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CONVERGENCE TO THE EQUILIBRIA FOR SELF-STABILIZING
PROCESSES IN DOUBLE-WELL LANDSCAPE1

BY JULIAN TUGAUT

Universität Bielefeld

We investigate the convergence of McKean–Vlasov diffusions in a non-
convex landscape. These processes are linked to nonlinear partial differential
equations. According to our previous results, there are at least three station-
ary measures under simple assumptions. Hence, the convergence problem
is not classical like in the convex case. By using the method in Benedetto
et al. [J. Statist. Phys. 91 (1998) 1261–1271] about the monotonicity of the
free-energy, and combining this with a complete description of the set of the
stationary measures, we prove the global convergence of the self-stabilizing
processes.

Introduction. We investigate the weak convergence in long-time of the fol-
lowing so-called self-stabilizing process:⎧⎨⎩Xt = X0 + √

εBt −
∫ t

0
V ′(Xs) ds −

∫ t

0
F ′ ∗ uε

s (Xs) ds,

uε
s = L(Xs).

(I)

Here, ∗ denotes the convolution. Since the own law of the process intervenes in the
drift, this equation is nonlinear, in the sense of McKean. We note that Xt depends
on ε. We do not write ε for simplifying the reading.

The motion of the process is generated by three concurrent forces. The first
one is the derivative of a potential V —the confining potential. The second influ-
ence is a Brownian motion (Bt )t∈R+ . It allows the particle to move upwards the
potential V . The third term—the so-called self-stabilizing term—represents the at-
traction between all the others trajectories. Indeed, we remark: F ′ ∗ uε

s (Xs(ω0)) =∫
ω∈� F ′(Xs(ω0) − Xs(ω)) dP(ω) where (�, F ,P) is the underlying measurable

space.
This kind of processes were introduced by McKean, see [25] or [24]. Here, we

will make some smoothness assumptions on the interaction potential F . Let just
note that it is possible to consider nonsmooth F . If F is the Heaviside step function
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and V := 0, (I) is the Burgers equation; see [29]. If F := δ0, and without confining
potential, it is the Oelschläger equation, studied in [27].

The particle Xt which verifies (I) can be seen as one particle in a continuous
mean-field system of an infinite number of particles. The mean-field system that
we will consider is a random dynamical system like⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX1
t = √

ε dB1
t − V ′(X1

t

)
dt − 1

N

N∑
j=1

F ′(X1
t − X

j
t

)
dt,

...

dXi
t = √

ε dBi
t − V ′(Xi

t

)
dt − 1

N

N∑
j=1

F ′(Xi
t − X

j
t

)
dt,

...

dXN
t = √

ε dBN
t − V ′(XN

t

)
dt − 1

N

N∑
j=1

F ′(XN
t − X

j
t

)
dt,

(II)

where the N Brownian motions (Bi
t )t∈R+ are independents. Mean-field systems

are the subject of a rich literature; see [13] for the large deviations for N → +∞
and [26] under weak assumptions on V and F . For applications, see [10] for social
interactions or [11] for the stochastic partial differential equations.

The link between the self-stabilizing process and the mean-field system when N

goes to +∞ is called the propagation of chaos; see [30] under Lipschitz properties;
[4] if V is a constant; [22] or [23] when both potentials are convex; [3] for a more
precise result; [7, 12] or [13] for a sharp estimate; [9] for a uniform result in time
in the nonuniformly convex case.

Equation (II) can be rewritten in the following way:

dXt = √
εBt − N∇ϒN(Xt ) dt,(II)

where the ith coordinate of Xt (resp., Bt ) is Xi
t (resp., Bi

t ) and

ϒN(X ) := 1

N

N∑
j=1

V (Xj ) + 1

2N2

N∑
i=1

N∑
j=1

F(Xi − Xj )

for all X ∈ R
N . As noted in [33], the potential ϒN converges toward a func-

tional ϒ acting on the measures. A perturbation (proportional to ε) of ϒ will play
the central role in the article.

As observed in [13], the empirical law of the mean-field system can be seen as
a perturbation of the law of the diffusion (I). Consequently, the long-time behavior
of L(Xt) that we study in this paper provides some consequences on the exit time
for the particle system (II).

Also, the convergence plays an important role in the exit problem for the self-
stabilizing process since the exit time is strongly linked to the drift according to the
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Kramers law (see [14] or [16]) which converges toward a homogeneous function
if the law of the process converges toward a stationary measure.

Let us recall briefly some of the previous results on diffusions like (I). The
existence problem has been investigated by two different methods. The first one
consists in the application of a fixed point theorem; see [4, 9, 25] or [16] in the
nonconvex case. The other consists of a propagation of chaos; see, for example,
[26]. Moreover, it has been proved in Theorem 2.13 in [16] that there is a unique
strong solution.

In [25], the author proved—by using Weyl’s lemma—that the law of the
unique strong solution duε

t admits a C∞-continuous density uε
t with respect to

the Lebesgue measure for all t > 0. Furthermore, this density satisfies a nonlinear
partial differential equation of the following type:

∂

∂t
uε

t (x) = ∂

∂x

{
ε

2

∂

∂x
uε

t (x) + uε
t (x)

(
V ′(x) + F ′ ∗ uε

t (x)
)}

.(III)

It is then possible to study equations like (III) by probabilistic methods which
involve diffusions (I) or (II); see [9, 15, 23]. Reciprocally, equation (III) is a useful
tool for characterizing the stationary measure(s) and the long-time behavior; see [4,
5, 31, 32, 34]. In [17], in the nonconvex case, by using (III), it has been proved that
the diffusion (I) admits at least three stationary measures under assumptions easy
to verify. One is symmetric, and the two others are not. Moreover, Theorem 3.2
in [17] states the thirdness of the stationary measures if V ′′ is convex and F ′ is
linear. This nonuniqueness prevents the long-time behavior from being as intuitive
as in the case of unique stationary measure.

The work in [18] and [19] provides some estimates of the small-noise asymp-
totic of these three stationary measures. In particular, the convergence toward Dirac
measures and its rate of convergence have been investigated. This will be one of
the two main tools for obtaining the convergence.

Convergence for (I) is not a new subject. In [5], if V is identically equal to 0,
the authors proved the convergence toward the stationary measure by using an
ultracontractivity property, a Poincaré inequality and a comparison lemma for
stochastic processes. The ultracontractivity property still holds if V is not con-
vex by using the results in [21]. It is possible to conserve the Poincaré inequality
by using the theorem of Muckenhoupt (see [1]) instead of the Bakry–Emery theo-
rem. But, the comparison lemma needs some convexity properties. However, it is
possible to apply these results if the initial law is symmetric in the synchronized
case (V ′′(0) + F ′′(0) ≥ 0); see Theorem 7.10 in [33].

Another method consists of using the propagation of chaos in order to derive
the convergence of the self-stabilizing process from the one of the mean-field sys-
tem. However, we shall use it independently of the time and the classical result
which is on a finite interval of time is not sufficiently strong. Cattiaux, Guillin and
Malrieu proceeded a uniform propagation of chaos in [9] and obtained the con-
vergence in the convex case, including the nonuniformly strictly convex case. See
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also [23]. Nevertheless, according to Proposition 5.17 and Remark 5.18 in [33], it
is impossible to find a general result of uniform propagation of chaos. In the syn-
chronized case, if the initial law is symmetric, it is possible to find such a uniform
propagation of chaos; see Theorems 7.11 and 7.12 in [33].

The method that we will use in this paper is based on the one of [6]. See also [2,
20, 22, 23, 31] for the convex case. In the nonconvex case, Carrillo, McCann and
Villani provide the convergence in [8] under two restrictions: the center of mass is
fixed and V ′′(0) + F ′′(0) > 0 (that means it is the synchronized case).

However, by combining the results in [17–19] with the work of [6] (and the
more rigorous proofs in [8] about the free-energy), we will be able to prove the
convergence in a more general setting. The principal tool of the paper is the mono-
tonicity of the free-energy along the trajectories of (III).

First, we introduce the following functional:

ϒ(u) :=
∫

R

V (x)du(x) + 1

2

∫∫
R2

F(x − y)du(x) du(y).(IV)

This quantity appears intuitively as the limit of the potential in (II) for N → +∞.
We consider now the free-energy of the self-stabilizing process (I),

ϒε(u) := ε

2

∫
R

u(x) log
(
u(x)

)
dx + ϒ(u)

for all measures du which are absolutely continuous with respect to the Lebesgue
measure. We can note that duε

t satisfies this hypothesis for all t > 0.
The paper is organized as follows. After presenting the assumptions, we will

state the first results, in particular, the convergence of a subsequence (uε
tk
)k . This

subconvergence will be used for improving the results about the thirdness of the
stationary measures. Then, we will give the main statement which is the conver-
gence toward a stationary measure, briefly discuss the assumptions of the theorem
and give the proof. Subsequently, we will study the basins of attraction by two dif-
ferent methods and prove that these basins are not reduced to a single point. Finally,
we postpone four results in the annex, including Proposition A.2 which extends the
classical higher-bound for the moments of the self-stabilizing processes.

Assumptions. We assume the following properties on the confining potential V

(see Figure 1):

(V-1) V is an even polynomial function with deg(V ) =: 2m ≥ 4.
(V-2) The equation V ′(x) = 0 admits exactly three solutions: a, −a and 0 with

a > 0. Furthermore, V ′′(a) > 0 and V ′′(0) < 0. Then, the bottoms of the wells are
located in x = a and x = −a.

(V-3) V (x) ≥ C4x
4 − C2x

2 for all x ∈ R with C2,C4 > 0.
(V-4) limx→±∞ V ′′(x) = +∞ and V ′′(x) > 0 for all x ≥ a.
(V-5) V ′′ is convex.
(V-6) Initialization: V (0) = 0.
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FIG. 1. Potential V .

Let us remark that the positivity of V ′′ on [−a;a]c [in hypothesis (V-4)] is an
immediate consequence of (V-1) and (V-5). The simplest and most studied exam-
ple is V (x) := x4

4 − x2

2 . Also, we would like to stress that weaker assumptions
could be considered, but all the mathematical difficulties are present in the poly-
nomial case, and it allows us to avoid some technical and tedious computations.
Let us present now the assumptions on the interaction potential F :

(F-1) F is an even polynomial function with deg(F ) =: 2n ≥ 2.
(F-2) F and F ′′ are convex.
(F-3) Initialization: F(0) = 0.

Under these assumptions, we know by [17] that (I) admits at least one symmetric

stationary measure. And, if
∑2n−2

p=0
|F (p+2)(a)|

p! ap < F ′′(0)+V ′′(a), there are at least
two asymmetric stationary measures: uε+ and uε−. Furthermore, we know by [18]
that there is a unique nonnegative real x0 such that V ′(x0) + 1

2F ′(2x0) = 0 and

V ′′(x0) + F ′′(0)+F ′′(2x0)
2 > 0. The same paper provides that uε

0 converges weakly
toward 1

2δx0 + 1
2δ−x0 and uε± converges weakly toward δ±a in the small-noise limit.

