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In this paper we study a substantial generalization of the model of ex-
cited random walk introduced in [Electron. Commun. Probab. 8 (2003) 86–
92] by Benjamini and Wilson. We consider a discrete-time stochastic process
(Xn,n = 0,1,2, . . .) taking values on Z

d , d ≥ 2, described as follows: when
the particle visits a site for the first time, it has a uniformly-positive drift in
a given direction �; when the particle is at a site which was already visited
before, it has zero drift. Assuming uniform ellipticity and that the jumps of
the process are uniformly bounded, we prove that the process is ballistic in
the direction � so that lim infn→∞ Xn·�

n > 0. A key ingredient in the proof
of this result is an estimate on the probability that the process visits less than
n1/2+α distinct sites by time n, where α is some positive number depending
on the parameters of the model. This approach completely avoids the use of
tan points and coupling methods specific to the excited random walk. Fur-
thermore, we apply this technique to prove that the excited random walk in
an i.i.d. random environment satisfies a ballistic law of large numbers and a
central limit theorem.

1. Introduction and results. Let p ∈ (1/2,1]. Consider two discrete time
simple random walks on the hyper-cubic lattice Z

d , d ≥ 2: a symmetric random
walk (Yn, n ≥ 0) and a random walk (Zn,n ≥ 0) which jumps to the right with
probability p/d , to the left with probability (1 − p)/d and to the other nearest-
neighbor sites with probability 1/(2d). The excited or cookie random walk with
bias parameter p on Z

d is a self-interacting random walk (Xn,n ≥ 0) starting
from 0 and defined as follows: if at time n the walk is at a site x which it visited
at some time k such that k < n, it jumps according to the transition probabilities
of the symmetric random walk (Yn), so that it jumps with probability 1/(2d) to
the nearest-neighbor sites of x; if at time n the process visits a site x for the first
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time, it jumps according to the transition probabilities of the walk (Zn), so that it
jumps to the right with probability p/d , to the left with probability (1 − p)/d and
to the other nearest-neighbor sites of x with probability 1/(2d) (eating one cookie
at site x). We will call the walks (Yn) and (Zn) defining the excited random walk,
the underlying processes of the excited random walk.

The excited random walk was introduced in 2003 by Benjamini and Wilson
in [3]. They proved that for dimensions d ≥ 2 it is transient to the right, meaning
that a.s.

lim
n→∞Xn · e1 = ∞,(1.1)

where {ei : 1 ≤ i ≤ d} denote the canonical generators of the additive group Z
d .

Furthermore, they showed that in dimensions d ≥ 4 the excited random walk is
ballistic to the right so that a.s.

lim inf
n→∞

Xn · e1

n
> 0.(1.2)

In [9] and [10], Kozma extended the above ballisticity result to dimensions d = 3
and d = 2. Standard methods based on regeneration times can be used to deduce
from (1.2) that a law of large numbers with deterministic speed v is satisfied, so
that a.s.

lim
n→∞

Xn

n
= v,

where v · e1 > 0 and v · ej = 0 for 2 ≤ j ≤ n. In [4], Bérard and Ramírez gave an
alternative proof of ballisticity and proved that a central limit theorem is satisfied
in dimensions d ≥ 2, so that

ε1/2(Xε−1n − ε−1nv)(1.3)

converges in law as ε → 0 to a Brownian motion with variance σ 2 > 0. A variant
of the excited random walk, called the multi-excited random walk, was introduced
by Zerner in [14], where the walk has the possibility of consuming more than one
cookie per site, and hence the process exhibits a nontrivial behavior even in dimen-
sion d = 1. Several papers have been written where the transient and ballisticity
properties of this model are studied in random and deterministic environments,
mainly in dimension d = 1 (see, e.g., [2, 7, 8]). Nevertheless, with the exception
of [6] and [15], a very natural issue has not been so far addressed: what happens
if the underlying processes are no longer nearest-neighbor spatially homogeneous
random walks? For example, if (Yn) and (Zn) are random walks on Z

d , which are
not spatially homogeneous and do not perform nearest-neighbor jumps, (Yn) has
zero drift, and (Zn) has a drift to the right, is the corresponding excited random
walk transient to the right? It is reasonable to wonder under which conditions the
corresponding excited random walk would still be transient to the right as in (1.1),
ballistic as in (1.2), or satisfy a central limit theorem as in (1.3). In this paper, we
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study a generalization of the excited random walk on Z
d , d ≥ 2, where the under-

lying processes of the model are not necessarily homogeneous random walks, and
not even Markovian.

From our point of view, part of the reason why these issues have not been con-
sidered is related to the techniques so far developed to study the many-dimensional
excited random walk. Indeed, the proof of transience to the right of [3], the law of
large numbers and the central limit theorem of [4] in dimensions d ≥ 2, rest on the
following two key ingredients: (i) the excited random walk can be coupled to the
underlying simple symmetric random walk (Yn), in such a way that (Xn − Yn) · e1
is nondecreasing in n and (Xn − Yn) · ej = 0 for every 2 ≤ j ≤ d; (ii) it is possi-
ble to get a lower bound for the cardinality of the range at time n of the excited
random walk in terms of the tan points of the coupled simple symmetric random
walk, which exploit reversibility properties of the symmetric random walk (see [3]
and [5]). A tan point of the random walk (Yn) in dimension d = 2 is defined as
any site x ∈ Z

2 with the property that the ray {x + ke1 :k ≥ 0} is visited by the
random walk for the first time at site x. As explained in [4], it can be shown using
the ideas of [3] that for every ε the number of tan points visited by (Ym) at time
n is larger than n3/4−ε with a probability that decays faster than any polynomial
in n. Notwithstanding, these methods break down when the underlying processes
are even slightly modified. On one hand, the coupling between the excited random
walk and the simple random walk does not work in general. Furthermore, the es-
timation of the number of tan points at a given time is a very specific argument
which works only for simple symmetric random walks. Hence, to study excited
random walks defined in terms of more general underlying processes, more pow-
erful methods have to be developed: a fundamental ingredient of this paper is the
introduction of a new technique to estimate the range of general versions of excited
random walks, which completely avoids the use of tan points.

