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CHAOS OF A MARKOV OPERATOR AND THE FOURTH
MOMENT CONDITION
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Université de Toulouse and Institut Universitaire de France

We analyze from the viewpoint of an abstract Markov operator recent
results by Nualart and Peccati, and Nourdin and Peccati, on the fourth mo-
ment as a condition on a Wiener chaos to have a distribution close to Gaus-
sian. In particular, we are led to introduce a notion of chaos associated to a
Markov operator through its iterated gradients and present conditions on the
(pure) point spectrum for a sequence of chaos eigenfunctions to converge to a
Gaussian distribution. Convergence to gamma distributions may be examined
similarly.

1. Introduction. In a striking contribution [20], Nualart and Peccati discov-
ered a few years ago that the fourth moment of homogeneous polynomial chaos on
Wiener space characterizes convergence toward the Gaussian distribution. Specif-
ically, and in a simplified (finite dimensional) setting, let F : RN → R, 1 ≤ k ≤ N ,
be defined by

F = F(x) =
N∑

i1,...,ik=1

ai1,...,ik xi1 · · ·xik , x = (x1, . . . , xN) ∈ R
N,(1)

where ai1,...,ik are real numbers vanishing on diagonals and symmetric in the in-
dices. Assume by homogeneity that

∫
RN F 2 dγN = 1 where

dγN(x) = (2π)−N/2e−|x|2/2 dx

is the standard Gaussian measure on R
N . Such a function F will be called ho-

mogeneous of degree k. Let now Fn on R
Nn , n ∈ N, Nn → ∞, be a sequence of

such homogeneous polynomials of fixed degree k. The main theorem of Nualart
and Peccati [20] expresses that the sequence of distributions of the Fn’s converges
toward the standard Gaussian distribution γ1 on the real line if and only if∫

RNn
F 4

n dγNn → 3(2)

(3 being the fourth moment of the standard normal). The result actually holds for
homogeneous chaos on the infinite dimensional Wiener space, and the equivalence
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is further described in terms of convergence of contractions. The proof of [20]
relies on multiplication formulas for homogeneous chaos and the use of stochastic
calculus.

Since [20] was published, numerous improvements and developments on this
theme have been considered; cf., for example, [13–15, 17, 19, 23], . . . . An intro-
duction to some of these developments (with emphasis on multiplication formu-
las) is the recent monograph [22] by Peccati and Taqqu. In particular, the work
by Nualart and Ortiz-Latorre [19] introduces a technological breakthrough with a
new proof only based on Malliavin calculus and the use of integration by parts on
Wiener space. In this work, the convergence of (Fn)n∈N to a Gaussian distribution
[and thus also (2)] is also shown to be equivalent to the fact that

VarγNn
(|∇Fn|2) → 0,(3)

where VarγNn
is the variance with respect to γNn . Based upon this observation,

recent work by Nourdin and Peccati [13, 14] develops the tool of the so-called
Stein method (cf., e.g., [5, 6, 26, 27]) in order to quantify the convergence toward
the Gaussian distribution. Relying also on multiplication formulas and the use of
integration by parts on Wiener space, one key step in the investigation [13] is
expressed by the following inequality: for a given homogeneous function F of
degree k on R

N normalized in L2(γN),

VarγN
(|∇F |2) ≤ Ck

(∫
RN

F 4 dγN − 3
)
,(4)

where Ck > 0 only depends on k. In particular, the proximity of
∫
RN F 4 dγN to 3

controls the variance of |∇F |2. Now, Stein’s method for homogeneous chaos on
Wiener space as developed in [13] expresses that

d(ν, γ1) ≤ C VarγN
(|∇F |2)1/2,(5)

where d(ν, γ1) stands for some appropriate distance between the law ν of F and
γ1, so that |∇F |2 being close to a constant forces the distribution of F to be close
to a Gaussian distribution. The conjunction of (4) and (5) thus describes how the
fourth moment condition controls convergence to a Gaussian.

The primary motivation of this work is to understand what structure of a func-
tional F allows for the preceding results, in particular thus the control by the fourth
moment of the distance to the Gaussian distribution. In the process of this inves-
tigation, we will revisit the preceding results and conclusions in the setting of
a symmetric Markov operator, including, as a particular example, the Ornstein–
Uhlenbeck operator L = � − x · ∇ , corresponding to the Wiener space setting. In
order to achieve this goal, observe that the homogeneous polynomial F of (1) is
an eigenfunction with eigenvalue k of the Ornstein–Uhlenbeck operator, that is,
−LF = kF . We shall therefore try to understand what is necessary for an eigen-
function F of a Markov operator in order to satisfy an inequality such as (4). This
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investigation leads us to define a notion of chaos eigenfunction with respect to such
a Markov operator with pure point spectrum consisting of a countable sequence of
eigenvalues, the homogeneous polynomial F of (1) being one example with re-
spect to the Ornstein–Uhlenbeck operator. The main achievement of this work is
then the formulation of an explicit condition on the sequence of eigenvalues under
which a chaos eigenfunction satisfies an inequality such as (4).

The basic data will thus be a Markov operator L on some state space (E, F )

with invariant and reversible probability measure μ and symmetric bilinear carré
du champ operator

�(f,g) = 1
2 [L(fg) − f Lg − gLf ],

acting on functions f,g in a suitable domain A. For simplicity, we often write
�(f ) = �(f,f ) which is always nonnegative. By invariance and symmetry of
μ with respect to L, the definition of the carré du champ operator � yields the
integration by parts formula∫

E
f (−Lg)dμ =

∫
E

g(−Lf )dμ =
∫
E

�(f,g) dμ.

In particular
∫
E Lf dμ = 0 since L1 = 0 by the Markov property. The operator L is

said, in addition, to be a diffusion operator if, for every smooth function ϕ : R → R,
and every f ∈ A,

Lϕ(f ) = ϕ′(f )Lf + ϕ′′(f )�(f ).