We present now the assumptions on the initial law du0:

(ES) The 8q2th moment of the measure du0 is finite with q := max{m,n}.
(FE) The probability measure du0 admits a C∞-continuous density u0 with

respect to the Lebesgue measure. And, the entropy
∫
R

u0 log(u0) is finite.

Under (ES), (I) admits a unique strong solution. Indeed, the assumptions of Theo-
rem 2.13 in [16] are satisfied: V ′ and F ′ are locally Lipschitz, F ′ is odd, F ′ grows
polynomially, V ′ is continuously differentiable, and there exists a compact K such
that V ′′ is uniformly negative on Kc. Moreover, we have the following inequality:

max
1≤j≤8q2

sup
t∈R+

E
[|Xt |j ]≤ M0.(V)

We deduce immediately that the family (uε
t )t∈R+ is tight. The assumption (FE) en-

sures that the initial free-energy is finite. In the following, we shall use occasionally
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one of the following three additional properties concerning the two potentials V

and F and the initial law du0:

(LIN) F ′ is linear.
(SYN) V ′′(0) + F ′′(0) > 0.

(FM) For all N ∈ N, we have
∫
R

|x|N du0(x) < +∞.

In the following, three important properties linked to the enumeration of the sta-
tionary measures for the self-stabilizing process (I) will be helpful for proving the
convergence:

(M3) The process (I) admits exactly three stationary measures. One is sym-
metric: uε

0 and the other ones are asymmetric: uε+ and uε−. Furthermore, ϒε(u
ε+) =

ϒε(u
ε−) < ϒε(u

ε
0).

(M3)′ There exists M > 0 such that the diffusion (I) admits exactly three sta-
tionary measures with free-energy less than M . Furthermore, we have ϒε(u

ε+) =
ϒε(u

ε−) < ϒε(u
ε
0) ≤ M ; uε

0 is symmetric, and uε+ and uε− are asymmetric.
(0M1) The process (I) admits only one symmetric stationary measure uε

0.

In the following, we will give some simple conditions such that (M3), (M3)′ or
(0M1) are true.

Finally, we recall assumption (H) introduced in [18]:

(H) A family of measures (vε)ε verifies assumption (H) if the family of positive
reals (

∫
R

x2nvε(dx))ε>0 is bounded.

The aim of the weaker assumption (M3)′ is to obtain the convergence even if there
exists a family of stationary measures which does not verify the assumption (H).

For concluding the Introduction, we write the statement of the main theorem:

THEOREM. Let du0 be a probability measure which verifies (FE) and (FM).
Under (M3), uε

t converges weakly toward a stationary measure.

1. First results. This section is devoted to present the tools that we will use
for proving the main result of the paper. Furthermore, we provide some new results
about the thirdness of the stationary measures for the self-stabilizing processes.

We introduce the following functional:

ϒ−
ε (u) := ε

2

∫
R

u(x) log
(
u(x)

)
1{u(x)<1} dx +

∫
R

V (x)u(x) dx.

This new functional is linked to the free-energy ϒε . The interaction part and the
positive contribution of the entropy term

∫
R

u log(u) have been removed. Let us
consider a measure u which verifies the previous assumptions. Due to the nonneg-
ativity of the functions F and x �→ ε

2u(x) log(u(x))1{u(x)≥1}, we obtain directly
the inequality ϒε(u) ≥ ϒ−

ε (u).
In the following, we will need two particular functions [the free-energy of the

system and a function ηt such that d
dt

uε
t (x) = d

dx
ηt (x)].
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DEFINITION 1.1. For all t ∈ R+, we introduce the functions

ξ(t) := ϒε

(
uε

t

)
and ηt := ε

2

∂

∂x
uε

t + uε
t

(
V ′ + F ′ ∗ uε

t

)
.

According to (III), we remark that if ηt is identically equal to 0, then uε
t is

a stationary measure for (I).
We recall the following well-known entropy dissipation:

PROPOSITION 1.2. Let du0 be a probability measure which verifies (FE)
and (ES). Then, for all t, s ≥ 0, we have

ξ(t + s) ≤ ξ(t) ≤ ξ(0) < +∞.

Furthermore, ξ is derivable, and we have

ξ ′(t) ≤ −
∫

R

η2
t

uε
t

.

See [8] for a proof.

1.1. Preliminaries. Let us introduce the functional space

M8q2 :=
{
f ∈ C 2

0(R,R+)
∣∣∣ ∫

R

f (x) dx = 1
}
.

We can remark that uε
t ∈ M8q2 for all t > 0; see [25]. The first tool is the Propo-

sition 1.2 [i.e., to say the fact that the free-energy is decreasing along the orbits
of (III)]. The second one is its lower-bound.

LEMMA 1.3. There exists 
ε ∈ R such that infu∈M8q2 ϒε(u) ≥ 
ε .

PROOF. Let us recall ϒε(u) ≥ ϒ−
ε (u). It suffices then to prove the inequality

infu∈M8q2 ϒ−
ε (u) ≥ 
ε . We proceed as in the first part of the proof of Theorem 2.1

in [6]. We show that we can minorate the negative part of the entropy by a function
of the second moment. Then a growth condition of V will provide the result.

We split the negative part of the entropy into two integrals,

−
∫

R

u(x) log
(
u(x)

)
1{u(x)<1} dx = −I+ − I−

with

I+ :=
∫

R

u(x) log
(
u(x)

)
1{e−|x|<u(x)<1} dx

and

I− :=
∫

R

u(x) log
(
u(x)

)
1{u(x)≤e−|x|} dx.
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By definition of I+, we have the following estimate:

I+ ≥
∫

R

u(x) log
(
e−|x|)1{e−|x|<u(x)<1} dx

≥ −
∫

R

|x|u(x)1{e−|x|<u(x)<1} dx

≥ −
∫

R

|x|u(x) dx ≥ −1

2
− 1

2

∫
R

x2u(x) dx.

By putting γ (x) := √
x log(x)1{x<1}, a simple computation provides γ (x) ≥

−2e−1 for all x < 1. We deduce

I− =
∫

R

√
u(x)γ

(
u(x)

)
1{u(x)≤e−|x|} dx ≥ −2e−1

∫
R

e−|x|/2 dx = −8e−1.

Consequently, it yields

−
∫

R

u(x) log
(
u(x)

)
1{u(x)<1} dx ≤ 1

2

∫
R

x2u(x) dx + 1

2
+ 8e−1.

This implies

ϒ−
ε (u) ≥ −ε

4
− 4εe−1 +

∫
R

(
V (x) − ε

4
x2
)
u(x) dx.(1.1)

By hypothesis, there exist C2,C4 > 0 such that V (x) ≥ C4x
4 − C2x

2 so the func-
tion x �→ V (x) − ε

4x2 is lower-bounded by a negative constant. This achieves the
proof. �

Let us note that the unique assumption we used is limx→±∞ V ′′(x) = +∞.

LEMMA 1.4. Let du0 be a probability measure which satisfies the assump-
tions (FE) and (ES). Then, there exists L0 ∈ R such that ϒε(u

ε
t ) converges to-

ward L0 as time goes to infinity.

PROOF. The assumption (FE) implies ξ(0) = ϒε(u0) < ∞. As ξ is non-
increasing by Lemma 1.2 and lower-bounded by a constant 
ε according to
Lemma 1.3, we deduce that the function ξ converges toward a real L0. �

LEMMA 1.5. If and only if ξ ′(t) = 0, the following is true: uε
t is a stationary

measure uε .

PROOF. If uε
t is a stationary measure uε , then ξ(t) = ϒε(u

ε
t ) = ϒε(u

ε) is a
constant. This provides ξ ′(t) = 0.

Reciprocally, if ξ ′(t) = 0, Proposition 1.2 implies∫
R

η2
t

uε
t

= 0.

We deduce ηt (x) = 0 for all x ∈ R. This means that uε
t is a stationary measure.

�
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1.2. Subconvergence.

THEOREM 1.6. Let du0 be a probability measure which satisfies the assump-
tions (FE) and (ES). Then there exists a stationary measure uε and a sequence
(tk)k which converges toward infinity such that uε

tk
converges weakly toward uε .

PROOF. Plan: First, we use the convergence of
∫∞
t ξ ′(s) ds toward 0 when t

goes to infinity, and we deduce the existence of a sequence (tk)k such that ξ ′(tk)
tends toward 0 when k goes to infinity. Then, we extract a subsequence of (tk)k for
obtaining an adherence value. By using a test function, we prove that this adher-
ence value is a stationary measure.

Step 1. Lemma 1.4 implies that
∫∞
t ξ ′(s) ds collapses at infinity. According to

Proposition 1.2, the sign of ξ ′ is a constant, so we deduce the existence of an
increasing sequence (tk)k∈N which goes to infinity such that ξ ′(tk) −→ 0.

Step 2. The uniform boundedness of the first 8q2 moments with respect to the
time allows us to use Prohorov’s theorem: we can extract a subsequence [we con-
tinue to write it (tk)k for simplifying] such that uε

tk
converges weakly toward a

probability measure uε .
Step 3. We consider now a function ϕ ∈ C∞(R,R)∩ L2(u

ε) with compact sup-
port, and we estimate the following quantity:∣∣∣∣∫

R

ϕ(x)

{
ε

2

∂

∂x
uε

tk
(x) + uε

tk
(x)

[
V ′(x) + (

F ′ ∗ uε
tk

)
(x)

]}
dx

∣∣∣∣
=
∣∣∣∣∫

R

ϕ(x)ηtk (x) dx

∣∣∣∣= ∣∣∣∣∫
R

ϕ(x)
√

uε
tk
(x)

|ηtk (x)|√
uε

tk
(x)

dx

∣∣∣∣
≤
(∫

R

ϕ(x)2uε
tk
(x) dx

)1/2

×
(∫

R

1

uε
tk
(x)

(
ηtk (x)

)2
dx

)1/2

≤
√

−ξ ′(tk)
√∫

R

ϕ(x)2uε
tk
(x) −→ 0

when k goes to infinity; by using the Cauchy–Schwarz inequality, the hypothe-
sis about the sequence (tk)k , and the weak convergence of uε

tk
toward uε . The

support of ϕ is compact, so we can apply an integration by part to the integral∫
R

ϕ(x) ∂
∂x

uε
tk
(x) dx. Hence, we obtain∫

R

ϕ(x)

{
ε

2

∂

∂x
uε

tk
(x) + uε

tk
(x)

[
V ′(x) + F ′ ∗ uε

tk
(x)

]}
dx

=
∫

R

ϕ(x)
[
V ′(x) + F ′ ∗ uε

tk
(x)

]
uε

tk
(x) dx −

∫
R

ε

2
ϕ′(x)uε

tk
(x) dx.

