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SUB-GAUSSIAN TAIL BOUNDS FOR THE WIDTH AND HEIGHT
OF CONDITIONED GALTON–WATSON TREES

BY LOUIGI ADDARIO-BERRY, LUC DEVROYE AND SVANTE JANSON

McGill University, McGill University and Uppsala University

We study the height and width of a Galton–Watson tree with offspring
distribution ξ satisfying Eξ = 1, 0 < Var ξ < ∞, conditioned on having ex-
actly n nodes. Under this conditioning, we derive sub-Gaussian tail bounds
for both the width (largest number of nodes in any level) and height (greatest
level containing a node); the bounds are optimal up to constant factors in the
exponent. Under the same conditioning, we also derive essentially optimal
upper tail bounds for the number of nodes at level k, for 1 ≤ k ≤ n.

1. Introduction. A Galton–Watson tree is the family tree of a Galton–Watson
process, that is, it is a random rooted tree, constructed recursively from the root,
where each node has a random number of children, and these random numbers
are independent copies of some random variable ξ taking values in {0,1, . . .}. We
let T denote a (random) Galton–Watson tree. (T depends of course on ξ , or rather
its distribution, but the offspring distribution ξ is fixed throughout the paper and is
therefore not shown explicitly in the notation.) We view the children of each node
as arriving in some random order, so that T is an ordered, or plane tree.

At times in the paper it will be useful to think of T as a subtree of the so-
called Ulam–Harris tree U : this is the tree with root ∅ whose nonroot nodes cor-
respond to finite sequences of integers v1, . . . , vk , with v1, . . . , vk having parent
v1, . . . , vk−1 and children {v1, . . . , vki : i ∈ {1,2, . . .}}. For a node v of U we
think of vi as the ith child of v. Any rooted plane tree T in which all nodes have
at most countably many children can be viewed as a subtree of U by sending the
root of T to the root ∅ of U and using the ordering of children in T to recursively
define an embedding of T into U (see, e.g., [29]).

We will study the conditioned Galton–Watson tree Tn, which is the random tree
T conditioned on having exactly n nodes. In symbols, Tn := (T | |T | = n), where,
for any tree T , |T | denotes its number of nodes. [We consider in the sequel only n

such that P(|T | = n) > 0.] For examples of standard types of random trees that can
be represented as conditioned Galton–Watson trees for suitable ξ , see, for example,
Devroye [8]. The conditioned Galton–Watson trees are essentially the same as the
random simply generated trees [32]; see, for example, [8] or [10].
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As is well known, the distribution of the tree Tn is not changed if ξ is replaced
by another random variable ξ ′ whose distribution is replaced by tilting (or conjuga-
tion) [24]: P(ξ ′ = k) = cak

P(ξ = k), k ≥ 0, for some a > 0 and normalizing con-
stant c. [Necessarily, c = (Eaξ )−1, and thus Eaξ < ∞.] We may, except in some
exceptional cases, by a suitable tilting assume that Eξ = 1, so that the branching
process is critical. This turns out to be convenient, and we will, in the sequel, al-
ways make the assumption Eξ = 1. We further assume that ξ has finite variance
σ 2 := Var ξ < ∞. We exclude the trivial case ξ = 1 a.s.; that is, we assume σ 2 > 0.
[Equivalently, when Eξ = 1, P(ξ = 0) > 0.]

For a rooted tree T (deterministic or random), the depth h(v) of a node v is its
distance to the root; the root thus has depth 0. Let Zk(T ) be the width at level k,
that is, the number of nodes at depth k, k = 0,1, . . . . We define, as usual, the width
of the tree by

W = W(T ) := max
k≥0

Zk(T ),(1)

and the height by

H = H(T ) := max
{
h(v) :v ∈ T

} = max
{
k :Zk(T ) > 0

}
.(2)

It is well known that the width and height of a conditioned Galton–Watson
tree Tn both are of the order

√
n. More precisely, n−1/2W(Tn) and n−1/2H(Tn)

both converge in distribution, as n → ∞; see, for example, [1, 5, 11] and [10];
moreover, they converge jointly [5, 20],(

n−1/2W(Tn), n
−1/2H(Tn)

) d−→ (
σW,σ−1H

)
(3)

for some limit variables W and H , that furthermore do not depend on the dis-

tribution of ξ . (W is the maximum of a Brownian excursion, and H
d= 2W ; see

further [22].)
Two of the main results of the paper are to prove essentially optimal uniform

sub-Gaussian upper tail bounds for both W(Tn)/
√

n and H(Tn)/
√

n for every off-
spring distribution ξ with finite variance. As an immediate consequence, the esti-
mates EW(Tn) = O(n1/2) and EH(Tn) = O(n1/2) hold; even these much weaker
statements are to our knowledge new at this level of generality. (For estimates
assuming an exponential moment of ξ , see, e.g., [17].)

We let C1,C2, . . . , c1, c2, . . . denote positive constants that may depend on the
distribution of ξ (and in particular on σ 2) but not on n or other parameters unless
explicitly indicated. (We use Ci for “large” and ci for “small” constants.) Proofs
are given in Section 4.

THEOREM 1.1. Suppose that Eξ = 1 and Var ξ < ∞. Then

P
(
W(Tn) ≥ x

) ≤ C1e
−c1x

2/n

for all x ≥ 0 and n ≥ 1.
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THEOREM 1.2. Suppose that Eξ = 1 and 0 < Var ξ < ∞. Then

P
(
H(Tn) ≥ h

) ≤ C2e
−c2h

2/n(4)

for all h ≥ 0 and n ≥ 1.

The condition Var ξ > 0 excludes the case P(ξ = 1) = 1, in which case Tn is a
path of length n.

