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THE COMPLETE CHARACTERIZATION OF A.S. CONVERGENCE
OF ORTHOGONAL SERIES

BY WITOLD BEDNORZ1

Warsaw University

In this paper we prove the complete characterization of a.s. convergence
of orthogonal series in terms of existence of a majorizing measure. It means
that for a given (an)∞n=1, an > 0, series

∑∞
n=1 anϕn is a.e. convergent for

each orthonormal sequence (ϕn)∞n=1 if and only if there exists a measure m

on

T = {0} ∪
{

m∑
n=1

a2
n,m ≥ 1

}

such that

sup
t∈T

∫ √
D(T )

0
(m(B(t, r2)))−1/2 dr < ∞,

where D(T ) = sups,t∈T |s − t | and B(t, r) = {s ∈ T : |s − t | ≤ r}. The pre-
sented approach is based on weakly majorizing measures and a certain parti-
tioning scheme.

1. Introduction. An orthonormal sequence (ϕn)
∞
n=1 on a probability space

(�, F ,P) is a sequence of random variables ϕn :� → R such that Eϕ2
n = 1 and

Eϕnϕm = 0 whenever n 	= m. In this paper we consider the question of how to
characterize the sequences of (an)

∞
n=1 for which the series

∞∑
n=1

anϕn converges a.e. for any orthonormal (ϕn)
∞
n=1

on any probability spaces (�, F ,P). Note that we can assume an > 0 for n ≥ 1.
The answer is based on the analysis of the set

T =
{

m∑
n=1

a2
n :m ≥ 1

}
∪ {0}.

The classical Rademacher–Menchov theorem (see [4, 5]) states that
∑∞

n=1 a2
n ×

log2(n+1) suffices for
∑∞

n=1 anϕn convergence. Another well-known observation
(see [12]) is the following theorem.
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THEOREM 1. For each orthonormal sequence (ϕn)
∞
n=1 the series

∑∞
n=1 anϕn

converges a.e. if and only if

E sup
m≥1

(
m∑

n=1

anϕn

)2

< ∞.

The consequence of the above result is that the main problem can be reformu-
lated in terms of sample boundedness of all orthogonal processes on T . We say
that process X(t), t ∈ T , is of orthogonal increments if

E
(
X(s) − X(t)

)2 = |s − t | for s, t ∈ T .(1)

There is a bijection between orthonormal series
∑∞

n=1 anϕn and processes with or-
thogonal increments on T . Namely for each sequence (ϕn)

∞
n=1 we define processes

X(t) =
m∑

n=1

anϕn for t =
m∑

n=1

a2
n,X(0) = 0,

and for each orthogonal process X(t), t ∈ T , we define the orthonormal sequence
by

ϕm = a−1
m

(
X

(
m∑

n=1

a2
n

)
− X

(
m−1∑
n=0

a2
n

))
for m > 1,

and ϕ1 = a−1
1 (X(a2

1) − X(0)). By Theorem 1, each orthogonal series
∑∞

n=1 anϕn

is a.e. convergent if and only if there exists a universal constant M < ∞ such that

E sup
t∈T

|X(t) − X(0)|2 ≤ M(2)

for all processes X(t), t ∈ T that satisfy (1).
We treat the generalized question and consider any T ⊂ R. The best tool which

is used to study the sample boundedness of orthogonal processes on T are ma-
jorizing measures. Let B(t, r) = {s ∈ T : |s − t | ≤ r} and D(T ) = sups,t∈T |s − t |.
We say that a probability measure m on T is majorizing (in the orthogonal setting)
if

sup
t∈T

∫ √
D(T )

0
(m(B(t, r2)))−1/2 dr < ∞.

We say that a process X(t), t ∈ T , is of suborthogonal increments if

E|X(s) − X(t)|2 ≤ |s − t | for s, t ∈ T .(3)

Corollary 1 proved in [2] states that the existence of a majorizing measure is the
necessary and sufficient condition for the sample boundedness of all suborthogonal
processes. Moreover by Theorem 3.2 in [1] (see also [10]) we have the following
theorem.
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THEOREM 2. For each process X(t), t ∈ T , that satisfies (3), the following
inequality holds:

E sup
s,t∈T

|X(s) − X(t)|2 ≤ 16 · 55/2
(

sup
t∈T

∫ √
D(T )

0
(m(B(t, r2)))−1/2 dr

)2

.

Consequently the existence of a majorizing measure is always sufficient for the
a.e. convergence of orthogonal series

∑∞
n=1 anϕn.