The weak convergence of uε
tk

to uε implies that the previous term tends toward∫
R

ϕ(V ′ + F ′ ∗ uε)uε − ∫
R

ε
2ϕ′uε when k goes to ∞. It has already been proven
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that
∫
R

ϕ{ ε
2

∂
∂x

uε
tk

+uε
tk
(V ′ +F ′ ∗uε

tk
)} is collapsing when k goes to ∞. We deduce

the following statement:∫
R

ϕ
(
V ′ + F ′ ∗ uε)uε −

∫
R

ε

2
ϕ′uε = 0.(1.2)

Step 4. This means that uε is a weak solution of the equation

ε

2

∂

∂x
u(x) + [

V ′(x) + F ′ ∗ u(x)
]
u(x) = 0.

Now, we consider a smooth function ϕ̃ with compact support [a, b]. We put

ϕ(x) := exp
{

2

ε

[
V (x) + F ∗ uε(x)

]}
ϕ̃′(x).

ϕ is also a smooth function with compact support. Indeed, the application x �→
F ∗ uε(x) is a polynomial function parametrized by the moments of uε , and these
moments are bounded. Equality (1.2) becomes∫

R

ϕ̃′′(x) exp
{

2

ε

[
V (x) + F ∗ uε(x)

]}
uε(x) dx = 0.

By applying Weyl’s lemma, we deduce that exp[2
ε
(V + F ∗ uε)]uε is a smooth

function. Moreover, its second derivative is equal to 0. Then, there exists A,B ∈ R

such that

uε(x) = (Ax + B) exp
[
−2

ε

(
V (x) + F ∗ uε(x)

)]
for all x ∈ R. If A 
= 0, it yields uε(−Ax) < 0 for x big enough. This is impossible.
Consequently, uε(x) = Z−1 exp[−2

ε
(V (x) + F ∗ uε(x))]. This means that uε is a

stationary measure. �

DEFINITION 1.7. From now on, we call A the set of the adherence values of
the family (uε

t )t∈R+ .

PROPOSITION 1.8. With the assumptions and the notation of Theorem 1.6, we
have the following limit:

L0 := lim
t−→+∞ϒε

(
uε

t

)= ϒε

(
uε).

PROOF. The convergence from the quantity
∫
R

V uε
tk

+ 1
2

∫
R
(F ∗uε

tk
)uε

tk
toward∫

R
V uε + 1

2

∫
R
(F ∗ uε)uε is a consequence of Theorem 1.6. So we focus on the

entropy term.
First of all, we aim to prove that (uε

tk
)k is uniformly bounded in the space W 1,1.

For doing this, we will bound the integral on R of ∂
∂x

uε
tk
(x). The triangular in-

equality provides∫
R

∣∣∣∣ ∂

∂x
uε

tk

∣∣∣∣≤ 2

ε

∫
R

|ηtk | +
2

ε

∫
R

∣∣V ′ + F ′ ∗ uε
tk

∣∣uε
tk
,
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where t �→ ηt is defined in Definition 1.1. By using (V) and the growth property
of V ′ and F ′, it yields∫

R

∣∣V ′(x) + F ′ ∗ uε
tk
(x)

∣∣uε
tk
(x) dx ≤ C1

∫
R

(
1 + ∣∣x2q

∣∣)uε
tk
(x) dx ≤ C2,

where C2 is a constant. By using the Cauchy–Schwarz inequality, like in the proof
of Theorem 1.6, we obtain ∫

R

∣∣ηtk (x)
∣∣dx ≤

√
−ξ ′(tk).

The quantity
√−ξ ′(tk) tends toward 0, so it is bounded. Finally, it leads to∫

R

∣∣∣∣ ∂

∂x
uε

tk
(x)

∣∣∣∣dx ≤ C3,

where C3 is a constant. Consequently, uε
tk
(x) ≤ uε

tk
(0)+C for all x ∈ R. And, since

the sequence (uε
tk
(0))k converges, it is bounded, so there exists a constant C4 such

that uε
tk
(x) ≤ C4 for all k ∈ N and x ∈ R. It is then easy to prove the convergence

of
∫
R

uε
tk
(x) log(uε

tk
(x)) dx toward

∫
R

uε(x) log(uε(x)) dx.
Indeed, the application x �→ uε

tk
(x) log(uε

tk
(x)) is lower-bounded, uniformly

with respect to k. We can then apply the Lebesgue theorem which provides the
convergence—when k goes to infinity—of

∫
R

uε
tk
(x) log(uε

tk
(x))1{|x|≤R} dx toward∫

R
uε(x) log(uε(x))1{|x|≤R} dx for all R ≥ 0. The other integral is split into two

terms. The first one is∫
R

uε
tk
(x) log

(
uε

tk
(x)

)
1{|x|>R;uε

tk
(x)≥1} dx ≤ log(C)uε

tk

([−R;R]c)
≤ log(C)M0

R2 .

The second term is bounded as in the proof of Lemma 1.3:

−
∫

R

uε
tk
(x) log

(
uε

tk
(x)

)
1{|x|>R;uε

tk
(x)<1} dx

≤
∫
[−R;R]c

{|x|uε
tk
(x) − γ

(
uε

tk
(x)

)
e−|x|/2}dx ≤ M0

R
+ 4e−R/2.

Consequently, ϒε(u
ε
tk
) converges toward ϒε(u

ε), then ϒε(u
ε
t ) converges toward

ϒε(u
ε) since the free-energy is monotonous.

By taking R big enough and then k big enough, we can make the following
quantity arbitrarily small: | ∫ uε

tk
log(uε

tk
) − ∫

uε log(uε)|. �

1.3. Consequences. When V is symmetric, Proposition 3.1 (resp., Theo-
rem 4.6) in [17] states the existence of at least three stationary measures for ε

small enough if F ′ is linear [resp., if
∑∞

p=0
|F (p+2)(a)|

p! ap < F ′′(0) + V ′′(a)]. The-
orem 1.6 permits to extend these results.



1438 J. TUGAUT

COROLLARY 1.9. For ε small enough, process (I) admits at least three sta-
tionary measures: one is symmetric (uε

0), and two are asymmetric (uε+ and uε−).
Moreover, for sufficiently small ε, ϒε(u

ε+) = ϒε(u
ε−) < ϒε(u

ε
0).

PROOF. We know by Theorem 4.5 in [17] that there exists a symmetric sta-
tionary measure uε

0. Theorem 5.4 in [18] implies the weak convergence of uε
0 to-

ward 1
2(δx0 + δ−x0) in the small-noise limit where x0 ∈ [0;a[ is the unique solution

of ⎧⎪⎪⎨⎪⎪⎩
V ′(x0) + 1

2
F ′(2x0) = 0,

V ′′(x0) + F ′′(0)

2
+ F ′′(2x0)

2
≥ 0.

Lemma A.3 provides

lim
ε→0

ϒε

(
uε

0
)= V (x0) + 1

4F(2x0) and lim
ε→0

ϒε

(
vε+
)= V (a)

with

vε+(x) := Z−1 exp
[
−2

ε

(
V (x) + F(x − a)

)]
.

We note that V (x0) + 1
4F(2x0) > V (a). Consequently, for ε small enough, we

have ϒε(v
ε+) < ϒε(u

ε
0).

We consider now process (I) starting by u0 := vε+. This is possible because the
8q2th moment of vε+ is finite. Theorem 1.6 implies the existence of a sequence
(tk)k which goes to infinity such that uε

tk
converges weakly toward a stationary

measure uε satisfying ϒε(u
ε) ≤ ϒε(u0) = ϒε(v

ε+) < ϒε(u
ε
0). So uε 
= uε

0. We im-
mediately deduce the existence of at least two stationary measures.

If V ′′(0)+F ′′(0) 
= 0, we know by Theorem 1.6 in [19] that there exists a unique
symmetric stationary measure for ε small enough. Hence uε is not symmetric.

Let us assume now that V ′′(0) + F ′′(0) = 0. By (1.1), and by the definition of
ϒ−

ε (u), we have

ϒε(u) ≥ −ε

4
− 4εe−1 +

∫
R

{
V (x) − εx2

4

}
u(x) dx

+ 1

2

∫∫
R2

F(x − y)u(x)u(y) dx dy

for all u ∈ M8q2 . Since F ′′ is convex, x �→ F(x) − F ′′(0)
2 x2 is nonnegative. It

yields

ϒε(u) ≥ −ε

4
− 4εe−1 +

∫
R

{
V (x) + F ′′(0)

2
x2 − εx2

4

}
u(x) dx

− F ′′(0)

2

(∫
R

xu(x) dx

)2

.
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We deduce the following inequality for all the probability measures satisfying∫
R

xu(x) dx = 0:

ϒε(u) ≥ −ε

4
− 4εe−1 +

∫
R

{
V (x) + F ′′(0)

2
x2 − εx2

4

}
u(x) dx.

In particular, this holds for the symmetric measures. Then, for ε small enough,
ϒε(u) > V (a)

2 for all the symmetric measures. However, ϒε(v
ε+) < V (a)

2 [then

ϒε(u
ε) < V (a)

2 ] for ε small enough.
Consequently, the process admits at least one asymmetric stationary measure

that we call uε+. The measure uε−(x) := uε+(−x) is invariant too. By construction
of uε+ and uε−, ϒε(u

ε+) = ϒ−
ε (uε−) < ϒε(u

ε
0). �

REMARK 1.10. By a similar method, we could also prove the existence of at
least one stationary measure in the asymmetric-landscape case.

We know by Theorem 3.2 in [17] that if V ′′ is convex and if F ′ is linear, there are
exactly three stationary measures for ε small enough. We present a more general
setting. In view of the convergence, we will prove that the number of relevant
stationary measures is exactly three even if it is a priori possible to imagine the
existence of at least four such measures.

THEOREM 1.11. We assume F ′′(0) + V ′′(0) > 0. Then, for all M > 0, there
exists ε(M) > 0 such that for all ε ≤ ε(M), the number of measures u satisfying
the two following conditions is exactly three:

(1) u is a stationary measure for the diffusion (I).
(2) ϒε(u) ≤ M .

Moreover, if deg(V ) = 2m > 2n = deg(F ), diffusion (I) admits exactly three sta-
tionary measures for ε small enough.

PROOF. Plan. We will begin to prove the second statement (when m > n). For
doing this, we will use Corollary 1.9 and the results in [18, 19]. Then, we will prove
the first statement by using the second one and a minoration of the free-energy for
a sequence of stationary measures which does not verify (H).