COROLLARY 1.3. Suppose that Eξ = 1 and 0 < Var ξ < ∞. Then EW(Tn) =
O(n1/2) and EH(Tn) = O(n1/2). More generally, for every fixed r < ∞,
E(W(Tn)

r) = O(nr/2) and E(H(Tn)
r) = O(nr/2).

While our methods do not prove the convergence (3) of W(Tn)/
√

n and
H(Tn)/

√
n, we have thus, as a corollary, obtained tightness of them, and we be-

lieve that our argument might be the simplest proof of this tightness.
On the other hand, knowing the limit result (3), it follows from the fact that the

bounds in Corollary 1.3 hold for every r that all moments (also joint) converge

in (3). In particular, by the known formulas for the moments of W and H
d= 2W

(see, e.g., [4]), as n → ∞,

E
(
W(Tn)

r)/nr/2 → σ r
EWr = σ r2−r/2r(r − 1)�(r/2)ζ(r),(5)

E
(
H(Tn)

r)/nr/2 → σ−r
EHr = σ−r2r/2r(r − 1)�(r/2)ζ(r).(6)

For joint moments, see [9] and [22]. These results are well known if ξ is assumed
to have an exponential moment (see, e.g., [18] and [12]), but to our knowledge
they have not, even in the case r = 1, been proved before without extra conditions.

We emphasise that we obtain these bounds for higher moments of both W(Tn)

and H(Tn), and even sub-Gaussian tail bounds for both variables, without assum-
ing more than a finite second moment of ξ . This is somewhat surprising, at least
for the width, since a ξ with a large tail will produce a very wide Galton–Watson
tree T with comparatively large probability; the explanation is that if the tree has
one generation that is very large, say of size m, then it will probably have many
nodes (of order m2) in later generations, so the conditioning on exactly n nodes
makes this event very unlikely if m 	 √

n. In other words, the bounds on the width
hold, not because it is difficult for the Galton–Watson tree to get many branches,
but because it is difficult to get rid of them in time.

REMARK 1.4. We assume σ 2 = Var ξ < ∞ throughout the paper. Since in-
creasing σ makes the width larger and the height smaller (asymptotically at least)
[see, e.g., (5)–(6)], it is not reasonable to expect that the results for the width gen-
eralize to the case σ 2 = ∞. However, for the same reason it seems likely that the
results for the height extend, but we have not investigated that and leave that as an
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open problem. In particular, we ask the following questions (assuming Eξ = 1):
Is EH(Tn) = O(n1/2) also if σ 2 = ∞? Is EH(Tn) = o(n1/2) if σ 2 = ∞? We note
that Duquesne [13] has shown that H(Tn) = Op(n1/2) when ξ is in the domain
of attraction of a stable law of index α ∈ (1,2] [in fact, his results also imply that
H(Tn) = op(n1/2) when α < 2]. This result has been extended to sequences of
random trees that converge to Lévy trees; see [14, 15]. However, we are not aware
of any bounds that hold for arbitrary offspring distributions.

Next we consider the width Zk(Tn) at a given level k. Of course, Zk(Tn) ≤
W(Tn), so the results above for W(Tn) immediately imply the same bounds for
Zk(Tn), uniformly in k. In particular,

EZk(Tn) = O
(
n1/2)

.(7)

For k 
 n1/2, this is the correct order of EZk(Tn); in fact, n−1/2Z�x√
n�(Tn) con-

verges in distribution for every fixed x ≥ 0, and as a function of x; see [11, 12]
(assuming a finite exponential moment) and [26] (the general case, by probabilis-
tic methods).

For small k, on the other hand, Zk(Tn) is smaller, and it was proven in [20],
Theorem 1.13, that

EZk(Tn) = O(k),(8)

uniformly for all k ≥ 1 and n ≥ 1. This is the best possible estimate, since for any
fixed k,

EZk(Tn) → 1 + kσ 2 as n → ∞;(9)

see Meir and Moon [32] and Janson [20, 21]. (It is shown in [21] that the sequence
EZk(Tn) is not always monotone in n, so (8) is not a consequence of (9).)

Furthermore, for large k, (8) is again not sharp. Indeed, if k 	 √
n, then typ-

ically H(Tn) < k and thus Zk(Tn) = 0. In fact, as k → ∞, EZk(Tn) decreases
exponentially, as is shown by the next theorem, which combines the three phases
(k  √

n, k 
 n, k 	 √
n) in a unified statement. (Drmota and Gittenberger [12]

gave the weaker bound C3n
1/2e−c3k/

√
n, assuming an exponential moment on ξ .)

THEOREM 1.5. Suppose that Eξ = 1 and 0 < Var ξ < ∞. For all n, k ≥ 1,

EZk(Tn) ≤ C4ke−c4k
2/n(10)

and also

EZk(Tn) ≤ C5n
1/2e−c5k

2/n(11)

[which is weaker for k = o(
√

n) but equivalent for larger n].
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Turning to higher moments of Zk(Tn), we first note that for small k there is
no result corresponding to (10) without assuming higher moments of ξ . In fact,
already for k = 1, it is easy to see that for any m ≥ 1,

P
(
Z1(Tn) = m

) → mP(ξ = m)

as n → ∞; see [24] and Remark 3.1. It follows by Fatou’s lemma, that if Eξ r+1 =
∞, for some r > 1, then EZ1(Tn)

r → ∞. The same holds for EZk(Tn)
r for every

fixed k ≥ 1.
Conversely, it was proven in [20], Theorem 1.13, that if Eξ r+1 < ∞ for an inte-

ger r ≥ 1, then EZk(Tn)
r = O(kr) uniformly in k ≥ 1 and n ≥ 1. (The restriction

to integer r is for technical reasons in the proof; we conjecture that the result holds
for any real r ≥ 1.)

