
The Annals of Probability
2013, Vol. 41, No. 2, 817–847
DOI: 10.1214/11-AOP705
© Institute of Mathematical Statistics, 2013

CONVERGENCE OF CLOCK PROCESSES IN RANDOM
ENVIRONMENTS AND AGEING IN THE p-SPIN SK MODEL

BY ANTON BOVIER1 AND VÉRONIQUE GAYRARD

Rheinische Friedrich-Wilhelms-Universität and Université de Provence

We derive a general criterion for the convergence of clock processes in
random dynamics in random environments that is applicable in cases when
correlations are not negligible, extending recent results by Gayrard [(2010),
(2011), forthcoming], based on general criterion for convergence of sums
of dependent random variables due to Durrett and Resnick [Ann. Probab. 6
(1978) 829–846]. We demonstrate the power of this criterion by applying it
to the case of random hopping time dynamics of the p-spin SK model. We
prove that on a wide range of time scales, the clock process converges to a
stable subordinator almost surely with respect to the environment. We also
show that a time-time correlation function converges to the arcsine law for
this subordinator, almost surely. This improves recent results of Ben Arous,
Bovier and Černý [Comm. Math. Phys. 282 (2008) 663–695] that obtained
similar convergence results in law, with respect to the random environment.

1. Introduction and main results. Over the last decades, random motion in
random environments have been one of the main foci of research in applied prob-
ability theory and mathematical physics. This is due to the wide range of real life
systems that can be modeled in this way, but also to the exciting, unforeseen and
often counter-intuitive effects they exhibit. In fact, the early works of Solomon [25]
and Sinai [24] on random walks in one-dimensional random environment were al-
ready striking examples of this feature.

While the most straightforward model class, the random walk in random envi-
ronments on the lattice Z

d , received the bulk of attention in the probability com-
munity, over the last decade, the study of the dynamics of spin glass models has
attracted considerable attention in connection with the concept of aging. See, for
example, [6] for a review. The dynamics of these models is expected to show very
slow convergence to equilibrium, measurable in the anomalous behavior of certain
time-time correlation functions.

Interesting models of the dynamics of spin glasses are Glauber dynamics on
state spaces �n = {−1,1}n, reversible with respect to Gibbs measures associated
to random Hamiltonians, given by correlated Gaussian processes indexed by the
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hypercube �n. Even on the nonrigorous level, predictions on their behavior were
mostly based on the basis of drastically simplified trap models [10–12, 21, 22],
based in turn on the ideas of Goldstein [19] to describe dynamics on long times
scales in terms of thermally activated barrier crossings.

A rigorous analysis of many variants of such models was carried out over the
last years [5, 7–9]. A striking feature that emerged in these works was the universal
recurrence of the α-stable Lévy subordinators as basic random mechanisms in
the description of the asymptotic properties of their dynamics. Another line of
research tried to give a rigorous justification of the connection between spin glass
dynamics and trap models. This was successful for the Random Energy Model
(REM) of Derrida under a particular variant of the Glauber dynamics (the random
hopping time dynamics, see below), first on times scales close to equilibrium [2–4]
and later also on shorter time scales [8]. These results were partially extended to
spin glasses with nontrivial correlations, the so-called p-spin SK models, by Ben
Arous, Bovier and Černý [1]. Their results cover a limited range of times scales
(in fact one expects a change of behavior at longer scales), and only in law with
respect to the random environment, which in this case appears unnatural.

The recurrent appearance of stable subordinators in such a large variety of
model systems asks for a simple and robust explanation. Such an explanation was
given in a limited context of trap models by Ben Arous and Černý [8].

A more direct and general view on this problem was presented in a recent paper
by one of us [15] and applied to more complicated situations in [16] and [17]. It
emerges that the entire problem links up directly to a classical and well-studied
field of probability theory, the convergence of sums of random variables to Lévy
processes. The case of independent random variables has been well known since
the work of Gnedenko and Kolmogorov [18], but a lot of work was done for the
case of dependent random variables as well. In particular, there is a very amenable
and useful criterion due to Durrett and Resnick [13] that we will rely on here.

Before entering in more detail, let us briefly describe the general setting of
Markov jump processes in random environments that we consider here. Our arena
is a sequence of loop-free graphs, Gn(Vn, Ln) with set of vertices, Vn, and set of
edges, Ln.

A random environment is a family of positive random variables, τn(x), x ∈ Vn,
defined on some abstract probability space, (�, F ,P). Note that we do not assume
independence.

Next we define discrete time Markov processes, Jn, with state space Vn and
nonzero transition probabilities along the edges, Ln. We denote by μn its initial
distribution and by pn(x, y) the elements of its transition matrix. Note that the pn

may be random variables on the space (�, F ,P). We assume that the process Jn

is reversible and admits a unique invariant measure πn.
We construct our process of interest, Xn, as a time change of Jn. To this end we

set

λn(x) ≡ Cπn(x)/τn(x),(1.1)
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for some (model dependent) constant C > 0, and define the clock process

S̃n(k) =
k−1∑
i=0

λ−1
n (Jn(i))en,i, k ∈ N,(1.2)

where (en,i , n ∈ N, i ∈ N) is a family of independent mean one exponential2 ran-
dom variables, independent of Jn.

We now define our continuous time process of interest, Xn, as

Xn(t) = Jn(i), if S̃n(i) ≤ t < S̃n(i + 1) for some i.(1.3)

One can readily verify that Xn is a continuous time Markov process with infinites-
imal generator λn, whose elements are

λn(x, y) = λn(x)pn(x, y),(1.4)

and whose unique invariant measure is given by

Cπn(x)λ−1
n (x) = τn(x).(1.5)

Note that the numbers λ−1
n (x) play the role of the mean holding time of the pro-

cess Xn in a site x.
For future reference, we refer to the σ -algebra generated by the variables Jn and

Xn as F J and F X , respectively. We write Pμn for the law of the process Jn, condi-
tional on the σ -algebra F , that is, for fixed realizations of the random environment.
Likewise we call Pμn the law of Xn conditional on F .

This construction brings out the crucial role played by the clock process. If
the chain Jn is rather fast mixing, convergence to equilibrium can only be slowed
through an erratic behavior of the clock process. This process, on the other hand, is
a sum of positive random variables, albeit in general dependent ones. The approach
of [15] (and already [1]) is to abstract from all other issues and to focus on the
analysis of the asymptotic behavior of the clock process. From that point onward,
it is not surprising that stable subordinators will emerge as a standard class of
limit processes; the universality appearing here is simply linked to the universal
appearance of stable processes in the theory of sums of random variables.

In this paper we are mainly concerned with establishing criteria for the conver-
gence of processes like (1.2) under suitable scaling; that is, we will ask when there
are constants, an, cn, such that the process

Sn(t) ≡ c−1
n S̃n(�ant�) = c−1

n

�ant�−1∑
i=0

λ−1
n (Jn(i))en,i, t > 0,(1.6)

converges in some sense to a limit process. Note that in physical terms, the con-
stants cn correspond to the time scale on which we observe our continuous time

2One can consider more general situations when en,i have different distributions as well, leaving
the setting of Markov processes.
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Markov process Xn, while an corresponds to the number of steps the underlying
process Jn makes during that time.

Due to the doubly stochastic nature of our processes, convergence can be con-
sidered in various modes, that is, under various laws. The physically most desirable
one is referred to as quenched, that is, to say P-almost sure convergence (to a de-
terministic or random process) under the law Pμn . In [1] another point of view was
taken, namely Pμn -almost sure convergence under the law of the random medium
and the exponential random variables en,i . Both imply the weakest form of conver-
gence in law under the joint law of all random variables involved, often mislead-
ingly referred to as annealed. The method used in [1] was based on the analysis
of the Laplace transform of the clock process and the use of Gaussian comparison
theorems. This left no way to deal with a fixed random environment. We will see,
however, that we are to use heavily the computations from that paper.

1.1. Key tools and strategy. This approach is based on a powerful and illu-
minating method developed by Durrett and Resnick [13] to prove functional limit
theorems for dependent variables. We state their theorem in a specialized form
suitable for our applications, which is taken from [15] (see Theorem 2.1).