We define a generalized excited random walk which will correspond to a process
driven by an underlying process (Yn) which is a (d-dimensional) martingale and
a process (Zn) which satisfies minimal requirements, including the presence of a
drift. We develop a machinery which avoids the use of tan points and of coupling,
proving that this generalized excited random walk is ballistic. Let ‖ · ‖ be the L2-
norm in Z

d or R
d , d ≥ 2; also, we define S

d−1 = {x ∈ R
d :‖x‖ = 1} to be the unit

sphere in R
d . Consider a Z

d -valued stochastic process X = (Xn,n = 0,1,2, . . .)

adapted to a filtration F = (Fn, n = 0,1,2, . . .). Unless otherwise stated, we sup-
pose that X0 = 0. Denote by P the law of X and by E the corresponding expec-
tation. As mentioned before, the processes we are considering are known also as
cookie random walks. This terminology is also useful to us, because in the sequel
we will need to consider situations when the particle gets the first visit push not in
all the sites, but only in the sites of some fixed subset of Z

d . In this case, we say
that the initial configuration of cookies (or the initial cookie environment) is such
that they are only in this set.
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Throughout the paper we suppose that the jumps of the process are uniformly
bounded, that is, the following condition holds for the process X:

CONDITION B. There exists a constant K > 0 such that supn≥0‖Xn+1 −
Xn‖ ≤ K a.s.

Next, consider the following condition:

CONDITION C+ . Let � ∈ S
d−1. We say that Condition C+ is satisfied with

respect to � if there exist a λ > 0 such that

E(Xn+1 − Xn | Fn) = 0 on {there exists k < n such that Xk = Xn}
and

E(Xn+1 − Xn | Fn) · � ≥ λ on {Xk �= Xn for all k < n}.

The meaning of Condition C+ is that, when the process X visits a site for the
first time, it has drift in the direction �, whereas if it comes to an already visited
site, it has zero drift behaving like a martingale.

Also, we formulate:

CONDITION E. Let � ∈ S
d−1. We say that Condition E is satisfied with respect

to � if there exist h, r > 0 such that for all n

P[(Xn+1 − Xn) · � > r | Fn] ≥ h(1.4)

and for all �′ with ‖�′‖ = 1, on {E(Xn+1 − Xn | Fn) = 0}
P[(Xn+1 − Xn) · �′ > r | Fn] ≥ h.(1.5)

Condition E is a kind of uniform ellipticity assumption which states that the
process can always advance in the direction � by a uniformly positive amount with
a uniformly positive probability, and also, when the local drift is equal to zero,
the process can do so in any direction. In fact, one may easily verify that if the
Conditions B and C+ are satisfied, then automatically (1.4) holds for some positive
h, r . However, we still formulate Condition E this way because in the sequel we
will need also to consider processes where the first visit push is not necessarily
uniformly positive. Now, given � ∈ S

d−1, any stochastic process X adapted to a
filtration F , which satisfies Condition B and Conditions C+ and E with respect
to �, will be called a generalized excited random walk in direction �. Note that the
standard excited random walk with its natural filtration is a generalized random
walk in direction e1. The first result of this paper is that any generalized excited
random walk is ballistic.
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THEOREM 1.1. Let d ≥ 2 and � ∈ S
d−1. Assume that X is a generalized ex-

cited random walk in direction �. Then, there exists v = v(d,K,h, r, λ) > 0 such
that

lim inf
n→∞

Xn · �
n

≥ v a.s.(1.6)

The proof of Theorem 1.1 rests on two key ingredients: a general result which
says that a d-dimensional martingale satisfying Condition B and a condition anal-
ogous to Condition E should typically visit much more than t1/2 distinct sites by
time t ; then, the same kind of result is also obtained for any generalized excited
random walk with an arbitrary initial configuration of cookies. It is worth noting
that the approach of this paper could be applied also to models with other rules
of assigning the drift to the particle. For instance, one can consider a model men-
tioned in [15]: the random walk receives a push in the direction � not at the first
visit, but at the kth visit to the site, where k > 1. To study such a model, one needs
to prove that the set of sites visited at least k times should be sufficiently large.
However, it is not difficult to do so using (some suitable) uniform ellipticity con-
dition: if the particle visits a site, then in the next few instants of time this site will
be visited k − 1 times more with a uniformly positive probability.

In this paper, we also consider an excited random walk in an i.i.d. random envi-
ronment in Zd , d ≥ 2, proving a law of large numbers and a central limit theorem
for it. Let P be the set of probability measures on {±ei,1 ≤ i ≤ d}. Let M = P N

and � = MZ
d
. An element ω = {ω(x), x ∈ Z

d} ∈ � is called an environment.
Here, for each x ∈ Z

d , ω(x) = {ωn(x), n ≥ 0} ∈ M and ωn(x) = {ωn(x, e) ∈ P}.
Let P be a probability measure defined on � under which the random variables
{ω(x), x ∈ Z

d} are i.i.d. Let us stress that we do not assume any independence of
the random variables ωn(x), n ≥ 0, for a fixed x. We assume that P is uniformly
elliptic so that there exists a constant κ > 0 such that for every n ≥ 0 and 1 ≤ i ≤ d

one has that P[ωn(0,±ei) ≥ κ] = 1. Furthermore, we assume that P is uniformly
excited in the direction � ∈ S

d−1, so that there exists a λ > 0 such that

P

[
d∑

i=1

(
eiω0(0, ei) − eiω0(0,−ei)

) · � ≥ λ

]
= 1,

and such that for every j ≥ 1 we have that

P

[
d∑

i=1

(
eiωj (0, ei) − eiωj (0,−ei)

) = 0

]
= 1.

We now define the excited random walk in random environment (ERWRE) as the
process defined for each n ≥ 0, x ∈ Z

d and e ∈ Z
d with |e| = 1, through the tran-

sition probabilities,

Pω

[
Xk+1 = x + e

∣∣∣ Xk = x,

k−1∑
j=0

1{Xj=x} = n

]
= ωn(x, e).
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In other words, whenever the process visits a site x for the first time, it has a
mean drift in the direction � which is larger than λ; whenever it visits a site x

which it already visited before, its mean drift is 0. For each environment ω and
x ∈ Z

d , we call Pω,x the law of such a process starting from x. We define the
annealed or averaged law of the excited random walk in random environment
as Px = ∫

Pω,x dP, in opposition to Pω,x which is called the quenched law. The
second result of this paper is the following theorem.

