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We establish characterization results for the ergodicity of stationary sym-
metric α-stable (SαS) and α-Fréchet random fields. We show that the result
of Samorodnitsky [Ann. Probab. 33 (2005) 1782–1803] remains valid in the
multiparameter setting, that is, a stationary SαS (0 < α < 2) random field
is ergodic (or, equivalently, weakly mixing) if and only if it is generated by
a null group action. Similar results are also established for max-stable ran-
dom fields. The key ingredient is the adaption of a characterization of pos-
itive/null recurrence of group actions by Takahashi [Kōdai Math. Sem. Rep.
23 (1971) 131–143], which is dimension-free and different from the one used
by Samorodnitsky.

1. Introduction. A process is called sum-stable (max-stable, resp.) if so are
its finite-dimensional distributions and it arises as a limit, under suitable affine
transformations, of sums (maxima, resp.) of independent processes. Convenient
stochastic integral representations have been developed and actively used to study
the structure and properties of sum-stable processes and random fields (see, e.g.,
Samorodnitsky and Taqqu [35], Rosiński [20, 21], Rosiński and Samorodnit-
sky [23], Pipiras and Taqqu [18], Samorodnitsky [32–34], Roy and Samorodnit-
sky [30] and Roy [28, 29]). On the other hand, the seminal works of de Haan [4]
and de Haan and Pickands [5] as well as the recent developments by Stoev and
Taqqu [37], Wang and Stoev [41, 42] and Kabluchko [9] have developed similar
tools to represent and handle general classes of max-stable processes.

The ergodic properties of stationary stochastic processes and random fields are
of fundamental importance and hence well-studied. See, for example, Maruyama
[14], Rosiński and Żak [24, 25] and Roy [26, 27] for results on infinite divisible
processes and Cambanis et al. [2], Podgórski [19], Gross and Robertson [8] and
Gross [7] for results on stable processes. These culminated in the characterization
of Samorodnitsky [34], which shows that the ergodicity of a stationary symmetric
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stable process is equivalent to the null-recurrence of the underlying nonsingular
flow. On the other hand, the ergodic properties of max-stable processes have been
recently studied by Stoev [36], Kabluchko [9] and Kabluchko and Schlather [10].
In particular, Kabluchko [9] has shown that as in the sum-stable case, one can asso-
ciate a nonsingular flow to the stationary max-stable process and that the character-
ization of Samorodnitsky [34] remains valid. The case of random fields, however,
remained open in both sum- and max-stable settings.

Our goal in this paper is to establish a Samorodnitsky-type characterization for
sum-stable and max-stable random fields. The main obstacle is the unavailabil-
ity of a higher-dimensional analogue of the work of Krengel [12], which plays
a crucial role in Samorodnitsky’s approach for processes. We resolve this prob-
lem by providing an alternative dimension-free characterization of ergodicity for
both classes of sum- and max-stable stationary random fields. For simplicity of
exposition as well as mathematical tractability, we work with symmetric α-stable
(SαS), (0 < α < 2) sum-stable random fields and α-Fréchet max-stable random
fields (α > 0).

The key ingredient of our results is the adaptation of the work of Takahashi [39].
Thanks to Takahashi’s result, we are able to develop tractable and dimension-free
criteria for verifying whether a given spectral representation corresponds to an SαS
random field generated by a null (or positive) action. We also extend a well-known
result of Gross [7] and give necessary and sufficient condition for a stationary SαS
random field to be weakly mixing and in the process fill a gap in the proof of [7]
(see Remark A.6 below). Similar results for α-Fréchet random fields are obtained.
Furthermore, these results offer alternative characterizations of ergodicity in the
one-dimensional case.

The paper is organized as follows. In Section 2 we start with some auxiliary
results from ergodic theory. In Section 3 we establish the positive-null decompo-
sition for measurable stationary SαS random fields. Section 4 characterizes the
ergodicity of SαS random fields. The max-stable setting is discussed in Section 5.
We conclude with a couple of examples in Section 6. Some technical proofs and
auxiliary results are given in the Appendix.

2. Preliminaries on ergodic theory. Throughout this paper, we let (S, B,μ)

denote a standard Lebesgue space (see Appendix A in [18]). Let φ denote a bi-
measurable and invertible transformation on S. We say that φ is nonsingular, if
the measure μ ◦ φ−1 and μ are equivalent, written μ ◦ φ−1 ∼ μ. In this case, one
can define the dual operator φ̂ as a mapping from L1(S,μ) to L1(S,μ):

φ̂f (s) ≡ [φ̂f ](s) :=
(

d(μ ◦ φ−1)

dμ

)
(s)f ◦ φ−1(s).(2.1)

Note that φ̂ is a positive linear isometry (hence a contraction) on L1(S,μ). The
characterization results in the next section are in terms of dual operators.
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2.1. Group actions. Let G ≡ (G,+) be a locally compact, topological
Abelian group with identity element 0. Equip G with the Borel σ -algebra A.

DEFINITION 2.1. A collection of measurable transformations φt :S → S,
t ∈ G is called a group action of G on S (or a G-action), if:

(i) φ0(s) = s for all s ∈ S,
(ii) φv+u(s) = φu ◦ φv(s) for all s ∈ S,u, v ∈ G,

(iii) (s, u) �→ φu(s) is measurable w.r.t. the product σ -algebra A ⊗ B.

A G-action G = {φt }t∈G on (S,μ) is nonsingular if φt is nonsingular for all
t ∈ G. In this paper, all the group actions are assumed to be nonsingular.

The existence of a G -invariant finite measure ν, ν ∼ μ (equivalently, the exis-
tence of a fixed point of the dual operator φ̂, see, e.g., Proposition 1.4.1 in [1]),
is an important problem in ergodic theory. The investigation of this problem was
initiated by Neveu [15] and further explored by Krengel [12] and Takahashi [39],
among others. In the rest of this section we present results due essentially to Taka-
hashi [39]. We will see that the invariant finite measures induce a modulo μ unique
decomposition of S. This decomposition will play an important role in the charac-
terization of ergodicity for sum- and max-stable random fields. The proofs of the
results mentioned in this section are given in the Appendix.

Consider the class of finite (positive) G -invariant measures on S absolutely con-
tinuous with respect to μ:

�(G) := {ν 	 μ :ν finite measure on S, ν ◦ φ−1 = ν for all φ ∈ G}.
For all ν ∈ �(G), let Sν ≡ supp(ν) := {dν/dμ > 0} denote the support of ν

(mod μ) and set I (G) := {Sν :ν ∈ �(G)}.

LEMMA 2.2. There exists a modulo μ unique maximal element PG ∈ I (G),
that is:

(i) For all Sν ∈ I (G), Sν ⊂ PG , that is, μ(Sν \ PG ) = 0.
(ii) If (i) holds for QG ∈ I (G), then PG = QG modulo μ.