THEOREM 1.1. Let Zn
i be a triangular array of random variables with sup-

port in R+ defined on some probability space (�, F , P). Let ν be a sigma-finite
measure on (R+, B(R+)), such that

∫∞
0 (x ∧ 1)ν(dx) < ∞. Assume that there ex-

ists a sequence an, such that for all continuity points x of the distribution function
of ν, for all t > 0, in P -probability,

lim
n↑∞

�ant�∑
i=1

P(Zn
i > x|Fn,i−1) = tν(x,∞),(1.7)

and

lim
n↑∞

�ant�∑
i=1

[P(Zn
i > x|Fn,i−1)]2 = 0,(1.8)

where Fn,i denotes the σ -algebra generated by the random variables Zn,j , j ≤ i.
If, moreover,

lim
ε↓0

lim sup
n↑∞

�ant�∑
i=1

E 1Zn
i ≤εZ

n
i = 0,(1.9)

then
�ant�∑
i=1

Zn,i ⇒ Sν(t),(1.10)

where Sν is the Lévy subordinator with Lévy measure ν and zero drift. Convergence
holds weakly on the space D([0,∞)) equipped with the Skorokhod J1-topology.
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REMARK. Condition (1.9) ensures that “small” terms in the sum do not con-
tribute to the limit. It is almost a consequence of assumption (1.7) and the hypothe-
sis on the limiting measure ν. However, in the general context of triangular arrays,
one can easily construct counterexamples if (1.9) is not imposed.

REMARK. We emphasize that the result holds in the (usual) J1-topology, since
this is crucial for applications to correlation functions. See [26] for an extensive
discussion of topologies on càdlàg spaces.

The straightforward idea is to apply this theorem with Zn,i ≡ c−1
n λ−1

n (Jn(i))en,i .
This was done in [15] (see Theorem 1.3.) and applied to the case of Bouchaud’s
trap models [15] and in the random energy model [16, 17] where it allowed the
author to extend all previously know results in a very elegant way.

In models with strong local correlations, such as the p-spin SK model, one
cannot, however, expect that with this choice the conditions of the theorem will
be satisfied. In fact, one easily convinces oneself that contributions to the sum
in (1.10) cannot only come from singly widely separated points i, but that such
contributing terms form clusters due to the correlations.

In this paper we show that a good way to proceed in such a situation is to use a
suitable blocking. Introduce a new scale, θn, and use Theorem 1.1 with the random
variables

Zn,i ≡
θni∑

j=θn(i−1)+1

c−1
n λ−1

n (Jn(i))en,i, i ≥ 1.(1.11)

The purpose of this procedure is that if Jn is rapidly mixing, we can hope to choose
θn  an such that the random variables Jn(θni), i ∈ N are close to independent and
distributed according to the invariant distribution πn. But then, under the law Pμn ,
also the random variables Zn,i are close to independent and identically distributed
(although with a complicated distribution, that is, a random variable depending on
the random environment). That should put us in a position to verify the conditions
of Theorem 1.1.

Let us now look at this in more detail.
For y ∈ Vn and u > 0, let

Qu
n(y) ≡ Py

(
θn−1∑
j=0

λ−1
n (Jn(j))en,j > cnu

)
(1.12)

be the tail distribution of the aggregated jumps when Xn starts in y. Note that
Qu

n(y), y ∈ Vn, is a random function on the probability space (�, F ,P), and so is
the function Fu

n (y), y ∈ Vn defined through

Fu
n (y) ≡ ∑

x∈Vn

pn(y, x)Qu
n(x).(1.13)
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Writing kn(t) ≡ ��ant�/θn�, we further define

νJ,t
n (u,∞) ≡

kn(t)−1∑
i=0

Fu
n

(
Jn(θn(i))

)
,(1.14)

(σ J,t
n )2(u,∞) ≡

kn(t)−1∑
i=0

[
Fu

n

(
Jn(θn(i))

)]2
.(1.15)

Finally, we set

S̄n(k) ≡
k∑

i=1

(
θni∑

j=θn(i−1)+1

c−1
n λ−1

n (Jn(j))en,j

)
+ c−1

n λ−1
n (Jn(0))en,0(1.16)

and

Sb
n(t) ≡ S̄n(kn(t)).(1.17)

We now formulate four conditions for the sequence Sn to converge to a subordi-
nator. Note that these conditions refer to given sequences of numbers an, cn and θn

as well as a given realization of the random environment.

CONDITION (A1). There exists a σ -finite measure ν on (0,∞) satisfying the
hypothesis stated in Theorem 1.1, and such that for all t > 0 and all u > 0,

Pμn

(|νJ,t
n (u,∞) − tν(u,∞)| < ε

)= 1 − o(1) ∀ε > 0.(1.18)

CONDITION (A2). For all u > 0 and all t > 0,

Pμn

(
(σ J,t

n )2(u,∞) < ε
)= 1 − o(1) ∀ε > 0.(1.19)

CONDITION (A3). For all t > 0,

lim
ε↓0

lim sup
n↑∞

Eμn

�ant�∑
i=1

1{λ−1
n (Jn(i))ei≤cnε}c

−1
n λ−1

n (Jn(i))ei = 0.(1.20)

CONDITION (A0′). For all v > 0,∑
x∈Vn

μn(x)e−vcnλn(x) = o(1).(1.21)

THEOREM 1.2. For all sequences of initial distributions μn and all se-
quences an, cn and 1 ≤ θn  an, for which Conditions (A0′), (A1), (A2) and (A3)
are verified, either P-almost surely or in P-probability [meaning that the terms
o(1) converge to zero either almost surely or in probability, resp.], the following
holds w.r.t. the same convergence mode:

Sb
n(·) ⇒ Sν(·),(1.22)

where Sν is the Lévy subordinator with Lévy measure ν and zero drift. Convergence
holds weakly on the space D([0,∞)) equipped with the Skorokhod J1-topology.
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REMARK. Note that Condition (A0′) is there to ensure that last term in (1.16)
converges to zero in the limit n ↑ ∞.

REMARK. The result of this theorem is stated for the blocked process Sb
n(t).

It implies immediately that under the same hypothesis, the original process Sn(t)

[defined in (1.6)] converges to Sν in the weaker M1-topology; see [26] for a de-
tailed discussion of Skorokhod topologies. However, the statement of the theorem
is strictly stronger than just convergence in M1, and it is this form that is useful in
applications.

REMARK. To extract detailed information on the process Xn, for example the
behavior of correlation functions, from the convergence of the blocked clock pro-
cess, one needs further information on the typical behavior of the process during
the θn steps of a single block. This is a model-dependent issue, and we will exem-
plify how this can be done in the context of the p-psin SK model.

We now come to the key step in our argument. This consists in reducing Condi-
tions (A1) and (A2) of Theorem 1.2 to: (i) a mixing condition for the chain Jn and
(ii) a law of large numbers for the random variables Qn.

Again we formulate three conditions for given sequences an, cn and a given
realization of the random environment.

CONDITION (A1-1). Let Jn be a periodic Markov chain with period q . There
exists an integer sequence �n ∈ N, and a positive decreasing sequence ρn, satisfy-
ing ρn ↓ 0 as n ↑ ∞, such that for all pairs x, y ∈ Vn, and all i ≥ 0,

q−1∑
k=0

Pπn

(
Jn(i + �n + k) = y, Jn(i) = x

)≤ (1 + ρn)πn(x)πn(y).(1.23)

CONDITION (A2-1). There exists a measure ν, as in condition (A1), such that

νt
n(u,∞) ≡ kn(t)

∑
x∈Vn

πn(x)Qu
n(x) → tν(u,∞),(1.24)

and

(σ t
n)

2(u,∞) ≡ kn(t)
∑
x∈Vn

∑
x′∈Vn

πn(x)p(2)
n (x, x′)Qu

n(x)Qu
n(x

′) → 0,(1.25)

where p
(2)
n (x, x′) =∑

y∈Vn
pn(x, y)pn(y, x′) are 2-step transition probabilities.

CONDITION (A3-1). For all t > 0,

lim
ε↓0

lim sup
n↑∞

�ant�Eπn1{λ−1
n (Jn(0))e0≤cnε}c

−1
n λ−1

n (Jn(0))e0 = 0.(1.26)



824 A. BOVIER AND V. GAYRARD

REMARK. The limiting measure ν may be deterministic or random.

THEOREM 1.3. Assume that for μn = πn and for sequences an, cn, �n and
�n ≤ θn  an, Conditions (A1-1), (A2-1), (A3-1) and (A0′) hold P-a.s., respec-
tively in P-probability. Then the sequence of random stochastic process Sb

n con-
verges to the process Sν , weakly in the Skorokhod space D[0,∞) equipped with
the J1-topology, P-almost surely, respectively in P-probability.

