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A SUFFICIENT CONDITION FOR THE CONTINUITY OF
PERMANENTAL PROCESSES WITH APPLICATIONS TO LOCAL

TIMES OF MARKOV PROCESSES1

BY MICHAEL B. MARCUS AND JAY ROSEN

City College of New York and College of Staten Island

We provide a sufficient condition for the continuity of real valued per-
manental processes. When applied to the subclass of permanental processes
which consists of squares of Gaussian processes, we obtain the sufficient con-
dition for continuity which is also known to be necessary. Using an isomor-
phism theorem of Eisenbaum and Kaspi which relates Markov local times
and permanental processes, we obtain a general sufficient condition for the
joint continuity of local times.

1. Introduction. Let T be an index set and {G(x), x ∈ T } be a mean
zero Gaussian process with covariance u(x, y), x, y ∈ T . It is remarkable that
for certain Gaussian processes, called associated processes, the process G2 =
{G2(x), x ∈ T } is closely related to the local times of a strongly symmetric Borel
right process with zero potential density u(x, y). This connection was first noted
in the Dynkin Isomorphism theorem [4, 5] and has been studied by several prob-
abilists, including the authors and Eisenbaum and Kaspi. Our book [14] presents
several results about local times that are obtained using this relationship.

The process G2 can be defined by the Laplace transform of its finite joint dis-
tributions
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(
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−1
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n∑
i=1

αiG
2(xi)

))
= 1

|I + αU |1/2(1)

for all x1, . . . , xn in T , where I is the n × n identity matrix, α is the diagonal
matrix with (αi,i = αi), αi ∈ R+ and U = {u(xi, xj )} is an n × n matrix, that is
symmetric and positive definite.

In 1997, Vere-Jones [18] introduced the permanental process θ := {θx, x ∈ T },
which is a real valued positive stochastic process with finite joint distributions that
satisfy
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|I + α�|β ,(2)
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where � = {�(xi, xj )}ni,j=1 is an n × n matrix and β > 0. (It would be better to
refer to θ as a β-permanental process.) In this paper, in analogy with (1), we con-
sider these processes only for β = 1/2 and refer to them as permanental processes.
The generalization here is that � need not be symmetric or positive definite.

Even in (1), the matrix U is not unique. The determinant

|I + αU | = |I + αMUM|(3)

for any signature matrix M . (A signature matrix is a diagonal matrix with entries
±1.)

The nonuniqueness is even more evident in (2). If D is any diagonal matrix with
nonzero entries, we have

|I + α�| = ∣∣I + αD−1�D
∣∣ = ∣∣I + αD−1�T D

∣∣.(4)

For a very large class of irreducible matrices �, it is known that these are the only
sources of nonuniqueness; see [12]. On the other hand, in certain extreme cases,
for example, if �1 and �2 are n × n matrices with the same diagonal elements and
all zeros below the diagonal, then |I + α�1| = |I + α�2|. For this reason we refer
to a matrix � for which (2) holds as a kernel of θ (rather than as the kernel of θ ).

When � is not symmetric and positive definite, it is not at all clear what ker-
nels � allow an expression of the form (2). (In [18] necessary and sufficient condi-
tions on � for (2) to hold are given, but they are very difficult to verify. There are
very few concrete examples of permanental processes in [18].)

It follows from the results in [18] that a sufficient condition for (2) to hold is
that all the real nonzero eigenvalues of � are positive and that r�(I + r�)−1 has
only nonnegative entries for all r > 0. In [7], Eisenbaum and Kaspi note that this
is the case when �(x, y), x, y ∈ T , is the potential density of a transient Markov
process on T . This enables them to find a Dynkin-type isomorphism for the local
times of Markov processes that are not necessarily symmetric, in which the role of
G2 is taken by the permanental process θ .

Both Eisenbaum and Kaspi have asked us if we could find necessary and suf-
ficient conditions for the continuity and boundedness of permanental processes.
In this paper we give a sufficient condition for the continuity of permanental pro-
cesses. When applied to the subclass of permanental processes which consists of
squares of Gaussian processes, it is, effectively, the sufficient condition for conti-
nuity which is also known to be necessary. We use our sufficient condition for the
continuity of permanental processes and an isomorphism theorem for permanental
processes given by Eisenbaum and Kaspi in [7], Theorem 3.2, to extend a suffi-
cient condition they obtain in [6], Theorem 1.1, for the continuity of local times of
Markov processes, to a larger class of Markov processes.

In Section 3 we review several properties of permanental processes. In particu-
lar, a key property of permanental processes is that �(x, x) ≥ 0 and

0 ≤ �(x, y)�(y, x) ≤ �(x, x)�(y, y) ∀x, y ∈ T .(5)
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This allows us to define

d(x, y) = 4
√

2/3
(
�(x, x) + �(y, y) − 2

(
�(x, y)�(y, x)

)1/2)1/2
.(6)

Let D = sups,t∈T d(s, t). D is called the d diameter of T .
Let (T ,ρ) be a metric or pseudometric space. Let Bρ(t, u) denote the closed

ball in (T ,ρ) with radius u and center t . For any probability measure μ on (T ,ρ),
we define

JT,ρ,μ(a) = sup
t∈T

∫ a

0

(
log

1

μ
(
Bρ(t, u)

))1/2

du.(7)

We occasionally omit some of the subscripts T ,ρ or μ, if they are clear from the
context.

Whether or not d(x, y) is a metric, or pseudometric on T , we can define the
sets Bd(s, u) = {t ∈ T |d(s, t) ≤ u}. We can then define JT,d,μ(a) as in (7), for any
probability measure μ for which the sets Bd(s, u) are measurable.

THEOREM 1.1. Let T be a separable topological space, and let B(T ) denote
it’s Borel σ -algebra. Let θ = {θx :x ∈ T } be a permanental process with kernel �

with the property that supx∈T �(x, x) < ∞. Assume that d(x, y) is continuous on
T × T and that there exists a probability measure μ on B(T ) such that

lim
δ→0

Jd(δ) = 0.(8)

Then there exists a version θ ′ = {θ ′
x :x ∈ T } of θ that is bounded and continuous

almost surely and satisfies

lim
δ→0

sup
s,t∈T

d(s,t)≤δ

|θ ′
s − θ ′

t |
Jd(d(s, t)/2)

≤ 60
(

sup
x∈T

θ ′
x

)1/2
a.s.,(9)

where in (9) and in similar situations elsewhere in this paper, we make the conven-
tion that 0/0 = 0.

We show in Lemma 3.2 that when θ is continuous on T almost surely, then
d(x, y) is continuous on T × T . Therefore, the condition in Theorem 1.1, that
d(x, y) is continuous on T × T , is perfectly reasonable. In particular, it is implied
by the continuity of �(x, y).

We say that a metric or pseudometric d1 dominates d on T if

d(x, y) ≤ d1(x, y) ∀x, y ∈ T .(10)

In Section 5, we give several natural metrics that dominate d .

COROLLARY 1.1. Let θ = {θx :x ∈ T } be a permanental process with ker-
nel � satisfying supx �(x, x) < ∞. Let d be given by (6), and let d1(x, y) be a
metric or pseudo-metric on T that dominates d(x, y) and is such that (T , d1) is
separable and has finite diameter D. Consider T with the d1 topology, that is,
(T , d1). Then Theorem 1.1 holds with d replaced by d1.
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In Section 4 we give a version of (9) for |θ ′
s − θ ′

t0
| for fixed t0 ∈ T , which pro-

vides a local modulus of continuity for permanental processes.
Let X = (	,Xt ,P

x) be a transient Borel right process with state space S and 0-
potential density u(x, y). We assume that S is a locally compact topological space,
and that u(x, y) is continuous. These conditions imply that X has local times; see,
for example, [14], Theorem 3.6.3. It is shown in [7], Theorem 3.1, that there exists
a permanental process θ = {θy;y ∈ S}, with kernel u(x, y), which they refer to as
the permanental process associated with X.