The problem is that the class of orthogonal processes is significantly smaller
than the class of processes that verify (3). Only recently Paszkiewicz proved in
[6, 7], using advanced methods of entropy of interval, that the existence of a ma-
jorizing measure is also necessary for all orthogonal processes to satisfy (2). This
motivated our research for an alternative approach entirely based on the generic
chaining; see [8, 11]. We use the Fernique’s idea of constructing a majorizing
measure. We say that a probability measure μ on T is weakly majorizing if∫

T

∫ √
D(T )

0
(μ(B(t, r2)))−1/2 drμ(dt) < ∞.

Let

M = sup
μ

∫
T

∫ √
D(T )

0
(μ(B(t, r2)))−1/2 drμ(dt),

where the supremum is taken over all probability measures on T .

THEOREM 3 [3, 10]. If M < ∞, that is, all probability measures are weakly
majorizing with a uniform bounding constant, then there exists m a majorizing
measure on T such that

sup
t∈T

∫ √
D(T )

0
(m(B(t, r2)))−1/2 dr ≤ M.

The main result of this paper is the following theorem.

THEOREM 4. Whenever all orthogonal processes on T satisfy (2), then M ≤
KD(T ), where K < ∞.

When combined with Theorems 1, 3, 4 it implies the complete characterization
of a.e. convergence of all orthogonal series.

COROLLARY 1. For a given (an)
∞
n=1 series

∑∞
n=1 anϕn are a.e. convergent

for all orthonormal sequences (ϕn)
∞
n=1 if and only if there exists a majorizing

measure m on T .

We stress that using the chaining argument and the Fernique’s idea of construct-
ing a majorizing measure makes the proof significantly shorter than the one pre-
sented in [6].
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2. Structure of the proof. If all orthogonal process satisfy (2), then in partic-
ular D(T ) < ∞. For simplicity assume that T ⊂ [0,1) (the general result can be
obtained by the translation invariance and homogeneity). Our approach is based
on proving special properties of natural partitions of [0,1). Let

Ak = {
A

(k)
i : 0 ≤ i < 4k}, k ≥ 0 where A

(k)
i = [

i4−k, (i + 1)4−k) ∩ T ,(4)

in particular A
(0)
0 = T . In Section 3 we translate the weakly majorizing measure

functionals into the language of Ak , k ≥ 0. Since as sated in Theorem 3 we have
to deal with any probability measure μ on T , we fix μ and check that for the par-
ticular 0 ≤ i < 4k sets A

(k)
4i+j , j ∈ {0,1,2,3}, are important only if the measure μ

of A
(k−1)
i is well distributed among them. In this way we obtain the quantity that

one may use to bound the weakly majorizing measure functional.
Then we follow the idea that was first invented by Talagrand in [9] to prove the

complete characterization of Gaussian sample boundedness. We introduce the set
functionals Fk , k ≥ 0, such that Fk operates on Ak and is given by

Fk

(
A

(k)
i

) = sup
Y

E sup
t∈A

(k)
i

Y (t),(5)

where the supremum is over the class of processes Y(t), t ∈ Ā
(k)
i , where Ā

(k)
i =

A
(k)
i ∪ {i4−k, (i + 1)4−k}, that satisfy EY(t) = 0 and

E|Y(s) − Y(t)|2 = |s − t |(1 − 4k|s − t |) for s, t ∈ Ā
(k)
i .(6)

In particular Y(i4−k) = Y ((i + 1)4−k), and hence we may require Y(i4−k) =
Y ((i + 1)4−k) = 0 [it does not change Fk(A

(k)
i )]. We show in Section 4 that if (2)

holds for all orthogonal processes, then F0(T ) < ∞. The partitioning scheme is the
induction step which shows that partitioning of A

(k−1)
i into A

(k)
4i+j , j ∈ {0,1,2,3},

makes it possible to earn the suitable quantity so that summing all over the par-
titions completes the argument of the uniform bound existence for any weakly
majorizing measure functional. The proof of the induction step is the construction
for a fixed 0 ≤ i < 4k−1 of a special process Y(t), t ∈ Āk−1

i , that satisfies (6).

In the construction we use optimal (or nearly optimal) processes on A
(k)
4i+j for

j ∈ {0,1,2,3} and a suitably chosen family of independent random variables.

3. Weakly majorizing measures. We have noted in Section 2 that one may
assume T ⊂ [0,1). Consequently μ is weakly majorizing if∫

T

∫ 1

0
(μ(B(t, r2)))−1/2 drμ(dt) < ∞.(7)

We first translate the functional from (7) into the language of Ak , k ≥ 0, defined
in (4).
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LEMMA 1. For each measure μ the inequality holds

∫
T

∫ 1

0
(μ(B(t, r2)))−1/2 drμ(dt) ≤

∞∑
k=1

2−k
4k−1∑
i=0

(
μ

(
A

(k)
i

))1/2
.