Alternatively, � is a derivation in the sense that �(ϕ(f ), g) = ϕ′(f )�(f, g).
We refer to the lecture notes [1], Chapter 2, by Bakry for an introduction to

this abstract framework of Markov and carré du champ operators and a discus-
sion of some of the examples emphasized below. Additional general references
include [7] for further probabilistic interpretations and [4, 8] for constructions
in terms of Dirichlet forms; see also [12] and the forthcoming [3]. One pro-
totype example of a Markov diffusion operator is the Ornstein–Uhlenbeck op-
erator acting on say the algebra A of polynomial functions f on E = R

N as
Lf (x) = �f (x) − x · ∇f (x), with invariant and reversible probability measure
the Gaussian distribution μ = γN and carré du champ �(f ) = |∇f |2. One could
consider its infinite dimensional extension on Wiener space (cf. [4] and [18],
Chapter 1), but for simplicity in the exposition we stick here on the finite di-
mensional case as a reference example. The preceding general setting also in-
cludes discrete examples, such as the two-point space and its products. Namely,
on E = {−1,+1}N , let Lf = 1

2
∑N

i=1 Dif where Dif (x) = f (τi(x)) − f (x),
x = (x1, . . . , xi, . . . , xN), τi(x) = (x1, . . . ,−xi, . . . , xN). L is invariant and sym-
metric with respect to the uniform measure μ on {−1,+1}N with carré du champ
�(f ) = 1

4
∑N

i=1(Dif )2, but is not a diffusion operator.
These two examples actually entail a crucial chaos structure in the sense that the

generators L may be diagonalized in a sequence of orthogonal polynomials (Her-
mite polynomials in the Gaussian case, Walsh polynomials in the cube example);
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see, for example, [1], Chapter 1, [18], Chapter 1, [10], Chapter 2, [22], Chap-
ter 5. More precisely, setting for k = (k1, . . . , kN) ∈ N

N , x = (x1, . . . , xN) ∈ R
N ,

Hk(x) = hk1(x1) · · ·hkN
(xN), with (hk)k∈N the sequence of orthonormal Hermite

polynomials on the real line, any function f : RN → R in L2(γN) may be written
as

f = ∑
k∈N

∑
|k|=k

〈f,Hk〉Hk,

where 〈·, ·〉 is the scalar product in L2(γN) and where the second sum runs over
all k ∈ N

N with |k| = k1 + · · · + kN = k. An element H = Hk with |k| = k is an
eigenfunction of the Ornstein–Uhlenbeck operator with −LH = kH and the spec-
trum of the operator −L thus consists of the sequence of the nonnegative integers.
For fixed k ∈ N, linear combinations

F = ∑
|k|=k

akHk(6)

define generic eigenfunctions (chaos) of −L with eigenvalue k, the homogeneous
function F of (1) being one example.

Similarly, if f : {−1,+1}N → R,

f =
N∑

k=0

∑
|A|=k

〈f,WA〉WA,

where the second sum runs over all subsets A of {1, . . . ,N} with k elements and

WA(x) = ∏
i∈A

xi, x = (x1, . . . , xN) ∈ {−1,+1}N,A ⊂ {1, . . . ,N},

are the so-called Walsh polynomials. For the discrete operator Lf = 1
2

∑N
i=1 Dif ,

−LWA = kWA if |A| = k. The spectrum of −L is thus equal to N, and linear
combinations

F = ∑
|A|=k

aAWA(7)

describe the family of eigenfunctions (chaos) of −L with eigenvalue k.
A further example is Poisson space. In dimension one, let μ be the Pois-

son law on N with parameter θ > 0. For a function f : N → R with finite sup-
port say, let Df (j) = f (j) − f (j − 1) for every j ∈ N [f (−1) = 0]. The
Poisson operator may then be defined as Lf (j) = θDf (j + 1) − jDf (j),
j ∈ N. It is not a diffusion. The associated carré du champ operator is given by
2�(f )(j) = θDf (j + 1)2 + jDf (j)2, j ∈ N. The operator −L has a spectrum
given by the sequence of the integers and is diagonalized along the Charlier or-
thogonal polynomials. Multi-dimensional Poisson models are similar.
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Laplacians L = � on (compact) Riemannian manifolds, and acting on families
of smooth functions, also enter this framework. These Laplacians are diffusion
operators and, in the compact case, have again a spectrum consisting of a countable
sequence of eigenvalues; cf., for example, [9].

This work will analyze properties of eigenfunctions of such Markov operators
L, that is, functions F :E → R (in the domain of L) such that −LF = λF for some
λ > 0. (We emphasize that F and λ are thus rather eigenfunction and eigenvalue
of −L which is nonnegative.) The ultimate goal of this work is to find conditions
on such an eigenfunction F of a diffusion operator L in order that the analog of
(4) holds, and that the fourth moment condition then ensures the proximity with
the Gaussian distribution. We outline here the various steps of the investigation.
The first step will be to show (following [13] in the Ornstein–Uhlenbeck setting)
that Stein’s method applied to an eigenfunction F indicates that it has a Gaussian
distribution if (and only if) its carré du champ �(F) is constant; see Proposition 1
below. More precisely, in accordance with (5), for suitable families of functions
ϕ : R → R, and whenever

∫
E F 2 dμ = 1,∣∣∣∣

∫
R

ϕ(F )dμ −
∫

R

ϕ dγ1

∣∣∣∣ ≤ Cϕ Varμ(�(F ))1/2,(8)

where Varμ is the variance with respect to μ.
On the basis of this result, the fourth moment condition appears quite naturally

by the integration by parts formula since (assuming the necessary domain and
integrability conditions)

λ

∫
E

F 4 dμ =
∫
E

F 3(−LF)dμ = 3
∫
E

F 2�(F)dμ.