Step 1. Corollary 1.9 implies the existence of ε0 > 0 such that process (I)
admits at least three stationary measures (one is symmetric, and two are asymmet-
ric) if ε < ε0: uε+, uε− and uε

0.
Step 2. First, we assume that deg(V ) > deg(F ).

Step 2.1. Proposition 3.1 in [18] implies that each family of stationary mea-
sures for the self-stabilizing process (I) verifies condition (H). It has also been
shown that under (H), we can extract a subsequence which converges weakly from
any family of stationary measures (uε)ε>0 of the diffusion (I).
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Step 2.2. Since F ′′(0) + V ′′(0) > 0, there are three possible limiting values:
δ0, δa and δ−a according to Proposition 3.7 and Remark 3.8 in [18].

Step 2.3. As F ′′(0)+V ′′(0) > 0 and V ′′ and F ′′ are convex, there is a unique
symmetric stationary measure for ε small enough by Theorem 1.6 in [19]. Also,
Theorem 1.6 in [19] implies there are exactly two asymmetric stationary measures
for ε small enough. This achieves the proof of the statement.

Step 3. Now, we will prove the first statement. First, if m > n, by applying
the second statement, the result is obvious. We assume now m ≤ n. Let M > 0. All
the previous results still hold if we restrict the study to the families of stationary
measures which verify condition (H). Consequently, it is sufficient to show the
following results in order to achieve the proof of the theorem:

(1) sup{ϒε(u
ε
0);ϒε(u

ε+);ϒε(u
ε−)} < M for ε small enough.

(2) If (uεk )k is a sequence of stationary measures,
∫
R

x2nuεk (x) dx → ∞ im-
plies ϒεk

(uεk ) → ∞.

Step 3.1. Lemma A.3 tells us that ϒε(u
ε
0) [resp., ϒε(u

ε+) = ϒε(u
ε−)] tends

toward 0 [resp., V (a) < 0] when ε goes to 0. Hence, the first point is obvious.
Step 3.2. We will prove the second point. We recall lower-bound (1.1),

ϒ−
ε (u) ≥ −ε

4
− 4εe−1 +

∫
R

(
V (x) − ε

4
x2
)
u(x) dx.

As V (x) ≥ C4x
4 − C2x

2 and ϒ−
ε (u) ≤ ϒε(u) for all smooth u, we obtain

ϒε(u) ≥
∫

R

x2u(x) dx − C,

where C is a constant. It is now sufficient to prove that
∫
R

x2nuεk (x) dx → ∞ im-
plies

∫
R

x2uεk (x) dx → ∞. We will not write the index k for simplifying the read-
ing. We proceed areductio ad absurdum by assuming the existence of a sequence
(uε)ε which verifies

∫
R

x2nuε(x) dx → ∞ and
∫
R

x2uε(x) dx → C+ ∈ R+.
Step 3.2.1. By taking the notation of [18], we have the equality uε(x) =

Z−1 exp[−2
ε
(Wε(x))] with

Wε(x) := V (x) + F ∗ uε(x) =
2n∑

k=1

ωk(ε)x
k ,

ωk(ε) := 1

k!
{
V (k)(0) + (−1)k

2n∑
j≥k/2

F (2j)(0)

(2j − k)!m2j−k(ε)

}
and

ml(ε) :=
∫

R

xluε(x) dx ∀l ∈ N.

We introduce ω(ε) := sup{|ωk(ε)|1/(2n−k);1 ≤ k ≤ 2n}.
Step 3.2.2. We note that ω2n(ε) = V (2n)(0)+F (2n)(0)

(2n)! > 0. Then, ω(ε) is uniformly
lower-bounded. Consequently, we can divide by ω(ε).
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Step 3.2.3. The change of variable x := ω(ε)y provides

m2l(ε)

ω(ε)2l
=
∫
R

y2l exp[−(2/̂ε)Ŵ ε(y)]dy∫
R

exp[−2/(̂ε)Ŵ ε(y)]dy
with Ŵ ε(x) :=

2n∑
k=1

ωk(ε)

ω(ε)2n−k
xk

for all l ∈ N, with ε̂ := ε
ω(ε)2n .

Step 3.2.4. The 2n sequences ( ωk(ε)

ω(ε)2n−k )ε are bounded so we can extract a sub-

sequence of ε (we continue to write ε for simplifying) such that ωk(ε)

ω(ε)2n−k converges

toward ω̂k when ε → 0. We put Ŵ (x) :=∑2n
k=1 ω̂kx

k . We call A1, . . . ,Ar the r ≥ 1
location(s) of the global minimum of Ŵ .

Step 3.2.5. By applying the result of Lemma A.4, we can extract a subsequence

(and we continue to denote it by ε) such that
∫
R

y2l exp[−2/̂εŴ ε(y)]dy∫
R

exp[−2/̂εŴ ε(y)]dy
converges to-

ward
∑r

j=1 pjA
2l
j where p1 + · · · + pr = 1 and pj ≥ 0.

Step 3.2.6. If (ω(ε))ε is bounded, since the quantity
∑r

j=1 pjA
2n
j is finite, we

deduce that (m2n(ε))ε is bounded too. Since m2n(ε) tends toward infinity when ε

goes to 0, we deduce that (ω(ε))ε converges toward infinity. As m2(ε) is bounded,
the quantity m2(ε)

ω(ε)2 vanishes when ε goes to 0. This means
∑r

j=1 pjA
2
j = 0 which

implies Aj = 0 for all 1 ≤ j ≤ r . Then
∑r

j=1 pjA
2n
j = 0. Consequently, m2n(ε) =

o{ω(ε)2n}. The Jensen inequality provides mk(ε) = o{ω(ε)k}.
Step 3.2.7. We recall the definition of ωk(ε),

ωk(ε) = 1

k!
{
V (k)(0) + (−1)k

2n∑
j≥k/2

F (2j)(0)

(2j − k)!m2j−k(ε)

}
.

We deduce ωk(ε) = O{m2n−k(ε)} = o{ω(ε)2n−k}. So

ω(ε) = sup
{∣∣ωk(ε)

∣∣1/(2n−k);1 ≤ k ≤ 2n
}= o

{
ω(ε)

}
.

This is a contradiction which achieves the proof. �

This theorem means that—even if the diffusion (I) admits more than three sta-
tionary measures—there are only three stationary measures which play a role in the
convergence. Indeed, if we take a measure u0 with a finite free-energy, we know
that for ε small enough, there are only three (maybe fewer) stationary measures
which can be adherence value of the family (uε

t )t∈R+ .
The assumption (LIN) implies (M3) (and (M3)′ because it is weaker) and (0M1)

for ε small enough. The condition (SYN) implies (M3)′ and (0M1) for ε small
enough. Furthermore, if deg(V ) > deg(F ), (SYN) implies (M3) when ε is less
than a threshold.

This description of the stationary measures permits us to obtain the principal
result, that is to say, the long-time convergence of the process.
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2. Global convergence.

2.1. Statement of the theorem. We write the main result of the paper:

THEOREM 2.1. Let du0 be a probability measure which verifies (FE)
and (FM). Under (M3), uε

t converges weakly toward a stationary measure.

The proof is postponed in Section 2.3. First, we will discuss briefly the assump-
tions.

2.2. Remarks on the assumptions.

du0 is absolutely continuous with respect to the Lebesgue measure. We shall
use Theorem 1.6 and prove that the family (uε

t )t∈R+ admits a unique adherence
value. This theorem requires that the initial law is absolutely continuous with re-
spect to the Lebesgue measure. However, it is possible to relax this hypothesis by
using the following result (see Lemma 2.1 in [17] for a proof):

Let du0 be a probability measure which verifies
∫
R

x8q2
du0(x) < +∞. Then,

for all t > 0, the probability duε
t is absolutely continuous with respect to the

Lebesgue measure.
Consequently, it is sufficient to apply Theorem 2.1 to the probability measure uε

1
since there is a unique solution to the nonlinear equation (I).

The entropy of du0 is finite. An essential point of the proof is the con-
vergence of the free-energy. To be sure of this, we assume that it is finite at
time 0. The assumption about the moments implies ϒε(u

ε
t ) < +∞ if and only

if
∫
R

uε
t log(uε

t ) < +∞.
If V was convex, a little adaptation of the theorem in [28] (taking into account

the fact that the drift is not homogeneous here) would provide the nonoptimal
following inequality:

ϒε

(
uε

t

)≤ 1

2t
inf
{√

E|X − Y |2; L(X) = uε
t ; L(Y ) = vε

t

}
with

vε
t (x) := Z−1 exp

[
−2

ε

(
V (x) + F ∗ uε

t (x)
)]

for all t > 0. The second moment of uε
t is upper-bounded uniformly with respect

to t . By using the convexity of V and F , we can prove the same thing for vε
t . Con-

sequently, since t > 0, the free-energy is finite so the entropy is finite. However, in
this paper, we deal with nonconvex landscape, so we will not relax this hypothesis.
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All the moments are finite. Theorem 1.6 tells us that we can extract a sequence
from the family (uε

t )t∈R+ such that it converges toward a stationary measure. The
last step in order to obtain the convergence is the uniqueness of the limiting value.
The most difficult part will be to prove this uniqueness when the symmetric sta-
tionary measure uε

0 is an adherence value and the only one of these adherence
values to be stationary. To do this, we will consider a function like this one:


(u) :=
∫

R

ϕ(x)u(x) dx,

where ϕ is an odd and smooth function with compact support such that ϕ(x) =
x2l+1 for all x in a compact subset of R. Then, we will prove—by proceeding a
reductio ad absurdum—that there exists an integer l such that 
(uε

0) 
= 
(uε∞),
where uε∞ would be another limiting value which is a stationary measure. This
inequality will allow us to construct a stationary measure uε such that 
(uε) /∈
{
(uε

0);
(uε+);
(uε−)}. This implies the existence of a stationary measure which
does not belong to {uε

0;uε+;uε−}. Under (M3), it is impossible.
We make the integration with an “almost-polynomial” function because we need

the square of the derivative of such function to be uniformly bounded with respect
to the time.

However, it is possible to relax the condition (FM). Indeed, according to Propo-
sition A.2, if we assume that

∫
R

x8q2
du0(x) < +∞ (the condition used for the

existence of a strong solution), we have∫
R

x2luε
t (x) dx < +∞ ∀t > 0, l ∈ N.

Hypothesis (M3). As written before, the key for proving the uniqueness of
the adherence value is to proceed a reductio ad absurdum and then to construct a
stationary measure uε such that 
(uε) takes a forbidden value [a value different
from 
(uε

0), 
(uε+) and 
(uε−)].
But, it is possible to deal with a weaker hypothesis. Indeed, by considering

an initial law with finite free-energy and since the free-energy is decreasing, it is
impossible for uε

t to converge toward a stationary measure with a higher energy.
Consequently, we can consider (M3)′ instead of (M3).