PROOF. First observe that∫ 1

0
(μ(B(t, r2)))−1/2 dr ≤

∞∑
k=1

2−k(μ(B(t,4−k)))−1/2 for t ∈ T .

Clearly |Ak| ≤ 4k and A
(k)
i ⊂ B(t,4−k) for all t ∈ A

(k)
i ∈ Ak . Consequently

μ(A
(k)
i ) ≤ μ(B(t,4−k)), and hence

∫
T
(μ(B(t,4−k)))−1/2μ(dt) ≤

4k−1∑
i=0

∫
A

(k)
i

(μ(B(t,4−k)))−1/2μ(dt)

≤
4k−1∑
i=0

∫
A

(k)
i

(
μ

(
A

(k)
i

))−1/2
μ(dt) =

4k−1∑
i=0

(
μ

(
A

(k)
i

))1/2
.

Therefore∫
T

∫ 1

0
(μ(B(t, r)))−1/2 drμ(dt) ≤

∞∑
k=1

2−k
∫
T
(μ(B(t,4−k)))−1/2μ(dt)

≤
∞∑

k=1

2−k
4k−1∑
i=0

(
μ

(
A

(k)
i

))1/2
.

�

For a specific measure μ not all subsets A
(k)
i ∈ Ak are important. Observe that

for 0 ≤ i < 4k−1,
⋃3

j=0 A
(k)
4i+j = A

(k−1)
i . Denote by I (k) the set of indices 4i + j

where 0 ≤ i < 4k , 0 ≤ j ≤ 3 such that

1
32μ

(
A

(k−1)
i

) ≤ μ
(
A

(k)
4i+j

) ≤ 1
2μ

(
A

(k)
4i ∪ A

(k)
4i+2

)
(8)

if j ∈ {0,2}, and

1
32μ

(
A

(k−1)
i

) ≤ μ
(
A

(k)
4i+j

) ≤ 1
2μ

(
A

(k)
4i+1 ∪ A

(k)
4i+3

)
(9)

if j ∈ {1,3}. The meaning of the construction is that 4i + j ∈ I (k) only if measure
of A

(k−1)
i is well distributed among A

(k)
4i+j , j ∈ {0,1,2,3}.

We improve Lemma 1, showing that the upper bound for the weakly majorizing
measure functional can be replaced by the one that uses only sets of the form A

(k)
i ,

i ∈ I (k).
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PROPOSITION 1. For each probability Borel measure μ on T , the following
inequality holds:

∫
T

∫ 1

0
(μ(B(t, ε)))−1/2 ≤ 1

1 − 2−1L

[
L +

∞∑
k=1

2−k
4k−1∑
i=0

(
μ

(
A

(k)
i

))1/21i∈I (k)

]
,

where L = 21/2 · 5
4 < 2.

PROOF. Suppose that 4i + j /∈ I (k) and j ∈ {0,2}, then there are two possi-
bilities, either

μ
(
A

(k)
4i+j

)
< 1

32μ
(
A

(k−1)
i

)
, or(10)

μ
(
A

(k)
4i ∪ A

(k)
4i+2

)
> 2μ

(
A

(k)
4i+j

)
.(11)

If (10) holds, then
(
μ

(
A

(k)
4i+j

))1/2
< 21/2

8

(
μ

(
A

(k−1)
i

))1/2
.(12)

Assuming (11) we use the trivial inequality
(
μ

(
A

(k)
i

))1/2
<

(
μ

(
A

(k)
4i ∪ A

(k)
4i+2

))1/2
.(13)

One cannot have that both j = 0 and j = 2 satisfy (11), and therefore due to (12)
and (13), (

μ
(
A

(k)
4i

))1/214i /∈I (k) + (
μ

(
A

(k)
4i+2

))1/214i+2/∈I (k)

≤ max
{21/2

4

(
μ

(
A

(k−1)
i

))1/2
, 21/2

8

(
μ

(
A

(k−1)
i

))1/2(14)

+ (
μ

(
A

(k)
4i ∪ A

(k)
4i+2

))1/2}
.

The same argument works for j ∈ {1,3}, and consequently
(
μ

(
A

(k)
4i+1

))1/214i+1/∈I (k)) + (
μ

(
A

(k)
4i+3

))1/214i+3/∈I (k)

≤ max
{21/2

4

(
μ

(
A

(k−1)
i

))1/2
, 21/2

8

(
μ

(
A

(k−1)
i

))
(15)

+ (
μ

(
A

(k)
4i+1 ∪ A

(k)
4i+3

))1/2}
.