THEOREM 1.2. Consider the excited random walk in random environment,
uniformly excited in the direction � ∈ S

d−1. Then, the following are satisfied:

(i) (Law of large numbers). There exists v such that v · � > 0 and

Xn

n
→ v, P0-a.s.

(ii) (Central limit theorem). There exists a nondegenerate matrix A such that

ε1/2(
X
nε−1� − nε−1v

)
converges as ε → 0 in P0-law to a d-dimensional Brownian motion with covari-
ance matrix A.

In the above theorem, we considered the case of nearest-neighbor jumps only
for notational convenience; it extends to the case of uniformly bounded jumps
without difficulties (one has to assume also that Condition E holds). Observe also
that, taking P concentrated in one point (so that the environment in all sites is the
same), we obtain LLN and CLT for a spatially homogeneous generalized excited
random walk.

Let us note that, in [15] transience is proved for an excited random walk in
random environment using the method of environment viewed from the particle.
As explained in [14], this implies using regeneration times, a law of large numbers
with a velocity which could be possibly equal to 0. Nevertheless, we do not see
how to use the techniques based on coupling with a simple symmetric random
walk and tan points, to prove that the expected value of the regeneration times is
finite.

This paper is organized in the following way. First, in Section 2 we define a
sequence of regeneration times. The key fact about this sequence (which is essen-
tial for proving Theorem 1.1) is that the time intervals between the regenerations
behave in a nice way; see Proposition 2.1. The proof of this proposition is rather
technical and is postponed to Section 4.2 (generally, in this paper we prefer to
postpone the proofs of more technical results). In Section 3 we prove Theorem 1.1
and then apply the previously developed machinery to the excited random walk
in random environment proving Theorem 1.2. In Section 4.1 we study typical dis-
placement of excited random walk by time n; these estimates are then used in
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Section 4.2. It turns our that, to understand what the typical displacement of the
excited random walk should be, one has to understand the typical behavior of the
number of different sites visited by time n (i.e., the range of the process). The key
result concerning the range (Proposition 4.1) is stated in Section 4.1 without proof.
In Section 5.1 we use some martingale techniques to obtain several auxiliary facts,
which then are used in Section 5.2 to prove Proposition 4.1.

2. The renewal structure. The proof of Theorems 1.1 and 1.2, uses classical
renewal time methods. Let us note that the ERWRE, in a fixed environment, is
a generalized excited random walk. Hence, here we will focus on the construction
of the renewal structure for a generalized excited random walk, following the stan-
dard approach and notation presented in [4] and in the context of random walk in
random environment in [12]. Due to the fact that the generalized excited random
walk is neither space homogeneous nor Markovian, we will need to introduce a
general notation, and deviate slightly from the construction of [4]. Let � ∈ S

d−1.
We consider a stochastic process (Xn,n ≥ 0) satisfying Conditions B, E and C+,
with respect to a filtration Fn and a direction � ∈ S

d−1. For each u > 0 let

Tu = min{k ≥ 1 :Xk · � ≥ u}.
Define

D̄ = inf{m ≥ 0 :Xm · � < X0 · �}.
Furthermore, define two sequences of Fn-stopping times {Sn :n ≥ 0} and {Dn :n ≥
0} as follows. We let S0 = 0, R0 = X0 · � and D0 = 0. Next, define by induction in
k ≥ 0

Sk+1 = TRk+1,

Dk+1 = D̄ ◦ θSk+1 + Sk+1,

Rk+1 = sup{Xi · � : 0 ≤ i ≤ Dk+1},
where θ is the canonical shift on the space of trajectories. Let

κ = inf{n ≥ 0 :Sn < ∞,Dn = ∞}
with the convention that κ = ∞ when {n :Sn < ∞,Dn = ∞} = ∅. We define the
first regeneration time as

τ1 = Sκ.

We then define by induction on n ≥ 1, the sequence of regeneration times τ1, τ2, . . .

as follows:

τn+1 = τn + τ1(Xτn+·)

setting τn+1 = ∞ when τn = ∞.
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Next, we define D
(0)
i = Di and S

(0)
i = Si and for each k ≥ 1 two sequences D

(k)
i

and S
(k)
i corresponding to the regeneration time τk+1, analogously to the definition

of the sequences of stopping times Di and Si related to τ1. For example, S
(1)
0 = τ1,

R
(1)
0 = Xτ1 · �,D(1)

0 = 0 and define by induction in i ≥ 0,

S
(1)
i+1 = T

R
(1)
i +1

,

D
(1)
i+1 = D̄ ◦ θ

S
(1)
i+1

+ S
(1)
i+1,

R
(1)
i+1 = sup

{
Xi · � : 0 ≤ i ≤ D

(1)
i+1

}
.

As opposed to the situation which occurs for the standard excited random walk
(see [4]), here the sequence of regeneration times is not necessarily i.i.d. For each
k ≥ 1 and j ≥ 0 such that S

(k)
j < ∞, we need to introduce the σ -algebra of events

up to time S
(k)
j . We define G(k)

j as the smallest σ -algebra containing all sets of the
form {τ1 ≤ n1} ∩ · · · ∩ {τk ≤ nk} ∩ A, where n1 < n2 < · · · < nk are integers and
A ∈ F

nk+S
(k)
j

. In Section 4, we will prove the following proposition, which will

play a key role in the proof of Theorem 1.1.

PROPOSITION 2.1. Consider a generalized random walk excited in the direc-
tion �, and let (τk, k ≥ 1) be the associated sequence of regeneration times. Then,
there exist C ′, α′ > 0 such that for every n ≥ 1,

sup
k≥1

P
[
τk+1 − τk > n | G(k)

0

] ≤ C′e−nα′
a.s.

In particular, for every k ≥ 1 we have that τk < ∞ a.s.

Now, let us prove the following result which will be useful in the sequel.
Throughout, we denote by � an element of the space of trajectories (Zd)N. Fur-
thermore, we define for n ≥ 1,

D̄n := inf{m ≥ n :Xm · � < Xn · �}.

PROPOSITION 2.2. Let A be a Borel subset of (Zd)N. Then, the following
statements are satisfied:

(i) For every k ≥ 1,

P
[
Xτk+· ∈ A | G(k)

0

] =
∞∑

n=1

1{τk=n}(�)P[Xn+· ∈ A | D̄n = ∞, Fn].
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(ii) For every k, j ≥ 1,

P
[
X

S
(k)
j +· ∈ A | G(k)

j

]

=
∞∑

n=1

∞∑
m=1

1{τk=n}(�)1{S(k)
j =n+m}(�)P[Xn+m+· ∈ A | D̄n = ∞, Fn+m].

