the skewness parameter has been exchanged, and the starting point of X̂ is a
positive random variable. Let us introduce T̂ � = inf{t ≥ 0 : X̂t = X̂0

t } = T � − T 0.
Using the Markov property at the random time T 0, and applying Theorem 3,

we get that B1 = (
|β2|L0

T̂ � (X̂0)

X̂0
)−1 is independent of X̂0 and distributed as a Beta

B(1 − ( 1
2|β2| − 1

2|β1|),
1−|β2|
2|β2| ) variable.

The random variable B1 can be related to the local time of the initial process,

L0
T �

(
X0) = L0

T �

(
X̃0)

= |β2|
|β1|L

0
T �

(
X̃−x) − x

|β1|
= |β2|

|β1|L
0
T̂ �

(
X̃−x

T 0+·
) − x

|β1| = |β2|
|β1|L

0
T̂ �

(
X̂0) − x

|β1|
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= X̂0B−1
1

|β1| − x

|β1|

= X̃0
T 0B−1

1

|β1| − x

|β1|

= [x + |β1|L0
T 0(X̃

0)]B−1
1

|β1| − x

|β1| .

But the law of L0
T 0(X̃

0) may be derived by computations similar to those of step 3
in the proof of Proposition 2; see (3.22).

Finally, one finds that P(L0
T 0(X̃

0) > a) = (1+ |β1|a
x

)−(1+|β2|)/(2|β2|). This means

that B2 = [1 + |β1|L0
T 0 (X̃0)

x
]−1 is distributed as a B(

1+|β2|
2|β2| ,1) variable. Since

L0
T �(X

0) = x
|β1| [B−1

2 B−1
1 − 1], the corollary is proved.

APPENDIX

A.1. Proof of relation (3.4). Since for t < U�, we have the relation

L0
τt

(
Xx) = ∑

0<u≤t

[
L0

τu

(
Xx) − L0

τu−
(
Xx)]

,

it is clear that (3.4) will be proved if we show that almost surely,

L0
τu

(
Xx) − L0

τu−
(
Xx) = �

(
Xx

τu−, eu

)
for all u with τu − τu− > 0.(A.1)

Actually, we will construct X̃x , indistinguishable of Xx up to T �, which satisfies
the relation (A.1).

Let

U1 = inf{u > 0 | eu reaches −x + β1u}.
Then, U1 is a (Gu)u≥0 stopping time, and it is immediate that U1 < x/β1 almost
surely. We construct X̃x on [0, T1] where T1 = τU1 in the following way:

• For t < τU1−, we set

X̃x
t =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x + es(t − τs−) − β1s = X̂t−τs−(x − β1s, es),

if t ∈ (τs−, τs) with s < U1,
x − β1L

0
t

(
X0)

,

if t ∈ [0, τU1−)
∖ ⋃

s<U1

(τs−, τs) = {
v < τU1− | X0

v = 0
}
.

(A.2)

• For t ∈ [τU1−, τU1], we let

X̃x
t = X̂t−τU1−

(
X̃x

τU1−, eU1

) = X̂t−τU1−(x − β1U1, eU1)(A.3)

where X̂ was defined in (3.10)–(3.12).
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Note that with this definition, X̃x
t = x + X0

t − β1L
0
t (X

0) if t < τU1−.
For t ∈ [τU1−, τU1], we have that

L0
t

(
X̃x) − L0

τU1−
(
X̃x) = L0

t−τU1−
(
X̂(x − β1U1, eU1)

)
(A.4)

for t ∈ [τU1−, τU1].
Let us check that X̃x satisfies the skew equation. By definition of U1 we have

X̃x
t > 0 on [0, τU1−). Moreover, es(t − τs) = X0

t when t ∈ (τs−, τs), together
with (2.2) ensures that X̃x

t = x + Bt for t ∈ [0, τU1−). As a result, X̃x satisfies
the skew equation on [0, τU1−).