In [7], Theorem 3.2, an isomorphism theorem is given that relates the local
times of X and θ . In the next theorem, we use this isomorphism together with
Theorem 1.1 in this paper, to obtain a sufficient condition for the joint continuity
of the local times of X. When applied to strongly symmetric Markov processes, we
obtain the sufficient condition for joint continuity, that is known to be necessary;
see [14], Theorem 9.4.11. Applied to Lévy processes, which need not be symmet-
ric, we also obtain the sufficient condition for the joint continuity of local times
that is known to be necessary; see [1].

As usual, we use ζ to denote the death time of X.

THEOREM 1.2. Let S be a locally compact topological space with a countable
base. Let X = (	,Xt ,P

x) be a recurrent Borel right process with state space S

and continuous, strictly positive 1-potential densities u1(x, y). Define d(x, y) as
in (6) for the kernel u1(x, y). Suppose that for every compact set K ⊆ S, we can
find a probability measure μK on K , such that

lim
δ→0

JK,d,μK
(δ) = 0.(11)

Then X has a jointly continuous local time {Ly
t ; (y, t) ∈ S × R+}.

Let X be a transient Borel right process with state space S and continuous,
strictly positive 0-potential densities u(x, y). If (11) holds for every compact set
K ⊆ S, with d(x, y) defined as in (6) for the kernel u(x, y), X has a local time
{Ly

t ; (y, t) ∈ S × R+} which is jointly continuous on S × [0, ζ ).

In Theorem 1.2 we only get continuity of the local times of transient processes
on S × [0, ζ ). However, as it is pointed out in [6], if X is transient, using an argu-
ment of Le Jan, we can always find a recurrent process Y such that X is Y killed
the first time it hits the cemetery state �. Problematically, this changes the poten-
tials (see [3], (78.5)) and hence the condition (11). We leave it to the interested
reader to work out the details.

It is interesting to place Theorem 1.2 in the history of results on the joint con-
tinuity of local times of Markov processes. A good discussion is given in [6]. We
make a few comments here. In [1] Barlow gives necessary and sufficient condition
for the joint continuity of local times of Lévy processes. Local times are difficult
to work with. He works hard to obtain many of their properties. In [13] we use the
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Dynkin Isomorphism theorem (DIT) to obtain necessary and sufficient condition
for the joint continuity of local times of strongly symmetric Borel right processes,
which, obviously, includes symmetric Lévy processes. Using the DIT enables us to
infer properties of local times from those of Gaussian processes. These processes
are well understood and easier to work with than local times. Although the results
in [13] only give the results in [1] for symmetric Lévy processes, they apply to a
much larger class of symmetric Markov processes.

In [6], Eisenbaum and Kaspi extend Barlow’s approach to obtain sufficient con-
ditions for the joint continuity of local times of a large class of recurrent Borel
right processes and also give a modulus of continuity for the local times. In The-
orem 1.2, using a proof similar to the one in [13], we use Eisenbaum and Kaspi’s
isomorphism theorem for permanental processes [7], Theorem 3.2, to extend their
results in [6]. (In [6], they require the existence of a Borel right dual process. This is
not needed in Theorem 1.2. In Section 7 we show how to obtain [7], Theorem 3.2,
from Theorem 1.2.) We also obtain uniform and local moduli of continuity for the
local times.

THEOREM 1.3. Under the assumptions of Theorem 1.2,

lim
δ→0

sup
x,y∈K

d(x,y)≤δ

|Lx
t − L

y
t |

JK,d1,μK
(d(x, y)/2)

(12)
≤ 30 sup

y∈K

(
L

y
t

)1/2 for almost all t ∈ [0, ζ ) a.s.

The local modulus of continuity for local times is given in Theorem 6.2.
We thank Michel Talagrand for suggestions resulting in a significant simplifica-

tion of the proof of Theorem 1.1.

2. Some basic continuity theorems. For p ≥ 1, let ψp(x) = exp(xp) − 1
and Lψp(	, F ,P ) denote the set of random variables ξ :	 → R1 such that
Eψp(|ξ |/c) < ∞ for some c > 0. Lψp(	, F ,P ) is a Banach space with norm
given by

‖ξ‖ψp = inf
{
c > 0 :Eψp

(|ξ |/c) ≤ 1
}
.(13)

We shall only be concerned with the cases p = 1 and 2.
We obtain Theorem 1.1 with the help of the following basic continuity theo-

rems. They are, essentially, best possible sufficient conditions for continuity and
boundedness of Gaussian process. However, it is well known that they hold for
any stochastic process satisfying certain conditions with respect to the Banach
space Lψ2 .
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THEOREM 2.1. Let X = {X(t) : t ∈ T } be a stochastic process such that
X(t,ω) :T × 	 �→ [−∞,∞] is A × F measurable for some σ -algebra A on T .
Suppose X(t) ∈ Lψ2(	, F ,P ), and let

d̂(t, s) := ∥∥X(t) − X(s)
∥∥
ψ2

.(14)

[Note that the balls B
d̂
(s, u) are A measurable.]

Suppose that (T , d̂) has finite diameter D, and that there exists a probability
measure μ on (T , A) such that

J
d̂
(D) < ∞.(15)

Then there exists a version X′ = {X′(t), t ∈ T } of X such that

E sup
t∈T

X′(t) ≤ CJ
d̂
(D)(16)

for some C < ∞. Furthermore for all 0 < δ ≤ D,

sup
s,t∈T

d̂(s,t)≤δ

∣∣X′(s,ω) − X′(t,ω)
∣∣ ≤ 2Z(ω)J

d̂
(δ),(17)

almost surely, where

Z(ω) := inf
{
α > 0 :

∫
T

ψ2
(
α−1∣∣X(t,ω)

∣∣)μ(dt) ≤ 1
}

(18)

and ‖Z‖ψ2 ≤ K , where K is a constant.
In particular, if

lim
δ→0

J
d̂
(δ) = 0,(19)

X′ is uniformly continuous on (T , d̂) almost surely.

REMARK 2.1. Theorem 2.1 is well known. It contains ideas that originated in
an important early paper by Garcia, Rodemich and Rumsey Jr. [9], and were devel-
oped further by Preston [16, 17] and Fernique [8]. We present a generalization of it
in [15], Theorem 3.1. Unfortunately, the statement of [15], Theorem 3.1, makes it
appear that (19), in this paper, is required for (17), in this paper, to hold. This is not
the case as one can see from going through the proof of [15], Theorem 3.1. How-
ever, an easier way to see that (17), in this paper, holds is to note that it follows im-
mediately from [14], Theorem 6.3.3. Again, unfortunately, the hypothesis of [14],
Theorem 6.3.3, requires that X is a Gaussian process. A reading of the proof shows
that it actually only requires that X(t) ∈ Lψ2(	,P ) and ‖X(t)−X(s)‖ψ2 ≤ d(s, t)

for all s, t ∈ T where d(s, t) is some metric; see also [11].
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The inequality in (17) is not quite enough to give a best possible uniform mod-
ulus of continuity for X′. Instead we use the following lemma due to Heinkel [10],
Proposition 1.

LEMMA 2.1. Let (T , d̂) be a metric or pseudo-metric space with finite diame-
ter D and μ be a probability measure on T with the property that μ(B

d̂
(t, u)) > 0

for all t ∈ T and u > 0. Assume that (19) holds. Let {f (t), t ∈ T } be continuous
on (T , d̂), and set

f̃ (s, t) = f (s) − f (t)

d̂(s, t)
I{(u,v) : d̂(u,v) �=0}(s, t).(20)

Then if

cμ,T (f̃ ) =
∫
T ×T

ψ2
(
f̃ (s, t)

)
dμ(s) dμ(t) < ∞,(21)

we have that for all x, y ∈ T ,

∣∣f (x) − f (y)
∣∣ ≤ 20 sup

t∈T

∫ d̂(x,y)/2

0

(
log

(
cμ,T (f̃ ) + 1

μ2(B
d̂
(t, u))

))1/2

du.(22)

THEOREM 2.2. Under the hypotheses of Theorem 2.1, assume that (19) holds.
Then there exists a version X′ = {X′(t), t ∈ T } of X such that

lim
δ→0

sup
s,t∈T

d̂(s,t)≤δ

|X′(s) − X′(t)|
J

d̂
(d̂(s, t)/2)