1.2. Application to the p-spin SK model. Theorem 1.3 is the central result of
this paper. It provides a very nice tool to prove convergence results of clock pro-
cesses almost surely with respect to the random environment, that is the physically
desirable mode. It is capable of dealing with correlations that have an effect, such
as are present in the p-spin SK model. In this model, the underlying graphs Vn are
the hypercubes �n = {−1,1}n. On �n we consider a Gaussian process, Hn, with
zero mean and covariance

EHn(x)Hn(x
′) = nRn(x, x′)p,(1.27)

where Rn(x, x′) ≡ 1
n

∑n
i=1 xix

′
i . The random environment, τn(x), is then defined

in terms of Hn by

τn(x) ≡ exp(βHn(x)),(1.28)

with β ∈ R+ the inverse temperature. The Markov chain, Jn, is chosen as the
simple random walk on �n, that is,

pn(x, x′) =
⎧⎨⎩

1

n
, if dist(x, x′) = 1,

0, else;
(1.29)

here dist(·, ·) is the graph distance on �n,

dist(x, x′) ≡ 1

2

n∑
i=1

|xi − x′
i |.(1.30)

This chain has for unique invariant measure the measure πn(x) = 2−n. Finally,
choosing C = 2n in (1.1), the mean holding times, λ−1

n (x), reduce to λ−1
n (x) =

τn(x).

THEOREM 1.4. For any p ≥ 3, there exists a constant Kp > 0 that depends
on β and γ , and a function ζ(p), such that for all γ satisfying

0 < γ < min(β2, ζ(p)β),(1.31)

the law of the stochastic process

Sb
n(t) ≡ e−γ nSn(θn�tn1/2enγ 2/2β2

θ−1
n �), t ≥ 0,(1.32)
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with θn = 3 ln 2
2 n2, defined on the space of càdlàg functions equipped with the Sko-

rokhod J1-topology, converges to the law of the stable subordinator Vγ/β2(t), t ≥
0, of Lévy measure Kp(γ /β2)x−γ /β2−1 dx. Convergence holds P-a.s. if p > 4,
and in P-probability, if p = 3,4.

The function ζ(p) is increasing, and it satisfies

ζ(3) � 1.0291 and lim
p→∞ ζ(p) =

√
2 log 2.(1.33)

REMARK. This result implies the weaker statement that

Sn(t) ≡ e−γNSn(�tn1/2enγ 2/2β2�), t ≥ 0,(1.34)

converges in the same way in the M1-topology.

In [1] an analogous result is proven, with the same constants ζ(p) and Kp , but
convergence there is in law with respect to the random environment (and almost
sure with respect to the trajectories Jn). Being able to obtain convergence under
the law of the trajectories for fixed environments, as we do here, is a considerable
conceptual improvement.

Finally, one must ask whether the convergence of the clock process in the form
obtained here is useful for deriving aging information in the sense that we can con-
trol the behavior of certain correlation functions. One may be worried that a jump
in limit of the coarse-grained clock process refers to a period of time during which
the process still may make n2 steps, and our limit result tells us nothing about how
the process moves during that time. We will, however, show that essentially all this
time is spent in a single visit to a quite small “trap,” within which the process does
not make more than o(n) steps.

In this way we prove the almost-sure (or in probability) version of Theorem 1.2
of [1].

THEOREM 1.5. Let Aε
n(t, s) be the event defined by

Aε
n(t, s) = {

Rn

(
Xn(te

γn),Xn

(
(t + s)eγn))≥ 1 − ε

}
.(1.35)

Then, under the hypothesis of Theorem 1.4, for all ε ∈ (0,1), t > 0 and s > 0,

lim
N→∞ Pπn(A

ε
n(t, s)) = sinαπ

π

∫ t/(t+s)

0
uα−1(1 − u)−α du.(1.36)

Convergence holds P-a.s. if p > 4, and in P-probability, if p = 3,4.

The remainder of the paper is organised as follows. In the next section we prove
Theorems 1.2 and 1.3. In Section 3 we apply our main theorem to the p-spin SK
model and prove Theorem 1.5.
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2. Proof of the main theorems. We now prove our main theorem. The first
step is the proof of Theorem 1.2.

2.1. Proof of Theorem 1.2.

PROOF. Throughout we fix a realization ω ∈ � of the random environment
but do not make this explicit in the notation. We set

Ŝb
n(t) ≡ Sb

n(t) − c−1
n λ−1

n (Jn(0))en,0.(2.1)

Condition (A0′) ensures that Sb
n − Ŝb

n converges to zero, uniformly. Thus we must
show that under Conditions (A1) and (A2),

Ŝb
n(·) ⇒ Sν(·).(2.2)

This will be a simple corollary of Theorem 1.1. Recall that

kn(t) ≡ ⌊�ant�/θn

⌋
,(2.3)

and for i ≥ 1, define

Zn,i ≡
θni∑

j=θn(i−1)+1

c−1
n λ−1

n (Jn(j))en,j .(2.4)

By (1.17) and (2.1), Ŝb
n(t) =∑kn(t)

i=1 Zn,i . We now want to apply Theorem 1.1 to the
latter partial sum process. For this let {Fn,i, n ≥ 1, i ≥ 0} be the array of sub-sigma
fields of F X defined by (with obvious notation) Fn,i = σ(

⋃
j≤θni{Jn(j), en,j }), for

i ≥ 0. Clearly, for each n and i ≥ 1, Zn,i is Fn,i measurable and Fn,i−1 ⊂ Fn,i .
Next observe that

Pμn(Zn,i > z|Fn,i−1)
(2.5)

= ∑
x∈Vn

Pμn

(
Jn

(
θn(i − 1) + 1

)= x,Zn,i > z|Fn,i−1
)
,

where

Pμn

(
Jn

(
θn(i − 1) + 1

)= x,Zn,i > z|Fn,i−1
)

(2.6)
= Pμn

(
Jn

(
θn(i − 1) + 1

)= x,Zn,i > z|Jn

(
θn(i − 1)

))
.

Using Bayes’ theorem and the Markov property, the last line can be written as

pn

(
Jn

(
θn(i − 1)

)
, x
)

Pμn

(
θn∑

j=1

c−1
n λ−1

n

(
Jn(j − 1)

)
en,j−1 > z|Jn(0) = x

)
.(2.7)
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Thus, in view of (1.12), (1.13), (1.14) and (1.15), it follows from (2.5), (2.6)
and (2.7) that

kn(t)∑
i=1

Pμn(Zn,i > z|Fn,i−1) =
kn(t)∑
i=1

∑
x∈Vn

pn

(
Jn

(
θn(i − 1)

)
, x
)
Qu

n(x)

=
kn(t)∑
i=1

Fu
n

(
Jn

(
θn(i − 1)

))
(2.8)

= νJ,t
n (u,∞).

Similarly we get

kn(t)∑
i=1

[Pμn(Zn,i > ε|Fn,i−1)]2 =
kn(t)∑
i=1

[
Fu

n

(
Jn

(
θn(i − 1)

))]2
(2.9)

= (σ J,t
n )2(u,∞).

From (2.8) and (2.9) it follows that Conditions (A2) and (A1) of Theorem 1.2
are exactly the conditions from Theorem 1.1. Similarly Condition (A3) is Condi-
tion 1.9. Therefore the conditions of Theorem 1.1 are verified, and so Ŝb

n ⇒ Sν in
D([0,∞)) where Sν is a subordinator with Lévy measure ν and zero drift. �

2.2. Proof of Theorem 1.3. The proof of Theorem 1.3 comes in two steps. In
the first we use the ergodic properties of the chain Jn to pass from sums along a
chain Jn to averages with respect to the invariant measure of Jn.

We assume from now on that the initial distribution μn is the invariant mea-
sure πn of the jump chain Jn.