Since x1/2 + y1/2 ≤ 21/2(x + y)1/2, for x, y ≥ 0 we have
(
μ

(
A

(k)
4i ∪ A

(k)
4i+2

))1/2 + (
μ

(
A

(k)
4i+1 ∪ A

(k)
4i+3

))1/2 ≤ 21/2(
μ

(
A

(k−1)
i

))1/2
.(16)

On the other hand,

max
{(

μ
(
A

(k)
4i ∪ A

(k)
4i+2

))1/2
,
(
μ

(
A

(k)
4i+1 ∪ A

(k)
4i+3

))1/2} ≤ (
μ

(
A

(k−1)
i

))1/2
.(17)
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By (16) and (17) we obtain that

3∑
j=0

(
μ

(
A

(k)
4i+j

))1/2
I4i+j /∈I (k) ≤ L

(
μ

(
A

(k−1)
i

))
,

where L = 21/2 · 5
4 . Consequently,

4k−1∑
i=0

(
μ

(
A

(k)
i

))1/21i /∈I (k) ≤ L

4k−1−1∑
i=0

(
μ

(
A

(k−1)
i

))
.(18)

Using (18), we deduce

∞∑
k=1

2−k
4k−1∑
i=0

(
μ

(
A

(k)
i

))1/2

≤
∞∑

k=1

2−k
4k−1∑
i=0

(
μ

(
A

(k)
i

))1/21i∈I (k) + L

∞∑
k=1

2−k
4k−1−1∑

i=0

(
μ

(
A

(k−1)
i

))1/2
.

Since μ(A
(0)
0 ) = 1, it implies that

(1 − 2−1L)

∞∑
k=1

2−k
4k−1∑
i=0

(
μ

(
A

(k)
i

))1/2 ≤ L +
∞∑

k=1

2−k
4k−1∑
i=0

(
μ

(
A

(k)
i

))1/21i∈I (k).

To complete the proof it suffices to apply Lemma 1. �

4. The partitioning scheme. In this section we prove the main induction pro-
cedure. Recall that (Fk)k≥0 are set functionals defined in (5). We are going to show
that

sup
X

(
E sup

t∈T

(
X(t) − X(0)

)2
)1/2 ≥ 1

64

∞∑
k=0

2−k
3∑

j=0

(
μ

(
A

(k)
4i+j

))1/214i+j∈I (k),(19)

where the supremum is taken over all orthogonal processes on T . The idea of the
proof is to first show that F0(T ) < supX(E supt∈T (X(t) − X(0))2)1/2. Then we
establish the induction step so that (μ(A

(k−1)
i ))1/2Fk−1(A

(k−1)
i ) can be used to

bound
∑3

j=0(μ(A
(k)
4i+j ))

1/2Fk(A
(k)
4i+j ) for all k ≥ 1 and 0 ≤ i < 4k−1 together with

some additional term required to get (19).
First consider the special case of A

(0)
0 = T . For each Y(t), t ∈ Ā

(0)
0 satisfying (6)

for k = 0, we take Z independent of Y such that EZ = 0, EZ2 = 1. Then the
process

X(t) = Y(t) + tZ, t ∈ T ,
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satisfies (1) and, moreover, by Jensen’s inequality,

E sup
t∈T

Y (t) = E sup
t∈t

(
Y(t) − Y(0)

) ≤
(
E sup

t∈T

(
X(t) − X(0)

)2
)1/2

.(20)

Therefore (2) implies that F0(T ) < ∞, which makes the induction accessible.
The crucial idea is to show that the induction step is valid.

PROPOSITION 2. For each A
(k−1)
i , 0 ≤ i < 4k−1 and k ≥ 1, the following

inequality holds:(
μ

(
A

(k−1)
i

))1/2
Fk−1

(
A

(k−1)
i

)

≥ 1

64
2−k

3∑
j=0

(
μ

(
A

(k)
4i+j

))1/214i+j∈I (k) +
3∑

j=0

(
μ

(
A

(k)
4i+j

))1/2
Fk

(
A

(k)
4i+j

)
.

PROOF. Fix A
(k−1)
i , 0 ≤ i < 4k−1, k ≥ 1. We may assume that μ(A

(k−1)
i ) > 0,

since otherwise there is nothing to prove. On each Ā
(k)
4i+j , 0 ≤ j ≤ 3, there exist a

process Yj , such that

E|Yl(t) − Yl(s)|2 = |t − s|(1 − 4k|t − s|) for s, t ∈ Ā
(k)
4i+j

and

E sup
t∈A

(k)
4i+j

Yj (t) ≥ Fk

(
A

(k)
4i+j

) − ε.(21)

As we have mentioned, we may assume that Yj ((4i + j)4−k) = Yj ((4i + j +
1)4−k) = 0. Our goal is to construct a process, Y(t), t ∈ Ā

(k−1)
i , using Yj , 0 ≤ j ≤

3, that verifies (6) for Ā
(k−1)
i .