On the other hand, the estimate (11) extends to higher moments without as-
suming any moment condition on ξ beyond our standing 0 < Var ξ < ∞; that is,
Eξ2 < ∞, and ξ is not constant.

THEOREM 1.6. Suppose that Eξ = 1 and 0 < Var ξ < ∞. For any r < ∞,

E
(
Zk(Tn)/

√
n
)r ≤ C6(r)e

−c6k
2/n(12)

for all k,n ≥ 1.
Furthermore,

P
(
Zk(Tn) > x

) ≤ C7e
−c6k

2/n−c7x
2/n(13)

for all x ≥ 0 and n ≥ 1.

1.1. Remarks on the limit law. We say that T is theta distributed if it has dis-
tribution function

P(T ≤ x) =
∞∑

j=−∞

(
1 − 2j2x2)

e−j2x2 = 4π5/2

x3

∞∑
j=1

j2e−π2j2/x2
, x > 0.

The appearance of T as the limit law of the height of random conditional Galton–
Watson trees was noted in [6, 7, 18, 25, 32, 34]. Furthermore, the maximum of
Brownian excursion of duration one is distributed as T/

√
2 (see, e.g., [4]). In (3),

W
d= T/

√
2 and H

d= T
√

2. It takes a moment to verify that for x ≥ 1,

P(T ≥ x) ≥ 2e−x2
,(14)

and for x ≤ 1,

P(T ≤ x) ≥ 40e−π2/x2
.(15)

The bound of Theorem 1.1, combined with the limit result (3) then shows that

c1 ≤ 2

σ 2 .
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Similarly, the bound of Theorem 1.2, combined with the limit result (3) then shows
that

c2 ≤ σ 2

2
.

It would be nice if c1 and c2 could be be made more explicit. In any case, the sub-
Gaussian tail behavior of the bounds in Theorems 1.1 and 1.2 is optimal, modulo
a constant factor (depending on ξ ).

We also have the trivial observation that

W(Tn)H(Tn) ≥ n − 1.

Thus, Theorems 1.1 and 1.2 yield the following left-tail upper bounds:

P
(
W(Tn) ≤ x

) ≤ P

(
H(Tn) ≥ n − 1

x

)
≤ C2 exp

(
−c2(n − 2)

x2

)
and

P
(
H(Tn) ≤ x

) ≤ P

(
W(Tn) ≥ n − 1

x

)
≤ C1 exp

(
−c1(n − 2)

x2

)
.

In view of (3) and remark (15) about the theta distribution, these bounds are opti-
mal up to the constant factors c1 and c2.

2. Preliminaries. The span of ξ , denoted span(ξ), is the largest integer d such
that ξ/d a.s. is an integer. Note that P(|T | = n) > 0, so Tn exists, if and only if
n ≡ 1 modulo span(ξ), except possibly for some small n.

We let ξi denote i.i.d. copies of the random variable ξ , and let Sn be the partial
sums of ξ1, ξ2, . . . ,

Sn :=
n∑

i=1

ξi .(16)

By a classic formula, (see, e.g., Dwass [16], Kolchin [28], Lemma 2.1.3,
page 105 or Pitman [33]), for n ≥ 1,

P
(|T | = n

) = 1

n
P(Sn = n − 1),(17)

and, more generally, for m,n ≥ 1 and independent copies T1, . . . , Tm of T ,

P

(
m∑

i=1

|Ti | = n

)
= m

n
P(Sn = n − m).(18)

Together with the local central limit theorem, (17) implies [28], Lemma 2.1.4,
page 105, with d := span(ξ) [recall that we only consider n such that n ≡ 1
(mod d)],

P
(|T | = n

) ∼ d√
2πσ

n−3/2.(19)
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We will use a one-sided tail bound for Sn, which we take from Janson [20],
that only requires our (weak) conditions. Note that, apart from the values of the
constants, the bound in (20) is exactly as the limit given by the local central limit
theorem when it applies; hence, at least for m not too large, it is of the best possible
kind.

LEMMA 2.1 ([20], Lemma 2.1). Suppose that ξi are i.i.d., nonnegative and
integer-valued random variables, with Eξi = 1 and Var ξi < ∞, and let Sn :=∑n

i=1 ξi . Then, for all n ≥ 1 and m ≥ 0,

P(Sn = n − m) ≤ C7√
n
e−c7m

2/n.(20)

PROOF. For completeness, we repeat the proof from [20]. We may assume
0 ≤ m ≤ n. Let F(z) := Ezξ be the probability generating function of ξ . Then

P(Sn = n − m) = 1

2πi

∮
zm−nF (z)n

dz

z
,

where we choose to integrate around the circle |z| = r with radius r := e−δm/n, for
some small δ to be chosen later. We therefore let G(z) := F(z)/z, and have

P(Sn = n − m) = 1

2π

∫ π

−π
e−δm2/n+imtG(reit )n dt.(21)

Since Eξ = 1 and Eξ(ξ − 1) = σ 2, we have the Taylor expansion

F(z) = 1 + (z − 1) + σ 2

2
(z − 1)2 + o

(|z − 1|2)
, |z| ≤ 1,

and thus

G(z) = 1 + σ 2

2
(z − 1)2 + o

(|z − 1|2)
, |z| ≤ 1,

G
(
ew) = 1 + σ 2

2
w2 + o

(|w|2)
, �w ≤ 0,

lnG
(
ew) = σ 2

2
w2 + o

(|w|2)
, �w ≤ 0.