PROOF. Since the proof of part (i) is simpler than that of part (ii), we will
omit it. For part (ii), we only consider the case k = 1 and j = 1, being the case
k = 1 and j > 1 similar. Using the fact that for every natural n and k > 1, the
event {D̄n = ∞} ∩ {n < τk} is G(k)

0 measurable, the cases when k > 1 can be
proved in a similar way. For each n,m ≥ 1, define Sn,m as the set of trajectories
{x0, . . . , xn−1, xn, xn+1, . . . , xn+m} satisfying the following properties:

(a)
xn · � > sup

0≤l≤n−1
xl · �;

(b) for each l such that 0 ≤ l ≤ n − 1 one has

min
Txl ·�<i≤n−1

xi · � < xl · �;

(c) one has that

xn+m · � ≥ xn · � + 1 > sup
0≤l≤n+m−1

xl · �.

These three conditions define the trajectories in Sn,m as those for which if
D̄n = ∞, then S

(1)
1 = n + m (and τ1 = n). We will use the notation sn,m for an

element of Sn,m. Furthermore, given a trajectory � ∈ (Zd)N, we will denote by
�n its projection to the first n coordinates. Now note that G(1)

1 is generated by the
disjoint collection of sets of the form

{�n+m = sn,m} ∩ {τ1 = n},
where n and m vary over the naturals and sn+m ∈ Sn,m. Hence

P
[
X

S
(1)
1 +· ∈ A | G(1)

1

]

=
∞∑

n=1

1{τ1=n}
∞∑

m=1

∑
sn+m∈Sn,m

1{�n+m=sn+m}

× P[Xn+m+· ∈ A | τ1 = n,�n+m = sn+m].
On the other hand, for each n and m we have that when sn+m ∈ Sn,m

{�n+m = sn+m} ∩ {τ1 = n} = {�n+m = sn,m, D̄n = ∞}.
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Therefore, since 1{τ1=n}(�)1{S(1)
1 =n+m}(�)1{�n+m=sn+m} = 0 whenever sn+m /∈

Sn,m, we see that

P
[
X

S
(1)
1 +· ∈ A | G(1)

1

]

=
∞∑

n=1

∞∑
m=1

∑
sn,m∈Sn,m

1{τ1=n}(�)1{S(1)
1 =n+m}(�)

× P[Xn+m+· ∈ A | D̄n = ∞,�n+m = sn,m]

=
∞∑

n=1

∞∑
m=1

1{τ1=n}(�)1{S(1)
1 =n+m}(�)

× P[Xn+m+· ∈ A | D̄n = ∞, Fn+m]. �

3. Proof of the main results. In this section we will prove Theorems 1.1
and 1.2.

3.1. Proof of Theorem 1.1. To prove Theorem 1.1, we first prove the following
lemma.

LEMMA 3.1. Consider a generalized excited random walk in the direction �.
Let (τk, k ≥ 1) be the associated regeneration times. Then, there is a constant
C > 0 such that a.s.

lim sup
n→∞

τn

n
< C.

PROOF. Let C′ = supk≥1 E(τk+1 − τk | G(k)
0 ); by Proposition 2.1, we know

that C′ < ∞. Let τ0 = 0. Now, consider the process Mn = ∑n−1
k=0(τk+1 − τk −

E(τk+1 − τk | G(k)
0 )), for n ≥ 1, which is a martingale with respect to the filtration

(G(n)
0 , n ≥ 1). We then have for C > C′ that

P[τn > nC] ≤ P[Mn > n(C − C′)] ≤ E[M4
n]

n4(C − C′)4 .

But, using the fact that Mn is a martingale and Proposition 2.1, we see that there is
a constant C1 > 0 such that E[M4

n] < C1n
2. Hence,

P[τn > nC] ≤ C2

n2

for some constant C2 > 0, which, by Borel–Cantelli, proves the lemma. �

Let us now see how to deduce Theorem 1.1 from Lemma 3.1. By definition of
the regeneration times, note that

lim inf
n→∞

Xτn · �
n

≥ 1.(3.1)
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For each k ≥ 0, define nk = sup{n ≥ 0 : τn ≤ k}. Since for each n we have τn ≥ n,
it follows that nk < ∞ a.s. Note also that limk→∞ nk = ∞. Also, by definition of
τk and nk we have Xk · � ≥ Xτnk

· �, so

lim inf
k→∞

Xk · �
k

= lim inf
k→∞

Xτnk
· �

k
= lim inf

k→∞
nk

k

Xτnk
· �

nk
(3.2)

≥ lim inf
k→∞

nk

τnk+1

Xτnk
· �

nk

≥ 1

C
,

where C is the constant appearing in Lemma 3.1 and in the last inequality we have
used (3.1) and Lemma 3.1. This proves Theorem 1.1.

3.2. Proof of Theorem 1.2. As explained in the first paragraph of Section 2,
let us note that for each environment ω, under the law Pω,0, the ERWRE has a
sequence of regeneration times (τn, n ≥ 1) which satisfy Propositions 2.1 and 2.2.

Furthermore (as explained, e.g., in [12]), within the context of random walk in
random environment, the following proposition is satisfied (the fact that P0[D̄0 =
∞] > 0 follows from Proposition 4.3 below and the observation that a.s. the ran-
dom walk satisfies Conditions B, C+ and E):

PROPOSITION 3.2. Let (τn, n ≥ 1) be the regeneration times of an ERWRE.

(a) Under the annealed law P0, τ1, τ2 − τ1, τ3 − τ2, . . . are independent and
τ2 − τ1, τ3 − τ2, . . . are i.i.d. and with the same law as τ1 under P0[·|D̄0 = ∞].

(b) Under the annealed law P0, X(·∧τ1),X((·+τ1)∧τ2) − Xτ1,X((·+τ2)∧τ3) −
Xτ2, . . . are independent, and X((·+τ1)∧τ2) − Xτ1,X((·+τ2)∧τ3) − Xτ2, . . . are i.i.d.
with the same law as X(·∧τ1) under P0[·|D̄0 = ∞].

Propositions 2.1 and 3.2 have the following two corollaries.