To construct Y(t), t ∈ T , we will need also a family of independent random
variables Zj , 0 ≤ j ≤ 3. We require that Zj are independent of processes Yj ,
0 ≤ j ≤ 3, and such that EZj = 0 and EZ2

j = 1. Let S0 = 0 and for 1 ≤ j ≤ 4,

Sj =
j−1∑
l=0

Zl − j4−1

( 3∑
l=0

Zl

)
for 1 ≤ j ≤ 4.

Observe that for 0 ≤ l,m ≤ 4,

E|Sl − Sm|2 = |l − m|(1 − 4−1|l − m|).
With the family Zj , 0 ≤ j ≤ 3, we associate a random variable τ valued in
{0,1,2,3}. We require that τ is independent of Yj , 0 ≤ j ≤ 3, and distributed
as follows:

P(τ = j) = μ(A
(k)
4i+j )

μ(A
(k−1)
i )

for 0 ≤ j ≤ 3.(22)
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We define the process Y(t), t ∈ Ā
(k)
4i+j , by

Y(t) = 2−kSj + 2k(t − (4i + j)4−k)(Sj+1 − Sj )
(23)

+ (
P(τ = j)

)−1/2
Yj (t)1τ=j ,

and also set Y(i4−(k−1)) = Y ((i + 1)4−(k−1)) = 0. We have to show that Y(t),
t ∈ Ā

(k−1)
i , is admissible for Fk(A

(k−1)
i ), that is, we make thorough calculations

for the variance of Y(s) − Y(t), where s, t ∈ Ā
(k−1)
i .

LEMMA 2. The process Y(t), t ∈ Ā
(k−1)
i , satisfies EY(t) = 0, t ∈ Ā

(k−1)
i , and

E|Y(s) − Y(t)|2 = |s − t |(1 − 4k−1|s − t |) for s, t ∈ Ā
(k−1)
i .(24)

PROOF. The first assertion is trivial; we show (24). Assume that s, t ∈ Ā
(k)
4i+j ,

and then by (22), the independence of Zj , 0 ≤ j ≤ 3, and independence between
Zj , 0 ≤ j ≤ 3, τ and Yj , 0 ≤ j ≤ 3 [recall that EZj = 0 and EYj (t) = 0, t ∈
Ā

(k)
4i+j ] we obtain that

E|Y(s) − Y(t)|2
= 4k|s − t |2E(Sj+1 − Sj )

2 + P(τ = j)P(τ = j)−1|s − t |(1 − 4k|s − t |)
= 4k(1 − 4−1)|t − s|2 + |s − t |(1 − 4k|s − t |) = |s − t |(1 − 4k−1|s − t |).

Now suppose that s ∈ Ā
(k)
4i+l , t ∈ Ā

(k)
4i+m and l < m. The idea we follow is to rewrite

|Y(s) − Y(t)|2 in terms of Zj , 0 ≤ j ≤ 3 and τ . Using that Zj , 0 ≤ j ≤ 3 are
independent and Zj , 0 ≤ j ≤ 3, τ are independent of Yj , 0 ≤ j ≤ 3 [moreover
EZj = 0 and EYj (t) = 0, t ∈ Ā4i+j ]

E
(
Y(s) − Y(t)

)2 = E(Yl(s))
2 + E(Ym(t))2

+ E
(
Y(s) − (

P(τ = l)
)−1/2

Yl(s)1τ=l − Y(t)(25)

+ (
P(τ = l)

)−1/2
Ym(t)1τ=m

)2
.

Clearly,

E(Yl(s))
2 = E

(
Yl(s) − Yl

(
(4i + l + 1)4−k))2

(26)
= |s − (4i + l + 1)4−k|(1 − 4−k|s − (4i + l + 1)4−k|)

and

E(Ym(t))2 = E
(
Ym

(
(4i + m)4−k) − Yj (t)

)2

(27)
= |(4i + m)4−k − t |(1 − 4−k|(4i + m)4−k − t |).
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Then we observe that by the definition,

Y(s) − (
P(τ = l)

)−1/2
Yl(s)1τ=l = 2−kSl + 2k(s − (4i + l)4−k)(Sl+1 − Sl),

Y (t) − (
P(τ = m)

)−1/2
Yl(s)1τ=m = 2−kSm + 2k(t − (4i + m)4−k)(Sm+1 − Sm).

Hence

Y(s) − (
P(τ = l)

)−1/2
Yl(s)1τ=l − Y(t) + (

P(τ = l)
)−1/2

Ym(t)1τ=m

= 2−k(Sm − Sl)

+ 2k[(t − (4i + m)4−k)(Sm+1 − Sm) − ((
s − (4i + l)4−k))(Sl+1 − Sl)

]
.