This result suggests the decomposition

S = PG ∪ NG ,(2.2)

where NG := S \PG . The set PG ≡ Sν0, ν0 ∈ �(G) is the largest (mod μ) set where
one can have a finite G -invariant measure ν0, equivalent to μ|PG . Consequently,
there are no finite measures supported on NG , invariant w.r.t. G and absolutely
continuous w.r.t. μ. The next theorem provides a convenient characterization of
the decomposition (2.2).
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THEOREM 2.3. Consider any f ∈ L1(S,μ), f > 0. Let PG denote the unique
maximal element of I (G) and set NG := S \ PG . We have the following:

(i) The sets PG and NG are invariant w.r.t. G , that is, for all φ ∈ G , we have

μ
(
φ−1(PG )�PG

) = 0 and μ
(
φ−1(NG )�NG

) = 0.

(ii) Restricted to PG ,

∞∑
n=1

φ̂unf (s) = ∞, μ-a.e. for all {φun}n∈N ⊂ G.(2.3)

(iii) Restricted to NG ,

∞∑
n=1

φ̂unf (s) < ∞, μ-a.e. for some {φun}n∈N ⊂ G.(2.4)

The decomposition in (2.2) is unique (mod μ). It is referred to as the positive-
null decomposition w.r.t. G . The sets PG and NG are referred to as the positive and
null parts of S w.r.t. G , respectively. If μ(NG ) = 0 [μ(PG ) = 0, resp.], then G is
said to be a positive (null, resp.) G-action.

The next result provides an equivalent characterization of (2.2) based on the
notion of a weakly wandering set. Recall that a measurable set W ⊂ S is weakly
wandering, w.r.t. G , if there exists {φtn}n∈N ⊂ G such that μ(φ−1

tn (W)∩φ−1
tm (W)) =

0 for all n �= m.

THEOREM 2.4. Under the assumptions of Theorem 2.3, we have the follow-
ing:

(i) The positive part PG has no weakly wandering set of positive measure.
(ii) The null part NG is a union of weakly wandering sets w.r.t. G .

REMARK 2.5. In the one-dimensional case, Krengel [12] (for G = Z) and
Samorodnitsky [34] (for G = R) establish alternative characterizations of the de-
composition (2.2). These results involve certain integral tests, which we were un-
able to extend to multiple dimensions. Takahashi’s characterizations, employed in
Theorem 2.3, are valid for all dimensions.

2.2. Multiparameter ergodic theorems. In the rest of the paper we focus on
T

d -actions, where T stands for either Z or R. We equip T
d with the measure

λ ≡ λTd , which is either the counting (if T = Z) or the Lebesgue (if T = R) mea-
sure. In the sequel we establish multiparameter versions of the stochastic ergodic
theorem and Birkhoff theorem for the case of T

d -actions. They are extensions of
the well-known results in the one-dimensional case. The proofs follow from the
works of Krengel and Tempel’man (see, e.g., [13]).
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Introduce the average functional AT , defined for all locally integrable h : Td →
R:

AT h ≡ ATd ,T h := 1

C(T )

∫
B(T )

h(t)λ(dt)

with B(T ) ≡ BTd (T ) := (−T ,T ]d ∩ T
d and C(T ) ≡ CTd (T ) := (2T )d .

Consider now a collection of functions {ft }t∈Td ⊂ L1(S,μ) such that (t, s) �→
f (t, s) ≡ ft (s) is jointly measurable when T ≡ R. Then, one can define the aver-
age operator:

(AT f )(s) := 1

C(T )

∫
B(T )

ft (s)λ(dt).(2.5)

Let ‖ · ‖ denote the L1 norm. If t �→ ‖ft‖ is locally integrable (i.e., integrable
on finite intervals), then Fubini’s theorem implies that AT f ∈ L1(S,μ), for all
T > 0. Recall also that a sequence of measurable functions {fn}n∈N ⊂ Lα(S,μ)

converges stochastically (or locally in measure) to g ∈ Lα(S,μ), in short, fn
μ→ g,

as n → ∞, if

lim
n→∞μ

({s : |fn(s) − g(s)| > ε} ∩ B
) = 0

(2.6)
for all ε > 0,B ∈ B with μ(B) < ∞.

REMARK 2.6. By Theorem A.1 in [11], there exists a strictly positive measur-
able function (t, s) �→ w(t, s), such that for all t ∈ T

d , w(t, s) = d(μ ◦ φt)/dμ(s)

for μ-almost all s, and for all t, h ∈ T
d and for all s ∈ S,

w(t + h, s) = w(h, s)w(t, φh(s)).(2.7)

From now on, we shall use w(t, s) as the version of the Radon–Nikodym derivative
d(μ ◦ φt)/dμ(s).

THEOREM 2.7 (Multiparameter stochastic ergodic theorem for nonsingular ac-
tions). Let {φt }t∈Td be a nonsingular T

d -action on the measure space (S,μ). Let
f0 ∈ L1(S,μ) and define f (t, s) ≡ (φ̂−t f0)(s) := w(t, s)f0 ◦ φt (s). Then, there
exists f̃ ∈ L1(S,μ), such that

AT f ≡ 1

C(T )

∫
B(T )

f (t, ·)λ(dt)
μ→ f̃ as T → ∞.(2.8)

Moreover, f̃ is invariant w.r.t. Ĝ , that is, φ̂t f̃ = f̃ for all t ∈ T
d .

PROOF. Suppose first that T = Z. The existence of f̃ follows from Kren-
gel’s stochastic ergodic theorem (Theorem 6.3.10 in [13]). To see that f̃ is
L1-integrable, pick a subsequence Tn such that ATnf → f̃ ,μ-a.e., as n → ∞.
By Fatou’s lemma, ‖f̃ ‖ = ‖limn→∞ ATnf ‖ ≤ lim infn→∞ ‖ATnf ‖ ≤ ‖f0‖ <
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∞, which implies f̃ ∈ L1(S,μ). Here we used the fact that
∫
S |AT f |dμ ≤

AT

∫
S |φ̂−t f0|dμ = AT ‖f0‖ = ‖f0‖.

We now prove that f̃ is invariant w.r.t. Ĝ . Fix τ ∈ T
d and let Tn → ∞ be such

that gn := ATnf → f̃ , μ-a.e., as n → ∞. Then, since φτ is nonsingular,

(φ̂−τ gn)(s) ≡ d(μ ◦ φτ )

dμ
(s)gn ◦ φτ (s)

(2.9)

−→ d(μ ◦ φτ )

dμ
(s)f̃ ◦ φτ (s) ≡ (φ̂−τ f̃ )(s), μ-a.e.

as n → ∞. On the other hand, since f (t, φτ (s)) = w(t,φτ (s))f0 ◦ φt+τ (s), we
obtain by (2.7) and Fubini’s theorem that

(φ̂−τ gn)(s) = 1

C(Tn)

∫
B(Tn)

w(τ + t, s)f0(φτ+t (s))λ(dt)

= 1

C(Tn)

∫
B(Tn)+τ

f (t, s)λ(dt), μ-a.e.