COROLLARY 3.3. Let A be a Borel subset of (Zd)N. Then for every n ≥ 1,

P0
[
Xτn+· − Xτn ∈ A | G(n)] = P0[X· ∈ A | D̄0 = ∞].

COROLLARY 3.4. Let (τn, n ≥ 1) be the regeneration times of the ERWRE.
Then the following are satisfied:

(a) E0[τ 2
1 ] < ∞ and E0[τ 2

1 | D̄0 = ∞] < ∞;
(b) E0[X2

τ1
] < ∞ and E0[X2

τ1
| D̄0 = ∞] < ∞.

Now, using standard methods, one can prove part (i) of Theorem 1.2, showing
that a.s.

v = lim
n→∞

Xn

n
= E0[Xτ1 | D̄0 = ∞]

E0[τ1 | D̄0 = ∞] .
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Indeed, by Proposition 3.2 and Corollary 3.4 we have that

lim
n→∞

τn

n
= E0[τ1 | D̄0 = ∞] and

(3.3)

lim
n→∞

Xτn

n
= E0[Xτ1 | D̄0 = ∞].

Then, standard arguments enable us to deduce part (i) of Theorem 1.2 from (3.3).
The proof of part (ii) of Theorem 1.2 follows the methods, for example, of [11],
using Corollary 3.4, deducing that the covariance matrix of the limiting distribution
is given by

A = E0[(Xτ1 − τ1v)t (Xτ1 − τ1v) | D̄0 = ∞]
E0[τ1 | D̄0 = ∞] .

4. Displacement estimates and tails of the regeneration times. In this sec-
tion we will derive estimates on the displacement of generalized excited random
walks with an arbitrary initial cookie configuration. This will be used to prove the
tail estimates for the regeneration times in Proposition 2.1. A key ingredient in the
proofs will be estimates on the range of the process.

4.1. Displacement estimates. For the sake of completeness and for future ref-
erence, we introduce also:

CONDITION C. Let � ∈ S
d−1. We say that Condition C is satisfied with respect

to � if

E(Xn+1 − Xn | Fn) = 0 on {there exists k < n such that Xk = Xn}
and

E(Xn+1 − Xn | Fn) · � ≥ 0 on {Xk �= Xn for all k < n}.

That is, Condition C does not require that on the first visit to a site the particle
gets a uniformly positive push in the direction �.

Now, we need to consider processes starting at an arbitrary cookie environment.

CONDITIONS CA and C+
A . Let � ∈ S

d−1 and A ⊂ Z
d . We say that Condi-

tion CA is satisfied with respect to �, if

E(Xn+1 − Xn | Fn) = 0

on the event {there exists k < n such that Xk = Xn or Xn /∈ A}
and

E(Xn+1 − Xn | Fn) · � ≥ 0 on {Xk �= Xn for all k < n and Xn ∈ A}.
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If (in addition to the first display) there exist λ > 0 such that

E(Xn+1 − Xn | Fn) · � ≥ λ on {Xk �= Xn for all k < n and Xn ∈ A},
we say that Condition C+

A holds.

Note that Condition CA (C+
A) becomes Condition C (C+), if A = Z

d . On the
other hand, Condition CA with A = ∅ simply means that the process is a d-
dimensional martingale. Throughout, given a stochastic process (X̃n, n ≥ 0) on
the lattice Z

d , we denote its range at time n by

RX̃
n = {x ∈ Z

d : X̃k = x for some 0 ≤ k ≤ n}.
Let us use also the notation |U | for the cardinality of U , where U ⊂ Z

d .
Now, the key fact in this paper is that for any process that satisfies Conditions B,

E and CA with an arbitrary A ⊂ Z
d , the number of distinct sites visited by time n

is typically much larger than n1/2:

PROPOSITION 4.1. Suppose that Conditions B, E and CA (for some A ⊂ Z
d ,

d ≥ 2) hold for a process X̃ = (X̃n, n = 0,1,2, . . .). Then, there exist positive
constants α,γ1, γ2 which depend only on d,K,h, r , such that

P[|RX̃
n | < n1/2+α] < e−γ1n

γ2(4.1)

for all n ≥ 1.

The proof of this proposition is postponed to Section 5.
Now, let us recall Azuma’s inequalities. Let a > 0. If {Zn}n∈N is a martingale

with respect to some filtration, and such that |Zk − Zk−1| < c a.s., then (cf., e.g.,
Theorem 7.2.1 of [1])

P[|Zn − Z0| ≥ a] ≤ 2 exp
(
− a2

2nc2

)
.(4.2)

If {Z̃n}n∈N is a super-martingale, |Z̃k − Z̃k−1| < c a.s., then (see, e.g., Lemma 1 of
[13])

P[Z̃n − Z̃0 ≥ a] ≤ exp
(
− a2

2nc2

)
.(4.3)

Let H(a, b) ⊂ Z
d be defined as

H(a, b) = {x ∈ Z
d :x · � ∈ [a, b]}.

Now we obtain an important consequence of Proposition 4.1: if the cookies’ con-
figuration A is such that there are enough cookies around the starting point, then
the process is likely to advance in the direction �.
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PROPOSITION 4.2. Suppose that the process X satisfies Conditions B, E, C+
A ,

and there exists δ0 > 0 such that for some n ≥ 1∣∣(Zd \ A) ∩ H
(−n1/2+δ0, 2

3λn1/2+α)∣∣ ≤ 1
3n1/2+α,(4.4)

where α is from Proposition 4.1. Then, for some positive constants γ3, γ4 that
depend only on d,K,h, r, λ, δ0, we have

P
[
Xn · � < 1

3λn1/2+α]
< e−γ3n

γ4
.(4.5)

PROOF. First, note that, by (4.3)

P

[
max
k≤n

Xk · � >
2

3
λn1/2+α,Xn · � <

1

3
λn1/2+α

]
≤ C1ne−C2n

2α

for some C1,C2 > 0. Observe also that, again by (4.3),

P

[
min
k≤n

Xk · � < −n1/2+δ0
]
≤ C3ne−C4n

2δ0

for some C3,C4 > 0. Next, let

Dk = E(Xk+1 − Xk | Fk)

be the (conditional) drift at time k. Then, the process

Yn = Xn −
n−1∑
k=0

Dk

is a martingale with bounded increments. By (4.4) and Condition CA, on the event

{|RX
n | ≥ n1/2+α} ∩ {

Xk ∈ H
(−n1/2+δ0, 2

3λn1/2+α)
for all k ≤ n

}
,

we have (
n−1∑
k=0

Dk

)
· � >

2

3
λn1/2+α.