Since Sj = ∑j−1
l=0 Zl − j4−1(

∑3
l=0 Zl), we have

2−k(Sm − Sl)

+ 2k[(t − (4i + m)4−k)(Sm+1 − Sm) − ((
s − (4i + l)4−k))(Sl+1 − Sl)

]

= 2−k

(
m−1∑
j=l

Zj − m − j

4

3∑
j=0

Zj

)

+ 2k

[(
t − (4i + m)4−k)(Zm − 1

4

3∑
j=0

Zj

)]

− 2k

[((
s − (4i + l)4−k))(Zl − 1

4

3∑
j=0

Zj

)]
.

We group coefficients by random variables Zj . For Zm we obtain

−2−k m − l

4
+ 2k(t − (4i + m)4−k)3

4
+ 2k(s − (4i + l)4−k)1

4

= 2k|(4i + m)4−k − t | − 4−1(
2−k(m − l) + 2k|s − t | − 2−k(m − l)

)
= 2k(|(4i + m)4−k − t | − 4−1|s − t |).

Similarly the coefficient for Zl equals

−2−k m − l

4
− 2k(s − (4i + l)4−k)3

4
− 2k(t − (4i + m)4−k)1

4

= 2k|(4i + l + 1)4−k − s|
− 4−1(

2−k(m − l − 1) + 2k|s − t | − 2−k(m − l − 1)
)

= 2k(|s − (4i + l + 1)4−k| − 4−1|s − t |)2k.
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For l < j < m the coefficient for Zj is

2−k

(
1 − m − l

4

)
− 2k(t − (4i + m)4−k)1

4
+ 2k(s − (4i + l)4−k)1

4

= 2k(4−k − 4−1(m − l)4−k − 4−1(|s − t | − (m − l)4−k))
= 2k(4−k − 4−1|s − t |)

and finally for j > m and j < l

−2−k m − l

4
− 2k(t − (4i + m)4−k)1

4
+ 2k(s − (4i + l)4−k)1

4
= −2k(4−1|s − t |).

Consequently we obtain that

Y(s) − (
P(τ = l)

)−1/2
Yl(s)1τ=l − Y(t) + (

P(τ = l)
)−1/2

Ym(t)1τ=m

= (|(4i + m)4−k − t | − 4−1|s − t |)2kZm

+ (|s − (4i + l + 1)4−k| − 4−1|s − t |)2kZl

+
m−1∑

n=l+1

(4−k − 4−1|s − t |)2kZn − 4−1|s − t |2k
∑

n<l,n>m

Zn.

Therefore by the orthogonality of Zj , j ∈ {0,1,2,3},
E

(
Y(s) − (

P(τ = l)
)−1/2

Yl(s)1τ=l − Y(t) + (
P(τ = l)

)−1/2
Ym(t)1τ=m

)2

= (|(4i + m)4−k − t | − 4−1|s − t |)24k

(28)
+ (|s − (4i + l + 1)4−k| − 4−1|s − t |)24k

+ (4−k − 4−1|s − t |)2(m − l − 1)4k + 4−2|s − t |2(4 − m + l − 1)4k.

Combining (25), (26), (27), (28) and

|s − (4i + l + 1)4−k| + (m − l − 1)4−k + |(4i + m)4−k − t | = |s − t |,
we obtain that

E|Y(s) − Y(t)|2 = |s − t |(1 − 4k−1|s − t |).
This completes the proof. �

Having the process Y(t), t ∈ Ā
(k−1)
i , constructed, we use it to provide a lower

bound on Fk−1(A
(k−1)
i ). First note that

Fk

(
A

(k−1)
i

) ≥ E sup
t∈A

(k−1)
i

Y (t) ≥
3∑

j=0

E
(

sup
t∈A

(k)
4i+j

Y (t)1τ=j

)
.
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Moreover,

E
(

sup
t∈A

(k)
4i+j

Y (t)1τ=j

)

= 2−kESj 1τ=j + E
(

sup
t∈A

(k)
4i+j

(
2k(t − (4i + j)4−k)(Sj+1 − Sj )1τ=j

+ (
P(τ = j)

)−1/2
Yj (t)

)
1τ=j

)
.