PROPOSITION 2.1. Let μn = πn. Assume that Condition (A1-1) is satisfied.
Then, choosing θn ≥ �n, the following holds: for all t > 0 and all u > 0, we have
that for all ε > 0,

Pπn

(|νJ,t
n (u,∞) − νt

n(u,∞)| ≥ ε
)

(2.10)
≤ ε−2[ρn(ν

t
n(u,∞))2 + (σ t

n)
2(u,∞)],

and

Pπn

(
(σ J,t

n )2(u,∞) ≥ ε
)≤ ε−1(σ t

n)
2(u,∞).(2.11)

PROOF. To simplify notation, we only give the proof for the case when the
chain Jn is aperiodic, that is, q = 1. Details of how to deal with the general periodic
case can be found in the proof of Proposition 4.1 of [15].
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Let us first establish that

Eπn[νJ,t
n (y)] = νt

n(u,∞),(2.12)

Eπn[(σ J,t
n )2(u,∞)] = (σ t

n)
2(u,∞).(2.13)

To this end set

πJ,t
n (x) = k−1

n (t)

kn(t)∑
j=1

1{Jn(θn(j−1))=x}, x ∈ Vn.(2.14)

Then, equations (1.14) and (1.15) may be rewritten as

νJ,t
n (u,∞) = kn(t)

∑
y∈Vn

πJ,t
n (y)Fu

n (y),(2.15)

(σ J,t
n )2(u,∞) = kn(t)

∑
y∈Vn

πJ,t
n (y)(F u

n (y))2.(2.16)

Since by assumption the initial distribution is the invariant measure πn of Jn, the
chain variables (Jn(j), j ≥ 1) satisfy Pπn(Jn(j) = x) = πn(x) for all x ∈ Vn, and
all j ≥ 1. Hence

Eπn[πJ,t
n (y)] = πn(y),(2.17)

Eπn[νJ,t
n (u,∞)] = kn(t)

∑
x∈Vn

πn(x)Fu
n (x),(2.18)

Eπn[(σ J,t
n )2(u,∞)] = kn(t)

∑
x∈Vn

πn(x)(F u
n (x))2,(2.19)

and equations (2.12) and (2.13) now follow readily from these identities. Indeed,
inserting (1.13) into (2.18) and using that πn is the invariant measure of Jn, we get

Eπn[νJ,t
n (u,∞)] = kn(t)

∑
y∈Vn

∑
x∈Vn

πn(x)pn(x, y)Qu
n(y),(2.20)

= kn(t)
∑
y∈Vn

πn(y)Qu
n(y),(2.21)

which proves (2.12). Similarly, inserting (1.13) into (2.19) yields

Eπn[(σ J,t
n )2(u,∞)] = kn(t)

∑
x∈Vn

πn(x)

(∑
y∈Vn

pn(x, y)Qu
n(y)

)2

,(2.22)

which gives (2.13), once observed that, by reversibility,
∑

x∈Vn
πn(x)pn(x, y) ×

pn(x, y′) = πn(y)
∑

x∈Vn
pn(y, x)pn(x, y′) = πn(y)p

(2)
n (y, y′).

We are now ready to prove the proposition. In view of (2.13), (2.11) is nothing
but a first order Chebyshev inequality. To establish (2.10) set

Dij (x, y) = Pπn

(
Jn

(
θn(i − 1)

)= x, Jn

(
θn(j − 1)

)= y
)− πn(x)πn(y).(2.23)
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A second-order Chebyshev inequality together with expressions (2.18) of
Eπn[νJ,t

n (u,∞)] yield

Pπn

(|νJ,t
n (u,∞) − Eπn[νJ,t

n (u,∞)]| ≥ ε
)

≤ ε−2Eπn

[
kn(t)

∑
y∈Vn

(
πJ,t

n (y) − πn(y)
)
Fu

n (y)

]2

(2.24)

= ε−2
∑
x∈Vn

∑
y∈Vn

F u
n (x)Fu

n (y)

kn(t)∑
i=1

kn(t)∑
j=1

Dij (x, y).

Now
∑kn(t)

i=1
∑kn(t)

j=1 Dij (x, y) = (I ) + (II) where

(I ) ≡
kn(t)∑
i=1

kn(t)∑
j=1

Dij (x, y)1{j �=i} ≤ ρnk
2
n(t)πn(x)πn(y),(2.25)

as follows from Condition (A1-1), choosing θn ≥ �n, and

(II) ≡ ∑
1≤i≤kn(t)

Dii(x, x)1{x=y}

= kn(t)
[
Pπn

(
Jn

(
θn(i − 1)

)= x
)− π2

n(x)
]
1{x=y}(2.26)

= kn(t)πn(x)
(
1 − πn(x)

)
1{x=y}.

Inserting (2.26) and (2.25) in (2.24) we obtain, using again (2.13) and (2.17), that

Pπn

(|νJ,t
n (u,∞) − Eπn[νJ,t

n (u,∞)]| ≥ ε
)

(2.27)
≤ ε−2[ρn(ν

t
n(u,∞))2 + (σ t

n)
2(u,∞)

]
.

Proposition 2.1 is proven. �

PROOF OF THEOREM 1.3. The proof of Theorem 1.3 is now immediate: com-
bine the conclusions of Proposition 2.1 with Condition (A2-1) to get both condi-
tions (A1) and (A2). Finally, Condition (A3) is Condition (A3-1), since we are
starting from the invariant measure. �

3. Application to the p-spin SK model. In this section we show how Con-
ditions (A1-1) and (A2-1) can be verified in the case of the random hopping time
dynamics of the p-spin SK model.

The proof contains four steps, two of which are quite immediate.
Conditions (A1-1) for simple random walk has been established, for example,

in [1] and [16]. The following lemma is taken from Proposition 3.12 of [16].
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LEMMA 3.1. Let Pπn be the law of the simple random walk on the hypercube
�n started in the uniform distribution. Let θn = 3 ln 2

2 n2. Then, for any x, y ∈ �n

and any i ≥ 0,∣∣∣∣∣
1∑

k=0

Pπn

(
Jn(θn + i + k) = y, Jn(0) = x

)− 2πn(x)πn(y)

∣∣∣∣∣≤ 2−3n+1.(3.1)

Clearly this implies that Condition (A1-1) holds.
We now turn to the first part of Condition (A2-1). We will show that

νt
n(u,∞) → νt (u,∞) = tKpu−γ /β2

,(3.2)

almost surely, respectively, in probability, as n ↑ ∞.

3.1. Laplace transforms. Instead of proving the convergence of the distribu-
tion functions νt

n directly, we pass to their Laplace transforms, prove their conver-
gence and then use Feller’s continuity lemma to deduce convergence of the original
objects.

For v > 0, consider the Laplace transforms

ν̂t
n(v) =

∫ ∞
0

due−uvνt
n(u,∞),

(3.3)
ν̂t (v) =

∫ ∞
0

due−uvνt (u,∞).

With Zn ≡∑θn−1
j=0 c−1

n λ−1
n (Jn(j))en,j , we have, by definition of νt

n(u,∞),

νt
n(u,∞) = kn(t)

∑
x∈Vn

πn(x)Qu
n(x) = kn(t)Pπn(Zn > u).

Hence

ν̂t
n(v) =

∫ ∞
0

due−uvνt
n(u,∞)

= kn(t)

∫ ∞
0

due−uv Pπn(Zn > u)(3.4)

= kn(t)
1 − Eπn(e

−vZn)

v
,

where the last equality follows by integration by parts.

3.2. Convergence of Eν̂t
n(v). The following lemma is an easy consequence of

the results of [1]:
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LEMMA 3.2. Let cn = eγn, an = n1/2enγ 2/2β2
. For any p ≥ 3, and β,γ > 0

such that γ /β2 ∈ (0,1), there exists a finite positive constant, Kp , such that for
any v > 0,

lim
n↑∞kn(t)E[1 − Eπn(e

−vZn)] = Kptvγ/β2
.(3.5)

PROOF. We rely essentially on the results of [1]. In that paper the Laplace
transforms Ee−vZn were computed even for θn = ant . We just recall the key ideas
and the main steps.

The point in [1] is to first fix a realization of the chain Jn, and to define, for a
given realization, the one-dimensional normal Gaussian process

U0(i) ≡ n−1/2Hn(Jn(i)),(3.6)

with covariance

�0
ij = n−1

EHn(Jn(i))Hn(Jn(j)) = Rn(Jn(i), Jn(j))p.(3.7)

Moreover, they define a comparison process, U1, as follows. Let ν be an integer
of order nρ , with ρ ∈ (1/2,1). Then U1 has covariance matrix

�1
ij =

{
1 − 2pn−1|i − j |, if �i/ν� = �j/ν�,
0, else.

(3.8)

Finally they define the interpolating family of processes, for h ∈ [0,1],
Uh(i) ≡ √

hU1(i) + √
1 − hU0(i).(3.9)

For any normal Gaussian process, U , indexed by N, define the functions

Fn(U,v, k) ≡ exp

(
−vc−1

n

k−1∑
i=0

en,ie
β
√

nUi

)
(3.10)

and

Eπn(F (U,v, k)|F J ) ≡ G(U,v, k) = exp

(
−

k−1∑
i=0

g(vc−1
n eβ

√
nUi )

)
,(3.11)

with g(x) = ln(1 + x).
Then the Laplace transforms we are after can be written as

EEπne
−vZn = EEπn(Eπn(e

−vZn |F J ))
(3.12)

= EπnEG(U0, v, θn).

Here we used that the conditional expectation, given F J , is just the expectation
with respect to the variables en,i , which can be computed explicitly, and gives rise
to the function G.