Therefore, by performing cancelations and applying Fubini’s theorem, we get

‖φ̂−τ gn − gn‖ ≤ λ((B(Tn) + τ)
B(Tn))

C(Tn)
‖f0‖,

where D
E = (D \ E) ∪ (E \ D) is the symmetric difference of sets. The last

term vanishes, as n → ∞, since τ ∈ Z
d is fixed. This implies that φ̂−τ gn

μ→ f̃ , as
n → ∞, which, in view of (2.9), yields φ̂−τ f̃ = f̃ ,μ-a.e. This, since τ ∈ Z

d was
arbitrary, establishes the desired invariance of the limit f̃ .

Suppose now that T = R. Since we will use the result proved for T = Z, we
explicitly write AZd ,T and ARd ,T to distinguish between the discrete and integral
average operators, respectively. In view of part (i), for all δ > 0, we have

ARd ,nδf0 ≡ 1

(2nδ)d

∫
(−nδ,nδ]d

φ̂−τ f dτ

(2.10)

= 1

(2n)d

∑
t∈(−n,n]d∩Zd

φ̂−δtg
(δ) ≡ AZd ,ng

(δ),

where

g(δ)(s) := 1

δd

∫
(−δ,0]d

(φ̂−τ f0)(s)dτ ∈ L1(S,μ).

As already shown for the case T = Z, the right-hand side of (2.10) converges
stochastically, as n → ∞, to g̃(δ) ∈ L1(S,μ), where g̃(δ) is φ̂−δt -invariant, for
all t ∈ Z

d . Write Tδ = �T/δ�δ. Since for all δ > 0, the volume of (−T ,T ]d \
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(−Tδ, Tδ]d is o(C(T )) as T → ∞, it follows that ‖ARd ,T f − ARd ,Tδ
f ‖ → 0 as

T → ∞. Therefore, we have that

ARd ,T f
μ→ g̃(δ) as T → ∞,

which shows, in particular, that g̃(δ) = g̃ ∈ L1(S,μ) must be independent of δ > 0.
Since g̃ is invariant w.r.t. φ̂δt for all δ > 0 and t ∈ Z

d , it follows that g̃ is Ĝ -
invariant. �

THEOREM 2.8 (Multiparameter Birkhoff theorem). Assume the conditions of
Theorem 2.7 hold. Suppose, moreover, that the action {φt }t∈Td is measure preserv-
ing on (S,μ), and that μ is a probability measure. Then,

AT f → f̃ := Eμ(f |I) almost surely and in L1,

where I is the σ -algebra of all G -invariant measurable sets.

PROOF. Suppose first that T = Z. The almost sure convergence and the struc-
ture of the limit f̃ follow from Tempel’man’s theorem (Theorem 6.2.8 in [13],
page 205). The L1-convergence is clear when f0 is bounded. Suppose now that
f0 ∈ L1(S,μ). Consider the sequence AT f,T ∈ N. For all ε > 0 there exists a
bounded f

(ε)
0 ∈ L∞(S,μ) such that ‖f0 − f

(ε)
0 ‖ < ε/3. Then, by the triangle in-

equality and the fact that AT is a linear contraction, we get

‖AT1f − AT2f ‖ ≤ ∥∥AT1f
(ε) − AT2f

(ε)
∥∥ + 2

∥∥f0 − f
(ε)
0

∥∥
≤ ∥∥AT1f

(ε) − AT2f
(ε)

∥∥ + 2ε/3 < ε

for all sufficiently large T1 and T2. This is because AT f (ε) converges in L1. We
have thus shown that AT f,T ∈ N, is a Cauchy sequence in the Banach space
L1(S,μ) and, hence, it has a limit, which is necessarily f̃ .

Let now T = R. First, by a discretization argument as in the proof of Theo-
rem 2.7, we can show AT f → f̃ almost surely, for all f0 ∈ L1(S,μ). The L1-
convergence can be established as in the proof in the discrete case. �

3. Stationary sum-stable random fields. We focus on SαS (0 < α < 2) ran-
dom fields X = {Xt }t∈Td , with a spectral representation:

{Xt }t∈Td
d=

{∫
S
ft (s)Mα(ds)

}
t∈Td

.(3.1)

Here {ft }t∈Td ⊂ Lα(S,μ), and the integral is with respect to an independently
scattered SαS random measure Mα on S with control measure μ (see Chapters 3
and 13 in [35] for more details). Without loss of generality, we shall also as-
sume that {ft }t∈Td has full support in Lα(S,μ). Namely, there is no B ∈ B with
μ(B) > 0, such that

∫
B |ft (s)|αμ(ds) = 0, for all t ∈ T

d .
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All measurable SαS random fields X have a spectral representation (3.1), where
(S,μ) can be chosen to be a standard Lebesgue space and the functions (t, s) �→
ft (s) to be jointly measurable (see, e.g., Proposition 11.1.1 and Theorem 13.2.1
in [35]).

It is known from Rosiński [20, 21] that when X is stationary, there exists a
minimal spectral representation (3.1) with

ft (s) = ct (s)

(
d(μ ◦ φt)

dμ
(s)

)1/α

f0 ◦ φt(s), t ∈ T
d,(3.2)

where f0 ∈ Lα(S,μ), {φt }t∈Td is a nonsingular T
d -action on (S, B,μ), and

{ct }t∈Td is a cocycle for {φt }t∈Td taking values in {−1,1}. Namely, (t, s) �→
ct (s) ∈ {−1,1} is a measurable map, such that for all u, v ∈ T

d , cu+v(s) =
cv(s)cu(φv(s)),μ-a.e. s ∈ S. The representation (3.1) is minimal, if the ratio σ -
algebra σ(ft/fτ : t, τ ∈ T

d) is equivalent to B (see Definition 2.1 in [20]). The
minimality is an indispensable tool to study the spectral representations, although
it is hard to check in practice. For more equivalent conditions and insights, see
Rosiński [22] and Pipiras [17].

We say that a random field {Xt }t∈Td with the minimal representation (3.1) and
(3.2) is generated by the T

d -action {φt }t∈Td and the cocycle {ct }t∈Td . In this case,
we also say {Xt }t∈Td has an action representation (f0, G ≡ {φt }t∈Td , {ct }t∈Td ).