≤ 30 a.s.(23)

PROOF. Assume first that we can find points t1, . . . , tn such that d̂(ti , tj ) > 0
for all i �= j . We can cover these points with n disjoint balls. Therefore the μ

measure of one of these balls must be less than or equal to 1/n. Consequently, for
all δ > 0, sufficiently small

J
T,d̂,μ

(δ) ≥ δ(logn)1/2.(24)

If n is the maximal number of such points, then the sup on the left-hand side of (23)
is zero for all δ sufficiently small. Here we use the fact that any other point t ∈ T

must satisfy d̂(t, tj ) = 0 for some j , and hence Xt = Xtj a.s. by the definition of d̂ ,

so that d̂(t, ti) = d̂(ti , tj ) for all i. Thus (23) is trivially true.
If there is an infinite number of such points, it follows from (24) that

lim
δ→0

J
d̂
(δ)

δ
= ∞.(25)
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By Theorem 2.1 we can assume that X = {X(t), t ∈ T } is continuous on (T , d̂)

almost surely. Define X̃ as in (20). Note that by Fubini’s theorem

E

(∫
T ×T

ψ2
(
X̃(s, t)

)
dμ(s) dμ(t)

)
(26)

= E

(∫
T ×T

ψ2

(
X(t) − X(s)

‖X(t) − X(s)‖ψ2

)
1{0<d̂(s,t)} dμ(s) dμ(t)

)
≤ 1.

Consequently, ∫
T ×T

ψ2
(
X̃(s, t)

)
dμ(s) dμ(t) < ∞ a.s.(27)

Let 	′ be the set of measure 1 in the probability space for which this is finite and
for which X(t,ω) is continuous. For each ω ∈ 	′,

cμ,T (X̃) =
∫
T ×T

ψ2
(
X̃(s, t,ω)

)
dμ(s) dμ(t) < ∞.(28)

To obtain (23), we use (22) with f (·) replaced by X̃(·). Note that the right-hand
side of (22)

≤ 10d̂(x, y)
(
log

(
cμ,T (f̃ ) + 1

))1/2 + 30J
d̂

(
d̂(x, y)/2

)
.(29)

Using (25) allows us to simplify the denominator in (23). �

We get a result similar to (25) for the local modulus of continuity, but it is more
delicate. We take this up in Section 4.

3. Proof of Theorem 1.1. We begin with some observations about perma-
nental processes. It is noted in [18], and immediately obvious from (2), that the
univariate marginals of a permanental process are squares of normal random vari-
ables. A key observation used in the proof of Theorem 1.1, which also follows
from (2), is that the bivariate marginals of a permanental process are squares of
bivariate normal random variables. We proceed to explain this.

For n = 2, (2) takes the form

E

(
exp

(
−1

2
(α1θx + α2θy)

))
= 1

|I + α�|1/2 = (
1 + α1�(x, x) + α2�(y, y)(30)

+ α1α2
(
�(x, x)�(y, y) − �(x, y)�(y, x)

))−1/2
.

Taking α1 = α2 sufficiently large, this implies that

�(x, x)�(y, y) − �(x, y)�(y, x) ≥ 0.(31)
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If we set α2 = 0 in (30), we see that for any x ∈ T ,

�(x, x) ≥ 0.(32)

In addition, by [18], page 135, last line, for any pair x, y ∈ T ,

�(x, y)�(y, x) ≥ 0.(33)

It follows from (31)–(33) that for any pair x, y ∈ T , the matrix[
�(x, x)

(
�(x, y)�(y, x)

)1/2(
�(x, y)�(y, x)

)1/2
�(y, y)

]
is positive definite, so that we can construct a mean zero Gaussian vector
{G(x),G(y)} with covariance matrix

E
(
G(x)G(y)

) = (
�(x, y)�(y, x)

)1/2
.(34)

Note that (
E

(
G(x) − G(y)

)2)1/2 =
√

3/2

4
d(x, y),(35)

defined in (6).

LEMMA 3.1. Suppose that θ := {θx, x ∈ T } is a permanental process for � as
given in (2). Then for any pair x, y,

{θx, θy} L= {
G2(x),G2(y)

}
,(36)

where {G(x),G(y)} is a mean zero Gaussian random variable with covariance
matrix given by (34).

PROOF. By (30) the Laplace transform of {θx, θy} is the same as the Laplace
transform of {G2(x),G2(y)}. �

PROOF OF THEOREM 1.1. It follows from Lemma 3.1 that

d̂(x, y) := ∥∥θ1/2
x − θ1/2

y

∥∥
ψ2

= ∥∥|Gx | − |Gy |
∥∥
ψ2

(37)
≤ ‖Gx − Gy‖ψ2 = d(x, y).

Since d(x, y) is continuous, the metric d̂(x, y) is also continuous. Therefore, the
separability of T implies that (T , d̂) is a separable metric space. By [2], Theorem 2,
we may assume that θ1/2 = {θ1/2

x , x ∈ T } is measurable with respect to (T , d̂).
(More explicitly, measurability means that θ

1/2
x (ω) :T ×	 �→ [0,∞] is B(T , d̂)×

F measurable.)
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By Theorem 2.1 with X = θ1/2 and A = B(T , d̂), we see that if there exists a
probability measure μ on (T , d̂) such that

lim
δ→0

J
d̂
(δ) = 0,(38)

then there exists a version X′ = {X′(t), t ∈ T } of X such that X′ is bounded and
uniformly continuous on (T , d̂) almost surely.

By assumption, there exists a probability measure μ on B(T ) such that

lim
δ→0

Jd(δ) = 0.(39)

Since d̂(x, y) is continuous, B(T , d̂) ⊆ B(T ). Hence we can restrict μ to be a
probability measure on (T , d̂), and it follows from (39) and (37) that (38) holds.
Thus we obtain a version X′ which is bounded and continuous on (T , d̂), and using
again the continuity of d̂(x, y), this implies continuity on T .

Similarly, it follows from Theorem 2.2 with X = θ1/2 that

lim
δ→0

sup
x,y∈T

d(x,y)≤δ

|θ1/2
x − θ

1/2
y |

Jd(d(x, y)/2)
≤ 30.(40)

Using the inequality

|θx − θy | ≤
∣∣θ1/2

x − θ1/2
y

∣∣2 sup
z

θ1/2
z ,(41)

we get (9). �

PROOF OF COROLLARY 1.1. By (37), d̂(x, y) ≤ d1(x, y). Consequently, the
proof of Corollary 1.1 follows immediately from the proof of Theorem 1.1. �

LEMMA 3.2. When θ is continuous on T almost surely, d(x, y) is continuous
on T × T .

PROOF. By Lemma 3.1,

E(θx) = �(x, x) and cov{θx, θy} = 2�(x, y)�(y, x).(42)

In addition, since the univariate marginals of θ are the squares of Gaussian random
variables, θx and θy are locally uniformly bounded in any Lp space. �

REMARK 3.1. Theorem 2.1 can be used to obtain more information about θ .
For example, a very minor modification of the proof of Theorem 1.1 shows that
when

Jd(D) < ∞,(43)

there exists a version X′ = {X′(t), t ∈ T } of X such that

E sup
t∈T

X′(t) ≤ CJd(D)(44)

for some C < ∞.
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4. Local moduli of continuity. In this section we give a basic theorem for
local moduli of continuity of processes in Lψ2 in the spirit of Section 2, and apply
it to permanental processes, as we do for the uniform modulus of continuity in
Section 3.

LEMMA 4.1. Let (T , d̂) be a separable metric or pseudometric space with
finite diameter D. Suppose that there exists a probability measure μ on (T , d̂)

such that J
T,d̂,μ

(D) < ∞.