All of these remarks allow us to obtain the following result:

THEOREM 2.2. Let du0 be a probability measure with finite entropy. If V

and F are polynomial functions such that F ′′(0)+V ′′(0) > 0, uε
t converges weakly

toward a stationary measure for ε small enough.

2.3. Proof of the theorem. In order to obtain the statement of Theorem 2.1, we
will provide two lemmas and one proposition about the free-energy. The lemmas
state that a probability measure which verifies simple properties and with a level
of energy is necessary a stationary measure for the self-stabilizing process (I). The
third one allows us to confine all the adherence values under a level of energy.
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LEMMA 2.3. Under (M3), if u is a probability measure which satisfies (FE)
and (ES), the inequality ϒε(u) ≤ ϒε(u

ε±) implies u ∈ {uε+;uε−}.
PROOF. Let u be such a measure. We consider the process (I) starting by the

initial law u0 := u. Theorem 1.6 implies that there exists a stationary measure uε

such that ϒε(u
ε
t ) converges toward ϒε(u

ε).
However, according to Propositions 1.2 and 1.8,

ϒε

(
uε)= lim

t→+∞ϒε

(
uε

t

)≤ ϒε

(
uε

t

)≤ ϒε(u) ≤ ϒε

(
uε±
)
.

Condition (M3) provides uε ∈ {uε+;uε−;uε
0}. But, ϒε(u

ε) ≤ ϒε(u
ε±) < ϒε(u

ε
0) so

uε ∈ {uε+;uε−}. Without loss of generality, we will assume uε = uε+.
Consequently, the function ξ (see Definition 1.1) is constant. We deduce that

ξ ′(t) = 0 for all t ≥ 0. Lemma 1.5 implies that uε
t is a stationary measure. This

means that u = u0 = uε = uε+. �

We have a similar result with the symmetric measures:

LEMMA 2.4. Under (0M1), if u is a symmetric probability measure satisfy-
ing (FE) and (ES), ϒε(u) ≤ ϒε(u

ε
0) implies u = uε

0.

The key-argument is the following: if the initial law is symmetric, then the law
at time t is still symmetric. The proof is similar to the previous one, so it is left to
the reader’s attention.

Before making the convergence, we need a last result on the adherence values:
the free-energy of a limiting value is less than the limit value of the free-energy.

PROPOSITION 2.5. We assume that uε∞ is an adherence value of the family
(uε

t )t∈R+ . We call L0 := limt→+∞ ϒε(u
ε
t ). Then ϒε(u

ε∞) ≤ L0.

PROOF. As uε∞ is an adherence value of the family (uε
t )t∈R+ , there exists an

increasing sequence (tk)k which goes to infinity such that uε
tk

converges weakly
toward uε∞. We remark

ϒ
(
uε

tk

)= V (a) +
∫

R

(
V (x) − V (a)

)
uε

tk
(x) dx

+ 1

2

∫∫
R2

F(x − y)uε
tk
(x)uε

tk
(y) dx dy,

where the functional ϒ is defined in (IV). As V (x) − V (a) ≥ 0 for all x ∈ R, the
Fatou lemma implies ϒ(uε∞) ≤ lim infk→∞ ϒ(uε

tk
). In the same way,∫

R

uε∞(x) log
(
uε∞(x)

)
1{uε∞(x)≥1} dx

≤ lim inf
k→∞

∫
R

uε
tk
(x) log

(
uε

tk
(x)

)
1{uε

tk
(x)≥1} dx.
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Let R > 0. By putting γ −
k (x) := uε

tk
(x) log(uε

tk
(x))1{uε

tk
(x)<1}1{|x|≤R}, we note that

|γ −
k (x)| ≤ e−11{|x|≤R} for all x ∈ R and k ∈ N. We can apply the Lebesgue theo-

rem, ∫
R

uε∞(x) log
(
uε∞(x)

)
1{uε∞(x)≥1}1{|x|≤R} = lim

k→∞

∫
R

γ −
k (x) dx.

We put γ +
k (x) := uε

tk
(x) log(uε

tk
(x))1{uε

tk
(x)<1}1{|x|>R}. By proceeding as in the

proof of Lemma 1.3, we have

−γ +
k (x) = −uε

tk
(x) log

(
uε

tk
(x)

)
1{e−|x|≤uε

tk
(x)<1}1{|x|>R}

− uε
tk
(x) log

(
uε

tk
(x)

)
1{uε

tk
(x)<e−|x|}1{|x|>R}

≤ |x|uε
tk
(x)1{|x|>R} + 2e−1e−|x|/21{|x|>R}.

Consequently, it leads to the lower-bound∫
R

uε
tk
(x) log

(
uε

tk
(x)

)
1{uε

tk
(x)<1}1{|x|>R} dx ≥ −M0

R
− 8e−1e−R/2,

where M0 is defined in (V).
By introducing ϒ̂ε(u) := ϒε(u) − ε

2

∫
R

u(x) log(u(x))1{u(x)<1}1{|x|>R} dx, we
obtain

ϒε

(
uε∞

)≤ ϒ̂ε

(
uε∞

)≤ lim inf
k→∞ ϒ̂ε

(
uε

tk

)
≤ lim inf

k→∞ ϒε

(
uε

tk

)+ M0ε

2R
+ 4e−1 exp

(
−R

2

)
ε

≤ L0 + M0ε

2R
+ 4e−1ε exp

(
−R

2

)
for all R > 0. Consequently, ϒε(u

ε∞) ≤ L0. �

PROOF OF THE THEOREM. Plan: The first step of the proof consists of the
application of the Prohorov theorem since the family of measure is tight. We shall
prove the uniqueness of the adherence value. We will proceed a reductio ad ab-
surdum. The previous results provide A ∩ {uε

0;uε+;uε−} 
= ∅ where A is intro-
duced in Definition 1.7. We will then study all the possible cases, and we will
prove that all of these cases imply contradictions. If A ∩ {uε

0;uε+;uε−} = {uε+} and
A ∩{uε

0;uε+;uε−} = {uε−} imply contradiction since uε+ and uε− are the unique min-
imizers of the free-energy. The cases uε

0 ∈ A and A ∩ {uε
0;uε+;uε−} = {uε+;uε−}

contradict (M3).

Step 1. Inequality (V) implies that the family of probability measures
{uε

t ; t ∈ R+} is tight. Prohorov’s theorem allows us to conclude that each extracted
sequence of this family is relatively compact with respect to the weak convergence.
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So, in order to prove the statement of the theorem, it is sufficient to prove that this
family admits exactly one adherence value. We proceed a reductio ad absurdum.
We assume in the following that the family admits at least two adherence values.

Step 2. As condition (M3) is true, there are exactly three stationary mea-
sures: uε

0, uε+ and uε−. By Theorem 1.6, we know that A ∩ {uε
0;uε+;uε−} 
= ∅. We

split this step into three cases:

• uε
0 ∈ A.

• A ∩ {uε
0;uε+;uε−} = {uε+;uε−}.

• A ∩ {uε
0;uε+;uε−} = {uε+}.

By symmetry, we will not deal with the case A ∩ {uε
0;uε+;uε−} = {uε−}.

Step 2.1. We will prove that the first case, uε
0 ∈ A, is impossible. It will be the

core of the proof.
Step 2.1.1. Let uε∞ be an other adherence value of the family (uε

t )t∈R+ . Propo-
sition 2.5 tells us ϒε(u

ε∞) ≤ ϒε(u
ε
0). Since uε∞ 
= uε

0, Lemma 2.4 implies that
the law uε∞ is not symmetric. We deduce that there exists l ∈ N such that∫
R

x2l+1uε∞(x) dx 
= 0. Let R > 0. We introduce the function

ϕ(x) := x2l+11[−R;R](x)

+ x2l+11[R;R+1](x)Z−1
∫ R+1

x
exp

[
− 1

(y − R)2 − 1

(y − R − 1)2

]
dy

+ x2l+11[−R−1;−R](x)Z−1
∫ x

−R−1
exp

[
− 1

(y + R)2 − 1

(y + R + 1)2

]
dy

with

Z :=
∫ 1

0
exp

[
− 1

z2 − 1

(z − 1)2

]
dz.

By construction, ϕ is an odd function, so
∫
R

ϕ(x)uε
0(x) dx = 0. Furthermore,

|ϕ(x)| ≤ |x|2l+1. By using the triangular inequality and (FM), we have∣∣∣∣∫
R

ϕ(x)uε∞(x) dx

∣∣∣∣≥ ∣∣∣∣∫
R

x2l+1uε∞(x) dx

∣∣∣∣− ∫
[−R;R]c

|x|2l+1uε∞(x) dx

≥
∣∣∣∣∫

R

x2l+1uε∞(x) dx

∣∣∣∣− 1

R3 C0,

where C0 := supt∈R+
∫
R

|x|2l+4uε
t (x) dx < +∞. Since

∫
R

x2l+1uε∞(x) dx 
= 0, we
deduce that

∫
R

ϕ(x)uε∞(x) dx 
= 0 for R big enough. Consequently, we obtain the
existence of a smooth function ϕ with compact support such that

0 =
∫

R

ϕ(x)uε
0(x) dx <

∫
R

ϕ(x)uε∞(x) dx.

Moreover, we can verify that ϕ′(x)2 ≤ C(R)x4l+2 for all x ∈ R. This implies
supt∈R+

∫
R

ϕ′(x)2uε
t (x) dx < +∞.
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Step 2.1.2. Let κ > 0 such that | ∫
R

ϕ(x)uε+(x) dx| > 3κ . By definition of A,

there exist two increasing sequences (t
(1)
k )k [resp., (t

(2)
k )k] which go to in-

finity such that uε

t
(1)
k

[resp., uε

t
(2)
k

] converges weakly toward uε
0 (resp., uε∞).

We deduce that there exist two increasing sequences (rk)k and (sk)k such that∫
R

ϕ(x)uε
rk

(x) dx = κ and
∫
R

ϕ(x)uε
sk

(x) dx = 2κ . Then, for all k ∈ N, we put
r̂k := sup{t ∈ [0; sk]| ∫R ϕ(x)uε

t (x) dx = κ}, and then we define ŝk := inf{s ∈
[̂rk; sk]| ∫R ϕ(x)uε

s (x) dx = 2κ}. For simplifying, we write rk (resp., sk) instead
of r̂k (resp., ŝk). And we have

κ =
∫

R

ϕ(x)uε
rk

(x) dx ≤
∫

R

ϕ(x)uε
t (x) dx ≤

∫
R

ϕ(x)uε
sk

(x) dx = 2κ

for all t ∈ [rk; sk].
Step 2.1.3. By applying Proposition A.1, we deduce that there exists an increas-

ing sequence (qk)k going to +∞ such that (uε
qk

)k converges weakly toward a sta-
tionary measure uε verifying

∫
R

ϕ(x)uε(x) dx ∈ [κ;2κ]. Since we have the in-
equality | ∫

R
ϕ(x)uε+(x) dx| = | ∫

R
ϕ(x)uε−(x) dx| > 3κ , we deduce uε = uε

0. This
is impossible since

∫
R

ϕ(x)uε
0(x) dx = 0 /∈ [κ;2κ].