The idea is now that U1 is a good enough approximation to U0, for most real-
izations of the chain J , to allow us to replace U0 by U1 in the last line above.

More precisely, we have the following estimate.
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LEMMA 3.3. With the notation above we have that for all p ≥ 3,

kn(t)Eπn |EG(U0, v, θn) − EG(U1, v, θn)| ≤ tCn1/2/ν.(3.13)

REMARK. In [1] (see Proposition 3.1) it is proven that Eπn -almost surely,

EG(U0, v, �ant�) − EG(U1, v, �ant�) → 0.(3.14)

This result would not be expected for our expression, but we do not need this. The
proof of Proposition 3.1 of [1], however, directly implies our Lemma 3.3.

The computation of the expression involving the comparison process U1 is
fairly easy. First, note that by independence (and making for simplicity the as-
sumption that θn is an integer multiple of ν),

EG(U1, v, θn) = [EG(U1, v, ν)]θn/ν

(3.15)
= [

1 − (
1 − EG(U1, v, ν)

)]θn/ν
.

But in [1], Proposition 2.1, it is shown that

anν
−1(1 − EG(U1, v, ν)

)→ Kpvγ/β2
.(3.16)

This implies immediately that

kn(t)
{
1 − [

1 − (
1 − EG(U1, v, ν)

)]θn/ν}→ Kpvγ/β2
t,(3.17)

as desired. Combining this with Lemma 3.3, the assertion of Lemma 3.2 follows.
�

3.3. Concentration of νt
n. To complete the proof, we need to control the fluc-

tuations of νt
n.

LEMMA 3.4. Under the same hypothesis as in Lemma 3.2, there exists an
increasing function, ζ(p), such that for all p ≥ 3, ζ(p) > 1, and ζ(p) ↑ √

2 ln 2,
such that, if γ /β2 < min(1, ζ(p)/β),

E
(
ν̂t
n(v) − Eν̂n(v)

)2 ≤ Cn1−p/2.(3.18)

PROOF. The proof is again very similar to the proof of Proposition 3.1 in [1].
We have to compute

E(Eπne
−vZn)2 = EπnE

′
πn

(
EEπn E ′

πn

(
e−v(Zn+Z′

n)|F J × F J ′))
,(3.19)

where Z′
n ≡ ∑θn−1

j=0 c−1
n λ−1

n (J ′
n(j))e′

n,j , J ′
n and (e′

n,i , n ∈ N, i ∈ N) being, respec-
tively, independent copies of Jn and (en,i , n ∈ N, i ∈ N). To express this as in the
previous proof, we introduce the Gaussian process V 0 by

V 0(i) ≡
{

n−1/2Hn(Jn(i)), if 0 ≤ i ≤ θn − 1,

n−1/2Hn(J
′
n(i)), if θn ≤ i ≤ 2θn − 1.

(3.20)
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Then, with the notation of (3.11),

Eπn E ′
πn

(
e−v(Zn+Z′

n)|F J × F J ′)= G(V 0, v,2θn).(3.21)

Next we define the comparison process V 1 with covariance matrix

�2
ij ≡

{
�0

ij , if max(i, j) < θn or min(i, j) ≥ θn,

0, else.
(3.22)

The point is that

EπnE
′
πn

EG(V 1, v,2θn) = (EπnEG(V 0, v, θn))
2 = (EEπne

−vZn)2.(3.23)

On the other hand, using the standard Gaussian interpolation formula, we obtain
the representation

EG(V 1, v,2θ) − EG(V 0, v,2θ)
(3.24)

= 1

2

∫ 1

0

∑
0≤i<θn

θn≤j<2θn

�0
ijE

∂2G(V h, v,2θn)

∂vi ∂vj

dh + (i ↔ j),

where the interpolating process V h is defined analogously to (3.9). The sec-
ond derivatives of G were computed and bounded in [1] [see equation (3.7) and
Lemma 3.2]. We recall the following bounds:

LEMMA 3.5. With the notation above and the assumptions of Lemma 3.2,

E

∣∣∣∣∂2G(V h, v,2θn)

∂vi ∂vj

∣∣∣∣
≤ v2c−2

n β2nE
[
eβ

√
n(V h(i)+V h(j)) exp

(−2g
(
c−1
n veβ

√
nV h(i))

(3.25)
− 2g

(
c−1
n veβ

√
nV h(j)))]

≡ �n(�
h
ij ).

Moreover, for λ > 0 small enough,

�n(c) ≤ �̄n(c) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C
(
(1 − c)−1/2 ∧ √

n
)
e−(γ 2n)/(β2(1+c)),

if 1 > c > γ/β2 + λ − 1,

Cne−n(β2(1+c)−2γ ),

if c ≤ (γ /β2) + λ − 1,

(3.26)

where C(γ,β, v,λ) is a suitably chosen constant independent of n and c.

REMARK. Notice that, since γ /β2 < 1 under our hypothesis, we can always
choose λ such that the top line in (3.26) covers the case c ≥ 0.
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Note that for c ≥ 0 (see equation (3.25) in [1]),∫ 1

0
�n

(
(1 − h)c

)
dh ≤ 2C exp

(
− γ 2n

β2(1 + c)

)
.(3.27)

The terms with negative correlation are in principle smaller than those with pos-
itive one, but some thought reveals that one cannot really gain substantially over
the bound ∫ 1

0
�n

(
(1 − h)c

)
dh ≤ C exp

(
−γ 2n

β2

)
,(3.28)

that is, used in [1] [see equation (3.24)].
Next we must compute the probability that �0

ij takes on a specific value. But

since �0
ij is a function of Rn(Jn(i), J

′
n(j)), this turns out to be very easy, namely,

since both chains start in the invariant distribution

Eπn E ′
πn

1nRn(Jn(i),J ′
n(j))=m

= ∑
x,y∈S n

Pπn

(
Jn(i) = x

)
P ′

πn

(
J ′

n(i) = y
)
1nRn(x,y)=m(3.29)

= 2−n
∑

x∈S n

1nRn(x,1)=m = 2−n

(
n

(n − m)/2

)
.

Putting all things together, we arrive at the bound

kn(t)
2∣∣EG(V 0, v,2θ) − (EG(V 0, v, θ))2∣∣
≤

n∑
m=0

2−n

(
n

(n − m)/2

)(
m

n

)p

t2nenγ 2/β2
2C exp

(
− nγ 2

β2(1 + (m/n)p)

)
(3.30)

+
n∑

m=0

2−n

(
n

(n − m)/2

)(
m

n

)p

t2nenγ 2/β2
2C exp

(
−nγ 2

β2

)
,

where we did use that kn(t)θn ≈ t
√

nenγ 2/β2
. Clearly the second term is smaller

than the first, so we only need to worry about the latter. But this term is exactly the
term (3.28) in [1], where it is shown that this is smaller than

C′t2n1−p/2,(3.31)

provided γ < ζ(p). This provides the assertion of our Lemma 3.4 and concludes
its proof. �

REMARK. The estimate on the second moment we get here allows to get al-
most sure convergence only if p > 4. It is not quite clear whether this is natural.
We were tempted to estimate higher moments to get improved estimates on the
convergence speed. However, any straightforward application of the comparison
methods used here does produce the same order for all higher moments. We have
not been able to think of a tractable way to improve this result.
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3.4. Verification of the second part of Condition (A2-1). For u,u′ > 0 define

η̃t
n(u) = 1

n
kn(t)

∑
x∈Vn

πn(x)(Qu
n(x))2,(3.32)

ηt
n(u,u′) = kn(t)

∑
x∈Vn

∑
x′∈Vn

μn(x, x′)Qu
n(x)Qu′

n (x′),(3.33)

where μn is the uniform distribution on pairs of vertices (x, x′) that are at dis-
tance 2 apart,

μn(x, x′) =
⎧⎨⎩2−n 2

n(n − 1)
, if dist(x, x′) = 2,

0, else.
(3.34)

Equation (1.25) will be verified if we can show that for all t > 0 and all u,u′ > 0,
both η̃t

n(u) and ηt
n(u,u′) tend to zero, almost surely, respectively, in probability, as

n ↑ ∞.
As before we will do this by first passing to the Laplace transform of ηt

n(u,u′).
For v, v′ > 0, define

η̂t
n(v, v′) =

∫ ∞
0

du

∫ ∞
0

du′e−(uv+u′v′)ηt
n(u,u′),

(3.35)
η̂t (v, v′) =

∫ ∞
0

du

∫ ∞
0

du′e−(uv+u′v′)ηt (u,u′).