For any t0 ∈ T and δ > 0, let Tδ := {s : d̂(s, t0) < δ/2}. Suppose 0 < δ ≤ δ0 < D

which implies that Tδ ⊆ TD . Consider the probability measures μδ(·) := μ(· ∩
Tδ)/μ(Tδ), 0 < δ ≤ δ0, and assume that cμδ,Tδ (f̃ ) < ∞, for each 0 < δ ≤ δ0;
see (21) for the definition of cμδ,Tδ . Then

sup
d̂(s,t0)<δ/2

∣∣f (s) − f (t0)
∣∣ ≤ 20 sup

t∈Tδ

∫ δ/4

0

(
log

(
cμδ,Tδ (f̃ ) + 1

μ2
δ(Bd̂

(t, u))

))1/2

du.(45)

PROOF. The condition that J
T,d̂,μ

(D) < ∞ implies that μ(B
d̂
(t, u)) > 0 for

all t ∈ T and u > 0. Since Tδ is open for every t ∈ Tδ , there exists a ball, say
B ′

d̂
(t, u) ⊂ Tδ . Consequently,

μδ

(
B ′

d̂
(t, u)

) =
μ(B ′

d̂
(t, u))

μ(Tδ)
> 0(46)

for all t ∈ T and u > 0. Therefore, (45) follows from Lemma 2.1. �

The next corollary and theorem follow immediately from Lemma 4.1.

COROLLARY 4.1. Let

H
Tδ,d̂,μδ,δ

(f̃ )
(47)

= δ
(
log

(
cμδ,Tδ (f̃ ) + 1

))1/2 + sup
t∈Tδ

∫ δ/4

0

(
log

(
1

μδ(Bd̂
(t, u))

))1/2

du.

Under the hypotheses of Lemma 4.1,

lim
δ→0

sup
d̂(s,t0)≤δ/2

|f (s) − f (t0)|
H

Tδ,d̂,μδ,δ
(f̃ )

≤ 30 a.s.(48)

THEOREM 4.1. Under the hypotheses of Theorem 2.1, assume that (19) holds.
Define μδ and Tδ as in Lemma 4.1. Then

lim
δ→0

sup
d̂(s,t0)≤δ/2

|X′(s) − X′(t0)|
H

Tδ,d̂,μδ,δ
(X̃)

≤ 30 a.s.(49)
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We can use Theorem 4.1 to find local moduli of continuity for permanental pro-
cesses. However, before we do this, we show that with an additional mild regularity
condition we can simplify the expression in the denominator of (49). Consider the
first term on the right-hand side of (47), with f̃ replaced by X̃. It is simply bounded
by a constant times δ unless lim supδ→0 cμδ,Tδ (X̃) = ∞ on a set of positive mea-
sure. Let us assume this is the case. As in (26), Ecμδ,Tδ (X̃) ≤ 1. Therefore, for
ε > 0,

P
(
log cμδ,Tδ (X̃) ≥ (1 + ε)u

) ≤ P
(
cμδ,Tδ (X̃) ≥ e(1+ε)u)

(50)
≤ e−(1+ε)u.

It follows from the Borel–Cantelli lemma that for all β < 1,

lim sup
k→∞

log cμ
βk ,T

βk
(X̃)

log log 1/βk
≤ 1.(51)

We would like to extend this to get

lim sup
δ→0

δ(log cμδ,Tδ (X̃))1/2

δ(log log 1/δ)1/2 ≤ C.(52)

Note that for βk+1 < δ ≤ βk ,

cμδ,Tδ (X̃) = 1

μ2(Tδ)

∫
Tδ×Tδ

ψ2(X̃) dμ(s) dμ(t)

≤ 1

μ2(Tδ)

∫
T

βk ×T
βk

ψ2(X̃) dμ(s) dμ(t)(53)

≤ μ2(Tβk )

μ2(Tβk+1)
cμ

βk ,T
βk

(X̃).

Consequently, if

lim sup
k→∞

μ(Tβk )

μ(Tβk+1)
≤ C,(54)

we can use (51) to get (52).
When (54) holds we have the following results for the local moduli of continuity

of permanental processes.

THEOREM 4.2. Under the hypotheses of Theorem 1.1, assume that (8)
and (54) hold. Then if θt0 �= 0 almost surely, there exists a version θ ′ = {θ ′

x, x ∈ T }
such that

lim
δ→0

sup
d(s,t0)≤δ/2

|θ ′
s − θ ′

t0
|

HTδ,d,μδ (δ/4)
≤ Cθ

1/2
t0

a.s.,(55)
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where

HTδ,d,μδ (δ/4) := δ(log log 1/δ)1/2 + JTδ,d,μδ (δ/4).(56)

(See Lemma 4.1 for the definitions of the other terms.)
If θt0 ≡ 0, there exists a version θ ′ = {θ ′

x, x ∈ T } such that

lim
δ→0

sup
d̂(s,t0)≤δ/2

θ ′
s

(HTδ,d,μδ (δ/4))2
≤ C a.s.(57)

PROOF. We use Theorem 4.1 with X = θ1/2 and (52) and the same argument
used in the proof of Theorem 1.1, in particular (37), to get

lim
δ→0

sup
d(s,t0)≤δ/2

|θ1/2
s − θ

1/2
t0

|
HTδ,d,μδ (δ/4)

≤ C a.s.(58)

It is easy to see that this gives (57). To get (55), fix δ′ > 0. Then for any δ ≤ δ′

sup
d(s,t0)≤δ/2

|θs − θt0 | ≤
∣∣θ1/2

s − θ
1/2
t0

∣∣2 sup
z∈Bd(t0,δ

′)
θ1/2
z ,

so we obtain

lim
δ→0

sup
d(s,t0)≤δ/2

|θs − θt0 |
HTδ,d,μδ (δ/4)

≤ C sup
z∈Bd(t0,δ

′)
θ1/2
z a.s.(59)

Letting δ′ → 0 completes the proof. �

REMARK 4.1. Note that if θ is the square of Gaussian process, HTδ,d,μδ (·) is
equivalent to the correct local modulus of continuity of the Gaussian process.

EXAMPLE 4.1. Theorems 4.1 and 4.2 seem very abstract. We show here how
they give the familiar iterated logarithm behavior for fairly regular processes on
nice spaces.

Take T to be the unit interval in R1. Assume that

d̂(s, t0) = φ
(|s − t0|) for 0 < |s − t0| ≤ δ0(60)

for some δ0 > 0, and some continuous increasing function φ. Now take μ to be
Lebesgue measure. In this case,

μ(Tδ) = 2φ−1(δ/2),(61)

so that, for example, (54) holds if φ is regularly varying. In addition, it follows
from [14], (7.94), that the second term on the right-hand side of (47), with f̃ re-
placed by X̃, is bounded by a constant times

δ +
∫ 1

0

φ(φ−1(δ/2)u)

u(log 2/u)1/2 du.(62)
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Note that under (60) we can replace d̂(s, t0) ≤ δ/2 in (49) by |s − t0| ≤ φ−1(δ/2).
Then, replacing φ−1(δ/2) by δ′ and making a change of variables, as in [14],
(7.96), and using (52), we get

lim
δ′→0

sup
|s−t0|≤δ′

|X′(s) − X′(t0)|
H̃ (δ′)

≤ C a.s.,(63)

where

H̃ (δ) = φ(δ)
(
log log 1/φ(δ/2)

)1/2 +
∫ 1

0

φ(2δu)

u(log 2/u)1/2 du.(64)

By [14], (7.128), if φ is regularly varying,

lim
δ→0

H̃ (δ)

φ(δ)(log log 1/δ)1/2 = 1.(65)

In the same vein, under (54) and the assumption that φ is regularly varying, it
follows from (2.2) and the material in [14], pages 298 and 299, that

lim
δ→0

sup
|s−t |≤δ

|X′(s) − X′(t)|
φ(δ)(log 1/δ)1/2 ≤ C a.s.(66)

5. Dominating metrics for permanental processes. We exhibit several in-
teresting metrics and other functions that dominate d or are even equivalent to d .
[d1 is equivalent to d (d ≈ d1) if there exist constants 0 < c1 ≤ c2 < ∞ such that
c1 d ≤ d1 ≤ c2 d .] Note that for C �= 0,

JT,Cd,μ(a) = CJT,d,μ(a/C).(67)

Therefore, multiplying a metric or related function by a constant alters our results
in an acceptable way.

We consider several scenarios. To simplify the exposition we work with

d(x, y) := d(x, y)/4
√

2/3
(68)

= (
�(x, x) + �(y, y) − 2

(
�(x, y)�(y, x)

)1/2)1/2
.