Step 2.2. We deal now with the third case, A ∩ {uε
0;uε+;uε−} = {uε+;uε−}.

Step 2.2.1. By definition of uε+ and uε−, these measures are not symmetric. Con-
sequently, there exists l ∈ N such that

∫
R

x2l+1uε+(x) dx 
= 0. As uε−(x) = uε+(−x),
by proceeding as in Step 2.1, we deduce that there exists an increasing sequence
(qk)k∈N which goes to ∞ such that uε

qk
converges weakly toward a stationary mea-

sure uε which verifies
∫
R

ϕuε ∈ [κ;2κ] where ϕ is a smooth function with com-
pact support such that

∫
R

ϕuε± /∈ [κ;2κ]. We deduce that uε = uε
0 which contradicts

uε
0 /∈ A.

Step 2.3. We consider now the last case, A ∩ {uε
0;uε+;uε−} = {uε+}. Propo-

sition 1.8 implies that ϒε(u
ε
t ) converges toward ϒε(u

ε+). Let uε∞ be a limit
value of the family (uε

t )t∈R+ which is not uε+. By Proposition 2.5, we know that
ϒε(u

ε∞) ≤ ϒε(u
ε+) = limt−→+∞ ϒε(u

ε
t ). Then, Lemma 2.3 implies uε∞ = uε− /∈ A.

CONCLUSION. The family (uε
t )t∈R+ admits only one adherence value with

respect to the weak convergence. So uε
t converges weakly toward a stationary mea-

sure which achieves the proof. �

3. Basins of attraction. Now we shall provide some conditions in order to
precise the limit.

3.1. Domain of uε
0.

THEOREM 3.1. Let du0 be a symmetric probability measure which verifies
(FE) and (ES). We assume that V ′′(0) + F ′′(0) 
= 0. Then, for ε small enough uε

t

converges weakly toward uε
0.
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PROOF. V ′′(0)+F ′′(0) 
= 0, and both functions V ′′ and F ′′ are convex. Theo-
rem 1.6 in [19] implies the existence and the uniqueness of a symmetric stationary
measure uε

0 for ε small enough.
Theorem 1.6 provides the existence of a stationary measure uε and an increasing

sequence (tk)k which goes to ∞ such that uε
tk

converges weakly toward uε and
ϒε(u

ε
t ) converges toward ϒε(u

ε). As uε
t is symmetric for all t ≥ 0, we deduce

uε = uε
0, the unique symmetric stationary measure.

We proceed a reductio ad absurdum by assuming the existence of another se-
quence (sk)k which goes to ∞ such that uε

sk
does not converge toward uε

0. The
uniform boundedness of the second moment with respect to the time permits to
extract a subsequence [we continue to write (sk)k for simplifying] such that uε

sk
converges weakly toward uε∞ 
= uε

0. Proposition 2.5 implies ϒε(u
ε∞) ≤ ϒε(u

ε
0).

Lemma 2.4 implies uε∞ = uε
0. This is absurd. �

REMARK 3.2. We assume V ′′(0) +F ′′(0) 
= 0 in order to have a unique sym-
metric stationary measure for ε small enough, that is to say (0M1). We can extend
to the case V ′′(0) + F ′′(0) = 0 by using auniform propagation of chaos; see The-
orem 6.5 in [33]. We can also assume that n = 2 which means deg(F ) = 4 by
Section 4.2 in [17].

REMARK 3.3. In the previous theorem, if we assumed (FM) instead of (ES),
we could have directly applied Theorem 2.1.

3.2. Domain of uε±. The principal tool of the previous theorem is the stability
of a subset (all the symmetric measures with a finite 8q2-moment). If we could
find an invariant subset which contains uε+, but neither uε

0 nor uε−, we could apply
the same method than previously.

Instead of this, we will consider an inequality linked to the free-energy and we
will exhibit a simple subset included in the domain of attraction of uε+. Let us first
introduce the following hyperplan:

H :=
{
u ∈ C∞(R;R+)

∣∣∣ ∫
R

x8q2
u(x) dx < ∞ and

∫
R

xu(x) dx = 0
}
.

THEOREM 3.4. Let du0 be a probability measure which verifies (FE) and
(FM). We assume also

ϒε(u0) < inf
u∈H

ϒε(u) and
∫

R

xu0(x) dx > 0.

Under (M3), uε
t converges weakly toward uε+.

PROOF. We know by Theorem 2.1 that there exists a stationary measure uε

such that (uε
t )t converges weakly toward uε . And, by Proposition 1.8, ϒε(u

ε
t ) con-

verges toward ϒε(u
ε).
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Step 1. As
∫
R

xuε
0(x) dx = 0 and

∫
R

x8q2
uε

0(x) dx < +∞, we have

ϒε

(
uε

0
)≥ inf

u∈H
ϒε(u) > ϒε(u0).

We deduce uε 
= uε
0 since t �→ ξ(t) = ϒε(u

ε
t ) is nonincreasing.

Step 2. We proceed now a reductio ad absurdum by assuming uε = uε−. There
exists t0 > 0 such that

∫
R

xuε
t0
(x) dx = 0. Consequently,

ϒε

(
uε

t0

)≥ inf
u∈H

ϒε(u) > ϒε(u0),

which contradicts the fact that ξ is nonincreasing.
Step 3. Assumption (M3) implies the weak convergence toward uε+. �

We use now Theorem 3.4 in some particular cases.

THEOREM 3.5. Let du0 be a probability measure which verifies (FE) and
(FM). We assume also

ϒ(u0) < V (x0) + 1

4
F(2x0) and

∫
R

xu0(x) dx > 0,

where x0 is defined in the Introduction. Under either conditions (LIN) or (SYN),
uε

t converges weakly toward uε+ for ε small enough.

PROOF. Step 1. Theorem 3.2 in [17] and Theorem 1.11 imply condition (M3)
under (LIN) or (SYN).

Step 2. Lemma A.3 provides the limit limε−→0 ϒε(u
ε
0) = V (x0) + 1

4F(2x0).
Then, we deduce

lim
ε−→0

inf
u∈H

ϒε(u) ≤ V (x0) + 1

4
F(2x0).(3.1)

Step 3. We prove now that V (x0) + 1
4F(2x0) = limε−→0 infu∈H ϒε(u). Indeed,

if u is a probability measure such that
∫
R

xu(x) dx = 0, it verifies the following
inequality:

ϒε(u) ≥ ϒ−
ε (u) + F ′′(0)

4

∫∫
R2

(x − y)2u(x)u(y) dx dy

≥ ϒ−
ε (u) + F ′′(0)

2

∫
R

x2u(x) dx.

By using (1.1), it yields

ϒε(u) ≥ −ε

4
− 4ε

exp(1)
+
∫

R

{
V (x) + F ′′(0)

2
x2 − εx2

4

}
u(x) dx.(3.2)

We split now the study depending on whether we use conditions (LIN) or (SYN):
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(LIN) If F ′ is linear, F ′′(0)
2 x2 = 1

4F(2x). So the minimum of x �→ V (x) +
1
4F(2x) is V (x0) + 1

4F(2x0). We can easily prove that

min
x∈R

(
V (x) + F ′′(0)

2
x2 − ε

4
x2
)

= V (x0) + 1

4
F(2x0) + o(1).

Consequently,

ϒε(u) ≥ −ε

4
− 4ε

exp(1)
+ V (x0) + 1

4
F(2x0) + o(1)

for all u ∈ H. Then, limε−→0 minu∈H ϒε(u) ≥ V (x0) + 1
4F(2x0). Inequality (3.1)

provides limε−→0 infu∈H ϒε(u) = V (x0) + 1
4F(2x0).

(SYN) Since V ′′(0) + F ′′(0) > 0, (3.2) implies ϒε(u) ≥ − ε
4 − 4ε

exp(1)
for all

u ∈ H if ε is less than 2(V ′′(0)+F ′′(0)). We deduce that limε−→0 infu∈H ϒε(u) ≥
0. However, as V ′′(0) + F ′′(0) > 0, Theorem 5.4 in [18] implies x0 = 0 so
V (x0) + 1

4F(2x0) = 0. Inequality (3.1) provides the following limit:
limε−→0 infu∈H ϒε(u) = 0 = V (x0) + 1

4F(2x0).

Step 4. Consequently, ϒε(u0) < infu∈H ϒε(u) for ε small enough. Then, we
apply Theorem 3.4. �

REMARK 3.6. We can replace
∫
R

xu0(x) dx > 0 by
∫
R

xu0(x) dx < 0 in The-
orems 3.4 and 3.5; then the same results hold with uε− instead of uε+.

APPENDIX: USEFUL TECHNICAL RESULTS

In this annex, we present some results used previously in the proofs of the main
theorems.

Proposition A.1 allows us to ensure that even if the free-energy does not reach its
global minimum on the stationary measure uε

0, if the unique symmetric stationary
measure is an adherence value, then it is unique.

Proposition A.2 is a general result on the self-stabilizing processes. Indeed, it is
well known that duε

t is absolutely continuous with respect to the Lebesgue mea-
sure for all t > 0. Proposition A.2 extends this instantaneous regularization to the
finiteness of all the moments.

Lemma A.3 consists in asymptotic computation of the free-energy in the small-
noise limit for some useful measures. Lemma A.4 use a Laplace method for mak-
ing a tedious computation which is necessary for avoiding to assume that each
family of stationary measures verify condition (H).

We present now the essential proposition for proving Theorem 2.1.

PROPOSITION A.1. Let du0 be a probability measure which verifies (FE)
and (FM). We assume the existence of two polynomial functions P and Q, a smooth
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function ϕ with compact support such that |ϕ(x)| ≤ P(x) and |ϕ′(x)|2 ≤ Q(x),
κ > 0 and two sequences (rk)k and (sk)k which go to ∞ such that for all
rk ≤ t ≤ sk < rk+1,

κ =
∫

R

ϕ(x)uε
rk

(x) dx ≤
∫

R

ϕ(x)uε
t (x) dx ≤

∫
R

ϕ(x)uε
sk

(x) dx = 2κ.

Then, there exists a stationary measure uε which verifies
∫
R

ϕ(x)uε(x) dx ∈
[κ;2κ] and an increasing sequence (qk)k which goes to ∞ such that uε

qk
converges

weakly toward uε .