Moreover,
∫
E �(F)dμ = ∫

E F(−LF)dμ = λ
∫
E F 2 dμ, so that, still assuming by

homogeneity that
∫
E F 2 dμ = 1,

λ

(
1

3

∫
E

F 4 dμ − 1
)

=
∫
E

F 2(
�(F) − λ

)
dμ.(9)

This identity is the first indication that the proximity of
∫
E F 4 dμ with 3 actually

amounts to the proximity of �(F) with its constant mean value λ.
The next step in the investigation, the main result of this note, describes a chaos

structure of an eigenfunction F of a Markov operator L (not necessarily diffusive)
with spectrum consisting in a sequence S = {0 = λ0 < λ1 < λ2 < · · ·} of eigen-
values in order that whenever F is such a chaos with eigenvalue λk normalized in
L2(μ),

Varμ(�(F )) ≤ Ck

∫
E

F 2(
�(F) − λk

)
dμ(10)

for some finite constant Ck only depending on S. The relations (8), (9) and (10)
together therefore describe how the fourth moment condition

∫
E F 4 dμ ∼ 3 en-

sures that �(F) is close to constant and thus that the distribution of F is close to
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Gaussian. This family of inequalities may then be used to describe convergence
to a Gaussian distribution of a sequence of such chaos eigenfunctions. The ab-
stract chaos structure underlying these results is defined by means of the iterated
gradients of the Markov operator L and is shown to easily cover the examples of
Wiener, Walsh or Poisson chaos. For example, the chaos structure of the homoge-
neous polynomial F of (6) actually amounts to the fact that ∇k+1F = 0. The proof
of (10) will proceed by a standard and direct algebraic �-calculus on eigenfunc-
tions involving the iterated gradients of the operator L and avoiding any type of
multiplication formulas for chaos.

Turning to the content of this note, Section 2 briefly presents Stein’s method
applied to an eigenfunction of a Markov diffusion operator. The next section dis-
cusses the iterated gradients and the associated �-calculus on eigenfunctions, of
fundamental use in the investigation. Section 4 introduces the notion of chaos of a
Markov operator with pure point spectrum and presents the aforementioned main
result (10), proved in Section 6. The last section briefly describes analogous con-
clusions for convergence to gamma distributions covering recent results of [14].

It should be carefully emphasized that the present exposition develops more
the algebraic and spectral descriptions of the problem under investigation [and
concentrates on a proof of (10)] rather than the analytic issues on domains and
classes of functions involved in the analysis. In particular, we work with families
of functions in the domain of the Markov operator and its carré du champ and
with eigenfunctions assumed to satisfy all the necessary domain and integrability
conditions required to develop integration by parts and the associated �-calculus.
These properties are classically and easily satisfied for the main examples in mind,
the Gaussian case, the discrete cube or the setting of the Laplace operator on a
compact Riemannian manifold. Note, however, that the extension from the finite
dimensional Gaussian setting to the infinite dimensional one requires basic anal-
ysis on Wiener space as presented, for example, in the first chapter of [18] (see
also [22]) in order to fully justify the domain issues and the various conclusions.
These aspects, carefully developed in the aforementioned references, are not dis-
cussed here. Further conditions ensuring the validity of the results presented here
might be developed in broader contexts.

2. Stein’s method for eigenfunctions. We start our investigation with a brief
exposition of Stein’s lemma applied to eigenfunctions of a diffusion operator. We
refer to [5, 6, 26, 27] and the references therein for general introductions on Stein’s
method. The results below are mere adaptations of the investigation [13] by Nour-
din and Peccati in Wiener space to which we refer for further details. Throughout
this section, L is thus a diffusion operator with invariant and reversible measure μ

and carré du champ � as described in the Introduction. All the necessary domain
and integrability conditions on the eigenfunctions under investigation are implic-
itly assumed, and are satisfied for the main Ornstein–Uhlenbeck example; cf. [13].
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We first illustrate, at a qualitative level, Stein’s method in this abstract context.
Given a measurable map F :E → R, say that L commutes to F if there exists a
Markov operator L on the real line such that for every ϕ : R → R (in the domain
of L and such that ϕ ◦ F is in the domain of L)

L(ϕ ◦ F) = (Lϕ)(F ).

In this case, the image measure μF of μ by F is the invariant measure of L.
One model factorization operator L on R is the Ornstein–Uhlenbeck opera-

tor Lψ = ψ ′′ − xψ ′ with invariant measure the standard Gaussian distribution
dγ1(x) = e−x2/2 dx√

2π
. Let then F be an eigenfunction of −L with eigenvalue

λ > 0. The observation here, at the root of Stein’s argument, is that whenever
� = �(F) is (μ-almost everywhere) constant, then L commutes to F through
the Ornstein–Uhlenbeck operator L, and thus the distribution μF of F is Gaus-
sian. Namely, note first that by integration by parts,

∫
E � dμ = ∫

E F(−LF)dμ =
λ

∫
E F 2 dμ so that if � is constant and F is normalized in L2(μ), then � = λ.

Then, for ϕ : R → R smooth enough, by the chain rule formula for the diffusion
operator L,

L(ϕ ◦ F) = ϕ′(F )LF + ϕ′′(F )� = −λFϕ′(F ) + ϕ′′(F )�.

Hence, if � = λ,

L(ϕ ◦ F) = λ(Lϕ)(F )

so that L commutes to F , and thus μF is the invariant measure of the Ornstein–
Uhlenbeck operator L characterized as the Gaussian distribution γ1.

For an eigenfunction F , � = �(F) constant thus forces the distribution of F

to be Gaussian. Now, as such, this observation is not of much use and to describe
convergence to normal as for sequences of homogeneous polynomials in the In-
troduction, it should be suitably quantified in the form of inequality (8) in order to
express that the proximity of � with a constant value forces the distribution of F to
be close to Gaussian. This is the content of the classical Stein lemma as described
in the next statement.

PROPOSITION 1. Let F be an eigenfunction of −L with eigenvalue λ > 0 and
set � = �(F). Denote by μF the distribution of F . Given ϕ : R → R integrable
with respect to μF and γ1, let ψ be a smooth solution of the associated Stein
equation ϕ − ∫

R
ϕ dγ1 = ψ ′ − xψ . Then,∣∣∣∣
∫

R

ϕ dμF −
∫

R

ϕ dγ1

∣∣∣∣ ≤ Cϕ

λ

(∫
E
(� − λ)2 dμ

)1/2
,(11)

where Cϕ = ‖ψ ′‖2
∞. In particular, if

∫
E F 2 dμ = 1,∣∣∣∣

∫
R

ϕ dμF −
∫

R

ϕ dγ1

∣∣∣∣ ≤ Cϕ

λ
Varμ(�)1/2.
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PROOF. Since μF is the distribution of F under μ, and by the Stein equation,∫
R

ϕ dμF −
∫

R

ϕ dγ1 =
∫
E

ϕ(F )dμ −
∫

R

ϕ dγ1 =
∫
E
[ψ ′(F ) − Fψ(F)]dμ.