(1) Conditions under which d is equivalent to natural metrics for θ .

LEMMA 5.1. Let

dθ (x, y) = (
E(θx − θy)

2)1/2(69)

and

d̂θ (x, y) = (
E

(
(θx − Eθx) − (θy − Eθy)

)2)1/2
.(70)

Then √
2√

2+1
dθ (x, y) ≤ d̂θ (x, y) ≤ 2dθ (x, y)(71)
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and

K
(
�(x, x) + �(y, y)

)1/2
d(x, y) ≤ d̂θ (x, y)

(72)
≤ 2

(
�(x, x) + �(y, y)

)1/2
d(x, y),

where K = √
2/(

√
2 + 1).

REMARK 5.1. By (72),

c1d(x, y) ≤ d̂θ (x, y) ≤ c2d(x, y),(73)

where c1 = 2 infx∈T �1/2(x, x), c2 = 2
√

2 supx∈T �1/2(x, x). In particular, if

0 < inf
x∈T

�(x, x) ≤ sup
x∈T

�(x, x) < ∞,

then d is equivalent to d̂θ and dθ .

PROOF. By Lemma 3.1,

d̂2
θ (x, y) = 2

(
�2(x, x) + �2(y, y) − 2�(x, y)�(y, x)

)
.(74)

Let

d̃2(x, y) := (Eθx − Eθy)
2 = (

�2(x, x) + �2(y, y) − 2�(x, x)�(y, y)
)
.(75)

By (31),

d̃(x, y) ≤ 1√
2
d̂θ (x, y).(76)

By the Cauchy–Schwarz inequality,

d̃(x, y) ≤ dθ (x, y).(77)

Using this and the triangle inequality, we see that

d̂θ (x, y) ≤ dθ (x, y) + d̃(x, y) ≤ 2dθ (x, y)(78)

and

d̂θ (x, y) ≥ dθ (x, y) − d̃(x, y),(79)

which, along with (76), implies that(
1 + 1√

2

)
d̂θ (x, y) ≥ dθ (x, y).(80)

Thus we get (71).
By (74) and (5),

d̂2
θ (x, y) ≤ 2

((
�(x, x) + �(y, y)

)2 − 4�(x, y)�(y, x)
)

= 2
(
�(x, x) + �(y, y) − 2

√
�(x, y)�(y, x)

)
(81)

× (
�(x, x) + �(y, y) + 2

√
�(x, y)�(y, x)

)
.



686 M. B. MARCUS AND J. ROSEN

This gives the upper bound in (72).
For the lower bound, we note that

d2
θ (x, y) = E

(
G2(x) − G2(y)

)2

= E
{(

G(x) − G(y)
)2(

G(x) + G(y)
)2}

= E
(
G(x) − G(y)

)2
E

(
G(x) + G(y)

)2 + 2
(
E

{
G2(x) − G2(y)

})2

(82)
≥ E

(
G(x) − G(y)

)2
E

(
G(x) + G(y)

)2

= (
�(x, x) + �(y, y) − 2

√
�(x, y)�(y, x)

)
× (

�(x, x) + �(y, y) + 2
√

�(x, y)�(y, x)
)

Consequently,

dθ (x, y) ≥ (
�(x, x) + �(y, y)

)1/2
d(x, y).(83)

Using (71) we get the lower bound in (72). �

LEMMA 5.2.

d(x, y) ≤ d
1/2
θ (x, y).(84)

PROOF. By (82),

d2
θ (x, y) ≥ ((

�(x, x) + �(y, y)
)2 − 4�(x, y)�(y, x)

)
.(85)

Consequently,

dθ (x, y) ≥ ((
�(x, x) + �(y, y)

) − 2
(
�(x, y)�(y, x)

)1/2)
.(86)

Taking the square root again, we get (84). �

LEMMA 5.3.∣∣d(x, y) − d(x, z)
∣∣ ≤ C

(
1 + sup

u∈T

�(u,u)
)(

d̂
1/4
θ (y, z) + d̂

1/2
θ (y, z)

)
.(87)

PROOF.∣∣d(x, y) − d(x, z)
∣∣

≤ ∣∣d2
(x, y) − d

2
(x, z)

∣∣1/2

(88)
≤ ∣∣�(y, y) − �(z, z)

∣∣1/2 + 2
∣∣(�(x, z)�(z, x)

)1/2 − (
�(x, y)�(y, x)

)1/2∣∣1/2

≤ ∣∣�(y, y) − �(z, z)
∣∣1/2 + 2

∣∣�(x, z)�(z, x) − �(x, y)�(y, x)
∣∣1/4

.
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By (74), ∣∣�(x, z)�(z, x) − �(x, y)�(y, x)
∣∣

(89)
≤ C

(∣∣d̂2
θ (x, z) − d̂2

θ (x, y)
∣∣ + ∣∣�2(y, y) − �2(z, z)

∣∣),
and by (76), ∣∣�(y, y) − �(z, z)

∣∣ ≤ d̂θ (y, z).(90)

In addition,∣∣d̂2
θ (x, z) − d̂2

θ (x, y)
∣∣ ≤ 2 sup

u,v∈T

d̂θ (u, v)
∣∣d̂θ (x, z) − d̂θ (x, y)

∣∣
(91)

≤ 8 sup
u∈T

�(u,u)d̂θ (y, z).

Putting these together we get (87). �

LEMMA 5.4. Assume that supu∈T �(u,u) < ∞. Then the sets bd(x,u) = {y ∈
T |d(x, y) < u}, x ∈ T ,u ∈ R+ form the base for the d̂θ (and equivalently the dθ )
metric topology.

PROOF. Let fx(y) = d(x, y). By (87) we have that fx is continuous with
respect to d̂θ , and hence bd(x,u) = f −1

x ([0, u)) is open with respect to d̂θ .
We now show that for any x ∈ T ,u ∈ R+, and any y ∈ b

d̂θ
(x, u), we can find

v > 0 such that bd(y, v) ⊆ b
d̂θ

(x, u). To see this, first choose w > 0 such that

b
d̂θ

(y,w) ⊆ b
d̂θ

(x, u). It then follows from (73) that bd(y, c−1
2 w) ⊆ b

d̂θ
(y,w). By

(71) the same argument applies with d̂θ replaced by dθ . �

Let �(x, y) = �(x, y)�(y, x). It follows from Lemma 3.1 that {�(x, y), x, y ∈
T } is positive definite. Therefore it is the covariance of a mean zero Gaussian
process which we denote by {S(x), x ∈ T }. Clearly,

d̂θ (x, y) = (
E(Sx − Sy)

2)1/2
.(92)

(2) Conditions under which d is equivalent to a function that may be a metric
for a Gaussian process. We suppose that∣∣�(x, y)

∣∣ ∨ ∣∣�(y, x)
∣∣ ≤ �(y, y) ∧ �(x, x).(93)

Let

d2(x, y) = {
�(x, x) + �(y, y) − (∣∣�(x, y)

∣∣ + ∣∣�(y, x)
∣∣)}1/2

.(94)

LEMMA 5.5. When (93) holds,
1√
2
d(x, y) ≤ d2(x, y) ≤ d(x, y).(95)
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In general when �(x, y) is the potential density of a Borel right process X, in
place of (93), we only have

0 ≤ �(x, y) ≤ �(y, y) and 0 ≤ �(y, x) ≤ �(x, x);(96)

see, for example, [14], Lemma 3.3.6, where this is proved for symmetric potential
densities, and note that the proof also works when the densities are not symmetric.

Set �̃(x, y) = �(y, x). This is the potential density of X̃, the dual process of X.
Therefore, if X̃ is also a Borel right process, using (96), we actually get (93). In [6]
it is shown that for certain Borel right processes X with potential density �(x, y),
the symmetric function �(x,y)+�(y,x)

2 is positive definite, so that d2(x, y) is the L2

metric of a Gaussian process; see Section 7 for details.