Conditioning on F = σ(Yj ,0 ≤ j ≤ 3) and then using Jensen’s inequality, we
deduce

E sup
t∈A

(k)
4i+j

((
2k(t − (4i + j)

)
(Sj+1 − Sj )1τ=j + (

P(τ = j)
)−1/2

Yj (t)
)
1τ=j

)

≥ E sup
t∈A

(k)
4i+j

(
E

((
2k(t − (4i + j)4−k)(Sj+1 − Sj )1τ=j

+ (
P(τ = j)

)−1/2
Yj (t)

)
1τ=j |F

))
= E sup

t∈A
(k)
4i+j

(
2kE

((
t − (4i + j)4−k)(Sj+1 − Sj )1τ=j

) + (
P(τ = j)

)1/2
Yj (t)

)

≥ −2−k(E(Sj+1 − Sj )1τ=j

)
− + (

P(τ = j)
)1/2E sup

t∈A
(k)
4i+j

Yj (t).

Consequently,

Fk−1
(
A

(k−1)
i

) ≥
3∑

j=0

(
2−k[ESj 1τ=j − (

E(Sj+1 − Sj )1τ=j

)
−

]

+ (
P(τ = j)

)1/2E sup
t∈A

(k)
4i+j

Yj (t)
)
.

Together with (21) and (22) it implies that

Fk−1
(
A

(k−1)
i

) ≥
3∑

j=0

(
2−k[ESj 1τ=j − (

E(Sj+1 − Sj )1τ=j

)
−

]
(29)

+ (
P(τ = j)

)1/2(
Fk(A

k
4i+j ) − 4ε

)
.

To complete the lower bound, we have to construct variables Zj , 0 ≤ j ≤ 3, and τ .
The main idea is to choose n ∈ {0,1,2,3} and variable Zn to be τ measurable,
whereas all remaining Zj , j 	= n, are independent of τ . Therefore we first define
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τ so that (22) holds, then obtain Zn as a Borel function of τ and only then set any
independent Zj , j 	= n, independent of Zn. In this setting, define

Vn =
3∑

j=0

(
ESj 1τ=j − (

E(Sj+1 − Sj )1τ=j

)
−

)
.

Observe that since Zl , l 	= n, are independent of τ and consequently of Zn, we
have EZl1τ=j = EZlP(τ = j) = 0, whenever l 	= n. Therefore

ESj 1τ=j = EZn1τ=j 1n≤j−1 − j

4
EZn1τ=j

and

E(Sj+1 − Sj )1τ=j = EZn1τ=j 1j=n − 1
4EZn1τ=j .

Consequently for j 	= n, (E(Sj+1 − Sj )1τ=j )− = −1
4(EZn1τ=j )+ and for j = n,

(E(Sj+1 − Sj )1τ=j )− = 3
4(EZn1τ=j )−. Hence the representation

Vn =
3∑

j=n+1

cj − (1 − 4−1)(cn)− −
3∑

j=0

j4−1cj − ∑
l 	=n

4−1(cj )+,

where cj = EZn1τ=j . Since ε > 0 is arbitrary in (29), we obtain

Fk−1
(
A

(k−1)
i

) ≥ 2−kVn +
3∑

j=0

(
P(τ = j)

)1/2
Fk

(
A

(k)
4i+j

)
.(30)

The above inequality completes the first part of the proof. Using the pro-
cess Y(t), t ∈ Ā

(k−1)
i , we have shown that μ(A

(k−1)
i )Fk−1(A

(k−1)
i ) dominates∑3

j=0 μ(A
(k)
4i+j )Fk(A

(k)
4i+j ), together with the additional term 2−kVn.

We claim that it is always possible to define Zn with respect to τ in a way that
one can bound Vn from below by a universal constant, assuming that there exists
at least one j ∈ {0,1,2,3} such that 4i + j ∈ I (k).

LEMMA 3. There exists Z3 measurable with respect to τ , such that EZ3 = 0,
EZ2

3 = 1 and

V3 ≥ 1

4

(
P(τ = 0)P(τ = 2)

P(τ = 0) + P(τ = 2)

)1/2

(31)

and Z2 measurable with respect to τ , such that EZ2 = 0, EZ2
2 = 1 and

V2 ≥ 1

4

(
P(τ = 1)P(τ = 3)

P(τ = 1) + P(τ = 3)

)1/2

.(32)
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PROOF. First note that
∑3

j=0 cj = 0, and then observe that it benefits to set
cn = 0. The first case we consider is n = 3, so c3 = 0, and then if c0 ≥ 0, c1 = 0,
c2 ≤ 0, we have

V3 = −1
4c0 − 2

4c2 = −1
4c2 = 1

4c0,(33)

where we have used that c0 + c2 = 0. The second case is when n = 2, c2 = 0, and
then if c0 = 0, c1 ≤ 0, c3 ≥ 0, we have

V2 = c3 − 1
4c1 − 3

4c3 − 1
4c3 = −1

4c1 = 1
4c3,(34)

where we have used that c1 + c3 = 0. In the same way one can treat V0 and V1.
The above discussion leads to the definition of Zn. If n = 3, we set

Z3 = x1τ=0 + y1τ=2.