We now focus on the interval [τU1−, τU1). First, using the so-called “master
formula” (Proposition 1.10 page 475 in [13]), we get

E

[ ∑
0<s<x/β1

1{e reaches −x+β1s}1{e(T −x+β1s (e)+·)+x−β1s /∈�̂x−β1s}
]

=
∫ x/β1

0
nβ1

(
e reaches −x + β1s;

(A.5)
e
(
T −x+β1s(e) + ·) + x − β1s /∈ �̂x−β1s

)
ds

= 0,

where the latter integral is zero from (3.15)–(3.16). Hence, we deduce that with
probability one, for all u < x

β1
the relation (3.14) holds true with e replaced by eu

and h replaced by x − β1u. As a consequence, it holds true, almost surely, for the
excursion occurring at the random time U1. This leads to the following relation for
t ∈ [τU1−, τU1]:

X̃x
t = X̃x

τU1− + eU1(t − τU1−) + β2L
0
t−τU1−

(
X̂(x − β1U1, eU1)

)
= X̃x

τU1− + eU1(t − τU1−) + β2
[
L0

t

(
X̃x) − L0

τU1−
(
X̃x)]

by (A.4)

= X̃x
τU1− + X0

t + β2
[
L0

t

(
X̃x) − L0

τU1−
(
X̃x)]

by definition of the excursion process

= X̃x
τU1− + Bt + β1L

0
t

(
X0) + β2

[
L0

t

(
X̃x) − L0

τU1−
(
X̃x)]

by (2.2)

= x + Bt + β2L
0
t

(
X̃x)

,

where we have used X̃x
τU1− = x − β1U1, L0

t (X
0) = U1 and L0

τU1−(X̃x) = 0 in the

last line. This completes the proof that X̃x almost surely satisfies the skew equation
on [0, T1].

Let us briefly check that X̃x is adapted. Using (3.13) and (A.5), the construc-
tion (A.2) and (A.3) ensures that almost surely, for any t ∈ [0, T1],

X̃x
t = X̂t−τs−

(
x − β1s; es

(· ∧ (t − τs−)
))

, if t ∈ (τs−, τs) with s ∈ (0,U1].
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And the continuity of X̃x implies that the previous equality is in fact satisfied
on every closed interval [τs−, τs] with s ∈ (0,U1]. Since T1 = τU1 is a (Ft )t≥0

stopping time, this proves that the process (X̃x
t 1t≤T1) is (Ft )t≥0 adapted.

From the pathwise uniqueness for solutions of the skew equation, we deduce
that we must have X̃x = Xx on [0, T1], almost surely.

Then, by the definition of the functional � in the first step of the proof, and
by the construction of X̃, we see that condition (A.1) holds true for u ≤ U1. We
deduce L0

τt
(Xx) = ∑

0<u≤t �(X
x
τu−, eu) for t ≤ U1. Remark that, since t ≤ U1, the

only possible nonzero term in this sum is �(Xx
τU1−, eU1).

The process X̃x is then constructed recursively. For i ≥ 1, we let Ui+1 = inf{u >

Ui | eu reaches −X̃x
Ti

+ β1(u − Ui)}, we set Ti+1 = τUi+1 . We define X̃x on
[Ti, Ti+1] as follows:

if t ∈ [Ti, τUi+1−) with t ∈ (τs−, τs) for some s,

X̃x
t = X̃x

Ti
+ es(t − τs−) − β1(s − Ui);

if t ∈ [Ti, τUi+1−) with X0
t = 0,

X̃x
t = X̃x

Ti
− β1

(
L0

t

(
X0) − Ui

);
if t ∈ [τUi+1−, Ti+1],

X̃x
t = X̂x

t−τUi+1−(X̃τUi+1−, eUi+1)

= X̂x
t−τUi+1−

(
X̃Ti

− β1(Ui+1 − Ui), eUi+1

)
.

With arguments similar to the one used on [0, T1], we can prove that X̃x satis-
fies the skew equation on [Ti, Ti+1] and is adapted. Consequently, if Xx and X̃x

coincide at the instant Ti , they must coincide almost surely on [Ti, Ti+1].
Using a recursion argument, we construct a process X̃x on [0, supi Ti), which is

a.s. equal to Xx . Moreover, by construction, relation (A.1) is valid for u < supi Ui .
To get (3.4) we need to check that, almost surely, supi Ui = U� or equivalently
that, supi Ti = T � = inf{t > 0 | Xx

t = X0
t }.

This is immediate if supi≥1 Ti = ∞. Assume, by contradiction that the set
{supi≥1 Ti < ∞; supi≥1 Ti < T �} does not have probability zero. On this set, we

have X̃x
t −X0

t = Xx
t −X0

t ≥ ε > 0 for some random ε and t belonging to some ran-
dom left-neighborhood of supi≥1 Ti . But, it can be seen, from the definition of the
jump times Ui , that there is only a finite number of jumps when X̃x

t − X0
t remains

above the level ε; see also Remark 6. This is in contradiction with the existence of
the accumulation point supi Ti , and as a result we deduce that supi Ti = T �.