The reason for considering the two point function ηt
n(u,u′) is that, integrating by

parts as in (3.5), η̂t
n(v, v′) takes the convenient form

η̂t
n(v, v′) = kn(t)

∑
x∈Vn

∑
x′∈Vn

μn(x, x′)1 − Ex(e
−vZn)

v

1 − E ′
x′(e−v′Z′

n)

v′ ,(3.36)

where Ex (resp., E ′
x′ ) denotes the expectation with respect to the law Px of the

chain Xn started in x (resp., the law P ′
x′ of an independent copy X′

n started in x′).

LEMMA 3.6. Under the assumptions, and with the notation of Lemma 3.2, for
any v, v′ > 0,

lim
n↑∞ Eη̂t

n(v, v′) = 0.(3.37)

PROOF. The key idea of the proof is that the first θ̄n = 2n lnn terms in
the sums Zn are irrelevant. With this in mind, we define Wn ≡ ∑θn−1

j=θ̄n
c−1
n ×

λ−1
n (Jn(j))en,j .
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Note that

vv′
Eη̂t

n(v, v′) = kn(t)E[1 − Eπn(e
−vZn)] + kn(t)E[1 − E ′

πn
(e−v′Z′

n)]
− kn(t)

∑
x∈Vn

∑
x′∈Vn

μn(x, x′)E
[
1 − Ex E ′

x′
(
e−(vZn+v′Z′

n))]
(3.38)

≤ kn(t)E[1 − Eπn(e
−vZn)] + kn(t)E[1 − E ′

πn
(e−v′Z′

n)]
− kn(t)

∑
x∈Vn

∑
x′∈Vn

μn(x, x′)E
[
1 − Ex E ′

x′
(
e−(vWn+v′W ′

n))].
Adding and subtracting the term EEx(e

−vWn)EE ′
x′(e−v′W ′

n) to the term

EEx E ′
x′(e−(vWn+v′W ′

n)), the right-hand side of (3.38) is equal to

kn(t)E[1 − Eπn(e
−vZn)] + kn(t)E[1 − E ′

πn
(e−v′Z′

n)](3.39)

− kn(t)
∑
x∈Vn

∑
x′∈Vn

μn(x, x′)[1 − EEx(e
−vWn)EE ′

x′(e−v′W ′
n)]

+ kn(t)
∑
x∈Vn

∑
x′∈Vn

μn(x, x′)
(
EEx E ′

x′
(
e−(vWn+v′W ′

n))
− EEx(e

−vWn)EE ′
x′(e−v′W ′

n)
)
.

After a little reorganisation, (3.39) is in turn equal to

kn(t)E[Eπn(e
−vWn − e−vZn + e−v′Wn − ev′Zn)](3.40)

+ vv′kn(t)
∑
x∈Vn

∑
x′∈Vn

μn(x, x′)E1 − Ex(e
−vWn)

v
E

1 − E ′
x′(e−v′W ′

n)

v′

+ kn(t)
∑
x∈Vn

∑
x′∈Vn

μn(x, x′)Ex Ex′
(
E
(
e−(vWn+v′W ′

n))− E(e−vWn)E(e−v′W ′
n)
)
.

Now one deduces readily from Lemma 3.2 that

kn(t)E[Eπn(e
−vWn − e−vZn)] ∼ Kptvγ/β2

θ̄n/θn = O

(
lnn

n

)
(3.41)

and tends to zero as n ↑ ∞. Also by Lemma 3.2,

kn(t)
∑
x∈Vn

∑
x′∈Vn

μn(x, x′)E1 − Ex(e
−vWn)

v
E

1 − E ′
x′(e−v′W ′

n)

v′
(3.42)

= O
(
1/kn(t)

)
and tends to zero even much faster. The last term in (3.40) will be controlled by
the Gaussian comparison method similar to the proof of Lemma 3.4. Indeed, using
the same comparison and interpolation process as in the proof of that lemma, we



CONVERGENCE OF CLOCK PROCESSES 837

see that for given trajectories Jn, J
′
n,

E
(
e−(vWn+v′W ′

n))− E(e−vWn)E(e−v′W ′
n)

(3.43)

=
∫ 1

0

∑
θ̄n≤i<θn

θn+θ̄n≤j<2θn

�0
ijE

∂2G(V h, v,2θn)

∂vi ∂vj

dh.

To control the right-hand side we will exploit the fact that after O(n logn) steps,
such trajectories are at maximal distance apart with probability close to one. Re-
calling (1.30), define the distance chain, Dn, on {0,1, . . . , n} through

Dn(i) = dist(Jn(i), J
′
n(i)), i ≥ 1.(3.44)

LEMMA 3.7. Set θ̄n = 2n logn and ρ(n) =
√

K
logn

n
. Then, for K sufficiently

large,

P

(
∀θ̄n≤i≤θn

Dn(i) >
n

2

(
1 − ρ(n)

)|Dn(0) = 2
)

≥ 1 − n−8.(3.45)

Moreover, for any fixed x, y ∈ Vn,

Px

(
∃θ̄n≤i≤θn

dist(Jn(i), y) <
n

2

(
1 − ρ(n)

))≤ 1

n4 .(3.46)

PROOF. Observe on the one hand that, denoting by Dn, the transition ma-
trix of the distance chain Dn, one has Dn = (Qn)

2, where Qn is the transition
matrix of the Ehrenfest chain on state space {0, . . . , n}, namely, the chain with
transition probabilities qn(i, i + 1) = i

n
and qn(i, i − 1) = 1 − i

n
. On the other

hand, it is sufficient in order to prove (3.46) to prove it for y = 1 ≡ (1, . . . ,1),
and again, the projection chain �n(i) ≡ dist(Jn(i),1), i ≥ 1, is nothing but the
Ehrenfest chain on {0, . . . , n}. Both equations (3.45) and (3.46) then follow from
well-known estimates for the Ehrenfest chain; specifically, see [20], page 25, equa-
tion below (4.18). �

Let An ⊂ F J × F J ′
be the event An ≡ {∀θ̄n≤i≤θn

Dn(i) > n
2 (1 − ρ(n))}. Notice

first that on An, by the estimates in Lemma 3.5,∫ 1

0

∑
θ̄n≤i<θn

θn+θ̄n≤j<2θn

�0
ijE

∂2G(V h, v,2θn)

∂vi ∂vj

dh ≤ 2Cθ2
nρ(n) exp

(−γ 2n/β2)
(3.47)

= O(kn(t)
−2).
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On the other hand, on Ac
n, we still have the bound∫ 1

0

∑
θ̄n≤i<θn

θn+θ̄n≤j<2θn

�0
ijE

∂2G(V h, v,2θn)

∂vi ∂vj

dh

≤ 2Cθ2
n exp

(−γ 2n/2β2)(3.48)

= O
(
θn/kn(t)

)
.

Putting all estimates together we arrive at the assertion of the lemma. �

To prove convergence in probability, respectively, almost surely, we just
need to use the same concentration estimate as in Lemma 3.4 for the term
kn(t)Eπn(e

−vWn − e−vZn). Finally, the term η̃t
n(u) from (3.32) can be controlled in

exactly the same way. This establishes Condition (A2-1).

3.5. Verification of Condition (A3-1). To show that Condition (A3-1) holds,
we again first prove that the average of the right-hand side vanishes as ε ↓ 0, and
then we prove a concentration result.

LEMMA 3.8. Under the assumptions of the theorem, there is a constant K <

∞, such that

lim sup
n↑∞

anc
−1
n EEπnλ

−1
n (Jn(0))e01λ−1

n (Jn(0))e0≤εcn
≤ Kε1−α.(3.49)

PROOF. The proof is through explicit estimates. We must control the integral∫ ∞
0

xe−x dx

∫ ∞
−∞

e−z2/21
xeβ

√
nz≤εcn

eβ
√

nz dz

=
∫ ∞

0
xe−x dx

[∫ (ln cn+ln(ε/x))/(β
√

n)

−∞
e−z2/2+β

√
nz dz

]
(3.50)

=
∫ ∞

0
xe−x dx

[
eβ2n/2

∫ ((ln cn+ln(ε/x))/(β
√

n))−β
√

n

−∞
e−z2/2 dz

]
.

Now for our choice cn = exp(γ n), the upper integration limit in the z-integral is

ln cn + ln(ε/x)

β
√

n
− β

√
n

(3.51)

= √
n

(
γ

β
− β

)
+ ln ε − lnx

β
√

n
.