Hence, using (4.2) and Proposition 4.1, we conclude the proof of Proposition 4.2.
�

REMARK 4.1. Condition (4.4) is enough for our needs in this paper, but, in
fact, from the proof of Proposition 4.2 one can see that it can be relaxed in the
following way: if in the strip of width O(n1/2+α̂) (where 0 < α̂ < α) there are not
more than O(n1/2+α) eaten cookies, then the process is likely to advance by at
least O(n1/2+α̂) by time n.

For each � ∈ S
d−1, define the half-space M� = {x ∈ Z

d :x · � > 0}. Next, we
prove that if for some � ∈ S

d−1 we know that all the cookies in the half-space M�

are present and that Condition CA is satisfied with respect to �, then with uniformly
positive probability the process never goes below its initial location:
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PROPOSITION 4.3. Assume Conditions B, E, C+
A , and suppose that A is such

that M� ⊂ A. Then there exists ψ = ψ(d,K,h, r, λ) > 0 such that

P[D̄0 = ∞] ≥ P[Xn · � > 0 for all n ≥ 1] ≥ ψ.(4.6)

PROOF. Clearly, since on {Xn · � > 0 for all n ≥ 1} the process does not see
the cookies’ configuration on Z

d \ M�, it is enough to prove this proposition for
the case A = Z

d . For a (large enough) integer m, consider the event

U0 = {(Xk+1 − Xk) · � ≥ r for all k = 0, . . . , �r−1�m − 1};
observe that X�r−1�m · � ≥ m on U0. By (1.4) we have for any fixed m > 0

P[U0] ≥ h�r−1�m.(4.7)

Let A′ = Z
d \ {X0, . . . ,X�r−1�m−1}, y0 = X�r−1�m, and abbreviate Wk =

X�r−1�m+k , k ≥ 0, so that W0 = y0. Observe that, if m is large enough, then
the process W − y0 satisfies Conditions B and E, and A′ − y0 satisfies (4.4)
for all n ≥ m2−ε for some small enough δ0. Now, suppose that the event U0 oc-
curs and let us fix ε such that (2 − ε)(1

2 + α) > 1. Denote m0 = 0,m1 = m and

mk+1 = λ
3m

(2−ε)(1/2+α)
k for k ≥ 1. Consider the events

Gk =
{

min
j≤m2−ε

k

(Wj − W0) · � > −mk

}
,

Uk = {
W
m2−ε

k � ≥ mk+1
}
, k ≥ 1.

Observe that

{Xn · � > 0 for all n ≥ 1} ⊃
( ∞⋂

k=1

(Gk ∩ Uk)

)
∩ U0(4.8)

(indeed, on Gk ∩ Uk−1 we have Xn · � > 0 for all n ∈ (m2−ε
k−1,m

2−ε
k ]). Also, by

(4.3),

P[Gk | U0] ≥ 1 − m2−ε
k e−2K2mε

k(4.9)

and, by Proposition 4.2,

P[Uk | U0] ≥ 1 − e−γ3m
(2−ε)γ4
k .(4.10)

Since P[⋂∞
k=1(Gk ∩ Uk) | U0] ≥ 1 − ∑∞

k=1(P[Gc
k | U0] + P[Uc

k | U0]), Proposi-
tion 4.3 now follows from (4.7) and (4.8). �
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4.2. Proof of Proposition 2.1. Here we will prove Proposition 2.1, closely fol-
lowing [4]. We will need the following result:

PROPOSITION 4.4. Consider a generalized excited random walk with respect
to a filtration (Fk, k ≥ 0) and in the direction �. Let (τk, k ≥ 1) be the correspond-
ing regeneration times. Then:

(i) there exists a positive constant ψ depending only on d,K,h, r, λ, such that

sup
j,k≥1

P
[
D

(k)
j < ∞ | G(k)

j

]
< 1 − ψ;(4.11)

(ii) there exist positive constants γ3, γ4 depending only on d,K,h, r, λ, such
that

sup
k≥1

P

[
(Xτk+n − Xτk

) · � <
1

3
λn1/2+α

∣∣∣ G(k)
0

]
< e−γ3n

γ4 ;(4.12)

(iii) there exist positive constants γ5, γ6 depending only on d,K,h, r, λ, such
that

sup
j,k≥1

P
[
n ≤ D

(k)
j − S

(k)
j < ∞ | G(k)

0

]
< e−γ5n

γ6
.(4.13)

Before proving Proposition 4.4, let us see how it implies Proposition 2.1. We
follow the proof of Proposition 1 in [4]. Let a1, a2, a3 be positive real numbers
such that a1 < 1

2 +α and a2 +a3 < a1. For each integer n > 0, let un = 
na1�, vn =

na2� and wn = 
na3�. We now choose n large enough so that (K + 1)vn(wn +
1) + 2 + K ≤ un. Let

An = {(Xτk+n − Xτk
) · � ≤ un}, Bn =

vn⋂
j=0

{
D

(k)
j < ∞}

and

Fn =
vn⋃

j=0

{
wn ≤ D

(k)
j − S

(k)
j < ∞}

.

We will show that

Ac
n ∩ Bc

n ∩ Fc
n ⊂ {τk+1 − τk < n}.(4.14)

To this end, for each natural n ≥ τk define

rn = max{(Xj − Xτk
) · � : τk ≤ j ≤ n}.

On the event Ac
n ∩ Bc

n ∩ Cc
n, we can define

M = inf
{
0 ≤ j ≤ vn :D(k)

j = ∞}
,
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and it is true that τk+1 = S
(k)
M . Hence, we need to prove that S

(k)
M − τk < n. Let us

set D
(k)
−1 = τk . By definition we know that D

(k)
M−1 < ∞. We now write

r
D

(k)
M−1

=
M−1∑
j=0

(
r
D

(k)
j

− r
S

(k)
j

) + (
r
S

(k)
j

− r
D

(k)
j−1

)

with the convention
∑−1

j=0 = 0. Since, by Condition B, the range of each jump is

at most K , we have that for each 0 ≤ j ≤ M − 1, r
D

(k)
j

− r
S

(k)
j

≤ K(D
(k)
j − S

(k)
j ).