Hence, if 0 < δ ≤ δ0 and |t | ≤ t0 for sufficiently small positive δ0 and t0,

ln
∣∣G(

reit )∣∣ = � lnG
(
e−δm/n+it ) = σ 2

2

(
δ2m2/n2 − t2) + o

(
δ2m2/n2 + t2)

(22)
≤ σ 2δ2m2/n2 − σ 2t2/4.

Assume for simplicity span(ξ) = 1. (Otherwise, the argument is modified in
the standard way.) Then |F(z)| < 1 for |z| ≤ 1 with z �= 1, and continuity and
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compactness shows that |F(reit )| ≤ 1 − ε < e−ε for some ε > 0 when e−δ0 ≤ r ≤
1 and t0 ≤ |t | ≤ π . Hence, for t0 ≤ |t | ≤ π and 0 ≤ δ ≤ δ1 := min(δ0, ε/2),∣∣G(

reit )∣∣ = eδm/n
∣∣F (

reit )∣∣ ≤ eδe−ε ≤ e−ε/2.(23)

Combining (22) and (23), we see that if δ ≤ δ1 and |t | ≤ π , then∣∣G(
reit )∣∣ ≤ eσ 2δ2m2/n2−c8t

2
,

with c8 := min(σ 2/4, ε/2π2) > 0. Using this in (21) we obtain

P(Sn = n − m) ≤ eσ 2δ2m2/n−δm2/n
∫ ∞
−∞

e−c8nt2
dt, 0 ≤ δ ≤ δ1,

and the result follows by choosing δ ≤ 1/2σ 2. �

REMARK 2.2. We can write the probability in (20) as P(
∑n

i=1(1 − ξi) = m).
The point is that even without any assumptions on the tail of ξi beyond finite
variance, the variables 1 − ξi are bounded above, which is enough for strong tail
bounds for m ≥ 0. (There is no similar bound for m < 0 under our weak con-
ditions.) Cf. the related tail bound P(Sn ≤ n − m) ≤ C8e

−c9m
2/n, which follows

by (24) below.

We will use the following version of Bernstein’s inequality, which is valid for
variables with a one-sided bound; see, for example, [19], (2.9)–(2.13) and [31],
Theorem 2.7.

LEMMA 2.3. Let X1,X2, . . . ,Xn be independent random variables such that
Xi − EXi ≤ b for every i. Then, with V := ∑

i=1 Var(Xi),

P

(
n∑

i=1

(Xi − EXi) ≥ t

)
≤ exp

(
− t2

2V + 2bt/3

)
.(24)

3. A size-biased Galton–Watson tree. Let ξ̂ be a random variable with the
size-biased distribution

P(ξ̂ = m) = mP(ξ = m).(25)

(Note that this is a probability distribution on {1,2, . . .} since Eξ = 1, and that
ξ̂ ≥ 1.)

Let, for k ≥ 1, T̂ (k) be the modified Galton–Watson tree defined as follows:
There are two types of nodes: normal and mutant. Normal nodes have offspring
(outdegree) according to independent copies of ξ , while mutant nodes have off-
spring according to independent copies of ξ̂ . The root is always a mutant node.
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All children of a normal node are normal, while for each mutant node, one of its
children is selected uniformly at random and called its heir; the heir is mutant if
it has depth less than k but normal if the depth is at least k, and all other children
are normal. (Alternatively, we can call the mutants kings, with a reproductive be-
havior different from the common people. At time k, a republic is introduced, and
everybody becomes equal.)

There are thus exactly k mutant nodes, which together with the heir v∗ of the
last mutant node form a path from the root to some node v∗ at depth k. We call this
path the spine of T̂ (k).

REMARK 3.1. This construction with k = ∞ is the size-biased Galton–
Watson tree defined by Kesten [27]; see also Aldous [1], Aldous and Pitman [2]
and Lyons, Pemantle and Peres [30]; in this case the spine is infinite so the tree
is infinite. The underlying size-biased Galton–Watson process is the same as the
Q-process studied in [3], Section I.14. For any fixed k, the first k generations of Tn

converge in distribution to the first generations of T̂ (∞); see Kennedy [24], Aldous
and Pitman [2] and Janson [23].

Our T̂ (k) is a truncated version of this, which grows like a normal Galton–
Watson tree after generation k; thus T̂ (k) is a.s. finite.

An equivalent construction is to start with the spine, and attach independent
copies of T to it; the number of such trees attached to each node in the spine
except the last one (the top node, if we think of trees as growing upwards) has
distribution ξ̂ − 1, but the number attached to the top node is ξ .

The probability that a given mutant node has m children and that a given one of
them is selected as heir is, by (25),

1

m
P(ξ̂ = m) = P(ξ = m), m ≥ 1.

It follows that for any rooted tree T , and any path γ in T from the root to a node
at depth k, letting d1, d2, . . . denote the outdegrees of the nodes in T , taken in
breadth-first order, say,

P
(

T̂ (k) = T with γ as spine
) = ∏

v

P(ξ = dv) = P(T = T ).(26)

Since the possible spines in T are in one-to-one correspondence with the nodes at
depth k, the number of them is Zk(T ), and thus

P
(

T̂ (k) = T
) = Zk(T )P(T = T ).(27)

In other words, T̂ (k) has the distribution of T biased by Zk , the size of genera-
tion k. In particular, this yields, summing (27) over all trees T of size |T | = n,

P
(∣∣T̂ (k)

∣∣ = n
) = E

(
Zk(T ); |T | = n

)
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and thus

EZk(Tn) = E(Zk(T ); |T | = n)

P(|T | = n)
= P(|T̂ (k)| = n)

P(|T | = n)
.(28)

4. Proofs.

PROOF OF THEOREM 1.1. Consider the breadth first search of the Galton–
Watson tree, which considers the nodes level-by-level, and from left to right within
each level. As is well known, this search keeps a queue of Qi nodes with Q0 = 1
and the recursion Qi = Qi−1 − 1 + ξi , with ξi i.i.d. copies of ξ as above; hence
Qj = 1 + S̃j , where S̃j := ∑j

i=1(ξi − 1) = Sj − j . The breadth first search stops,
and the tree is completely explored, when Qj becomes 0; in order for the tree to
have size n we thus have Qj > 0 for 0 ≤ j < n and Qn = 0; equivalently, S̃j ≥ 0
for j < n and S̃n = −1.