Now −LF = λF so that

ψ ′(F ) − Fψ(F) = ψ ′(F ) + λ−1LFψ(F)

and hence, after integration by parts with respect to the operator L and the use of
the diffusion property,∫

R

ϕ dμF −
∫

R

ϕ dγ1 =
∫
E

ψ ′(F )[1 − λ−1�]dμ.

Together with the Cauchy–Schwarz inequality,∣∣∣∣
∫

R

ϕ dμF −
∫

R

ϕ dγ1

∣∣∣∣ ≤
(∫

E
ψ ′(F )2 dμ

)1/2(∫
E
[1 − λ−1�]2 dμ

)1/2

,

which amounts to (11). If
∫
E F 2 dμ = 1, then

∫
E � dμ = ∫

E F(−LF)dμ = λ and
thus

∫
E(� − λ)2 dμ = Varμ(�). The proof of Proposition 1 is complete. �

Proposition 1 is thus investigated in [13] for Wiener chaos. As is discussed
there (Lemma 1.2 and Theorem 3.1), the constant Cϕ in (11) of Proposition 1 can
be uniformly bounded inside specific classes of functions. For instance, Cϕ ≤ 2
when ϕ is the characteristic function of a Borel set (corresponding to the total
variation distance) and Cϕ ≤ 1 when ϕ is the characteristic function of a half-line
(corresponding to the Kolmogorov distance).

For the further purposes, observe, as is classical (cf. [26, 27]), that Stein’s strat-
egy may be developed similarly for the Laguerre operator on the positive half-line
Lpψ = xψ ′′ + (p − x)ψ ′, p > 0, with invariant measure the gamma distribu-
tion dgp(x) = �(p)−1xp−1e−x dx. Let F be an eigenfunction of −L with eigen-
value λ > 0 and � = �(F). As above, for every ϕ : R → R smooth enough, setting
G = F + p,

L(ϕ ◦ G) = ϕ′(G)LF + ϕ′′(G)�

= −λFϕ′(G) + ϕ′′(G)�

= λ

(
(p − G)ϕ′(G) + 1

λ
�ϕ′′(G)

)
.

In this case, if � = λG,

L(ϕ ◦ G) = λ(Lpϕ)(G)

so that μG is the invariant measure of Lp characterized as the gamma distribu-
tion gp .

For this example of the Laguerre operator, the criterion for an eigenfunction F

to have a gamma distribution is thus that � = λ(F + p). On the basis of this qual-
itative description of Stein’s method for the Laguerre operator, the next statement
illustrates the analog of Proposition 1 for this model.
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PROPOSITION 2. Let F be an eigenfunction of −L with eigenvalue λ > 0,
and set � = �(F). Let p > 0 and denote by μF+p the distribution of F +p. Given
ϕ : R → R integrable with respect to μF+p and gp , let ψ be a smooth solution of
the associated Stein equation ϕ − ∫

R
ϕ dgp = xψ ′ + (p − x)ψ . Then,∣∣∣∣

∫
R

ϕ dμF+p −
∫

R

ϕ dgp

∣∣∣∣ ≤ Cϕ

λ

(∫
E

(
� − λ(F + p)

)2
dμ

)1/2

,(12)

where Cϕ = ‖ψ ′‖2
∞. In particular, if

∫
E F 2 dμ = p,∣∣∣∣

∫
R

ϕ dμF+p −
∫

R

ϕ dgp

∣∣∣∣ ≤ Cϕ

λ
Varμ(� − λF)1/2.

PROOF. Set again G = F + p. Start as in the proof of Proposition 1, namely∫
R

ϕ dμG −
∫

R

ϕ dgp =
∫
E

ϕ(G)dμ −
∫

R

ϕ dgp

=
∫
E
[Gψ ′(G) + (p − G)ψ(G)]dμ.

Since −LF = λF , and thus LG = λ(p − G),

Gψ ′(G) + (p − G)ψ(G) = Gψ ′(G) + λ−1LGψ(G).

After integration by parts with respect to the operator L and the use of the diffusion
property, ∫

R

ϕ dμG −
∫

R

ϕ dgp =
∫
E

ψ ′(G)[G − λ−1�]dμ.

The conclusion follows similarly from the Cauchy–Schwarz inequality. �

Proposition 2 is similarly investigated in [13] in the context of Stein’s method
on Wiener space. Again the the constant Cϕ in (12) may be bounded only in terms
of p inside specific classes of functions; cf. [13], Lemma 1.3 and Theorem 3.11.
Analogs of Stein’s lemma in the context of the preceding statements have been
investigated on discrete Poisson or Bernoulli spaces in [16, 21, 24]. In those exam-
ples, the control of the variance of � is not enough to ensure proximity to a Gaus-
sian distribution and has to be supplemented by various additional conditions.

3. Iterated gradients. This section presents the family of the iterated gradi-
ents of a Markov operator and the basic (algebraic) �-calculus on eigenfunctions
at the root of the investigation. Given a symmetric Markov operator L as above
(not necessarily a diffusion operator), recall following [1, 11], the iterated gradi-
ents �m, m ≥ 2, associated to L defined according to the rule defining � = �1
as

�m(f,g) = 1
2 [L�m−1(f, g) − �m−1(f,Lg) − �m−1(g,Lf )]
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for functions f,g in a suitable class A. By extension, �0(f, g) = fg. For simplic-
ity, set �m(f ) = �m(f,f ). Note that in general �m(f ) for m ≥ 2 is not necessarily
nonnegative. The �2 operator has been introduced first by Bakry and Émery [2]
to describe curvature properties of Markov operators and to provide a simple cri-
terion to ensure spectral gap and functional inequalities; cf. [1], Chapter 6, [12]
and [3]. This criterion will be used in Proposition 4 below. The iterated gradients
�m have been exploited in [11] toward variance and entropy expansions.