A.2. A Kronecker lemma for continuous time local martingales. We were
unable to find a reference for the Kronecker Lemma in the context of continuous
time local martingale defined on some random interval [0,U ]; however, see [9] for
close results. Hence we give below a short proof of the result.



1652 A. GLOTER AND M. MARTINEZ

LEMMA 3. Let (J̃t )0≤t<U be a locally square integrable (Gt )-martingale with
localizing sequence τn = inf{u | 〈J̃ , J̃ 〉u ≥ n} and U = supn τn (especially U =
∞ if 〈J̃ , J̃ 〉∞ < ∞). Assume additionally that (〈J̃ , J̃ 〉t )t∈[0,U) is a continuous
process. Then:

• On the set 〈J̃ , J̃ 〉U < ∞, we have the convergence of J̃t as t → U .

• On the set 〈J̃ , J̃ 〉U = ∞, we have J̃t

〈J̃ ,J̃ 〉t
t→U−→ 0.

PROOF. First, define the event �n = {ω | 〈J̃ , J̃ 〉∞ < n}. On this event, U =
τn = ∞ and (J̃t )t≥0 = (J̃t∧τn)t≥0 is a bounded L2 martingale and thus converges
as t → ∞. Since the convergence holds on the set �n for all n, it holds on the set
{ω | 〈J̃ , J̃ 〉∞ < ∞}.

We now focus on the set {〈J̃ , J̃ 〉U = ∞}. Define Ñn
u = ∫ u∧τn

0
dJ̃u

1+〈J̃ ,J̃ 〉u which

is a L2-bounded martingale for each n with〈
Ñn, Ñn〉

u =
∫ u∧τn

0

d〈J̃ , J̃ 〉u
(1 + 〈J̃ , J̃ 〉u)2

= 1 − 1

1 + 〈J̃ , J̃ 〉u∧τn

≤ 1.

From this, we easily see that the sequence (
∫ τn

0
dJ̃u

1+〈J̃ ,J̃ 〉u )n≥1 is a Gτn-martingale

sequence which converges to some L2 variable
∫ U

0
dJ̃u

1+〈J̃ ,J̃ 〉u . As a consequence

Ñu = ∫ u∧U
0

dJ̃u

1+〈J̃ ,J̃ 〉u is a true L2-martingale.
We now write for u0 < u < U ,

J̃u =
∫ u

0

(
1 + 〈J̃ , J̃ 〉u)

dÑu

=
∫ u0

0

(
1 + 〈J̃ , J̃ 〉u)

dÑu +
∫ u

u0

(
1 + 〈J̃ , J̃ 〉u)

dÑu

=
∫ u0

0

(
1 + 〈J̃ , J̃ 〉u)

dÑu −
∫ u

u0

(Ñv − Ñu0) d〈J̃ , J̃ 〉u
+ (

1 + 〈J̃ , J̃ 〉u)
(Ñu − Ñu0),

where we used Ito’s formula.
Then, a convenient choice of u0 determined by the almost sure convergence of

Ñu as u → U , with 〈J̃ , J̃ 〉U = ∞, easily implies that J̃u

〈J̃ ,J̃ 〉u
u→U−→ 0. �

A.3. Technical lemmas.

LEMMA 4. No locally bounded measurable function h : [0,∞) → R
∗+ exist

such that there exists c > 0 and t0 ≥ 0, satisfying ∀t ≥ t0,

ln
(
h(t)

) ≤ −c

∫ t

t0

du

h(u)
.
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PROOF. Assume that such a function h exists, and set g(t) := − ln(h(t)). The
inequality becomes g(t) ≥ c

∫ t
t0

eg(u) du. Denote y(t) = ∫ t
t0

eg(u) du which is an
increasing function. One has the inequality between Stieljes measures on [t0,∞),
d(e−cy(t)) ≤ −c dt , that integrates to e−cy(t) − e−cy(t0) ≤ −c(t − t0). This yields
to a contradiction as t → ∞. �

LEMMA 5. Assume −1 < β2 < 0 < β1 < 1, and set ρ any real number with
0 < ρ < (1 − γ ) ∧ 1 (recall that γ = 1+3β2

2β2
< 1 is defined in Corollary 1).

Then, the following functions are bounded on [0,∞): x �→ uλ(x), x �→
x|u′

λ(x)|, x �→ x2|u′′
λ(x)|, x �→ x1+ρuλ(x), x �→ x2+ρ |u′

λ(x)| and x3−ε|u′′
λ(x)|

for 0 < ε < 1.