When the breadth first search just has completed exploring the nodes at level
k − 1, the queue consists of exactly the nodes at level k. Hence each Zk is some
Qj , and

W := max
k≥0

Zk ≤ max
j≥0

Qj .

As a result, for the conditioned Galton–Watson tree Tn,

P(W ≥ x + 1) ≤ P

(
max

j
Qj ≥ x + 1

)
(29)

= P

(
max

j
S̃j ≥ x | S̃j ≥ 0, j < n and S̃n = −1

)
.

We get rid of the conditioning on S̃j ≥ 0 (j < n) by the standard rotation argument:
for each (deterministic) sequence x1, . . . , xn of integers ≥ −1 with sum

∑n
i=1 xi =

−1, there is exactly one rotation x
(t)
i := xi+t with t ∈ {0, . . . , n − 1} and indices

taken modulo n, such that the partial sums S
(t)
j := ∑j

i=1 x
(t)
i ≥ 0 for 1 ≤ j < n.

Hence, we can obtain (S̃j )
n
j=1 with the conditional distribution given S̃j ≥ 0, j < n

and S̃n = −1, as required in (29), by conditioning (S̃j )
n
j=1 on S̃n = −1 and then

taking the unique correct rotation. The rotation may change maxj S̃j , but we have

max
j≤n

S̃j = max
j≤n

S̃j − min
j≤n

S̃j + 1,

and the latter quantity is changed by at most 1 by a rotation of ξ̃i := ξi − 1, i =
1, . . . , n. Hence, the rotation argument shows that

P

(
max
j≤n

S̃j ≥ x | S̃j ≥ 0, j < n and S̃n = −1
)

≤ P

(
max
j≤n

S̃j − min
j≤n

S̃j ≥ x | S̃n = −1
)
.
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By (29) we thus have

P

(
max

j
Qj ≥ 2x + 2

)
≤ P

(
max
j≤n

S̃j − min
j≤n

S̃j ≥ 2x + 1 | S̃n = −1
)

≤ P

(
max
j≤n

S̃j ≥ x | S̃n = −1
)

+ P

(
min
j≤n

S̃j ≤ −x − 1 | S̃n = −1
)
.

Furthermore, the reflection ξi ↔ ξn+1−i , which takes S̃j ↔ S̃n − S̃n−j , shows that
the last probabilities are the same, and we thus have

P

(
max

j
Qj ≥ 2x + 2

)
≤ 2P

(
max
j≤n

S̃j ≥ x | S̃n = −1
)
.(30)

Fix x > 0 and let τ be the stopping time min{j ≥ 0 : S̃j ≥ x}. Then (30) can be
written

P

(
max

j
Qj ≥ 2x + 2

)
≤ 2P(τ < n | S̃n = −1)

(31)

= 2P(S̃n = −1 | τ < n) · P(τ < n)

P(S̃n = −1)
.

By definition, S̃τ ≥ x. Further, for any t < n and y ≥ x, by Lemma 2.1,

P(S̃n = −1 | τ = t and S̃τ = y)

= P(S̃n − S̃t = −y − 1)

= P
(
S̃n−t = −(y + 1)

) ≤ C7n
−1/2e−c7(y+1)2/(n−t) ≤ C7n

−1/2e−c7x
2/n.

Consequently,

P(S̃n = −1 | τ < n) ≤ C7n
−1/2e−c7x

2/n,

and (31) yields

P

(
max

j
Qj ≥ 2x + 2

)
≤ C9n

−1/2e−c7x
2/n

P(S̃n = −1)
≤ C10e

−c10x
2/n,(32)

since P(S̃n = −1) ≥ c11n
−1/2 by the standard local central limit theorem. Finally,

since P(W ≥ 2x + 2) ≤ P(maxj Qj ≥ 2x + 2), the proof is complete. �

PROOF OF THEOREM 1.2. By choosing C2 sufficiently large we may assume
that h ≥ √

n. We may also assume that h is an integer. Our proof of (4) is based on
the following observation: if v is a node of Tn with “large” height, then either there
are many edges leaving the path from the root to v, or many of the ancestors of v

have exactly one child. In the first case, we will be forced to consider whether the
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majority of edges leaving the root-to-v path lead to nodes which are lexicographi-
cally before, or after, v. To do so, we use lexicographic and reverse-lexicographic
depth-first search (DFS) of Tn.

To define lexicographic DFS of Tn, think of Tn as a plane tree (i.e., as embed-
ded in the Ulam–Harris tree U ) and list the nodes of Tn in lexicographic order
as v0, v1, . . . , vn−1. We then let Qd

0 = 1 and Qd
i = Qd

i−1 − 1 + ξvi−1 , where ξvi

is the number of children of vi in Tn. (This is sometimes called the Lukasiewicz
path of Tn; see, e.g., [29].) The reverse-lexicographic depth-first search of Tn is the
sequence Qr

0, . . . ,Q
r|Tn| obtained by performing a lexicographic depth-first search

on the mirror image of Tn (so if the root ∅ has children 1, . . . , k in Tn, then k is
the first rather than last child visited, and so on). We remark that the lexicographic
and reverse-lexicographic depth-first searches both are identical in distribution to
the breadth-first search of Tn.