It turns out, moreover, the action {φt }t∈Td is determined by the distribution
of {Xt }t∈Td , up to the equivalence relationship of T

d -actions (see Theorem 3.6
in [20]). Thus, structural results for the T

d -actions imply important structural re-
sults for the corresponding SαS random fields. In particular, by using Theorem 2.3,
we obtain the following result:

THEOREM 3.1. Let {Xt }t∈Td be a measurable stationary SαS random field
with spectral representation (3.1). We suppose that (S, B,μ) is a standard
Lebesgue space and the spectral representation {ft (s)}t∈Td is measurable. As-
sume, in addition, that

g(s) :=
∫
T0

aτ |fτ (s)|αλ(dτ) is L1-integrable and supp(g) = S(3.3)

for some T0 ∈ BTd and aτ > 0,∀τ ∈ T0. Then:

(i) {Xt }t∈Td is generated by a positive T
d -action if and only if

∞∑
n=1

∫
T0

aτ |fτ+tn(s)|αλ(dτ) = ∞, μ-a.e. for all {tn}n∈N ⊂ T
d .(3.4)

(ii) {Xt }t∈Zd is generated by a null T
d -action if and only if

∞∑
n=1

∫
T0

aτ |fτ+tn(s)|αλ(dτ) < ∞, μ-a.e. for some {tn}n∈N ⊂ T
d .(3.5)
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In particular, the classes of stationary SαS random fields generated by positive and
null T

d -actions are disjoint.

REMARK 3.2. One can always choose {aτ }τ∈T0 such that (3.3) holds, if the
spectral functions {ft }t∈Td have full support in Lα(S,μ).

PROOF OF THEOREM 3.1. Suppose first that {ft }t∈Td is minimal and, hence,
it has the form (3.2). Observe that, for all t, τ ∈ T

d , we have

|fτ+t (s)|α = d(μ ◦ φt)

dμ
(s)

d(μ ◦ φτ )

dμ
◦ φt(s)|f0 ◦ φτ ◦ φt(s)|α, μ-a.e.

Since both the left-hand side and the right-hand side are measurable in (τ, s), by
Fubini’s theorem,∫

T0

aτ |fτ+t (s)|αλ(dτ) = d(μ ◦ φt)

dμ
(s)

∫
T0

aτ |fτ ◦ φt(s)|αλ(dτ)

= (φ̂−t g)(s), μ-a.e.,

where the last relation follows from (2.1). Therefore,

∞∑
n=1

∫
T0

aτ |fτ+tn(s)|αλ(dτ) =
∞∑

n=1

φ̂−tng, μ-a.e. ∀{tn}n∈N ⊂ T
d .

Hence, Theorem 2.3(ii) and (iii), applied to the strictly positive function g ∈
L1(S,μ), implies the statements of parts (i) and (ii), respectively.

Using Remark 2.5 in [20] and a standard Fubini argument, it can be shown that
a test function (3.3) in the general case corresponds to one in the situation when
the integral representation {ft }t∈Td of the field is of the form (3.2). Therefore,
an argument parallel to the proof of Corollary 4.2 in [20] shows that the tests
described in this theorem can be applied to any full support integral representation,
not necessarily minimal or of the form (3.2). This completes the proof. �

The above characterization motivates the following decomposition of an ar-
bitrary measurable stationary SαS random field X = {Xt }t∈Td . Without loss of
generality, let X have a representation (f0, G ≡ {φt }t∈Td , {ct }t∈Td ) as in (3.1)
and (3.2). Then, by Lemma 2.2, S = PG ∪ NG and one can write

{Xt }t∈Td
d= {XP

t + XN
t }t∈Td(3.6)

with

XP
t =

∫
PG

ft (s)Mα(ds) and XN
t =

∫
NG

ft (s)Mα(ds) for all t ∈ T
d .
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COROLLARY 3.3. (i) The decomposition (3.6) is unique in law. That is, if
there is another representation (f

(2)
0 , G(2) ≡ {φ(2)

t }t∈Td , {c(2)
t }t∈Td ) satisfying (3.1)

and (3.2), then

{XP
t } d=

{∫
PG(2)

f
(2)
t dMα

}
and {XN

t } d=
{∫

NG(2)

f
(2)
t dMα

}
.

(ii) The components XP = {XP
t }t∈Td and XN = {XN

t }t∈Td are independent,
XP is generated by a positive T

d -action and XN is generated by a null T
d -action.

PROOF. Proof of (ii) is trivial. To prove (i), observe that by Remark 2.5 in [20],
there exist measurable functions � :S2 → S and h :S2 → R \ {0} such that for all
t ∈ T

d ,

f
(2)
t (s) = h(s)ft ◦ �(s), μ2-almost all s ∈ S2(3.7)

and dμ = (|h|α dμ2) ◦ �−1. Using (3.7) and an argument parallel to the proof
of (2.18) in [34], it can be shown that PG(2) = �−1(PG ) and NG(2) = �−1(NG )

modulo μ2, from which the distributional equality in (i) follows as in the proof of
Theorem 4.3 in [20]. �

4. Ergodic properties of stationary SαS fields. Let (
, F ,P) be a proba-
bility space, and {θt }t∈Td a measure-preserving T

d -action on (
, F ,P). Consider
the random field Xt(ω) = X0 ◦ θt (ω), t ∈ T

d . The random field {Xt }t∈Td defined
in this way is stationary and, conversely, any stationary measurable random field
can be expressed in this form.

We start by introducing some notation. For t ∈ T
d , let ‖t‖ denote its sup norm.

We consider the class T of all sequences that converge to infinity:

T :=
{
{tn}n∈N ⊂ T

d : lim
n→∞‖tn‖ = ∞

}
.

Recall that a set E ⊂ T
d is said to have density zero in T

d if

lim
T →∞

1

C(T )

∫
B(T )

1E(t)λ(dt) = 0.(4.1)

A set D ⊂ T
d is said to have density one in T

d if T
d \ D has density zero in T

d .
The class of all sequences on D that converge to infinity will be denoted by

TD :=
{
{tn}n∈N : tn ∈ T

d ∩ D, lim
n→∞‖tn‖ = ∞

}
.

Now we recall some basic definitions. Write σX := σ({Xt : t ∈ T
d}) for the σ -

algebra generated by the field {Xt }t∈Td . We say {Xt }t∈Td is:

(i) ergodic, if

lim
T →∞

1

C(T )

∫
B(T )

P
(
A ∩ θt (B)

)
λ(dt) = P(A)P(B) for all A,B ∈ σX.(4.2)
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(ii) weakly mixing, if there exists a density one set D such that

lim
n→∞P

(
A ∩ θtn(B)

) = P(A)P(B) for all A,B ∈ σX, {tn}n∈N ∈ TD.(4.3)

(iii) mixing, if

lim
n→∞ P

(
A ∩ θtn(B)

) = P(A)P(B) for all A,B ∈ σX, {tn}n∈N ∈ T .(4.4)

In general, we always have that

mixing ⇒ weakly mixing ⇒ ergodicity.

For stationary SαS random fields, however, we have the following result.

THEOREM 4.1. Let {Xt }t∈Td denote a measurable SαS random field with
spectral representation (3.1) and α ∈ (0,2). The following are equivalent:

(i) {Xt }t∈Td is ergodic.
(ii) {Xt }t∈Td is weakly mixing.