The following elementary lemma will be of constant use throughout this note
and concentrates on the significant properties of the iterated gradients of a given
eigenfunction. Recall that we assume the necessary domain and integrability con-
ditions to justify the relevant identities.

LEMMA 3. Let F be an eigenfunction of −L with eigenvalue λ. Set �m =
�m(F), m ≥ 1. Then, for every m ≥ 1,

�m = 1
2L�m−1 + λ�m−1 = (1

2L + λ Id
)m−1

�.(13)

Furthermore, for every m,n ≥ 1,∫
E

�n�m dμ =
∫
E

�n−1�m+1 dμ.(14)

In particular, by selecting n = 1, for every m ≥ 1,∫
E

��m dμ =
∫
E

F 2�m+1 dμ.(15)

PROOF. Equality (13) is an immediate consequence of the definition of �m

and the eigenfunction property

�m(F) = 1
2L�m−1(F ) − �m−1(F,LF) = 1

2L�m−1(F ) + λ�m−1(F ).

The conclusion follows by iteration.
Recalling the notation �m = �m(F), multiply the preceding identity by �n and

integrate with respect to μ to get, by symmetry,

2
∫
E

�n�m dμ =
∫
E

�m−1L�n dμ + 2λ

∫
E

�n�m−1 dμ.

Changing the role of n and m − 1, by symmetry again,

2
∫
E

�m−1�n+1 dμ =
∫
E

�m−1L�n dμ + 2λ

∫
E

�m−1�n dμ

and the identity (14) follows. The proof of the lemma is complete. �

The following statement is a first illustration of the method developed next.
It expresses a kind of rigidity result under the geometric �2 curvature condition
mentioned previously.
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PROPOSITION 4. Assume that the operator L is of curvature ρ > 0 in the
sense of Bakry–Émery [2] ([1], Chapter 6), that is, �2(f ) ≥ ρ�(f ) for every
f ∈ A. If F is an eigenfunction of −L with eigenvalue ρ, then �(F) is (μ-almost
everywhere) constant. In case L is a diffusion operator, the distribution of F is
Gaussian.

It might be useful to recall ([1], Chapter 6, [3, 12]) that under the curvature con-
dition of the statement, λ ≥ ρ for every nonzero eigenvalue λ of −L. In particular,
L is ergodic in the sense that if �(f ) = 0, then f is constant (μ-almost every-
where). It is also worthwhile mentioning that for the model space consisting of the
Ornstein–Uhlenbeck diffusion operator L = � − x · ∇ with invariant measure γN ,
ρ = 1 and the eigenfunctions with eigenvalue 1 are the linear functions

F(x) =
N∑

i=1

aixi, x = (x1, . . . , xN) ∈ R
N,

whose distributions are of course Gaussian. Since Gaussian Wiener chaos of or-
der larger than or equal to 2 do not contain any nonzero Gaussian variable [10]
and [20], Proposition 4 thus expresses a kind of rigidity property in the sense that
if F is a nonzero eigenfunction of the Ornstein–Uhlenbeck operator L with eigen-
value λ, then F is Gaussian if and only if �(F) is constant, and if and only if
λ = ρ = 1.

The proof of Proposition 4 is rather straigthforward. Write as before �m(F) =
�m, m ≥ 1. By Lemma 3 [formula (13)], �2 = 1

2L� + ρ�. Therefore, under the
curvature condition �2(f ) ≥ ρ�(f ), L� ≥ 0. But then

0 ≤
∫
E

�L� dμ = −
∫
E

�(�)dμ ≤ 0,

so that � = �(F) is (μ-almost everywhere) constant. The final assertion of the
statement then follows from Stein’s lemma (Proposition 1).

4. Chaos of a Markov operator. This section is devoted to the main con-
clusions of this work. We are thus given, on a state space E, a Markov op-
erator L with symmetric and invariant probability measure μ and carré du
champ � (acting on a suitable algebra of functions A). Assume in addition that
L has a pure point spectrum consisting of a countable sequence of eigenval-
ues S = {0 = λ0 < λ1 < λ2 < · · ·} (more precisely, S is the spectrum of −L) (cf.
[3, 25, 28]). Since λ1 > 0, L is ergodic [in the sense that if �(f ) = 0, then f is
constant].

Given the spectrum S = {0 = λ0 < λ1 < λ2 < · · ·}, define for every k ∈ N the
polynomial of degree k in the real variable X,

Qk(X) =
k−1∏
i=0

(X − λi) =
k∑

i=1

1

i!Q
(i)
k (0)Xi



2450 M. LEDOUX

(Q0 ≡ 1). Define then the bilinear form (acting on A × A)

Qk(�) =
k∑

i=1

1

i!Q
(i)
k (0)�i.

The following main definition introduces the notion of chaos associated to L and
its spectrum S.

DEFINITION 5. An eigenfunction F of −L with eigenvalue λk (−LF = λkF )
is said to be a chaos of degree k ≥ 1 relative to S if Qk+1(�)(F ) = 0 (μ-almost
everywhere). We call F a chaos eigenfunction (with eigenvalue λk).

Motivation for the preceding definition is provided by the Ornstein–Uhlenbeck
operator with spectrum S = N. Namely, it is easily shown in this case (see [11],
Section 2) that Qk(�)(F ) = |∇kF |2. Any eigenfunction F as in (6) is such that
∇kF is constant and ∇k+1F = 0 leading thus to Definition 5. In the infinite di-
mensional setting of an abstract Wiener space (E,H,μ) with separable Hilbert
space H , referring to [18], Chapter 1, for notation and terminology, the Ornstein–