PROOF OF LEMMA 5.5. We have

d
2
(x, y) = d2

2 (x, y) + ∣∣∣∣�(x, y)
∣∣1/2 − ∣∣�(y, x)

∣∣1/2∣∣2
(97)

≤ d2
2 (x, y) + ∣∣∣∣�(x, y)

∣∣ − ∣∣�(y, x)
∣∣∣∣.

By (93) if |�(x, y)| − |�(y, x)| ≥ 0, then∣∣∣∣�(x, y)
∣∣ − ∣∣�(y, x)

∣∣∣∣ ≤ �(y, y) − ∣∣�(y, x)
∣∣

≤ �(y, y) + �(x, x) − (∣∣�(y, x)
∣∣ + ∣∣�(x, y)

∣∣)(98)

= d2
2 (x, y).

Interchanging x and y, we also get that when and if |�(y, x)| − |�(x, y)| ≥ 0,∣∣�(y, x)
∣∣−∣∣�(x, y)

∣∣ ≤ d2
2 (x, y).(99)

Therefore,

d
2
(x, y) ≤ 2d2

2 (x, y).(100)

Using this and the first line of (97), we get (95). �

6. Local times of Borel right processes. Our primary motivation for obtain-
ing sample path properties of permanental processes was to use them, along with
the following isomorphism theorem, to obtain sample path properties of the lo-
cal times of Borel right processes, paralleling our use of Dynkin’s isomorphism
theorem in [13], to obtain sample path properties of the local times of strongly
symmetric Borel right processes.

Let X = (	,Xt ,P
x) be a Borel right process with 0-potential density u(x, y).

Let hx(z) = u(z, x), and assume that hx(z) > 0 for all x, z ∈ S. Recall that the
expectation operator Ez/hx for the hx-transform of X is given by

Ez/hx (F1{t<ζ }) = 1

hx(z)
Ez(Fhx(Xt)

)
(101)
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for all bounded F 0
t measurable functions F , where F 0

t is the σ -algebra generated
by {Xr,0 ≤ r ≤ t}; see, e.g., [14], (3.211). Here, as usual, Ez denotes the expecta-
tion operator for X started at z.

Recall that on page 672 we wrote that Eisenbaum and Kaspi pointed out that the
0-potential of a transient Markov process was a kernel for a permanental process.
Using this they establish the following isomorphism theorem.

THEOREM 6.1 (Eisenbaum and Kaspi [7]). Let X = (	,Xt ,P
x) be a Borel

right process with 0-potential density u(x, y), and let L = {Ly
t ; (y, t) ∈ S × R+}

denote the local times for X, normalized so that

Ev(
Ly∞

) = u(v, y).(102)

Let x denote a fixed element of S, and assume that u(x, x) > 0. Set

hx(z) = u(z, x).(103)

Let θ = {θy;y ∈ S} denote the permanental process with kernel u(x, y). Then, for
any countable subset D ⊆ S,{

Ly∞ + 1

2
θy;y ∈ D,P x/hx × Pθ

}
law=

{
1

2
θy;y ∈ D,

θx

u(x, x)
Pθ

}
.(104)

Equivalently, for all x1, . . . , xn in S and bounded measurable functions F on
Rn+, for all n,

Ex/hxEθ

(
F

(
Lxi∞ + θxi

2

))
= Eθ

(
θx

u(x, x)
F

(
θxi

2

))
.(105)

[Here we use the notation F(f (xi)) := F(f (x1), . . . , f (xn)).]

Theorem 6.1 is only a partial analog of Dynkin’s isomorphism theorem for
strongly symmetric Borel right processes, [14], Theorem 8.1.3, which holds with
measures P x/h, for a much wider class of functions h than those in (103). In addi-
tion, note that Theorem 6.1 can only give a version of {Ly

t ; (y, t) ∈ S ×R+} which
is jointly continuous with respect to the measures P x/hx . In order to use this to
obtain joint continuity with respect to the measures P x , we use (101) with z = x.
Therefore, since we require that hx(z) > 0 for all z ∈ S, when P x/hx (A, t < ζ) = 0
for some A ∈ F 0

t , we also have P x(A, t < ζ) = 0.
When we say that a stochastic process L̂ = {L̂y

t , (y, t) ∈ S ×R+} is a version of
the local time of a Markov process X we mean more than the traditional statement
that one stochastic process is a version of the other. Besides this, we also require
that the version is itself a local time for X, that is, that for each y ∈ S, L̂

y· is a local
time for X at y. To be more specific, suppose that L = {Ly

t , (y, t) ∈ S × R+} is a
local time for X. When we say that we can find a version of the local time which is
jointly continuous on S ×T , where T ⊂ R+, we mean that we can find a stochastic
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process L̂ = {L̂y
t , (t, y) ∈ (y, t) ∈ S × R+} which is continuous on S × T for all

x ∈ S and which satisfies, for each x, y ∈ S

L̂
y
t = L

y
t ∀t ∈ R+,P x a.s.(106)

Following convention, we often say that a Markov process has a continuous local
time, when we mean that we can find a continuous version for the local time.

PROOF OF THEOREM 1.2. The proof follows the general lines of the proof
for symmetric Markov processes in [13], Section 6. However, there are significant
differences, so we give a self-contained proof.

Since S is a locally compact topological space with a countable base, we can
find a metric ρ which induces the topology of S. We first consider the case where X

is a transient Borel right process with state space S and continuous, strictly positive
0-potential densities u(x, y). We take θ to be the permanental process with kernel
u(x, y).

Fix a compact set K ⊆ T and some x ∈ K . By (11), Theorems 1.1 and 2.1 we
can find a version of θ which is continuous on K almost surely, and such that for
each p,

E sup
x∈K

θp
x < ∞.(107)

We work with this version.
It follows from [13], (4.30) and (4.31), that for any z, y ∈ S

Ez/hx
(
Ly∞

) = u(z, y)hx(y)

hx(z)
.(108)

We shall use the fact that that Xt is a right continuous simple Markov process
under the measures P z/hx , [14], Lemma 3.9.1.

To begin, we first show first that L is jointly continuous on K × R+, almost
surely with respect to P x/hx . By [14], Lemma 3.9.1, we can assume that the local
times L

y
t are F 0

t measurable. Consider the martingale

A
y
t = Ex/hx

(
Ly∞ | F 0

t

)
.(109)

Let τt denote the shift operator on 	. Then

Ly∞ = L
y
t + Ly∞ ◦ τt = L

y
t + 1{t<ζ }Ly∞ ◦ τt .(110)

Therefore

A
y
t = L

y
t + Ex/hx

(
1{t<ζ }Ly∞ ◦ τt | F 0

t

)
(111)

= L
y
t + 1{t<ζ }Ex/hx

(
Ly∞ ◦ τt | F 0

t

) = L
y
t + 1{t<ζ }EXt/hx

(
Ly∞

)
,

where we use the simple Markov property described above. It follows from (108),
using the convention that 1/h(�) = 0, that

A
y
t = L

y
t + u(Xt , y)hx(y)

hx(Xt)
.(112)
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Since Xt is right continuous for P x/hx , A
y
t is also right continuous. Let D be a

countable, dense subset of K , and F a finite subset of D. Since

sup
ρ(y,z)≤δ

y,z∈F

A
y
t − Az

t = sup
ρ(y,z)≤δ

y,z∈F

∣∣Ay
t − Az

t

∣∣(113)

is a right continuous, nonnegative submartingale, we have, for any ε > 0,

P x/hx

(
sup
t≥0

sup
ρ(y,z)≤δ

y,z∈F

A
y
t − Az

t ≥ ε
)

(114)

≤ 1

ε
Ex/hx

(
sup

ρ(y,z)≤δ

y,z∈F

Ly∞ − Lz∞
)

≤ 1

ε
Ex/hx

(
sup

ρ(y,z)≤δ

y,z∈D

Ly∞ − Lz∞
)
.

It follows from (105) that

Ex/hx

(
sup

ρ(y,z)≤δ

y,z∈D

Ly∞ − Lz∞
)

≤ Eθ

(
sup

ρ(y,z)≤δ

y,z∈D

∣∣∣∣θy

2
− θz

2

∣∣∣∣)
(115)

+ 1

u(x, x)

(
Eθ

(
sup

ρ(y,z)≤δ

y,z∈D

∣∣∣∣θy

2
− θz

2

∣∣∣∣2)
Eθ

(
θ2
x

))1/2

.