(iii) limT →∞ C(T )−1 ∫
B(T ) exp(2‖f0‖α

α − ‖f0 − ft‖α
α)λ(dt) = 1.

(iv) The T
d -action {φt }t∈Td has no nontrivial positive component.

PROOF. Using Theorem 2.8 and proceeding as in Theorems 2 and 3 in [19],
one can show the equivalence of (i), (ii) and (iii).

To prove the equivalence of (ii) and (iv), we need the following result, which is
an extension of Theorem 2.7 in [7]. The proof is given in the Appendix. We also
fill a gap in the results of Gross [7] (see Remark A.6).

PROPOSITION 4.2. Assume α ∈ (0,2) and {Xt }t∈Td is a stationary SαS ran-
dom field with spectral representation {ft }t∈Td ⊂ Lα(S, B,μ). Then, the process
{Xt }t∈Td is weakly mixing if and only if there exists a density one set D ⊂ T

d , such
that

lim
n→∞μ{s : |f0(s)|α ∈ K, |ft∗n (s)|α > ε} = 0

(4.5)
for all compact K ⊂ R \ {0}, ε > 0 and {t∗n }n∈N ∈ TD.

Now we prove the equivalence of (ii) and (iv) by following closely the proof of
Theorem 3.1 in [34]. The proof of (ii) implying (iv) remains the same. To show
that (iv) implies (ii), however, we treat the discrete and the continuous parameter
scenarios together by virtue of Theorem 2.7, which unifies the two cases (which
were treated differently in [34]). More specifically, in view of (4.5) and a multi-
variate extension of Lemma 6.2 in [16], page 65, it is enough to show that for all
ε > 0 and compact sets K ⊂ R \ {0},

lim
T →∞AT μ

{
s : |f0(s)|α ∈ K,

∣∣f(·)(s)
∣∣α > ε

} = 0,(4.6)
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where AT is the average operator defined by (2.5). Following verbatim the argu-
ment in the proof of (3.1) in [34], we obtain (4.6) for both discrete and continuous
parameter cases with the help of Theorem 2.7. �

REMARK 4.3. From the structural results [29, 30] and Theorem 4.1 above, we
obtain a unique in law decomposition of X into three independent stable processes
in parallel to the one-dimensional case [34], that is,

X = X(1) + X(2) + X(3),

where X(1) is a mixed moving average in the sense of [38], X(2) is weakly mix-
ing with no mixed moving average component and X(3) has no weakly mixing
component.

5. Max-stable stationary random fields. In this section we discuss the
structure and ergodic properties of stationary max-stable random fields, in-
dexed by T

d . For simplicity and without loss of generality, we will focus
on α-Fréchet random fields. The random field Y = {Yt }t∈Td is said to be α-
Fréchet, if for all aj > 0, τj ∈ T

d,1 ≤ j ≤ n, the max-linear combinations
ξ := max1≤j≤n ajYτj

≡ ∨
1≤j≤n ajYτj

have α-Fréchet distributions. Namely,
P(ξ ≤ x) = exp{−σαx−α} for all x ∈ (0,∞), where σ > 0 is referred to as the
scale coefficient and α > 0 is the tail index of ξ . The α-Fréchet random fields are
max-stable. Conversely, all max-stable random fields with α-Fréchet marginals are
α-Fréchet random fields.

The spectral representations for α-Fréchet random fields have been developed
by de Haan [4] and developed by [37, 42]. Any measurable α-Fréchet random field
Y = {Yt }t∈Td (α > 0) can be represented as

{Yt }t∈Td
d=

{∫e
S
ft (s)Mα,∨(ds)

}
t∈Td

,(5.1)

where {ft }t∈Td ⊂ Lα+(S,μ) := {f ∈ Lα(S,μ) :f ≥ 0}, “
∫e ” stands for the ex-

tremal integral, Mα,∨ is an independently scattered α-Fréchet random sup-
measure with control measure μ and (S,μ) can be chosen to be a standard
Lebesgue space (see [37, 42]). The functions {ft }t∈Td in (5.1) are called spectral
functions of the α-Fréchet random field. If the representation in (5.1) is minimal,
as in the sum-stable case, it then follows that

ft (s) =
(

d(μ ◦ φt )

dμ

)1/α

f0 ◦ φt(s) for all t ∈ T
d,(5.2)

where φ = {φt }t∈Td is a nonsingular group action and f0 ∈ Lα+(S,μ) (see,
e.g., [42], Theorems 3.1 and 3.2). Thus, the α-Fréchet random field Y is said to be
generated by the group action φ if (5.1) is a minimal representation such that (5.2)
holds. This allows us to extend the available classification results in the sum-stable
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case to the max-stable setting. Note that compared to (3.2), the cocycle {ct }t∈Td

disappears, as {ft }t∈Td are nonnegative. By a similar argument as in Theorem 3.1,
we obtain the following result.

THEOREM 5.1. Suppose {Yt }t∈Td is a measurable stationary α-Fréchet ran-
dom field with spectral representation {ft }t∈Td as in (5.1). Let T0 ∈ BTd and
{aτ }τ∈T0 , aτ > 0, be such that (3.3) holds. Then:

(i) {Yt }t∈Td is generated by a positive T
d -action, if and only if (3.4) holds.

(ii) {Yt }t∈Td is generated by a null T
d -action, if and only if (3.5) holds.

In particular, the classes of stationary α-Fréchet random fields generated by posi-
tive and null T

d -actions are disjoint.

An intimate connection between the α-Fréchet and SαS processes (0 < α < 2)
was recently revealed through the notion of association, independently by
Kabluchko [9] and Wang and Stoev [41]. By the association tool established
in [41], the decomposition results for α-Fréchet random fields follow immediately
from the corresponding ones for SαS random fields. Indeed, for an α-Fréchet ran-
dom field {Yt }t∈Td with spectral functions {ft }t∈Td , α ∈ (0,2), consider the SαS
random field {Xt }t∈Td with the same spectral functions. Naturally, the random
fields {Xt }t∈Td and {Yt }t∈Td are said to be associated, according to [41]. Then,
applying Theorem 5.1 in [41] to Corollary 3.3, we obtain the following results on
α-Fréchet random fields.

COROLLARY 5.2. Let {Yt }t∈Td be a measurable stationary α-Fréchet random
field with representation in the form of (5.1) and (5.2). We have the unique-in-law

decomposition {Yt }t∈Td
d= {YP

t ∨ YN
t }t∈Td , with

YP
t =

∫e
PG ft (s)Mα,∨(ds) and YN

t =
∫e

NG ft (s)Mα,∨(ds) for all t ∈ T
d

with G ≡ {φt }t∈Td . The two components are independent, {YP
t }t∈Td is generated

by positive T
d -action and {YN

t }t∈Td is generated by null T
d -action.

The ergodic properties of stationary α-Fréchet random fields can be character-
ized in terms of the recurrence properties of the nonsingular group actions, as in
the sum-stable case. The following theorem extends the known results in the one-
dimensional case (see [9, 10, 36]). These results, however, cannot be established
by the association method.