Now let p1 = P(ξ = 1) and let q1 = 1 − p1. Fix a node v of Tn with
h(v) = h, and write j (resp., k) for the index of v in lexicographic (resp., reverse-
lexicographic) order. Each ancestor of v with more than one child contributes at
least one to either Qd

j or Qr
k . It follows that if max(Qd

j ,Qr
k) < (q1/3)h, then v

has less than (2q1/3)h ancestors possessing more than one child, and so at least
(1 − 2q1/3)h = (p1 + q1/3)h of the ancestors of v have exactly one child.

Let S be the set of trees T with |T | = n, such that T contains a node v pos-
sessing at least (p1 + q1/3)h(v) ancestors with exactly one child and for which
h(v) = h. Then let E := {Tn ∈ S} = ⋃

T ∈S {Tn = T }. By the preceding paragraph,
if there is a node v with h(v) = h, then either Qd

j ≥ (q1/3)h for some j , or
Qr

k ≥ (q1/3)h for some k, or else E occurs. We thus have

P
(
H(Tn) ≥ h

) ≤ P

(
max

j
Qd

j ≥ (q1/3)h
)

+ P

(
max

k
Qr

k ≥ (q1/3)h
)

+ P(E ).

Since Qd and Qr have the same distribution as Q, it follows from the preceding
inequality that

P
(
H(Tn) ≥ h

) ≤ 2P

(
max

i
Qi ≥ (q1/3)h

)
+ P(E )

(33)
≤ C11e

−c12h
2/n + P(E ),

the latter inequality holding due to (32).
Next, for each tree T ∈ S , fix a path γT from the root of T to a node v with

h(v) = h and with at least (p1 + q1/3)h ancestors with exactly one child (such a
node exists by the definition of S ). Then by (26),

P(T ∈ S) = ∑
T ∈S

P(T = T )

= ∑
T ∈S

P
(
T̂ (h) = T with γT as spine

)
(34)
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= P

( ⋃
T ∈S

{
T̂ (h) = T with γT as spine

})

≤ P

(
h−1∑
i=0

1
ξ̂i=1 ≥ (p1 + q1/3)h

)
.

The 1
ξ̂i=1 are Bernoulli(p1), so by Lemma 2.3,

P

(
h−1∑
i=0

1
ξ̂i=1 ≥ (p1 + q1/3)h

)
≤ exp

(
− (q1h/3)2

2p1q1h + 2q2
1h/9

)
(35)

= exp
(
− h

18p1/q1 + 2

)
.

It follows by (19) and (34)–(35) that

P(E ) = P(T ∈ S)

P(|T | = n)
≤ C12n

3/2 exp
(
− h

18p1/q1 + 2

)
≤ C13e

−c13h
2/n

for all h ≥ √
n. Together with (33) we have thus proved

P
(
H(Tn) ≥ h

) ≤ C11e
−c12h

2/n + C13e
−c13h

2/n,

which establishes (4). �

PROOF OF THEOREM 1.5. Note first that the case k > n is trivial, since
H(Tn) ≤ n and Zk(Tn) = 0 for k > n. Further, if k ≤ √

n, then the result follows
from (8). Hence it suffices to consider

√
n ≤ k ≤ n.

Consider the random tree T̂ (k) constructed in Section 3. By the alternative con-
struction described there, we can regard the tree as the k mutant nodes (the spine
except its top node) together with a random number M of attached independent
copies of T . Hence,

∣∣T̂ (k)
∣∣ d= k +

M∑
i=1

|Ti |,(36)

where Ti are independent copies of T , independent also of M . The number M is
the total number of normal children (including the top node) of the k mutants, and
thus

M
d=

k∑
i=1

(ξ̂i − 1) + 1,(37)

where ξ̂i are i.i.d. with the distribution (25).
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Thus, for m > 0 and n > k, using (36), (18) and Lemma 2.1,

P
(∣∣T̂ (k)

∣∣ = n | M = m
) = P

(
m∑

i=1

|Ti | = n − k

)
= m

n − k
P(Sn−k = n − k − m)

(38)
≤ C7

m

(n − k)3/2 e−c7m
2/(n−k).

The summands ξ̂i − 1 in (37) have mean E(ξ̂ − 1) = Eξ2 − 1 = σ 2 > 0. We
truncate them and define ξ̂ ′

i := min(ξ̂i ,K), where K is chosen so large that Eξ̂ ′
i >

1+σ 2/2. We apply Bernstein’s inequality (24) to −ξ̂ ′
i , and obtain, since Var(ξ̂ ′

i ) <

∞ and thus V = O(n),

P
(
M ≤ kσ 2/4

) ≤ P

(
k∑

i=1

(ξ̂i − 1) ≤ kσ 2/4

)
≤ P

(
k∑

i=1

(
ξ̂ ′
i − 1

) ≤ kσ 2/4

)
(39)

≤ P

(
k∑

i=1

(
ξ̂ ′
i − Eξ̂ ′

i

) ≤ −kσ 2/4

)
≤ e−c14k.