Thus, for any γ < β2, this tends to −∞ uniformly for, say, all x ≤ n2. We therefore
decompose the x-integral in the domain x ≤ n2 and its complement, and use first
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that ∫ ∞
n2

xe−x dx

∫
e−z2/21

xeβ
√

nz≤εcn
eβ

√
nz dz

(3.52)
≤ εn2cne

−n2
,

which tends to zero, as n ↑ ∞. For the remainder we use the bound∫ ∞
u

e−z2/2 ≤ 1

u
e−u2/2.(3.53)

This yields

eβ2n/2
∫ ((ln cn+ln(ε/x))/(β

√
n))−β

√
n

−∞
e−z2/2 dz

≤ eβ2n/2 exp(−1/2(
√

n(β − γ /β) − (ln ε − lnx)/β
√

n)2)

(β − β−1γ )
√

n − (ln ε − lnx)/β
√

n
(3.54)

= exp(−n(γ 2/2β2) + nγ )√
n(β − γ /β) + o(1)

exp
(−(γ /β2 − 1) ln(ε/x) + O(n−1/2)

)
= cna

−1
n

1

β − γ /β + o(1)
exp

(−(γ /β2 − 1) ln(ε/x) + O(n−1/2)
)
.

Hence

lim sup
n↑∞

anc
−1
n

∫ ∞
0

xe−x dx

∫ ∞
−∞

e−z2/21
xeβ

√
nz≤εcn

eβ
√

nz dz

(3.55)

≤ 1

β − γ /β
ε1−α

∫ ∞
0

xαe−x dx,

where α = γ /β2. This yields the assertion of the lemma. �

To complete the proof, we need a concentration estimate. The first step is a
simple Gaussian bound.

LEMMA 3.9. Let X,Y be centered normal Gaussian random variables with
covariance EXY = c. Then, for any ε, ε′ > 0,

E(eβ
√

nX1
eβ

√
nX≤cnε

eβ
√

nY 1
eβ

√
nY ≤cnε′)

E(eβ
√

nX1
eβ

√
nX≤cnε

)E(eβ
√

nY 1
eβ

√
nY ≤cnε′)

(3.56)

≤ exp(|c|(2γ 2n + γ (ln ε + ln ε′))/(2β2(1 + |c|)))√
1 − c2 − (γ /β2)

√
(1 − |c|)/(1 + |c|)

(
1 + O(1/n)

)
.
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PROOF. The numerator on the left-hand side of (3.56) equals (we assume c ≥
0 below, but the same estimate with c replaced by −c can be obtained for c < 0)

1

2π

∫ (γ n+ln ε)/(β
√

n)

−∞

∫ (γ n+ln ε′)/(β√
n)

−∞
1√

1 − c2
e−(z2

1+z2
2+2cz1z2)/(2(1−c2))

× e
√

n(z1+z2) dz1 dz2

= 1

2π
√

1 − c2

∫ (γ n+ln ε)/β
√

n

−∞

∫ (γ n+ln ε′)/(β√
n)

−∞
eβ

√
n(z1+z2)e−(z2

1+z2
2)/2

× e−(c(z1−z2)
2−c(1−c)(z2

1+z2
2))/2(1−c2) dz1 dz2

≤ 1

2π
√

1 − c2

∫ (γ n+ln ε)/(β
√

n)

−∞

∫ (γ n+ln ε′)/(β√
n)

−∞
eβ

√
n(z1+z2)e−(z2

1+z2
2)/2

× e+(c(z2
1+z2

2))/(2(1+c)) dz1 dz2

= 1

2π
√

1 − c2

(∫ (γ n+ln ε)/(β
√

n)

−∞
eβ

√
nze(−z2/(2(1+c))) dz

)

×
(∫ (γ n+ln ε′)/(β√

n)

−∞
eβ

√
nze−(z2/(2(1+c))) dz

)
.

Using standard estimates on the asymptotics of one-dimensional Gaussian inte-
grals the claimed result follows after some straightforward computations. �

We will now use Lemma 3.9 to prove the desired concentration estimate.

LEMMA 3.10. With the notation above,

E
(

Eπnλ
−1
n (Jn(0))e01λ−1

n (Jn(0))e0≤εcn

)2
− (

EEπnλ
−1
n (Jn(0))e01λ−1

n (Jn(0))e0≤εcn

)2(3.57)

≤ Cn1−p/2(
EEπnλ

−1
n (Jn(0))e01λ−1

n (Jn(0))e0≤εcn

)2
.

PROOF. Writing out everything explicitly, we have

E
(

Eπnλ
−1
n (Jn(0))e01λ−1

n (Jn(0))e0≤εcn

)2 − (
EEπnλ

−1
n (Jn(0))e01λ−1

n (Jn(0))e0≤εcn

)2
= 2−2n

∑
x,x′∈�n

∫
dy1 dy2e

−y1−y2y1y2

(3.58)
× (

E
(
eβ(Hn(x)+Hn(x′))1eβHn(x)≤cnε/y1

1
eβHn(x′)≤cnε/y2

)
− E

(
eβHn(x)1eβHn(x)≤cnε/y1

)
E
(
eβHn(x′)1

eβHn(x′)≤cnε/y2

))
.
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Now the last terms depend only on the covariance of Hn(x) and Hn(x
′), that is, on

Rn(x, x′). Using Lemma 3.9, we get, when Rn(x, x′)p = c,∫
dy1 dy2e

−y1−y2y1y2

× (
E
(
e(βHn(x)+Hn(x′))1eβHn(x)≤cnε/y1

1
eβHn(σ ′)≤cnε/y2

)
(3.59)

− E
(
eβHn(x)1eβHn(σ)≤cnε/y1

)
E
(
eβHn(σ ′)1

eβHn(σ ′)≤cnε/y2

))
≤ (ecn(γ 2/(β2(1+c))) − 1)

(
EEπne

βHn(σ)e11eβHn(σ)e1≤ε

)2(1 + O(c)
)
.

Thus we have to control

2−2n
∑

m∈{−1,−1+2/n,...,1−2/n,1}

∑
x,x′∈�n

1Rn(x,x′)=m

(
empn(γ 2/(β2(1+mp))) − 1

)
(3.60)

= ∑
m∈{−1,−1+2/n,...,1−2/n,1}

2−n

(
n

n(m + 1)/2

)(
empn(γ 2/(β2(1+mp))) − 1

)
.

The analysis of the last sum can be carried out in the same way as was done in [1]
for a very similar sum. It yields that

1∑
m=−1

2−n

(
n

n(m + 1)/2

)(
empnγ 2/(β2(1+mp)) − 1

)= Cn1−p/2.(3.61)
�

3.6. Conclusion of the proof. Consider first the case p > 4. Lemmata 3.2
and 3.4, together with Chebyshev’s inequality and the Borel–Cantelli lemma, es-
tablish that for each v > 0,

lim
n→∞ ν̂t

n(v) = ν̂t (v) = Kpvγ/β2−1, P-a.s.(3.62)

Together with the monotonicity of ν̂t
n(v) and the continuity of the limiting function

ν̂t (v), this implies that there exists a subset �1 ⊂ � of the sample space � of the τ s
with the property that P(�1) = 1, and such that, on �1,

lim
n→∞ ν̂t

n(v) = ν̂t (v) ∀v > 0.(3.63)

Finally, applying Feller’s extended continuity theorem for Laplace transforms of
(not necessarily bounded) positive measures (see [14], Theorem 2a, Section XIII.1,
page 433) we conclude that, on �1,

lim
n→∞νt

n(u,∞) = νt (u,∞) = Kpu−γ /β2 ∀u > 0.(3.64)

In the cases p = 3,4, where our estimates give only convergence in probability,
we obtain convergence of νt

n(u,∞) in probability, for example, by using the char-
acterization of convergence of probability in terms of almost sure convergence of
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sub-sequences; see, for example, [23], Section II. 19. This allows us to reduce the
proof in this case to that of the case of almost sure convergence.

Thus we have established Conditions (A1-1), (A2-1) and (A3-1) under the stated
conditions on the parameters γ,β,p, and Theorem 1.4 follows from Theorem 1.3.

3.7. Consequences for correlation functions. We now turn to the proof of The-
orem 1.5.

PROOF. The proof of this theorem relies on the following simple estimate. Let
us denote by Rn the range of the coarse grained and rescaled clock process Sb

n . The
argument of [1] in the proof of Theorem 1.2 that the event Aε

n(s, t)∩{Rn ∩ (s, t) �=
∅} has vanishing probability carries over unaltered. However, while in their case,
Aε

n(s, t) ⊃ {Rn ∩ (s, t) = ∅}, was obvious, due to the fact that the coarse graining
was done on a scale o(n); this is not immediately clear in our case, where the
number of steps within a block is of order n2. What we have to show is that if the
process spends the whole time from s to t within one bloc, then almost all of this
time is spent, without interruption, within a small ball of radius εn.