THEOREM 5.3. Let {Yt }t∈Td denote a measurable α-Fréchet random field
with spectral representation (5.1) and (5.2). The following are equivalent:

(i) {Yt }t∈Td is ergodic.
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(ii) {Yt }t∈Td is weakly mixing.
(iii) limT →∞ C(T )−1 ∫

B(T ) ‖ft ∧ f0‖α
αλ(dt) = 0.

(iv) The T
d -action {φt }t∈Td has no nontrivial positive component.

PROOF. The equivalence of (i), (ii) and (iii) for R-action is proved by
Kabluchko and Schlather [10], Theorem 1.2. Their proof generalizes to T

d -actions
as well. The equivalence of (i) and (iv) can be proved by extending the proof of
Theorem 8 in [9] to the multiparameter setting, using Theorems 2.7 and 2.8 ac-
cordingly. �

6. Examples. This section contains two examples of stable random fields and
their ergodic properties via the positive-null decomposition of the underlying ac-
tion. These examples show the usefulness of our results to check whether or not
a stationary SαS (or max-stable) random field is ergodic (or, equivalently, weakly
mixing).

The first example is based on a self-similar SαS processes with stationary in-
crements introduced by [3] as a stochastic integral with respect to an SαS random
measure, with the integrand being the local time process of a fractional Brownian
motion. We extend these processes by replacing the fractional Brownian motion
by a Brownian sheet. We can call it a Brownian sheet local time fractional SαS
random field following the terminology of [3].

EXAMPLE 6.1. Suppose (
′, F ′,P ′) is a probability space supporting a
Brownian sheet {Bu}u∈R

d+ . By [6], {Bu} has a jointly continuous local time field

{l(x, u) :x ∈ R, u ∈ R
d
+} defined on the same probability space. We will define an

SαS random field based on this local time field, which inherits the stationary in-
crements property from {Bu}u∈R

d+ . Let Mα be an SαS random measure on 
′ × R

with control measure P ′ ×Leb living on another probability space (
, F ,P ). Fol-
lowing verbatim the calculations of [3], we have that

Zu =
∫

′×R

l(x, u)(ω′)Mα(dω′,dx), u ∈ R
d
+,

is a well-defined SαS random field, which has stationary increments over d-
dimensional rectangles.

We now concentrate on the increments of {Zu} taken over d-dimensional rect-
angles. For any t ∈ Z

d
+, define

Xt = 
Zt :=
1∑

i1=0

1∑
i2=0

· · ·
1∑

id=0

(−1)i1+i2+···+id+dZt+(i1,i2,...,id ).(6.1)

Clearly, {Xt }t∈Z
d+ is a stationary SαS random field, which can be extended (in

law) to a stationary SαS random field X := {Xt }t∈Zd by Kolmogorov’s extension
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theorem. We claim that X is generated by a null Z
d -action. To prove this, define,

for all n ≥ 1, τ (n) := (n4/d, n4/d, . . . , n4/d), and for all n ≥ 1 and t ∈ Z
d
+,

Tn,t := {s : ti + n4/d ≤ si ≤ 1 + ti + n4/d for all i = 1,2, . . . , d}.
For each t ∈ Z

d
+, take a positive real number at in such a way that

∑
t∈Z

d+ at = 1.
Defining 
l(x, t) in parallel to (6.1) and following the proof of (4.7) in [3], we
can establish that∫


′

∫
R

e−x2/2
∑
t∈Z

d+

∞∑
n=1

at
l
(
x, t + τ (n)) dx dP ′

= ∑
t∈Z

d+

at

∞∑
n=1

∫
Tn,t

ds√
1 + ∏d

i=1 si

≤
∞∑

n=1

1√
1 + n4

< ∞.

This shows, in particular, that
∑

t∈Z
d+

∑∞
n=1 at
l(x, t + τ (n))(ω′) < ∞ for P ′ ×

Leb-almost all (ω′, x) ∈ 
×R. Besides, it can be easily shown that
∑

t∈Z
d+ at
l(x,

t)(ω′) > 0 for P ′ × Leb-almost all (ω′, x) ∈ 
 × R (see, e.g., [40]). Hence, by
Theorem 3.1, it follows that X is generated by a null action and hence is weakly
mixing.

The next example is based on a class of mixing stationary SαS process consid-
ered in [23]. We look at a stationary SαS random field generated by d independent
recurrent Markov chains, at least one of which is null-recurrent. This is a class of
stationary SαS random fields which are weakly mixing as a field but not necessar-
ily ergodic in every direction.

EXAMPLE 6.2. We start with d irreducible aperiodic recurrent Markov chains
on Z with laws P

(1)
i (·),P (2)

i (·), . . . ,P (d)
i (·), i ∈ Z and transition probabilities

(p
(1)
jk ), (p

(2)
jk ), . . . , (p

(d)
jk ), respectively. For all l = 1,2, . . . , d , let π(l) = (π

(l)
i )i∈Z

be a σ -finite invariant measure corresponding to the family (P
(l)
i ). Let P̃

(l)
i be

the lateral extension of P
(l)
i to Z

Z, that is, under P̃
(l)
i , x(0) = i, (x(0), x(1), . . .)

is a Markov chain with transition probabilities (p
(l)
jk ) and (x(0), x(−1), . . .) is a

Markov chain with transition probabilities (π
(l)
k p

(l)
kj /π

(l)
j ). Assume at least one

(say, the first one) of the Markov chains is null-recurrent and define a σ -finite
measure μ on S = (ZZ)d by

μ(A1 × A2 × · · · × Ad) =
d∏

l=1

( ∞∑
i=−∞

π
(l)
i P̃

(l)
i (Al)

)
,

and observe that μ is invariant under the Z
d -action {φ(i1,i2,...,id )}(i1,...,id )∈Zd on S

defined as the coordinatewise left shift, that is,

φ(i1,...,id )

(
a(1), . . . , a(d))(u1, . . . , ud) = (

a(1)(u1 + i1), . . . , a
(d)(ud + id)

)
(6.2)
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for all (a(1), . . . , a(d)) ∈ S and u1, . . . , ud ∈ Z.
Let X = {X(i1,i2,...,id )}(i1,...,id )∈Zd be a stationary SαS random field defined by

the integral representation (3.1) with Mα being a SαS random measure on S with
control measure μ and

f(i1,i2,...,id ) = f ◦ φ(i1,i2,...,id ), i1, i2, . . . , id ∈ Z,

with

f
(
x(1), x(2), . . . , x(d)) = 1{x(1)(0)=x(2)(0)=···=x(d)(0)=0},

x(1), x(2), . . . , x(d) ∈ Z
Z.