Note that |T̂ (k)| ≥ M + k by (36), so if M = m > kσ 2/2, we only have to
consider n ≥ m + k > (1 + σ 2/2)k, and for such n, n − k ≥ c15n. Hence, for
m > kσ 2/2, (38) yields

P
(∣∣T̂ (k)

∣∣ = n | M = m
) ≤ C14

m

n3/2 e−c7m
2/n ≤ C15

1

n
e−c16m

2/n.(40)

If
√

n ≤ k ≤ n, (39) and (40) yield

P
(∣∣T̂ (k)

∣∣ = n
) ≤ e−c14k + max

m≥kσ 2/2
C15

1

n
e−c16m

2/n ≤ C16
1

n
e−c17k

2/n.(41)

Since P(|T | = n) ≥ c18n
−3/2 by (19), (28) and (41) yield, if

√
n ≤ k ≤ n,

EZk(Tn) ≤ C17n
1/2e−c17k

2/n ≤ C18ke−c17k
2/n,(42)

which completes the proof. (We remarked above that it suffices to consider such k.)
�

PROOF OF THEOREM 1.6. First, by Theorem 1.1,

P
(
Zk(Tn) > x

) ≤ P
(
W(Tn) > x

) ≤ C1e
−c1x

2/n.

Further, since Zk(Tn) > 0 implies H(Tn) ≥ k, Theorem 1.2 implies that

P
(
Zk(Tn) > x

) ≤ P
(
H(Tn) ≥ k

) ≤ C2e
−c2k

2/n.
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Taking the geometric mean of these bounds we obtain (13). Further, (13) implies,
for any r > 0, with Z̃ := Zk(Tn)/

√
n,

EZ̃r = r

∫ ∞
0

xr−1
P(Z̃ > x)dx ≤ rC7e

−c6k
2/n

∫ ∞
0

xr−1e−c7x
2
dx

= C19(r)e
−c6k

2/n. �

REFERENCES

[1] ALDOUS, D. (1991). The continuum random tree. II. An overview. In Stochastic Analysis
(Durham, 1990). London Mathematical Society Lecture Note Series 167 23–70. Cam-
bridge Univ. Press, Cambridge. MR1166406

[2] ALDOUS, D. and PITMAN, J. (1998). Tree-valued Markov chains derived from Galton–Watson
processes. Ann. Inst. Henri Poincaré Probab. Stat. 34 637–686. MR1641670

[3] ATHREYA, K. B. and NEY, P. E. (1972). Branching Processes. Springer, New York.
MR0373040

[4] BIANE, P., PITMAN, J. and YOR, M. (2001). Probability laws related to the Jacobi theta and
Riemann zeta functions, and Brownian excursions. Bull. Amer. Math. Soc. (N.S.) 38 435–
465 (electronic). MR1848256

[5] CHASSAING, P., MARCKERT, J. F. and YOR, M. (2000). The height and width of simple
trees. In Mathematics and Computer Science (Versailles, 2000) 17–30. Birkhäuser, Basel.
MR1798284

[6] CHUNG, K. L. (1975). Maxima in Brownian excursions. Bull. Amer. Math. Soc. 81 742–745.
MR0373035

[7] DE BRUIJN, N. G., KNUTH, D. E. and RICE, S. O. (1972). The average height of planted plane
trees. In Graph Theory and Computing 15–22. Academic Press, New York. MR0505710

[8] DEVROYE, L. (1998). Branching processes and their applications in the analysis of tree struc-
tures and tree algorithms. In Probabilistic Methods for Algorithmic Discrete Mathematics,
(Habib, McDiarmid, Ramirez and Reed, eds.). Algorithms Combin. 16 249–314. Springer,
Berlin. MR1678582

[9] DONATI-MARTIN, C. (2001). Some remarks about the identity in law for the Bessel bridge∫ 1
0

ds
r(s)

(law)→ = 2 sups≤1 r(s). Studia Sci. Math. Hungar. 37 131–144. MR1834327
[10] DRMOTA, M. (2009). Random Trees: An Interplay Between Combinatorics and Probability.

Springer, New York. MR2484382
[11] DRMOTA, M. and GITTENBERGER, B. (1997). On the profile of random trees. Random Struc-

tures Algorithms 10 421–451. MR1608230
[12] DRMOTA, M. and GITTENBERGER, B. (2004). The width of Galton–Watson trees conditioned

by the size. Discrete Math. Theor. Comput. Sci. 6 387–400 (electronic). MR2081482
[13] DUQUESNE, T. (2003). A limit theorem for the contour process of conditioned Galton–Watson

trees. Ann. Probab. 31 996–1027. MR1964956
[14] DUQUESNE, T. and LE GALL, J.-F. (2002). Random trees, Lévy processes and spatial branch-

ing processes. Astérisque 281 vi+147. MR1954248
[15] DUQUESNE, T. and LE GALL, J.-F. (2005). Probabilistic and fractal aspects of Lévy trees.

Probab. Theory Related Fields 131 553–603. MR2147221
[16] DWASS, M. (1969). The total progeny in a branching process and a related random walk.

J. Appl. Probab. 6 682–686. MR0253433
[17] FLAJOLET, P., GAO, Z., ODLYZKO, A. and RICHMOND, B. (1993). The distribution of heights

of binary trees and other simple trees. Combin. Probab. Comput. 2 145–156. MR1249127
[18] FLAJOLET, P. and ODLYZKO, A. (1982). The average height of binary trees and other simple

trees. J. Comput. System Sci. 25 171–213. MR0680517

http://www.ams.org/mathscinet-getitem?mr=1166406
http://www.ams.org/mathscinet-getitem?mr=1641670
http://www.ams.org/mathscinet-getitem?mr=0373040
http://www.ams.org/mathscinet-getitem?mr=1848256
http://www.ams.org/mathscinet-getitem?mr=1798284
http://www.ams.org/mathscinet-getitem?mr=0373035
http://www.ams.org/mathscinet-getitem?mr=0505710
http://www.ams.org/mathscinet-getitem?mr=1678582
http://www.ams.org/mathscinet-getitem?mr=1834327
http://www.ams.org/mathscinet-getitem?mr=2484382
http://www.ams.org/mathscinet-getitem?mr=1608230
http://www.ams.org/mathscinet-getitem?mr=2081482
http://www.ams.org/mathscinet-getitem?mr=1964956
http://www.ams.org/mathscinet-getitem?mr=1954248
http://www.ams.org/mathscinet-getitem?mr=2147221
http://www.ams.org/mathscinet-getitem?mr=0253433
http://www.ams.org/mathscinet-getitem?mr=1249127
http://www.ams.org/mathscinet-getitem?mr=0680517