It follows from the uniform continuity of θ on K and (107) that for any ε̄ > 0,
we can choose a δ > 0 such that the right-hand side (115) is less than ε̄. Combin-
ing (112)–(115), we get

P x/hx

(
sup
t≥0

sup
ρ(y,z)≤δ

y,z∈F

L
y
t − Lz

t ≥ 2ε

≤ ε̄ + P x/hx

(
sup
t≥0

1

h(Xt)
sup

ρ(y,z)≤δ

y,z∈D

(
u(Xt , y)hx(y) − u(Xt , z)hx(z)

) ≥ ε

))
(116)

≤ ε̄ + P x/hx

(
sup
t≥0

1

hx(Xt)
≥ ε

γ (δ)

)
,

where

γ (δ) = sup
w∈S

sup
ρ(y,z)≤δ

y,z∈D

∣∣u(w,y)hx(y) − u(w, z)hx(z)
∣∣

(117)
= sup

w∈K

sup
ρ(y,z)≤δ

y,z∈D

∣∣u(w,y)hx(y) − u(w, z)hx(z)
∣∣.



692 M. B. MARCUS AND J. ROSEN

The last equality follows from [14], (3.69), since the proof does not require that
u(x, y) is symmetric.

It follows easily from (101) and the fact that Xt is a simple Markov process un-
der the measures P z/hx , that 1/hx(Xt) is a supermartingale with respect to P x/hx .
Since 1/hx(Xt) is also right continuous and nonnegative, we have

P x/hx

(
sup
t≥0

1

hx(Xt)
≥ ε

γ (δ)

)
≤ γ (δ)

ε
Ex/hx

(
1

hx(X0)

)
= γ (δ)

εhx(x)
(118)

= γ (δ)

ε
.

Since both h and u are bounded and uniformly continuous on K , it follows
from (117) that by choosing δ > 0 sufficiently small, we can make the right-hand
side of (118) less than ε̄. By this observation and (116), and taking the limit over
a sequence of finite sets increasing to D, we see that for any ε and ε̄ > 0, we can
find a δ > 0 such that

P x/hx

(
sup
t≥0

sup
ρ(y,z)≤δ

y,z∈D

L
y
t − Lz

t ≥ 2ε
)

≤ 2ε̄.

It follows by the Borel–Cantelli lemma that we can find a sequence {δi}∞i=1, δi > 0,
such that limi→∞ δi = 0 and

sup
t≥0

sup
ρ(y,z)≤δi

y,z∈D

L
y
t − Lz

t ≤ 1

2i
(119)

for all i ≥ I (ω), almost surely with respect to P x/hx .
Fix T < ∞. We will now show that L

y
t is uniformly continuous on [0, T ] ×

D, almost surely, with respect to P x/hx . That is, for each ω ∈ 	′ ⊆ 	, with
P x/hx (	′) = 1, we can find an I (ω), such that for i ≥ I (ω),

sup
|s−t |≤δ′

i

s,t∈[0,T ]

sup
ρ(y,z)≤δ′

i

y,z∈D

∣∣Ly
s − Lz

t

∣∣ ≤ 1

2i
,(120)

where {δ′
i}∞i=1 is a sequence of real numbers such that δ′

i > 0 and limi→∞ δ′
i = 0.

To prove (120), fix ω and assume that i ≥ I (ω), so that (119) holds. Let Y =
{y1, . . . , yn} be a finite subset of D such that

K ⊆
n⋃

j=1

Bρ(yj , δi+2).

By definition, each L
yj

t (ω), j = 1, . . . , n, is uniformly continuous on [0, T ].
Therefore we can find a finite, increasing sequence t1 = 0, t2, . . . , tk−1 < T, tk ≥ T
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such that tm − tm−1 = δ′′
i+2 for all m = 1, . . . , k, where δ′′

i+2 is chosen so that∣∣Lyj

tm+1
(ω) − L

yj

tm−1
(ω)

∣∣ ≤ 1

2i+2 ∀j = 1, . . . , n, ∀m = 1, . . . , k − 1.(121)

Let s1, s2 ∈ [0, T ], and assume that s1 ≤ s2 and that s2 − s1 ≤ δ′′
i+2. There exists an

1 ≤ m ≤ k − 1, such that

tm−1 ≤ s1 ≤ s2 ≤ tm+1.

If y, z ∈ D satisfy ρ(y, z) ≤ δi+2, we can find a yj ∈ Y such that y ∈ Bρ(yj , δi+2).
If, in addition, L

y
s2(ω) ≥ Lz

s1
(ω), we have

0 ≤ Ly
s2

(ω) − Lz
s1

(ω)

≤ L
y
tm+1

(ω) − Lz
tm−1

(ω)
(122)

≤ ∣∣Ly
tm+1

(ω) − L
yj

tm+1
(ω)

∣∣ + ∣∣Lyj

tm+1
(ω) − L

yj

tm−1
(ω)

∣∣
+ ∣∣Lyj

tm−1
(ω) − L

y
tm−1

(ω)
∣∣ + ∣∣Ly

tm−1
(ω) − Lz

tm−1
(ω)

∣∣,
where the second inequality uses the fact that local time is nondecreasing in t .
The second term to the right of the last inequality in (122) is less than or equal
to 2−(i+2) by (121). The other three terms are also less than or equal to 2−(i+2)

by (119) since ρ(y, yj ) ≤ δi+2 and ρ(y, z) ≤ δi+2. Taking δ′
i = δ′′

i+2 ∧ δi+2, we
get (120) on the larger set [0, T ′] × D for some T ′ ≥ T . Obviously this im-
plies (120) as stated in the case when L

y
s2(ω) ≥ Lz

s1
(ω). A similar argument

gives (120) when L
y
s2(ω) ≤ Lz

s1
(ω). Thus (120) is established.

In what follows, we say that a function is locally uniformly continuous on a
measurable set A in a locally compact metric space if it is uniformly continuous
on A∩K for all compact subsets K ⊆ S. Let Kn be a sequence of compact subsets
of S such that S = ⋃∞

n=1 Kn, and let D′ be a countable dense subset of S. Let

	̂ = {
ω | Ly

t (ω) is locally uniformly continuous on [0, ζ ) × D′}.
Let Q denote the rational numbers. Then

	̂c = ⋃
s∈Q

1≤n≤∞

{
ω | Ly

t (ω) is not uniformly continuous on

(123)
[0, s] × (

Kn ∩ D′); s < ζ
}
.

Since hx > 0, it follows from (120) and (101) that P x(	̂c) = 0 for all x ∈ S, or
equivalently, that

P x(	̂) = 1 ∀x ∈ S.(124)

We now construct a stochastic process L̂ = {L̂y
t , (t, y) ∈ R+ × S} which is con-

tinuous on [0, ζ ) × S and which is a version of L. For ω ∈ 	̂, let {L̃y
t (ω), (t, y) ∈
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[0, ζ )×S} be the continuous extension of {Ly
t (ω), (t, y) ∈ [0, ζ )×D′} to [0, ζ )×

S. Set

L̂
y
t (ω) = L̃

y
t (ω) if t < ζ(ω),(125)

L̂
y
t (ω) = lim inf

s↑ζ(ω)

s∈Q

L̃
y
t (ω) if t ≥ ζ(ω)(126)

and for ω ∈ 	̂c, set

L̂
y
t (ω) ≡ 0 ∀t, y ∈ R+ × S.