To show that this holds, we will need to establish two facts.

FACT 1. The first fact concerns the random environment. We will show that,
if a trajectory within a block of length θn ∼ n2 hits a point where the random
variables Hn are “big,” that is, of order an, then with overwhelming probability, all
other sites with “big” Hns this piece of path meets are within a distance εn from
this point. In other words, within one block, the path will never hit two distinct
clusters of large values of the random field.

FACT 2. The second fact concerns the properties of the random walk Jn. We
will show that the random walk that hits such a cluster of large values will spend
there, at most, a time of order εn, and it will not leave that cluster and return to it
later within θn steps.

These two properties imply our claim.
The proof of the first fact relies on the following elementary estimate for cor-

related Gaussian variables. Note that the following bound is not optimal but good
enough for our purposes.

LEMMA 3.11. Let X,Y be standard Gaussian variables with covariance
Cov(X,Y ) = 1 − c, 0 < c < 1/4. Then for a > 0,

P
(
X > a,Y > a(1 − c/4)

)≤ 1

a2π
√

c
exp

(
−a2

2

(
1 + c

32

))
(3.65)

+ 1√
2πa

exp
(
−a2

2
(1 + c)

)
.
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PROOF. Note that the variables X,Y have the joint density

1

2π
√

2c − c2
exp

(
−x2

2
− (y − (1 − c)x)2

4c − 2c2

)
.(3.66)

Next,

P
(
X > a,Y > a(1 − c/2)

)
(3.67)

≤ P
(
X > a, |Y − (1 − c)X| > ac/4

)+ P

(
X > a

1 − c/2

1 − c

)
.

The result is now a trivial application of the standard tail estimates for Gaussian
integrals. �

This lemma has the following corollary, which is a precise statement of Fact 1.

COROLLARY 3.12. Let Hn(σ) be the Gaussian process defined in (1.27). Let
Mn ⊂ �n be arbitrary. Then, for ε > 0 and all n large enough,

P
(∃x,x′∈Mn

: Rn(x, x′) < 1 − ε and

Hn(x) ≥ an ∧ Hn(x
′) ≥ an(1 − pε/4)

)
(3.68)

≤ |Mn|2e−na2/2e−na2pε/64.

A precise version of the second fact is the following lemma.

LEMMA 3.13. Define the events

Wε(k) ≡ ∃{θnk≤i<j−εn≤θn(k+1)}{Rn(Jn(i), Jn(j)) ≥ 1 − ε}.(3.69)

Then, for any ε < 1/4, there exists a constant C < ∞, such that for all n large
enough, there exists cε > 0, such that

Pπn(Wε(k)) ≤ Ce−cεn.(3.70)

PROOF. We clearly have to show only that an estimate of the form (3.70)
holds, for any j ≥ εn for the probability Pπn(Rn(Jn(0), Jn(j)) ≥ 1 − ε).
We may also assume that Jn(0) = 1 ≡ (1, . . . ,1). Observing that Rn(x, x′) =
1 − 2 dist(x, x ′) [see (1.30)], we have P(Rn((1, Jn(j))) ≥ 1 − ε) =
P(dist((1, Jn(j))) < ε/2). Now we saw in the proof of Lemma 3.7 that the chain
�n(j) ≡ dist(1, Jn(j)), j ≥ 1, is the Ehrenfest chain on {0, . . . , n}, and again
the desired exponential estimate follows from well-known estimates for the latter
chain; see, for example, [20]. �

We now continue the proof of Theorem 1.5. As remarked above,

Pπn(A
ε
n(s, t)) = Pπn

(
Aε

n(s, t) ∩ {
Rn ∩ (s, t) = ∅

})
(3.71)

+ Pπn

(
Aε

n(s, t) ∩ {
Rn ∩ (s, t) �= ∅

})
,
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where the second term tends to zero. Next we observe that

Pπn

(
Aε

n(s, t) ∩ {
Rn ∩ (s, t) = ∅

})
(3.72)

= Pπn

(
Rn ∩ (s, t) = ∅

)− Pπn

(
(Aε

n(s, t))
c ∩ {

Rn ∩ (s, t) = ∅
})

.

Here the first term is what we want. The event in the second term occurs only if
the block-variable, that ensures that the event Rn ∩ (s, t) = ∅ occurs, contains a
very long block or two sub-blocks contributing to its internal “clock-time.” Corol-
lary 3.12 and Lemma 3.13 will be used to prove that this tends to zero. To do so, it
is convenient to first show that the jump over (s, t) is realized before kn(N) steps,
with high probability.

For any N < ∞, we have

Pπn

(
(Aε

n(s, t))
c ∩ {

Rn ∩ (s, t) = ∅
})

=
kn(N)−1∑

k=0

Pπn

(
((Aε

n(s, t))
c) ∩ {

(s, t) ⊂ (
Sb

n(k), Sb
n(k + 1)

)})
(3.73)

+
∞∑

k=kn(N)

Pπn

(
((Aε

n(s, t))
c) ∩ {

(s, t) ⊂ (
Sb

n(k), Sb
n(k + 1)

)})
.

The second term is bounded by
∞∑

k=kn(N)

Pπn

(
((Aε

n(s, t))
c) ∩ {

(s, t) ⊂ (
Sb

n(k), Sb
n(k + 1)

)})
(3.74)

≤ Pπn

(
Sb

n(N) ≤ s
)→ P

(
Vγ/β2(N) ≤ s

)
,

where convergence is almost sure (respectively, in probability, if p = 3 or p = 4)
with respect to the environment, due to the already established convergence of Sb

n .
The last probability can be made as small as desired by choosing N sufficiently
large. It remains to deal with the first sum on the right-hand side of (3.73).

For a given trajectory Jn, define the event, Gρ(k) ⊂ F τ , that in block num-
ber k (of size θn) two points contribute significantly to the clock that have overlap
smaller then 1 − ρ. More precisely,

Gρ(k) ≡ ⋃
kθn≤i<j<(k+1)θn

Rn(Jn(i),Jn(j))≤1−ρ

{
λ−1

n (Jn(i))en,i ≥ cn

θn

(t − s)

}

(3.75)

∩
{
λ−1

n (Jn(j))en,j ≥ cn

θn

n−1
}
.

Note that Corollary 3.12 implies that the probability of this event, with respect to
the law P, is bounded nicely and uniformly in the variables J . Namely,

EPπn(Gρ(k)) ≤ a−1
n e−δn,(3.76)



CONVERGENCE OF CLOCK PROCESSES 845

for some δ > 0 depending on the choice of ρ. The simplest way to see this is to use
that the probability that one of the en,i is larger than n2 is smaller than exp(−n2),
and then use the bound from Corollary 3.12.

On the other hand, on the event Gρ(k)c, (Aε
n(s, t))

c ∩ {(s, t) ⊂ (Sb
n(k), Sb

n(k +
1))} can only happen if the following are true: first, there still must exist some i

such that λ−1
n (Jn(i))en,i ≥ cn(t −s)θ−1

n , and second, the random walk must realize
the event considered in Lemma 3.13.

By these considerations, we have the bound

E

(
kn(N)∑
k=0

Pπn

(
(Aε

n(s, t))
c ∩ {

(s, t) ⊂ (
Sb

n(k), Sb
n(k + 1)

)}))

≤
kn(N)∑
k=0

E
(

Pπn(Gρ(k)) + Pπn

({∃kθn≤i<(k+1)θnλ
−1
n (Jn(i))eni

> cnθ
−2
n

}
(3.77)

∩ Wε(k)
))

.

Next, we use Lemma 3.13 and similar reasoning as before to see that

EPπn

({∃kθn≤i<(k+1)θnλ
−1
n (Jn(i))eni

> cnθ
−2
n

}∩ Wε(k)
)

= P
(∃kθn≤i<(k+1)θnλ

−1
n (Jn(i))eni

> cnθ
−2
n

)
Pπn(Wε(k))

(3.78)
≤ θ2

nP
(
eβHn(x) > cnn

−4)Ce−nεcε + θne
−n2

≤ θ2
na−1

n nγ
√

nβ−2
e−nεcε + θne

−n2
.

Combining all this, we see that

E

(
kn(N)∑
k=0

Pπn

(
(Aε

n(s, t))
c ∩ {

(s, t) ⊂ (
Sb

n(k), Sb
n(k + 1)

)}))≤ CNe−δn,(3.79)

for some positive δ, whatever the choice of ε. But this estimate implies that the
term (3.72) converges to zero P-almost surely, for any choice of N . Hence the
result is obvious from the J1 convergence of Sb

n . �
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