Uhlenbeck operator L has domain D
2,2 and Qk(�)(F ) = ‖DkF‖2

H⊗k for any
F ∈ D

k,2 where D is the derivative operator (use as in the finite dimensional case
the commutation [L,D] = D and the chain rule formula [18], Proposition 1.4.5).
Now, if JkF denotes the projection of F (in D

k,2) on the kth Wiener chaos,
LJkF = −kJkF and Dk(JkF ) = J0D

kF = E(DkF ) so that JkF thus defines a
k-chaos in the sense of Definition 5. For example, in case H = L2(T , B, ν) where
ν is a σ -finite atomless measure on a measurable space (T , B), the elements JkF

may be represented as multiple stochastic integrals

Ik(fk) =
∫
T

· · ·
∫
T

fk(t1, . . . , tk)W(dt1) · · ·W(dtk)

of symmetric functions fk on L2(T k) with respect to the white noise W and

DkIk(fk) = {fk(t1, . . . , tk); t1, . . . , tk ∈ T }.
The discrete operator Lf = 1

2
∑N

i=1 Dif on the cube {−1,+1}N and the Pois-
son operator are further instances entering this definition with again S = N

(see [11], Section 2). On the cube {−1,+1}N , for example,

Qk(�)(F ) = 1

22k

∑
(Di1 · · ·DikF )2,

where the sum is over distinct i1, . . . , ik ∈ {1, . . . ,N} and thus any F of the form
(7) is a k-chaos (k < N ).

There are of course examples of eigenfunctions which are not chaos. For in-
stance, the Laguerre operator on the positive half-line Lpψ = xψ ′′ + (p − x)ψ ′,
p > 0, has spectrum equal to N (with eigenvectors the Laguerre orthogonal
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polynomials with respect to the gamma distribution gp), but the eigenfunction
F = x − p with eigenvalue 1 is not a 1-chaos as Q2(�)(F ) = −1

2F .
According to the preceding examples, another possible definition of k-chaos

would have been that Qk(�)(F ) is constant. (If F is normalized in L2(μ),
then ([11], page 443),∫

E
Qk(�)(F )dμ =

∫
E

FQk(−L)F dμ = Qk(λk),

hence Qk(�)(F ) = Qk(λk).) Now, it is easily checked [using (13) of Lem-
ma 3] that if F is an eigenfunction of −L with eigenvalue λk , then
LQk(�)(F ) = 2Qk+1(�)(F ). In particular therefore, if Qk(�)(F ) is constant,
then Qk+1(�)(F ) = 0. Conversely, if Qk+1(�)(F ) = 0, by ergodicity, Qk(�)(F )

is constant. It will turn out more simple in the proofs of the main results to use the
first definition of chaos [as Qk+1(�)(F ) = 0].

The following statements are the main results of this work. Recall the polyno-
mials Qk(X) and set, for k ≥ 1, X ∈ R,

Rk+1(X) = 1

X2

[
Qk+1(X) − Q

(1)
k+1(0)X

] =
k+1∑
i=2

1

i!Q
(i)
k+1(0)Xi−2

and

Tk+1(X) = Rk+1(X + λk) − Rk+1(λk).

Thus, for example, Q2(X) = X2 − λ1X, R2 ≡ 1 and T2 ≡ 0, Q3(X) = X3 −
(λ1 + λ2)X

2 + λ1λ2X, R3(X) = X − (λ1 + λ2) and T3(X) = X. Set furthermore

πk = λ1 · · ·λk, k ≥ 1 (π0 = 1).

The following theorem puts forward the fundamental identity at the root of this
work.

THEOREM 6. In the preceding setting, let F be a k-chaos eigenfunction with
eigenvalue λk , k ≥ 1. Set � = �(F). Then

πk−1

∫
E

�2 dμ = πk

∫
E

F 2� dμ + (−1)k
∫
E

�Tk+1

(
L

2

)
� dμ.(16)

COROLLARY 7. In the preceding setting, let F be a k-chaos eigenfunction
with eigenvalue λk , k ≥ 1. Set � = �(F). If

(−1)kTk+1

(
−λn

2

)
≤ 0 for every n ∈ N,(17)

then ∫
E

�2 dμ ≤ λk

∫
E

F 2� dμ.(18)
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In particular, if F is normalized in L2(μ), then
∫
E � dμ = ∫

E F(−LF)dμ = λk

and thus

Varμ(�) ≤ λk

(∫
E

F 2� dμ − λk

)
.(19)

Under the additional diffusion hypothesis on L, according to (9), inequality (19)
of Corollary 7 may be expressed equivalently as

Varμ(�) ≤ λ2
k

(
1

3

∫
E

F 4 dμ − 1
)
.(20)

In particular, if
∫
E F 4 dμ = 3, then � = �(F) is constant and by Stein’s lemma

(Proposition 1), the distribution of F is Gaussian.
The next statement describes a fundamental instance for which the spectral con-

dition (17) in Corollary 7 is fulfilled.

THEOREM 8. The spectral condition (17) in Corollary 7,

(−1)kTk+1

(
−λn

2

)
≤ 0 for every n ∈ N

is satisfied when S = (λn)n∈N = N.

As a consequence of this result, the conclusions of Corollary 7 apply to the
examples of the Ornstein–Uhlenbeck, Bernoulli and Poisson operators. As such,
some of the main conclusions of [13] are covered by the preceding general state-
ment, and in particular the initial result of [20], namely that if (Fn)n∈N is a se-
quence of homogeneous Gaussian chaos, normalized in L2(γNn), Nn → ∞, then
(Fn)n∈N converges to a Gaussian distribution as soon as

∫
E F 4

n dμ → 3.
For discrete models as the cube or the Poisson space, the picture is less satisfac-

tory. For instance on the cube E = {−1,+1}Nn , Nn → ∞, if Fn = ∑
|A|=k an

AWA,
n ∈ N, is a sequence of Walsh chaos of degree k normalized in L2(μ) for the uni-
form measure μ, and if

∫
E F 2

n �(Fn) dμ → k, then as an application of Corollary 7,
�(Fn) → k in L2(μ). Now �(F) being constant in this case is not always discrim-
inative [as shown by the example of F(x) = x1 · · ·xk] and further conditions have
to be imposed on the sequence (Fn)n∈N to ensure convergence toward a Gaussian
distribution. This analysis has been recently achieved in [16]. Similar additional
conditions have been studied on Poisson spaces in [21, 24]. The input of Corol-
lary 7 on convergence of chaos in these discrete examples is that it reduces the con-
vergence �(Fn) → λk in L2(μ) by the weaker condition

∫
E F 2

n �(Fn) dμ → λk .