PROOF. Step 1. We will prove that lim infk−→+∞(sk − rk) > 0. We introduce
the function


(t) :=
∫

R

ϕ(x)uε
t (x) dx.

This function is well defined since |ϕ| is bounded by a polynomial function. The
derivation of 
, the use of equation (III) and an integration by parts lead to


′(t) = −
∫

R

ϕ′(x)

{
ε

2

∂

∂x
uε

t (x) + uε
t (x)

(
V ′(x) + F ′ ∗ uε

t (x)
)}

dx

= −
∫

R

ϕ′(x)ηt (x) dx.

The Cauchy–Schwarz inequality implies

∣∣
′(t)
∣∣≤√∣∣ξ ′(t)

∣∣√∫
R

(
ϕ′(x)

)2
uε

t (x) dx,

where we recall that ξ(t) = ϒε(u
ε
t ). The function (ϕ′)2 is bounded by a polynomial

function, and
∫
R

x2Nuε
t (x) is uniformly bounded with respect to t ∈ R+ for all

N ∈ N. So, there exists C > 0 such that
∫
R
(ϕ′(x))2uε

t (x) dx ≤ C2 for all t ∈ R+.
We deduce ∣∣
′(t)

∣∣≤ C

√∣∣ξ ′(t)
∣∣.(A.1)

By definition of the two sequences (rk)k and (sk)k , we have


(sk) − 
(rk) = κ.

Combining this identity with (A.1), it yields

C

∫ sk

rk

√∣∣ξ ′(t)
∣∣dt ≥ κ.

We apply the Cauchy–Schwarz inequality, and we obtain

C
√

sk − rk
√

ξ(rk) − ξ(sk) ≥ κ

since ξ is nonincreasing; see Proposition 1.2. Moreover, ξ(t) converges as t goes
to ∞; see Lemma 1.4. It implies the convergence of ξ(rk)− ξ(sk) toward 0 when k

goes to +∞. Consequently, sk − rk converges toward +∞ so lim infk−→+∞ sk −
rk > 0.
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Step 2. By Lemma 1.4, ϒε(u
ε
t ) − ϒε(u

ε) = ∫∞
t ξ ′(s) ds converges toward 0.

As ξ ′ is nonpositive, we deduce that
∑∞

k=N

∫ sk
rk

ξ ′(s) ds converges also toward 0
when N goes to +∞. As lim infk−→+∞ sk − rk > 0, we deduce that there exists an
increasing sequence qk ∈ [rk; sk] which goes to ∞ and such that ξ ′(qk) converges
toward 0 when k goes to ∞. Furthermore,

∫
R

ϕ(x)uε
qk

(x) dx ∈ [κ;2κ] for all k ∈
N.

Step 3. By proceeding similarly as in the proof of Theorem 1.6, we extract a
subsequence of (qk)k (we continue to write it qk for simplifying the reading) such
that uε

qk
converges weakly toward a stationary measure uε . Moreover, uε verifies∫

R
ϕ(x)uε(x) dx ∈ [κ;2κ]. �

We provide now a result which allows us to obtain the statements of the main
theorem (Theorem 2.1) with a weaker condition:

PROPOSITION A.2. Let du0 be a probability measure which verifies (FE)
and (ES). Then, for all t > 0, duε

t satisfies (FM).

PROOF. Step 1. If du0 verifies (FM), then duε
t satisfies (FM) for all t > 0;

see Theorem 2.13 in [16]. We assume now that du0 does not satisfy (FM). Let us
introduce l0 := min{l ≥ 0|E[X2l

0 ]} = +∞. We know that E[X2l0−2
t ] < +∞ for all

t ≥ 0.
Step 2. Let t0 > 0. We proceed a reductio ad absurdum by assuming that

E[X2l0
t0

] = +∞. This implies directly E[X2l0
t ] = +∞ for all t ∈ [0, t0]. We recall

that 2m (resp., 2n) is the degree of the confining (resp., interaction) potential V

(resp., F ). Also, q := max{m;n}. For all t ∈ [0, t0], the application x �→ F ′ ∗uε
t (x)

is a polynomial function with parameters m1(t), . . . ,m2n−1(t), where mj(t) is the
j th moment of the law duε

t . We recall inequality (V),

sup
1≤j≤8q2

sup
t∈[0,t0]

mj(t) ≤ M0.

Consequently, the application x �→ V ′(x) + F ′ ∗ uε
t (x) is a polynomial function

with degree 2q − 1. Furthermore, the principal term does not depend of the mo-
ments of the law duε

t , so we can write

V ′(x) + F ′ ∗ uε
t (x) = κ2q−1x

2q−1 + Pt (x),

where κ2q−1 ∈ R
∗+ is a constant, and Pt is a polynomial function with degree at

most 2q − 2. Moreover, Pt is parametrized by the 2n first moments only. Let
l ∈ N. We introduce the function Qt (x) := 2lx2q−1 Pt (x)− l(2l −1)εx2l−2. As Qt

is a polynomial function of degree less than 2l + 2q − 3, we have the following
inequality:

2lκ2q−1x
2l+2q−2 + Qt (x) ≥ Cl

(
x2l+2q−2 − 1

)
,(A.2)
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where Cl is a positive constant. The application of Ito formula provides

dX2l
t = 2lX2l−1

t

√
ε dBt − [

2lκ2q−1X
2l+2q−2
t + Qt (Xt )

]
dt.

After integration, we obtain

X2l
t0

= X2l
0 + 2l

√
ε

∫ t0

0
X2l−1

t dBt −
∫ t0

0

[
2lκ2q−1X

2l+2q−2
t + Qt (Xt )

]
dt

≤ X2l
0 + 2l

√
ε

∫ t0

0
X2l−1

t dBt −
∫ t0

0
Cl

(
X

2l+2q−2
t − 1

)
dt

after using (A.2). We choose l := l0 + 1 − q , and then we take the expectation. We
obtain

0 ≤ E
[
X

2l0+2−2q
t0

]≤ C1 − C2

∫ t0

0
E
[
X

2l0
t

]
dt,

where C1 and C2 are positive constants. Since E[X2l0
t ] = +∞ for all t ∈ [0; t0],

this contradicts the inequality 0 ≤ E[X2l0+2−2q
t0

]. Consequently, for all t0 > 0:

E[X2l0
t0

] < +∞.
Step 3. Let T > 0 and l1 ∈ N such that l1 ≥ l0 where the integer l0 is defined

as previously: l0 := min{l ≥ 0|E[X2l
0 ] = +∞}. If l1 = l0, the application of Step 2

leads to E[X2l1
T ] < +∞. If l1 > l0, we put ti := i

l1+1−l0
T for all 1 ≤ i ≤ l1 +1− l0.

We apply Step 2 to t1, and we deduce E[X2l0
t1

] < +∞. By recurrence, we deduce

E[X2l0+2i
ti

] < +∞ for all 1 ≤ i ≤ l1 + 1 − l0, in particular E[X2l0+2(l1−l0)
tl0−l1

] < +∞
that means E[X2l1

T ] < +∞. This inequality holds for all l1 ≥ l0, so the probability
measure duε

T satisfies (FM). �

In order to obtain the thirdness of the stationary measure (or a weaker result,
see Theorem 1.11), we need to compute the small-noise limit of the free-energy
for the stationary measures uε+, uε− and uε

0.

LEMMA A.3. Let ε0 such that there exist three families of stationary measures
(uε+)ε∈]0;ε0], (uε−)ε∈]0;ε0] and (uε

0)ε∈]0;ε0] which verify

lim
ε→0

uε± = δ±a and lim
ε→0

uε
0 = 1

2
δx0 + 1

2
δ−x0,

where x0 is defined in the Introduction. Then, we have the following limits:

lim
ε→0

ϒε

(
uε±
)= V (a) and lim

ε→0
ϒε

(
uε

0
)= V (x0) + 1

4
F(2x0).

Plus, by considering the measure vε+(x) := Z−1 exp[−2
ε
(V (x) + F(x − a))], we

have

lim
ε→0

ϒε

(
vε+
)= V (a).
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PROOF. Step 1. We begin to prove the result for uε
0.

Step 1.1. We can write uε
0(x) = Z−1 exp[−2

ε
(V (x) + F ∗ uε

0(x))] since it is a
stationary measure. Hence

ϒε

(
uε

0
)= −ε

2
log

(∫
R

exp
[
−2

ε

(
V (x) + F ∗ uε

0(x)
)]

dx

)
− 1

2

∫∫
R2

F(x − y)uε
0(x)uε

0(y) dx dy.

It has been proved in [19] [Theorem 1.2 if V ′′(0) + F ′′(0) > 0, Theorem 1.4 if
V ′′(0)+F ′′(0) = 0 and Theorem 1.3 if V ′′(0)+F ′′(0) < 0 applied with f2l(x) :=
x2l] that the 2lth moment of uε

0 tends toward x2l
0 for all l ∈ N. Since F is a poly-

nomial function, we deduce the convergence of
∫∫

R2 F(x − y)uε
0(x)uε

0(y) dx dy

toward F(2x0)
2 .

Step 1.2. If V ′′(0) + F ′′(0) 
= 0, we can apply Lemma A.4 in [19] to f (x) := 1
and Uε(x) := V (x) + F ∗ uε

0(x). This provides∫
R

exp
[
−2

ε

(
V (x) + F ∗ uε

0(x)
)]

dx = Cε exp
[
−2

ε

(
V (x0) + F(2x0)

2

)]
,

where the constant Cε verifies ε log(Cε) −→ 0 in the small-noise limit. We deduce

−ε

2
log

(∫
R

exp
[
−2

ε

(
V (x) + F ∗ uε

0(x)
)]

dx

)
−→ V (x0) + F(2x0)

2

when ε collapses. Consequently, it leads to the following limit:

ϒε

(
uε

0
)−→ V (x0) + 1

4F(2x0).

Step 1.3. We assume now V ′′(0)+F ′′(0) = 0. Then x0 = 0 according to Propo-
sition 3.7 and Remark 3.8 in [18]. Propositions 3.5 and 3.6 in [19] imply

0 < lim inf
ε→0

ε1/(2m0)
∫

R

exp
[
−2

ε

(
V (x) + F ∗ uε

0(x)
)]

dx

and

lim sup
ε→0

ε1/(2m0)
∫

R

exp
[
−2

ε

(
V (x) + F ∗ uε

0(x)
)]

dx < +∞,

where m0 ∈ N
∗ depends only on V and F . We deduce

−ε

2
log

(∫
R

exp
[
−2

ε

(
V (x) + F ∗ uε

0(x)
)]

dx

)
−→ 0

when ε collapses. Consequently, we obtain the following limit:

ϒε

(
uε

0
)−→ 0 = V (x0) + 1

4F(2x0).