Clearly, the restriction of (6.2) to the first coordinate is a null flow because the first
Markov chain is null-recurrent (see Example 4.1 in [34]) and, hence, (6.2) is a null
Z

d -action. This shows, in particular, that X is weakly mixing. However, if d > 1
and some of the Markov chains are positive-recurrent, then the restriction of μ

in the corresponding coordinate directions are finite and, hence, by Theorem 4.1,
X is not ergodic along those directions. In this case, the random field cannot be
mixing because it is not mixing in every coordinate direction. This gives examples
of stationary d-dimensional (d > 1) SαS random fields, which are weakly mixing
but not mixing. See Example 4.2 in [8] for such an example in the d = 1 case.

REMARK 6.3. Correspondingly, we can define α-Fréchet random fields and
apply Theorem 5.3. In particular, when d > 1, we can obtain an example of an
α-Fréchet random field, which is weakly mixing but not mixing.

APPENDIX: PROOFS OF AUXILIARY RESULTS

A.1. Proof of Lemma 2.2. Set

u(I (G)) := sup
ν∈�(G)

μ(Sν).(A.1)

Without loss of generality, we assume μ(S) < ∞ (recall that μ is σ -finite), whence
u(I (G)) < ∞. Then, there exists a sequence of measures {νn}n∈N ⊂ �(G), such
that un := μ(Sνn) → u(I (G)) as n → ∞. Set

PG :=
∞⋃

n=1

Sνn.

Clearly, PG is measurable. We show that there exists νG ∈ �(G) such that SνG = PG
and μ(PG ) = u(I (G)). Indeed, we can define on (S, B) the measure

νG (A) :=
∞∑

n=1

1

2nun

νn(A) for all A ∈ B.(A.2)
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Clearly, νG ∈ �(G), SνG = PG modμ, and μ(PG ) ≤ u(I (G)) by (A.1). It is also
clear that for all n ∈ N, νn 	 νG and, hence, PG ⊃ Sνn modμ. This implies
μ(PG ) ≥ un for all n ∈ N. We have thus shown that μ(PG ) = u(I (G)).

To complete the proof, we show PG is unique modulo μ-null sets. Suppose there
exist P

(1)
G and P

(2)
G such that μ(P

(1)
G ) = μ(P

(2)
G ) = u(I (G)) and μ(P

(1)
G �P

(2)
G ) >

0. Suppose ν(1), ν(2) ∈ �(G) are defined as in (A.2), so that Sν(i) = P
(i)

G for i =
1,2. Clearly, ν(1) + ν(2) ∈ �(G). Then, we have P

(1)
G ∪ P

(2)
G ⊂ I (G) and μ(P

(1)
G ∪

P
(2)

G ) > u(I (G)), which contradicts (A.1). The proof is thus complete.

A.2. Proof of Theorem 2.3. First we introduce some notation. For all trans-
formation φ on (S, B,μ), write

�(φ) := {ν 	 μ :ν finite positive measure on S, ν ◦ φ−1 = ν}.
We need the following lemma.

LEMMA A.4. Suppose φ is an arbitrary invertible, bimeasurable and nonsin-
gular transformation on (S, B,μ). Then μ(φ−1(Sν)�Sν) = 0, for all ν ∈ �(φ).

PROOF. First, we show for all ν ∈ �(φ), μ(φ−1(Sν)�Sν) = 0. If not, then set
E0 := φ−1(Sν) \ Sν , F0 = φ(E0) and suppose μ(E0) > 0. Since φ is nonsingular,
μ(F0) > 0. Note that F0 ⊂ Sν and μ ∼ ν on Sν , whence ν(F0) > 0. Note also that
ν(Sc

ν) = 0 and ν ◦φ−1 = ν imply ν(F0) = ν ◦φ−1(F0) = ν(E0) ≤ ν(Sc
ν) = 0. This

contradicts ν(F0) > 0. We have thus shown that μ(φ−1(Sν) \ Sν) = 0.
Next, we show that μ(Sν \φ−1(Sν)) = 0. Indeed, setting E1 := Sν \φ−1(Sν), we

have ν(Sν) = ν(E1) + ν(φ−1(Sν) ∩ Sν). At the same time, ν(Sν) = ν ◦ φ−1(Sν) =
ν(φ−1(Sν) ∩ Sν) + ν(E0), where E0 := φ−1(Sν) \ Sν . Since ν(E0) = 0 as shown
in the first part of the proof, the two equations above imply ν(E1) = 0, since ν is
finite. Finally, by the fact that ν ∼ μ on Sν , we have μ(Sν \φ−1(Sν)) ≡ μ(E1) = 0.

�

Now we prove Theorem 2.3.

(i) Fix φ ∈ G . Note that by Lemma 2.2, there exists νG ∈ �(φ) ⊂ I (G) such
that SνG = PG . Then, by Lemma A.4, μ(φ−1(PG )�PG ) = 0. By the fact that
all φ ∈ G are invertible, we have that φ−1(NG )c = φ−1(Nc

G ) and by the identity
A�B = Ac�Bc, we have μ(φ−1(NG )�NG ) = 0. The previous argument is valid
for all φ ∈ G .

(ii) Consider L1(PG , B ∩ PG ,μ|PG ), where B ∩ PG := {A ∩ PG :A ∈ B} and
μ|PG is the restriction of μ tn B ∩ PG . Define

φ̃f (s) ≡ [φ̃(f )](s) := d(μ ◦ φ−1)

dμ
(s)f ◦ φ−1(s)1PG ∩φ(PG )(s)

(A.3)
for all f ∈ L1(PG ,μ|PG ).
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In this way, the mapping φ̃ is a restricted version of φ̂ on L1(PG ,μ|PG ) in the sense
that

φ̃f = φ̂f, μ|PG -a.e. for all f ∈ L1(PG ,μ|PG ) ⊂ L1(S,μ).(A.4)

Recall that by Lemma 2.2 there exists ν ∈ �(G) such that φ̂(dν/dμ) = dν/dμ

for all φ ∈ G and supp(ν) = PG . Whence, for ν̃ := ν|PG , we have φ̃(dν̃/dμ|PG ) =
dν̃/dμ|PG for all φ ∈ G and ν̃ ∼ μ|PG . Note that all locally compact Abelian groups
are amenable (see, e.g., Example 1.1.5(c) in [31]). Thus, Theorem 1 [parts (1)
and (8)] in [39] applied to G̃ and f implies that

∞∑
n=1

φ̃unf (s) = ∞, μ|PG -a.e. for all {φ̃un}n∈N ⊂ G̃,

which, by (A.4), is equivalent to (2.3).
(iii) Similarly, as in (ii), restrict G to L1(NG , B ∩ NG ,μ|NG ) and apply Theo-

rem 2 [parts (1) and (8)] in [39].

A.3. Proof of Theorem 2.4. We only sketch the proof of this result.