PROOF. We use the notation of the proof of Lemma 1. We have uλ(x) =
E[e−λU�,x ] = E[e−λxU�,1], and thus u

(k)
λ (x) = E[(−λU�,1)ke−λxU�,1] for k ≥ 0.

This clearly implies that xk|u(k)
λ (x)| is a bounded function. For k = 0,1,2, we get

that the first three functions in the statement of the lemma are bounded.
Remark now that U�,1 is almost surely greater than U1

1 , the first jump time of
the process u �→ Zx

u . The law of U1
1 is given by (4.7), and one can easily check

that E[(U1
1 )−1+ε] < ∞ for ε > 0. We deduce that E[(U�,1)−1+ε] < ∞ for ε > 0.

As a consequence,∣∣u(k)
λ (x)

∣∣ = ∣∣E[(−λU�,1)k
e−λxU�,1]∣∣

≤ E

[
1

(U�,1)1−ε

(λxU�,1)k+1−ε

λ1−εxk+1−ε
e−λxU�,1

]
(A.6)

≤ cx−(k+1−ε)E
[(

U�,1)−1+ε] ≤ cx−(k+1−ε)

for some constant c independent of x. Using k = 2, this shows that the quantity
x3−ε|u′′

λ(x)| is bounded.
It remains to prove the boundedness of the functions x �→ x1+ρuλ(x) and x �→

x2+ρ |u′
λ(x)|. Clearly, only a control for large values of x is needed. However, this

control requires some additional work.
We start by proving that uλ(x) ≤ cx−1−ρ for x > 1. Using Dynkin’s equation

λuλ(x) = Auλ(x), we have

λuλ(x) = −β1u
′
λ(x) +

∫ x

0

|κ|
x2

(
1 − a

x

)−γ [
uλ(x − a) − uλ(x)

]
da

(A.7)

= −β1u
′
λ(x) − |κ|uλ(x)

x

∫ 1

0
a−γ da +

∫ 1

0

|κ|
x

a−γ uλ(xa) da,

where we performed a change of variables in the last line. From (A.6) with k =
0 and k = 1, we see that the first two terms in the right-hand side of (A.7) are
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bounded by cx−2+ε = O(x−1−ρ) if ε is small enough. It remains to control the
last term in (A.7). We split the integral

∫ 1
0

|κ|
x

a−γ uλ(xa) da into

|κ|
x

∫ 1/x

0
a−γ uλ(xa) da + |κ|

x

∫ 1

1/x
a−γ uλ(xa) da.

Using the control uλ(xa) ≤ 1 on the first integral and uλ(xa) ≤ c(xa)−1+ε on the
second one, we get

∫ 1
0

|κ|
x

a−γ uλ(xa) da ≤ cxγ−2 + cx−2+ε ≤ cx−1−ρ . Collecting
all terms, we have shown uλ(x) ≤ cx−1−ρ .

To finish the proof of the lemma, we need to establish |u′
λ(x)| ≤ cx−2−ρ . If one

differentiates relation (A.7) and uses (A.6), for k = 1 and k = 2, and the control
already obtained for

∫ 1
0 a−γ uλ(xa) da, it can be shown

λu′
λ(x) = |κ|

x

∫ 1

0
a−γ+1u′

λ(xa) da + O
(
x−2−ρ)

.

Again the integral above can be split into∫ 1/x

0
a−γ+1u′

λ(xa) da +
∫ 1

1/x
a−γ+1u′

λ(xa) da.

Using the control |u′
λ(xa)| ≤ c(xa)−1 on the first part, and |u′

λ(xa)| ≤ c(xa)−2+ε

on the second part, we get

1

x

∫ 1

0
a−γ+1u′

λ(xa) da ≤ cx−3+γ + cx−3+ε ≤ cx−(2+ρ).

Collecting all terms, we have shown |u′
λ(x)| ≤ cx−2−ρ . �

REMARK 8. The conclusions of Lemma 5 imply that:

M[uλ](ξ) is defined for Re(ξ) ∈ (0,1 + ρ);
M

[
u′

λ

]
(ξ) is defined for Re(ξ) ∈ (1,2 + ρ);

M
[
x �→ xu′

λ(x)
]
(ξ) is defined for Re(ξ) ∈ (0,1 + ρ);

M
[
x �→ xu′′

λ(x)
]
(ξ) is defined for Re(ξ) ∈ (1,2).
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