Step 2. We prove now the result for uε+ (the proof is similar for uε−).
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Step 2.1. We can write uε+(x) = Z−1 exp[−2
ε
(V (x) + F ∗ uε+(x))] since it is a

stationary measure. Hence

ϒε

(
uε+
)= −ε

2
log

(∫
R

exp
[
−2

ε

(
V (x) + F ∗ uε+(x)

)]
dx

)
− 1

2

∫∫
R2

F(x − y)uε+(x)uε+(y) dx dy.

It has been proved in [19] (Theorem 1.5 applied with fl(x) := xl) that the lth
moment of uε+ tends toward al for all l ∈ N. Since F is a polynomial function, we
obtain the convergence of

∫∫
R2 F(x − y)uε+(x)uε+(y) dx dy toward 0.

Step 2.2. Since the second derivative of the application x �→ V (x) + F(x − a)

in a is positive, we can apply Lemma A.4 in [19] to f (x) := 1 and Uε(x) :=
V (x) + F ∗ uε+(x) [after noting that U

(i)
ε (x) tends toward V (i)(x) + F (i)(x − a)

uniformly on each compact for all i ∈ N]. This provides∫
R

exp
[
−2

ε

(
V (x) + F ∗ uε+(x)

)]
dx = Cε exp

[
−2

ε
V (a)

]
,

where the constant Cε verifies ε log(Cε) −→ 0 in the small-noise limit. We deduce

−ε

2
log

(∫
R

exp
[
−2

ε

(
V (x) + F ∗ uε+(x)

)]
dx

)
−→ V (a)

when ε −→ 0. Consequently, the following limit holds:

ϒε

(
uε

0
)−→ V (a).

Step 3. We proceed similarly for vε+. �

We provide here a useful asymptotic result linked to the Laplace method.

LEMMA A.4. Let Uk and U ∈ C∞(R,R) such that for all i ∈ N, U
(i)
k con-

verges toward U(i) uniformly on each compact subset when k goes to +∞. Let
(εk)k be a sequence which converges toward 0 as k goes to +∞. If U has r

global minimum locations A1 < · · · < Ar and if there exist R > 0 and kc such
that Uk(x) > x2 for all |x| > R and k > kc, then, for k big enough, we have:

(1) Uk has exactly one global minimum location A
(k)
j on each interval Ij ,

where Ij represents the Voronoï cells corresponding to the central points Aj , with
1 ≤ j ≤ r .

(2) A
(k)
j tends toward Aj when k goes to +∞.

Furthermore, for all N ∈ N, there exist p1, . . . , pr which verify p1 +· · ·+pr =
1 and pi ≥ 0 for all 1 ≤ i ≤ r such that we can extract a subsequence ψ(k) which
satisfies

lim
k→+∞

∫
R

xl exp[−2/εψ(k)Uψ(k)]dx∫
R

exp[−2/εψ(k)Uψ(k)]dx
=

r∑
j=1

pjA
l
j
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for all 1 ≤ l ≤ N .

PROOF. (1) The first point of the lemma is exactly the one of Lemma A.4
in [19].

(2) Since Uk(x) ≥ x2 for |x| ≥ R and k > kc, we can confine each A
(k)
j in a

compact subset. Then, the uniform convergence on all the compact subset implies
the convergence of A

(k)
j toward Aj when k goes to +∞.

(3) Let ρ > 0 arbitrarily small such that [Aj − ρ,Aj + ρ] ⊂ Ij . For obvious
reasons, we can extract a subsequence such that∫ Ai+ρ

Ai−ρ exp[−2/εψ(k)Uψ(k)(x)]dx∑r
j=1

∫ Aj+ρ

Aj−ρ exp[−2/εψ(k)Uψ(k)(x)]dx
−→ λi(ρ)

with λi(ρ) ≥ 0 for all 1 ≤ i ≤ r and
∑r

j=1 λj (ρ) = 1.

We can note that the generation of the sequence ψ(k) depends on the choice
of ρ. Consequently, in the following, we can take ρ arbitrarily small, then εψ(k)

arbitrarily small.
As the r families (λj (ρ))ρ>0 are bounded, we can extract a subsequence (ρp)p

such that λj (ρp) tends toward λj when p goes to +∞. Furthermore, λj ≥ 0 for
all 1 ≤ j ≤ r and

∑r
j=1 λj = 1. For simplifying, we will write ρ (resp., k) instead

of ρp [resp., ψ(k)].

We introduce the function ζ
(k)
l (x) := xl exp[− 2

εk
Uεk

(x)] for all l ∈ N. By using
classical analysis’ inequality, we obtain∣∣∣∣∣

∫
R

ζ
(k)
l (x) dx∫

R
ζ

(k)
0 (x) dx

−
r∑

j=1

λjA
l
j

∣∣∣∣∣≤ T1 + T2 + T3 + T4 + T5(A.3)

with

T1(ρ) :=
∣∣∣∣∣

r∑
j=1

(
λj − λj (ρ)

)
Al

j

∣∣∣∣∣, T2(ρ,R) := ρlRl−1,

T3(ρ, k) :=
r∑

j=1

∫
Ij∩[Aj−ρ,Aj+ρ]c ζ

(k)
l (x) dx∫

R
ζ

(k)
0 (x) dx

, T4(R, k) := 2

∫+∞
R ζ

(k)
l (x) dx∫

R
ζ

(k)
0 (x) dx

and

T5(ρ,R, k) :=
r∑

j=1

|Aj |l
∣∣∣∣
∫ Aj+ρ

Aj−ρ ζ
(k)
0 (x) dx∫

R
ζ

(k)
0 (x) dx

− λj (ρ)

∣∣∣∣≤
(

r∑
j=1

|Aj |l
)
(T3 + T4).

Let τ > 0 arbitrarily small. We take R ≥ 2 such that

max
z∈[A1−1;A1+1]U(z) + 2 <

R2

2
.
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3.1. The convergence of λj (ρ) toward λj implies the existence of ρ0 > 0 such
that for all ρ < ρ0, we have

T1(ρ) ≤ τ

5
(A.4)

for all 1 ≤ l ≤ N .
3.2. By taking ρ < min{ρ0;min1≤l≤N

τ
5lRl−1 }, we deduce

T2(ρ,R) ≤ τ

5
(A.5)

for all 1 ≤ l ≤ N .
3.3. We will prove that the third term tends toward 0. It is sufficient to prove

the following convergence:∫
Ij∩[Aj−ρ,Aj+ρ]c ζ

(k)
l (x) dx∫

[Aj−ρ,Aj+ρ] ζ
(k)
0 (x) dx

−→ 0

for all 1 ≤ j ≤ r . Since Ij ⊂ [−R,R], we have∫
Ij∩[Aj−ρ,Aj+ρ]c ζ

(k)
l (x) dx∫

[Aj−ρ,Aj+ρ] ζ
(k)
0 (x) dx

≤ Rl

∫
Ij∩[Aj−ρ,Aj+ρ]c ζ

(k)
0 (x) dx∫

[Aj−ρ,Aj+ρ] ζ
(k)
0 (x) dx

.

Let us prove the convergence toward 0 of the right-hand term:∫
Ij∩[Aj−ρ,Aj+ρ]c ζ

(k)
0 (x) dx∫

[Aj−ρ,Aj+ρ] ζ
(k)
0 (x) dx

≤ Rl+1 sup{ζ (k)
0 (z); z ∈ Ij ∩ [Aj − ρ,Aj + ρ]c}∫ Aj+ρ/2

Aj−ρ/2 ζ
(k)
0 (x) dx

≤ Rl+1

ρ

sup{ζ (k)
0 (z); z ∈ Ij ∩ [Aj − ρ,Aj + ρ]c}

inf{ζ (k)
0 (z); z ∈ [Aj − ρ/2,Aj + ρ/2]}

≤ Rl+1

ρ
exp

{
− 2

εk

[
inf

z∈Ij∩[Aj−ρ,Aj+ρ]c Uk(z) − sup
z∈[Aj−ρ/2,Aj+ρ/2]

Uk(z)
]}

.

Let ρ1 > 0 such that for all ρ < ρ1, we have

min
1≤j≤r

{
inf

z∈Ij∩[Aj−ρ,Aj+ρ]c U(z) − sup
z∈[Aj−ρ/2,Aj+ρ/2]

U(z)
}

≥ δ > 0.

We take ρ < min{ρ0, ρ1,min1≤l≤N
τ

5lRl−1 }. As Uk converges uniformly toward U

on all the compact subset, we deduce that for k ≥ k0, we have

T3(ρ, k) ≤ τ

5(1 + max1≤l≤N

∑r
j=1 |Aj |l)(A.6)

for all 1 ≤ l ≤ N .
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3.4. By using the growth property on Uk then the change of variable x := √
εky,

it yields ∫ +∞
R

ζ
(k)
l (x) ≤

∫ +∞
R

xl exp
[
− 2

εk

x2
]
dx ≤ C(l)e−R2/εk ε

(l+1)/2
k ,

where C(l) is a constant. We recall the assumption maxz∈[A1−1;A1+1] U(z) + 2 <
R2

2 . Since Uk converges toward U uniformly on each compact subset, we have

maxz∈[A1−1;A1+1] Uk(z) + 1 < R2

2 for k ≥ k1 (independently of ρ). Consequently,

T4(R, k) ≤ 2C(l)ε
(l+1)/2
k exp[−2/εk(maxz∈[A1−1;A1+1] Uk(z) + 1)]∫ A1+1

A1−1 exp[−2/εkUk(z)]dx

≤ C(l)ε
(l+1)/2
k exp

[
− 2

εk

]
.

For k ≥ k2, we have the inequality

ε
(l+1)/2
k exp

[
− 2

εk

]
≤ τ

5 max1≤l≤N C(l) × (1 + max1≤l≤N

∑r
j=1 |Aj |l) .

By taking k ≥ max{k0, k1, k2}, we obtain

T4(R, k) ≤ τ

5(1 + max1≤l≤N

∑r
j=1 |Aj |l)(A.7)

for all 1 ≤ l ≤ N .
3.5. By taking ρ < min{ρ0, ρ1,

τ
5lRl−1 } and k ≥ max{k0, k1, k2}, inequali-

ties (A.3)–(A.6) and (A.7) provide∣∣∣∣∣
∫
R

ζ
(k)
l (x) dx∫

R
ζ

(k)
0 (x) dx

−
r∑

j=1

λjA
l
j

∣∣∣∣∣< τ

for all 1 ≤ l ≤ N . This achieves the proof. �

REMARK A.5. This lemma seems weaker than Lemma A.4 in [19]. However,
here, we do not assume that the second derivative of U is positive in all the global
minimum locations.
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