5. Chaos of order 1 and 2. Before turning to the general proofs of Theorem 6
and Corollary 7, and to get a better feeling about these statements, we discuss
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in this section the particular values k = 1 and k = 2. Recall that we write for
simplicity �m = �m(F), m ≥ 1, for an eigenfunction F .

When k = 1, that is, Q2(�) = �2 − λ1� = 0, multiplying this identity by F 2

and integrating with respect to μ, it follows thanks to Lemma 3 [formula (15)] that∫
E

�2 dμ = λ1

∫
E

F 2� dμ.

Now here R2 ≡ 1, and thus T2 ≡ 0, so that both the fundamental identity (16) and
the spectral condition (17) are automatically satisfied.

When k = 2, start from Q3(�) = �3 − (λ1 + λ2)�2 − λ1λ2� = 0. Multiplying
by F 2 and integrating, it follows similarly thanks to Lemma 3 [formula (15)] that∫

E
��2 dμ − (λ1 + λ2)

∫
E

�2 dμ + λ1λ2

∫
E

F 2� dμ = 0.

By (13) of Lemma 3, �2 = 1
2L� + λ2� so that

1

2

∫
E

�L� dμ − λ1

∫
E

�2 dμ + λ1λ2

∫
E

F 2� dμ = 0.

Here R3(X) = X − (λ1 +λ2) and T3(X) = X so that the fundamental identity (16)
holds, and the spectral condition (17) amounts to λn ≥ 0 for every n ∈ N.

One observation on which we will come back in the next section is that, in the
case k = 2, only the inequality Q3(�) ≥ 0 is used in order to reach the conclusions
of Corollary 7. A further observation is that for chaos of order 1 or 2, the spectral
condition (17) is fulfilled for any sequence of eigenvalues 0 = λ0 < λ1 < λ2 < · · · .
This is clearly not the case when k ≥ 3.

6. Proofs of Theorems 6 and 8. In this section, we establish Theorem 6,
Corollary 7 and Theorem 8. Let thus F be a k-chaos with eigenvalue λk . (If neces-
sary, we may assume that k ≥ 3 according to the preceding section.) Write as usual
�m for �m(F), m ≥ 1.

As in the preceding section for chaos of order 1 or 2, start as a first step from
the chaos hypothesis Qk+1(�) = 0. Multiply this identity by F 2 and integrate with
respect to μ. By definition of Qk+1 and (15) of Lemma 3,

0 =
∫
E

F 2Qk+1(�)dμ

=
k+1∑
i=1

1

i!Q
(i)
k+1(0)

∫
E

F 2�i dμ(21)

= Q
(1)
k+1(0)

∫
E

F 2� dμ +
k+1∑
i=2

1

i!Q
(i)
k+1(0)

∫
E

��i−1 dμ.
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Now, by (13) of Lemma 3,

k+1∑
i=2

1

i!Q
(i)
k+1(0)

∫
E

��i−1 dμ

=
k+1∑
i=2

1

i!Q
(i)
k+1(0)

∫
E

�

(
1

2
L + λk Id

)i−2

� dμ

=
k+1∑
i=2

1

i!Q
(i)
k+1(0)

i−2∑
�=0

(
i − 2

�

)
1

2�
λi−2−�

k

∫
E

�L�� dμ

=
k−1∑
�=0

k+1∑
i=�+2

(
i − 2

�

)
1

i!Q
(i)
k+1(0)λi−2−�

k

1

2�

∫
E

�L�� dμ.

Recalling the definition of the polynomial Rk+1, note that

k+1∑
i=�+2

(
i − 2

�

)
1

i!Q
(i)
k+1(0)λi−2−�

k = 1

�!R
(�)
k+1(λk).

Hence

k+1∑
i=2

1

i!Q
(i)
k+1(0)

∫
E

��i−1 dμ =
k−1∑
�=0

1

�!R
(�)
k+1(λk)

1

2�

∫
E

�L�� dμ.

Now

k−1∑
�=0

1

�!R
(�)
k+1(λk)X

� = Rk+1(X + λk) = Tk+1(X) + Rk+1(λk)

so that

k+1∑
i=2

1

i!Q
(i)
k+1(0)

∫
E

��i−1 dμ =
∫
E

�Tk+1

(
L

2

)
� dμ + Rk+1(λk)

∫
E

�2 dμ.

The fundamental identity (16) of Theorem 6 then follows from (21) together with
the fact that

Q
(1)
k+1(0) = (−1)kλ1 · · ·λk = (−1)kπk

and

Rk+1(λk) = (−1)k+1λ1 · · ·λk−1 = (−1)k+1πk−1.

The proof is complete.
Corollary 7 is deduced from Theorem 6 through the following classical and

elementary property, consequence of the point spectrum hypothesis.
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LEMMA 9. If P is a polynomial,
∫
E uP (L)udμ ≥ 0 for every u [in the L2(μ)-

domain of P(L)] if (and only if) P(−λn) ≥ 0 for every n ∈ N.

PROOF. For each n ∈ N, denote by En the eigenspace associated to the eigen-
value λn so that L2(μ) = ⊕

n∈N En since S = (λn)n∈N is the spectrum of L.
Decompose then u in L2(μ) as u = ∑

n∈N un with un ∈ En, n ∈ N, so that
P(L)u = ∑

n∈N P(−λn)un and∫
E

uP (L)udμ = ∑
n∈N

P(−λn)

∫
E

u2
n dμ

from which conclusion follows. �

As mentioned for chaos of order 2, when k is even, only the inequality
Qk+1(�) ≥ 0 is used in order to reach the conclusions of Corollary 7.

We next turn to the proof of Theorem 8, checking the spectral condition (17)
(−1)kTk+1(−λn

2 ) ≤ 0, n ∈ N, for S = (λn)n∈N = N. Since in this case Tk+1(X) =
Rk+1(X + k) − (−1)k+1(k − 1)!, we have to show that(

n

2
− k

)−2
[

k∏
i=0

(
n

2
− i

)
− k!