And by definition, for each 0 ≤ j ≤ M − 1, we have that r
S

(k)
j

− r
D

(k)
j−1

≤ K + 1.

But on the event Fc
n , since for each 0 ≤ j ≤ M − 1 we have D

(k)
j < ∞, it is true

that D
(k)
j − S

(k)
j ≤ wn. It follows that

r
D

(k)
M−1

≤ (K + 1)vn(wn + 1).

Since we have chosen n sufficiently large so that (K +1)vn(wn +1)+2+K ≤ un,
we have r

D
(k)
M−1

+ 2 + K ≤ un. Now, on Ac
n, we have that Xτk+n · � − Xτk

· � > un.

Hence, Xτk+n · � − Xτk
· � > r

D
(k)
M−1

+ 2 + K and the smallest i such that Xτk+i ·
� − Xτk

· � > r
D

(k)
M−1

+ 1 must be smaller than n. It follows that S
(k)
M − τk < n, and

this concludes the proof of (4.14).
Now let us show that (4.14) is enough to prove Proposition 2.1. Indeed, by parts

(ii) and (iii) of Proposition 4.4, we have that

P
[
An | G(k)

0

] ≤ e−γ3n
γ4(4.15)

and

P
[
Fn | G(k)

0

] ≤ 1

γ7
e−nγ7(4.16)

for some γ7 such that 0 < γ7 < γ6. Furthermore, by part (i) of Proposition 4.4, we
see that

P
[
Bn | G(k)

0

] ≤ (1 − ψ)vn.(4.17)

It is clear now that estimates (4.15), (4.16) and (4.17) applied to inclusion (4.14),
imply the statement of Proposition 2.1.

PROOF OF PROPOSITION 4.4.
PROOF OF PART (i). Let k and j be fixed positive integers. By part (ii) of Propo-

sition 2.2, we have that

P
[
D

(k)
j = ∞ | G(k)

j

]
=

∞∑
n=1

∞∑
m=1

1{τk=n}(�)1{S(k)
j =n+m}(�)(4.18)

× P[D̄n+m = ∞ | D̄n = ∞, Fn+m].
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Now, on the paths such that infn≤j≤n+m Xj · � ≥ Xn · � (which happens when
τk = n) we have that

P[D̄n+m = ∞ | D̄n = ∞, Fn+m] = P[D̄n+m = ∞ | Fn+m]
P[D̄n = ∞ | Fn+m]

≥ P[D̄n+m = ∞ | Fn+m].
Hence, using Proposition 4.3 we get that

P[D̄n+m = ∞ | D̄n = ∞, Fn+m] ≥ ψ > 0.(4.19)

Substituting (4.19) into (4.18) we obtain that

P
[
D

(k)
j = ∞ | G(k)

j

] ≥ ψ

∞∑
n=1

∞∑
m=1

1{τk=n}(�)1{S(k)
j =n+m}(�) ≥ ψ > 0.

PROOF OF PART (ii). Note that

P

[
(Xτk+n − Xτk

) · � < λ
1

3
n1/2+α

∣∣∣ G(k)
0

]

=
∞∑

m=1

1{τk=m}(�)P

[
(Xm+n − Xm) · � < λ

1

3
n1/2+α

∣∣∣ D̄m = ∞, Fm

]

≤
∞∑

m=1

1{τk=m}(�)
1

P[D̄m = ∞ | Fm]P
[
(Xm+n − Xm) · � < λ

1

3
n1/2+α

∣∣∣ Fm

]

≤
∞∑

m=1

1{τk=m}(�)
1

P[D̄m = ∞ | Fm]e
−γ3n

γ4

≤ 1

ψ
e−γ3n

γ4
,

where in the first equality we have used part (i) of Proposition 2.2, in the second
to last inequality Proposition 4.2 and in the last step Proposition 4.3.

PROOF OF PART (iii). This follows from part (ii) in analogy with the proof of
Lemma 9 of [4]. �

5. On the number of distinct sites visited by the cookie process. In this
section, after obtaining some auxiliary results, we prove Proposition 4.1.

5.1. Some preliminary facts. Denote by

Ln(m) =
n∑

j=0

1{Xj ·�∈[m,m+1)}
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the local time on the corresponding strip. Let also

τX
U = min{n ≥ 0 :Xn ∈ U}(5.1)

be the entrance time to set U for the process X.
In the sequel we will use the following simple facts: if τ is a finite stopping

time, and X is a process that satisfies Conditions B, E and CA, then the process
X ◦ θτ also satisfies Conditions B, E and CA (but maybe with different A, which is
random and Fτ -measurable). If Y satisfies Conditions B, E and CA with A = ∅,
then Y ◦ θτ also satisfies Conditions B, E and CA with A = ∅.

We need the following.

LEMMA 5.1. Under Conditions B, E, CA, for any δ > 0 there exists a constant
γ ′

1 such that for all m we have

P[Ln(m) ≥ n1/2+2δ] ≤ e−γ ′
1n

δ

.

PROOF. Without restricting generality, suppose that m = −1. Denote T̂0 = 0,
and

T̂k+1 = min{j > T̂k :Xj · � ∈ [−1,0)}.
With this notation,

Ln(−1) = max{k : T̂k ≤ n}.(5.2)

By Condition E, there exist C1 > 0 and i0 ≥ 1 such that for any stopping time τ

P[(Xτ+i0 − Xτ) · � ≥ 2 | Fτ ] ≥ C1.(5.3)

Using the optional stopping theorem, for any m and for any x such that x · � ≥ 1,
we obtain that

1 ≤ (n1/2+δ + K)

× P
[
τX
H(n1/2+δ,+∞)

◦ θ
T̂m+i0

< τX
H(−∞,0) ◦ θ

T̂m+i0
| F

T̂m+i0
,(5.4)

X
T̂m+i0

· � = x
]
.

Then, by (5.3) and (5.4), for any m it holds that

P
[
X

T̂m+k
· � > 0 for all i0 ≤ k ≤ τX

H(n1/2+δ,+∞)
◦ θ

T̂m
| F

T̂m

] ≥ C2n
−1/2−δ.