The stochastic process {L̂y
t , (t, y) ∈ R+ × S} is well defined and, clearly, is jointly

continuous on [0, ζ ) × S.
We now show that L̂ is a local time by showing that for each x, y ∈ S,

L̂
y
t = L

y
t ∀t ∈ R+,P x almost surely.(127)

Recall that for each z ∈ D′, {Lz
t , t ∈ R+} is increasing, P x almost surely. Hence,

the same is true for {L̃y
t , t < ζ }, and so the limit inferior in (126) is actually a limit,

P x almost surely. Thus {L̂y
t , t ∈ R+} is continuous and constant for t ≥ ζ , P x

almost surely. Similarly, L
y
t , the local time for X at y, is, by definition, continuous

in t and constant for t ≥ ζ , P x almost surely. Now let us note that we could just as
well have obtained (120) with D′ replaced by D′ ∪ {y} and hence obtained (124)
with D′ replaced by D′ ∪{y} in the definition of 	̂. Therefore if we take a sequence
{yi}∞i=1 with yi ∈ D′ such that limi→∞ yi = y, we have that

lim
i→∞L

yi
t = L

y
t locally uniformly on [0, ζ ), P x a.s.(128)

By the definition of L̂, we also have

lim
i→∞L

yi
t = L̂

y
t locally uniformly on [0, ζ ), P x a.s.(129)

This shows that

L̂
y
t = L

y
t ∀t < ζ,P x a.s.(130)

Since L̂
y
t and L

y
t are continuous in t and constant for t ≥ ζ , we get (127). This

completes the proof of Theorem 1.2 when X is a transient Borel right process.
Now let X be a recurrent Borel right process with state space S and continuous,

strictly positive 1-potential densities u1(x, y). Let Y be the Borel right process
obtained by killing X at an independent exponential time λ with mean one. The
0-potential densities for Y are the 1-potential densities for X. Thus we have a tran-
sient Borel right process Y with continuous, strictly positive 0-potential densities
u1(x, y). It is easy to see that L

y
t∧λ is a local time for Y . Therefore, by what we

have just shown for transient processes, L
y
t is continuous on S × [0, λ), P x × ν

almost surely, where ν is the probability measure of λ. It now follows by Fubini’s
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theorem that L
y
t is continuous [0, qi)×S for all qi ∈ Q, P x almost surely, where Q

is a countable dense subset of R+. This gives the proof when X is recurrent.
�

We also can give a good local modulus of continuity for the local times.

THEOREM 6.2. Let X = (	,Xt ,P
x) be a Borel right process that satisfies all

the hypotheses in Theorem 1.2. Let d1 be a continuous metric or pseudometric that
dominates d on S × S. Fix x0 ∈ S, let Tδ and μδ be as in Lemma 4.1 and assume
that (54) holds. Then for almost every t ,

lim
δ→0

sup
d1(x,x0)≤δ/2

|Lx
t − L

x0
t |

HTδ,d1,μδ (δ/4)
≤ C

(
L

x0
t

)1/2 a.s.,(131)

where HTδ,d1,μδ (δ/4) is given in (56).

PROOF. Let λ be an independent mean one exponential. Note that for a con-
tinuous function, the sup over any set can be evaluated by taking the sup over a
countable dense subset. Then using Theorem 6.1 and (55),

lim
δ→0

sup
d1(x,x0)≤δ/2

|Lx
λ − L

x0
λ |

HTδ,d1,μδ (δ/4)

≤ lim
δ→0

sup
d1(x,x0)≤δ/2

|Lx
λ + θx/2 − (L

x0
λ + θx0/2)|

HTδ,d1,μδ (δ/4)

+ lim
δ→0

sup
d1(x,x0)≤δ/2

|θx/2 − θx0/2|
HTδ,d1,μδ (δ/4)

≤ C

(
L

x0
λ + θx0

2

)1/2

+ C

(
θx0

2

)1/2

a.s.,

with respect to the product measure Ex/hxEθ . Since θx0 is the square of a normal
random variable, for any ε > 0 we have that Pθ(θx0 ≤ ε) > 0. It then follows by
Fubini’s theorem that

lim
δ→0

sup
d1(x,x0)≤δ/2

|Lx
λ − L

x0
λ |

HTδ,d1,μδ (δ/4)
≤ C

(
L

x0
λ + ε

)1/2 + Cε1/2 a.s.(132)

The theorem follows by taking ε → 0 and then using Fubini’s theorem as in the
last paragraph of the preceding proof. �

PROOF OF THEOREM 1.3. We show below that for any ε > 0, we can find
γ > 0 such that for all x0 ∈ K ,

P
(

sup
x∈K

d(x0,x)≤γ

θ1/2
x ≤ ε

)
> 0.(133)
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The same proof leading to (132), but using Theorem 1.1, shows that

lim
δ→0

sup
x,y∈K∩Bd(x0,γ )

d(x,y)≤δ

|Lx
λ − L

y
λ|

Jd(d(x, y)/2)
≤ C

(
sup
x∈S

Lx
λ + ε2

)1/2
a.s.(134)

Using the compactness of K this leads to

lim
δ→0

sup
x,y∈K

d(x,y)≤δ

|Lx
λ − L

y
λ|

Jd(d(x, y)/2)
≤ C

(
sup
x∈S

Lx
λ + ε2

)1/2
a.s.(135)

The theorem follows by taking ε → 0 and then using Fubini’s theorem as in the
previous proof.

Let � = supx∈K u1(x, x) and η be a standard normal random variable. For any
ε > 0, we can find ε′ > 0 such that

P
(
�1/2|η| ≤ ε/2

) ≥ 2ε′.(136)

Recalling Lemma 3.1, it follows that

sup
x∈K

P
(
θ1/2
x ≤ ε/2

) ≥ 2ε′.(137)

By (40), for some γ ′ > 0, sufficiently small

P

(
sup

x,y∈K

d(x,y)≤γ ′

|θ1/2
x − θ

1/2
y |

Jd(d(x, y)/2)
≤ 30

)
≥ 1 − ε′.(138)

Under the hypothesis (8), there exists a 0 < γ ≤ γ ′, such that

P

(
sup

x,y∈K

d(x,y)≤γ

|θ1/2
x − θ1/2

y | ≤ ε

2

)
≥ 1 − ε′.(139)

For any x0 ∈ K , (133) follows by taking

θ1/2
x ≤ θ1/2

x0
+ ∣∣θ1/2

x − θ1/2
x0

∣∣(140)

and using (137) and (139). �

7. Further considerations of Theorem 1.2. It is clear that Theorem 1.2 holds
if d in (11) is replaced by a metric that dominates it. We use this observation to
show that Theorem 1.2 gives the continuity results in [6], Theorem 1.1.

Let X be a recurrent Borel right process with state space S and strictly positive
α-potential densities with respect to some reference measure. Let 0 be a distin-
guished point in S, and let uT0(x, y) denote the potential densities of the Borel
right process Y , which is X killed the first time it hits 0. In [6], the authors show
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that when X has a dual Borel right process, uT0(x, y) + uT0(y, x) is positive defi-
nite, so that

κ(x, y) = (
uT0(x, x) + uT0(y, y) − uT0(x, y) − uT0(y, x)

)1/2(141)

is a metric on S. In [6], Theorem 1.1, they show that if for every compact set
K ⊆ S, there exists a probability measure μK on K , such that

lim
δ→0

JK,κ,μK
(δ) = 0,(142)

then the local times of X are jointly continuous.
To see how this result follow from Theorem 1.2 let {Ly

t ; (y, t) ∈ S ×R+} denote
the local times of X. Let τ(t) = inf{s ≥ 0|L0

s > t} be the inverse local time at 0 and
let λ be an independent exponential random variable with mean 1. Let uτ(λ)(x, y)

denote the potential densities for the Borel right process Z, which is X killed at
τ(λ). It follows from [14], (3.193), that

uτ(λ)(x, y) = uT0(x, y) + 1.(143)

Let d(x, y) be the function defined in (6) for the kernel uτ(λ)(x, y).
We now note that since X has a dual Borel right process, so does Y . Therefore

uT0(x, y), the potential of Y , satisfies (93). By (143), uτ(λ)(x, y) also satisfies (93)
and, obviously, the d2 metric for uτ(λ)(x, y) [defined in (94)] is equal to κ(x, y).
Therefore, by (95),

√
3

8 d(x, y) ≤ κ(x, y),(144)

and consequently (142) implies (11).
Therefore, it follows from Theorem 1.2, that X has continuous local times on

S ×[0, τ (λ)). Using Fubini’s theorem, as in the last paragraph of the proof of The-
orem 1.1, and the fact that limt→∞ τ(t) = ∞, we see that X has jointly continuous
local times on S × [0,∞).
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