(
n

2
− k

)]
≥ (k − 1)!.

When n
2 = k, the expression on the left-hand side is equal to k!∑k

i=1
1
i

so that the
conclusion holds in this case. When n

2 �= k, we need to show that

(
n

2
− k

)−1
[

k−1∏
i=0

(
n

2
− i

)
− k!

]
≥ (k − 1)!.

Assume first that n ≥ 2k + 1. Then
k−1∏
i=0

(
n

2
− i

)
=

(
n

2
− k + 1

) k−2∏
i=0

(
n

2
− i

)

≥
(

n

2
− k + 1

) k∏
i=2

(
i + 1

2

)
≥

(
n

2
− k + 1

)
k!.

Hence (
n

2
− k

)−1
[

k−1∏
i=0

(
n

2
− i

)
− k!

]
≥ k!,

which answers this case. We turn to the case where n ≤ 2k − 1 for which it is
necessary to check that

k−1∏
i=0

(
n

2
− i

)
≤ n

2
(k − 1)!.
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It is enough to assume that n is odd, n = 2p − 1, 1 ≤ p ≤ k. Then

k−1∏
i=0

(
n

2
− i

)
=

p−1∏
i=0

(
n

2
− i

) k−1∏
i=p

(
n

2
− i

)
≤

p∏
i=1

(
i − 1

2

) k−p∏
i=1

(
i − 1

2

)
.

Therefore, the inequality to establish amounts to

p−1∏
i=1

(
i − 1

2

) k−p∏
i=1

(
i − 1

2

)
≤ (p − 1)!(k − p)! ≤ (k − 1)!,

which is trivially satisfied. The claims thus holds in this case too. Theorem 8 is
therefore established.

7. Convergence to gamma distributions. In this last section, we briefly ad-
dress the analogs of Theorem 6 and Corollary 7 in the context of convergence to
gamma distributions on the basis of the corresponding Stein characterization of
Proposition 2. The main conclusion is obtained by a simple variation on the fun-
damental identity (16) of Theorem 6. In particular, the analysis covers the recent
results of [14] (see also [13]) in the context of Wiener chaos.

The framework is the one of the preceding sections, with a Markov operator
L with spectrum S = (λn)n∈N and invariant and reversible probability measure μ

and carré du champ �. Recall πk = λ1 · · ·λk , k ≥ 1, and the polynomials Rk+1 and
Tk+1 of Theorem 6.

The following theorem addresses approximation of a k-chaos F by a gamma
distribution via the control of Varμ(� − λkF ) as emphasized in Proposition 2. As
announced, the proof is an easy modification on the fundamental identity (16) of
Theorem 6.

THEOREM 10. Let F be a k-chaos with eigenvalue λk , k ≥ 1, such that∫
E F 2 dμ = p > 0. Set � = �(F). Under the spectral condition (17)

(−1)kTk+1(−λn

2 ) ≤ 0 for every n ∈ N, it holds

Varμ(� − λkF ) ≤ λk

∫
E

F 2� dμ + Ak

∫
E

F� dμ − pBk − p2λ2
k,

where

Ak = 2(−1)kλk

πk−1
Rk+1

(
λk

2

)
and Bk = (−1)kλ2

k

πk−1
Rk+1

(
λk

2

)
.

In the diffusion case,

λk

∫
E

F 4 dμ = 3
∫
E

F 2� dμ and λk

∫
E

F 3 dμ = 2
∫
E

F� dμ
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so that the conclusion of the theorem reads

Varμ(� − λkF ) ≤ λ2
k

3

∫
E

F 4 dμ + Akλk

2

∫
E

F 3 dμ − pBk − p2λ2
k.

Consider now the example where S = N for which we know from Theorem 8
that the spectral condition (17) holds. The inequality of Theorem 10 takes a nicer
form when k ≥ 2 is even. Indeed in this case (−1)kλkRk+1(

λk

2 ) = −2k! so that

1

k
Varμ(� − λkF ) ≤

∫
E

F 2� dμ − 4
∫
E

F� dμ + 2pk − p2k.

In particular in the diffusion case,

3

k2 Varμ(� − λkF ) ≤
∫
E

F 4 dμ − 6
∫
E

F 3 dμ + 6p − 3p2.(22)

This inequality (22) then ensures, through Stein’s lemma (Proposition 2), that if
(Fn)n∈N is a sequence of k-chaos such that

∫
E F 2

n dμ = p for every n and∫
E

F 4
n dμ − 6

∫
E

F 3
n dμ + 6p − 3p2 → 0,

then (Fn + p)n∈N converges in distribution to the gamma distribution with param-
eter p, that is the main result of [14].

PROOF OF THEOREM 10. Let thus F be a k-chaos with
∫
E F 2 dμ = p, hence∫

E � dμ = pλk . Set U = � − λkF (so
∫
E U dμ = pλk). It is immediately checked

that ∫
E

�2 dμ =
∫
E

U2 dμ + 2λk

∫
E

F� dμ − pλ2
k

= Varμ(U) + 2λk

∫
E

F� dμ − p(1 − p)λ2
k

and, for every � ≥ 1,∫
E

�L�� dμ =
∫
E

UL�U dμ + 2(−1)�λ�+1
k

∫
E

F� dμ − p(−1)�λ�+2
k .

Therefore, the fundamental identity (16) of Theorem 6 takes the form, after a little
algebra,

(−1)k
∫
E

UTk+1

(
L

2

)
U dμ − πk−1 Varμ(U)

+ πk

∫
E

F 2� dμ + 2(−1)kλkRk+1

(
λk

2

)∫
E

F� dμ

− p(−1)kλ2
kRk+1

(
λk

2

)
− p2λ2

kπk−1 = 0.
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Under the spectral condition (17) (−1)kTk+1(−λn

2 ) ≤ 0 for every n ∈ N,

πk−1 Varμ(U) ≤ πk

∫
E

F 2� dμ + 2(−1)kλkRk+1

(
λk

2

)∫
E

F� dμ

− p(−1)kλ2
kRk+1

(
λk

2

)
− p2λ2

kπk−1,

which amounts to the statement of the theorem. The proof is complete. �
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