(i) We apply Theorem 1 [parts (1) and (6)] in [39]. Recall that the adjoint
operator of φ̂, φ̂∗ : (L1)∗ → (L1)∗ [(L1)∗ = L∞] is such that for all f ∈ L1(S,μ)

and h ∈ L∞(S,μ),∫
S
f (s)[φ̂∗(h)](s)μ(ds) =

∫
S
[φ̂(f )](s)h(s)μ(ds).

The last integral equals∫
S

d(μ ◦ φ−1)

dμ
(s)f ◦ φ−1(s)h ◦ φ ◦ φ−1(s)μ(ds) =

∫
S
f (s)h ◦ φ(s)μ(ds),

whence [φ̂∗(h)](s) = h◦φ(s),μ-a.e. Thus, if W is a weakly wandering set w.r.t. G ,
we have

∞∑
n=1

φ̂∗
tn

1W(s) < 2 for some {φtn}n∈N ⊂ G.

Now, part (6) of Theorem 1 in [39] is equivalent to the nonexistence of a weakly
wandering set of positive measure.

(ii) The proof is similar to the proof of Proposition 1.4.7 in [1].

A.4. Proof of Proposition 4.2. We first need the following lemma.

LEMMA A.5. Assume {Xt }t∈Td is a stationary SαS random field with spec-
tral representation {ft }t∈Td ⊂ Lα(S, B,μ), α ∈ (0,2). Then, {Xt }t∈Td is weakly
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mixing, if and only if, there exists a density one set D ⊂ T
d , such that

lim
n→∞μ

{
s :

∣∣∣∣∣
p∑

j=1

βjfτj
(s)

∣∣∣∣∣ ∈ K,

∣∣∣∣∣
q∑

k=1

γkftk+t∗n (s)

∣∣∣∣∣ > ε

}
= 0

(A.5) for all p,q ∈ N, βj , γk ∈ R, τj , tk ∈ T
d,

compact K ⊂ R \ {0}, ε > 0 and {t∗n }n∈N ∈ TD.

PROOF. It transpires from the proofs in [14] that a stationary process {Xt }t∈Td

is weakly mixing if and only if there exists a density one set D ⊂ T
d such that

lim
n→∞ E

[
exp

(
i

p∑
j=1

βjXτj

)
exp

(
i

q∑
k=1

γkXtk+t∗n

)]

= E exp

(
i

p∑
j=1

βjXτj

)
E exp

(
i

q∑
k=1

γkXtk

)
(A.6)

for all p,q ∈ N, βj , γk ∈ R, τj , tk ∈ T and {t∗n }n∈N ∈ TD.

See the following remark on the equivalence of (A.5) and (A.6). �

REMARK A.6. In the one-dimensional case, to show that (4.5) is equivalent
to the weak mixing of the process, Gross [7] proved that (4.5) is equivalent to the
following weaker condition (A.6) (Theorem 2.7 in [7]):

lim
n→∞ E[exp(iθ1X0) exp(iθ2Xtn)] = E exp(iθ1X0)E exp(iθ2X0)

(A.7)
for all θ1, θ2 ∈ R, {tn}n∈N ∈ TD.

The equivalence of (A.6) and (A.7), however, seems nontrivial and yet not men-
tioned in [7]. Nevertheless, parallel to the proof of Theorem 2.7 in [7], we can
prove Lemma A.5.

To show Proposition 4.2, it suffices to prove the following lemma.

LEMMA A.7. Assume α ∈ (0,2) and {Xt }t∈Td is a stationary SαS process
with spectral representation {ft }t∈Td ⊂ Lα(S, B,μ). Then (A.5) is true if and only
if (4.5) is true.

PROOF. Clearly, (A.5) implies (4.5). Now suppose that (4.5) is true. We will
show (A.5). For any p,q ∈ N and τj , tk ∈ T

d , write

gp(s) :=
p∑

j=1

βjfτj
(s) and hq(s) :=

q∑
k=1

γkftk (s).(A.8)
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We will prove (A.5) by induction on (p, q). By (4.5), we have that (A.5) holds for
(p, q) = (1,1).

(i) Suppose for fixed (p, q) (A.5) holds, then we will show that (A.5) holds
for (p + 1, q). If not, then there exists {t∗n }n∈N ∈ TD such that for some compact
K ⊂ R \ {0} and δ > 0, we have μ(En) ≥ δ with

En := {s : |gp(s) + βp+1fτp+1(s)| ∈ K, |Ut∗n hq(s)| > ε}.
Here for all t ∈ T

d , Ut(
∑q

k=1 γkftk )(s) := ∑q
k=1 γkftk+t (s).

Without loss of generality, we can assume K ⊂ (0,∞). Then, since K is com-
pact, there exists 0 < dK < M such that K ⊂ [dK,M]. Since fτ1, . . . , fτp+1 ∈
Lα(S,μ), we can also choose M to be large enough so that μ(E0

M) ≤ δ/2, where

E0
M := {s : |gp(s)| > M or |βp+1fτp+1(s)| > M}.

Then, we claim that for each n, either of the two sets

Ep
n :=

{
s : |gp(s)| ∈

[
dK

2
,M

]
, |Ut∗n hq(s)| > ε

}
and

Ep+1
n :=

{
s : |βp+1fτp+1(s)| ∈

[
dK

2
,M

]
, |Ut∗n hg(s)| > ε

}
has measure larger than δ/4. Otherwise, observe that En ⊂ E

p
n ∪ E

p+1
n ∪ E0

M ,
which implies that μ(En) < δ, a contradiction.

It then follows that either {Ep
n }n∈N or {Ep+1

n }n∈N will have a subsequence with
measures larger than δ/4. Namely, there exists {t∗nk

}k∈N ∈ TD such that

μ(Ep
nk

) ≥ δ

4
for all k ∈ N or μ(Ep+1

nk
) ≥ δ

4
for all k ∈ N.

But the first case contradicts the assumption that (A.5) holds for (p, q) and the
second case contradicts (4.5). We have thus shown that (A.5) holds for (p + 1, q).

(ii) Next, suppose (A.5) holds for (p, q) and we show that it holds for (p,
q + 1). If not, then there exists a compact K ⊂ R \ {0} such that

μ{s : |gp(s)| ∈ K, |Ut∗n (hq + γq+1ftq+1)(s)| > ε} � 0 as n → ∞.

Then, by a similar argument as in part (i), one can show that for all ε > 0, there
exists {t∗n }n∈N ∈ TD and δ > 0 such that we have either

μ

{
s : |gp(s)| ∈ K, |Ut∗n hq(s)| > ε

2

}
≥ δ > 0

or

μ

{
s : |gp(s)| ∈ K, |γq+1ftq+1+t∗n (s)| > ε

2

}
≥ δ > 0.
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Both cases lead to contradictions. We have thus shown that (A.5) holds for (p, q +
1). The proof is thus complete. �
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[24] ROSIŃSKI, J. and ŻAK, T. (1996). Simple conditions for mixing of infinitely divisible pro-
cesses. Stochastic Process. Appl. 61 277–288. MR1386177
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