SUB-GAUSSIAN TAILS FOR WIDTH AND HEIGHT OF GW TREES 1087

[19] HOEFFDING, W. (1963). Probability inequalities for sums of bounded random variables.
J. Amer. Statist. Assoc. 58 13–30. MR0144363

[20] JANSON, S. (2006). Random cutting and records in deterministic and random trees. Random
Structures Algorithms 29 139–179. MR2245498

[21] JANSON, S. (2006). Conditioned Galton–Watson trees do not grow. In Fourth Colloquium on
Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities
331–334. Assoc. Discrete Math. Theor. Comput. Sci., Nancy. MR2509643

[22] JANSON, S. (2008). On the asymptotic joint distribution of height and width in random trees.
Studia Sci. Math. Hungar. 45 451–467. MR2641443

[23] JANSON, S. (2012). Simply generated trees, conditioned Galton–Watson trees, random alloca-
tions and condensation. Probab. Surv. 9 103–252.

[24] KENNEDY, D. P. (1975). The Galton–Watson process conditioned on the total progeny. J. Appl.
Probab. 12 800–806. MR0386042

[25] KENNEDY, D. P. (1976). The distribution of the maximum Brownian excursion. J. Appl.
Probab. 13 371–376. MR0402955

[26] KERSTING, G. (1998). On the height profile of a conditioned Galton–Watson tree. Preprint.
Available at http://ismi.math.uni-frankfurt.de/kersting/research/profile.ps.

[27] KESTEN, H. (1986). Subdiffusive behavior of random walk on a random cluster. Ann. Inst.
Henri Poincaré Probab. Stat. 22 425–487. MR0871905

[28] KOLCHIN, V. F. (1986). Random Mappings. Optimization Software Inc. Publications Division,
New York. MR0865130

[29] LE GALL, J.-F. (2005). Random trees and applications. Probab. Surv. 2 245–311. MR2203728
[30] LYONS, R., PEMANTLE, R. and PERES, Y. (1995). Conceptual proofs of L logL criteria for

mean behavior of branching processes. Ann. Probab. 23 1125–1138. MR1349164
[31] MCDIARMID, C. (1998). Concentration. In Probabilistic Methods for Algorithmic Discrete

Mathematics, (Habib, McDiarmid, Ramirez and Reed, eds.). Algorithms Combin. 16 195–
248. Springer, Berlin. MR1678578

[32] MEIR, A. and MOON, J. W. (1978). On the altitude of nodes in random trees. Canad. J. Math.
30 997–1015. MR0506256

[33] PITMAN, J. (1998). Enumerations of trees and forests related to branching processes and ran-
dom walks. In Microsurveys in Discrete Probability (Princeton, NJ, 1997). DIMACS Ser.
Discrete Math. Theoret. Comput. Sci. 41 163–180. Amer. Math. Soc., Providence, RI.
MR1630413

[34] RÉNYI, A. and SZEKERES, G. (1967). On the height of trees. J. Aust. Math. Soc. 7 497–507.
MR0219440

L. ADDARIO-BERRY

DEPARTMENT OF MATHEMATICS AND STATISTICS

MCGILL UNIVERSITY

805 SHERBROOKE STREET WEST

MONTRÉAL, QUÉBEC

H3A 2K6, CANADA

E-MAIL: louigi@gmail.com
URL: http://www.math.mcgill.ca/~louigi/

L. DEVROYE

SCHOOL OF COMPUTER SCIENCE

MCGILL UNIVERSITY

3480 UNIVERSITY STREET

MONTRÉAL, QUÉBEC

H3A 2A7, CANADA

E-MAIL: luc@cs.mcgill.ca
URL: http://luc.devroye.org/

S. JANSON

DEPARTMENT OF MATHEMATICS

UPPSALA UNIVERSITY

PO BOX 480
SE-751 06, UPPSALA

SWEDEN

E-MAIL: svante.janson@math.uu.se
URL: http://www.math.uu.se/~svante/

http://www.ams.org/mathscinet-getitem?mr=0144363
http://www.ams.org/mathscinet-getitem?mr=2245498
http://www.ams.org/mathscinet-getitem?mr=2509643
http://www.ams.org/mathscinet-getitem?mr=2641443
http://www.ams.org/mathscinet-getitem?mr=0386042
http://www.ams.org/mathscinet-getitem?mr=0402955
http://ismi.math.uni-frankfurt.de/kersting/research/profile.ps
http://www.ams.org/mathscinet-getitem?mr=0871905
http://www.ams.org/mathscinet-getitem?mr=0865130
http://www.ams.org/mathscinet-getitem?mr=2203728
http://www.ams.org/mathscinet-getitem?mr=1349164
http://www.ams.org/mathscinet-getitem?mr=1678578
http://www.ams.org/mathscinet-getitem?mr=0506256
http://www.ams.org/mathscinet-getitem?mr=1630413
http://www.ams.org/mathscinet-getitem?mr=0219440
mailto:louigi@gmail.com
http://www.math.mcgill.ca/~louigi/
mailto:luc@cs.mcgill.ca
http://luc.devroye.org/
mailto:svante.janson@math.uu.se
http://www.math.uu.se/~svante/

	Introduction
	Remarks on the limit law

	Preliminaries
	A size-biased Galton-Watson tree
	Proofs
	References
	Author's Addresses