Our requirements are EZ3 = 0, EZ2
3 = 1, so

xP(τ = 0) + yP(τ = 2) = 0,

x2P(τ = 0) + y2P(τ = 2) = 1.

Therefore

x =
(

P(τ = 2)

P(τ = 0)(P(τ = 0) + P(τ = 2))

)1/2

,

and consequently all the requirements for (33) are satisfied, and we have

V3 = 1

4
c0 = 1

4

(
P(τ = 0)P(τ = 2)

P(τ = 0) + P(τ = 2)

)1/2

.

The same argument for n = 2 shows that one can construct Z2 in a way that all
requirements for (34) are satisfied and

V2 = 1

4
c3 = 1

4

(
P(τ = 1)P(τ = 3)

P(τ = 1) + P(τ = 3)

)1/2

. �

We use the above lemma in (30) to bound 2−kVn. There are three cases. First
suppose that 4i + j /∈ I (k) for 0 ≤ j ≤ 3, and then we set Zj , j ∈ {0,1,2,3}, to be
independent of τ which implies that Vn = 0 for any choice of n. Therefore by (30),

Fk−1
(
A

(k−1)
i

) ≥
3∑

j=0

(
P(τ = j)

)1/2
Fk

(
A

(k)
4i+j

)

= 1

64
2−k

4i+3∑
j=4i

(
P(τ = j)

)1/214i+j∈I (k)

+
3∑

j=0

(
P(τ = j)

)1/2
Fk

(
A

(k)
4i+j

)
.
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The second case is that 4i + j ∈ I (k) for j ∈ {0,2}, then we use (8) and (31)

V3 ≥ 1

4

(
P(τ = 0)P(τ = 2)

P(τ = 0) + P(τ = 2)

)1/2

≥ 1

4

(
1

2
· 1

32

)1/2

= 1

32

≥ 1

64

4i+3∑
j=4i

(
P(τ = j)

)1/21j∈I (k),

where we have used the inequality x1/2 +y1/2 + z1/2 + t1/2 ≤ 2(x +y + z+ t)1/2,
for x, y, z, t ≥ 0. Therefore

Fk−1
(
A

(k−1)
i

) ≥ 2−kV3 +
3∑

j=0

(
P(τ = j)

)1/2
Fk

(
A

(k)
4i+j

)

≥ 1

64
2−k

4i+3∑
j=4i

(
P(τ = j)

)1/214i+j∈I (k)

+
3∑

j=0

(
P(τ = j)

)1/2
Fk

(
A

(k)
4i+j

)
.

The third possibility is that 4i + j ∈ I (k), j ∈ {1,3}, and then by (9) and (32) we
have

V2 ≥ 1

4

(
P(τ = 1)P(τ = 3)

P(τ = 1) + P(τ = 3)

)1/2

≥ 1

4

(
1

2
· 1

32

)1/2

= 1

32

≥ 1

64

4i+3∑
j=4i

(
P(τ = j)

)1/214i+j∈I (k).

Consequently

Fk−1
(
A

(k−1)
i

) ≥ 2−kV3 +
3∑

j=0

(
P(τ = j)

)1/2
Fk

(
A

(k)
4i+j

)

≥ 1

64
2−k

4i+3∑
j=4i

(
P(τ = j)

)1/214i+j∈I (k)

+
3∑

j=0

(
P(τ = j)

)1/2
Fk

(
A

(k)
4i+j

)
.

In the view of (22) it completes the proof of Proposition 2. �
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5. Proof of the main result. In this section we use the functional Fk , k ≥ 0,
and the induction scheme proved in Proposition 2 to prove (19).

PROPOSITION 3. The following inequality holds:

∞∑
k=1

2−k
4k−1∑
i=0

(
μ

(
A

(k)
i

))1/21i∈I (k) ≤ 64
(
sup
X

E sup
t∈T

(
X(t) − X(0)

)2
)1/2

,

where the supremum is taken over all orthogonal process on T .

PROOF. By (20) we have

F0(T ) ≤
(
sup
X

E sup
t∈T

(
X(t) − X(0)

)2
)1/2

.

On the other hand using the induction step proved in Proposition 2, we deduce

∞∑
k=1

2−k
4k−1∑
i=0

(
μ

(
A

(k)
i

))1/21i∈I (k) ≤ 64F0(T ).

This completes the proof. �

Using Propositions 1 and 2, we conclude Theorem 4 with

K = 1

1 − 2−1L

(
L + 64 sup

X

(
E sup

t∈T

(
X(t) − X(0)

)2
)1/2)

,

and L = 21/2 · 5
4 .
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