That is, starting at any y such that y ·� ∈ [−1,0), by (5.3) with a uniformly positive
probability the particle advances by at least distance 2 in direction � during the
first i0 steps, so that it comes to H(1,+∞); then, by (5.4), the particle will visit
H(n1/2+δ,+∞) before coming back to the “negative” half-space with probability
at least O(n−1/2−δ). But, if the particle managed to visit H(n1/2+δ,+∞), by (4.3)



GENERAL MANY-DIMENSIONAL EXCITED RANDOM WALK 2125

it is quite likely that it will take more than n time units to go back to H(−∞,0).
So, by (4.3), we have

P[T̂k+i0 − T̂k > n | F
T̂k

] ≥ C2n
−1/2−δ(1 − e−n2δ/(2K2)) ≥ C3n

−1/2−δ.

Thus, one can write

P[there exists k ≤ n1/2+2δ − i0 such that T̂k+i0 − T̂k > n] ≥ 1 − e−C4n
δ

,

and so, using (5.2), we prove Lemma 5.1. �

Denote by B(x, s) = {y ∈ Z
d :‖y − x‖ ≤ s} the discrete ball centered in x and

with radius s.
Consistently with the discussion in Section 1, let {Yn}n∈N be a process which

satisfies Conditions B, E, CA with A = ∅ (i.e., Y is a d-dimensional martingale
with uniformly bounded increments and some uniform ellipticity).

Now we obtain some properties of the process Y needed in the course of the
proof of our results.

LEMMA 5.2. There exist b ∈ (0,1) and γ ′
2 > 0 (depending only on K , h, r)

such that

E(‖Yn+1‖b | Fn) ≥ ‖Yn‖b1{‖Yn‖>γ ′
2}.(5.5)

PROOF. Observe that, for any δ > 0 there exists ε′ > 0 such that for all u ∈ R

with the property |u| ≤ ε′ and all b ∈ (1
2 ,1) we have

(1 + u)b/2 ≥ 1 + b

2
u − (1 + δ)

b

4

(
1 − b

2

)
u2.(5.6)

Now, abbreviate

Py,y+z = P[Yn+1 − Yn = z | Fn, Yn = y];
take y such that K

‖y‖ < ε′, and write

E(‖Yn+1‖b − ‖Yn‖b | Fn, Yn = y)

= ∑
z

Py,y+z(‖y + z‖b − ‖y‖b)

= ‖y‖b
∑
z

Py,y+z

((‖y + z‖2

‖y‖2

)b/2

− 1
)

= ‖y‖b
∑
z

Py,y+z

((
1 + 2y · z + ‖z‖2

‖y‖2

)b/2

− 1
)
.
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Denote by ϕy,z the angle between y and z regarded as vectors in R
d . By (5.6),

Condition B and the fact that
∑

z zPy,y+z = 0, we can write

E(‖Yn+1‖b − ‖Yn‖b | Yn = y)

≥ ‖y‖b
∑
z

Py,y+z

(
by · z
‖y‖2 + b‖z‖2

2‖y‖2 − (1 + δ)b

(
1 − b

2

)
(y · z)2

‖y‖4

− (1 + δ)b

(
1 − b

2

)
(y · z)‖z‖2

‖y‖4

− (1 + δ)
b

4

(
1 − b

2

) ‖z‖4

‖y‖4

)

≥ b

‖y‖2−b

∑
z

Py,y+z

(
b

2
‖z‖2 − (1 + δ)

(
1 − b

2

)
‖z‖2 cos2 ϕy,z

)

+ C1
K3

‖y‖3−b
+ C2

K4

‖y‖4−b
,

where C1 and C2 are some (not necessarily positive) constants. Since d ≥ 2 and
using uniform ellipticity, we obtain that if δ is small enough, and b is close enough
to 1, we have for any y∑

z

Py,y+z

(
b

2
‖z‖2 − (1 + δ)

(
1 − b

2

)
‖z‖2 cos2 ϕy,z

)
> δ′ > 0

[use Condition B and (1.5) with some �′ such that �′ · y = 0]. Together with the
previous computation, this completes the proof of Lemma 5.2. �

Next, we prove the following fact (b is from Lemma 5.2):

LEMMA 5.3. Assume that a process Y satisfies Conditions B, E, CA with A =
∅, and suppose also that Y0 = x0. Then, for any δ > 0 there exists γ ′

3 > 0 such that
for all x0, y0 ∈ Z

d and for all n we have

P

[
n∑

j=1

1{Yj=y0} > nb/2+δ

]
≤ e−γ ′

3n
δ

.(5.7)

PROOF. Without restriction of generality, we may assume that x0 = y0 = 0.
Abbreviate τ̃ = τY

Zd\B(0,γ ′
2+1)

and Ṽ = {Ym �= 0 for all 1 ≤ m ≤ τ̃ }, where γ ′
2 is

from Lemma 5.2. By uniform ellipticity, there exists C1 > 0 such that

P[Ṽ ] > C1.(5.8)

By the optional stopping theorem and Lemma 5.2 we have

(γ ′
2 + 1)b ≤ (γ ′

2)
b + C2(n

1/2 + K)bP
[
τY
Zd\B(0,C2n

1/2)
◦ θτ̃ < τY

B(0,γ ′
2)

◦ θτ̃ | Ṽ , Fτ̃

]
,



GENERAL MANY-DIMENSIONAL EXCITED RANDOM WALK 2127

where C2 is a (large) constant to be chosen later. This implies that

P
[
τY
Zd\B(0,C2n

1/2)
◦ θτ̃ < τY

B(0,γ ′
2)

◦ θτ̃ | Ṽ , Fτ̃

] ≥ C3

nb/2(5.9)

for some positive C3 depending on C2. Next we assume that C2 is sufficiently large
so that (4.2) implies that for any stopping time τ̂

P[τY
0 ◦ θτ̂ > n | Fτ̂ , Yτ̂ = y]

(5.10)

≥ 1 − 2 exp
(
−(C2n

1/2)2

2nK2

)
≥ 1

2
for any y ∈ Z

d \ B(0,C2n
1/2)

(to reach 0 from y, the martingale Y has to advance by at least C2n
1/2 units in

some fixed direction). Now, (5.8), (5.9) and (5.10) imply that

P[Ym �= 0 for all m = 1, . . . , n] ≥ C1C3

2nb/2 .(5.11)

Then, proceeding as in the proof of Lemma 5.1 [the argument after (5.4) up to the
end of the proof], we obtain that (5.11) implies (5.7). �

Next, we prove that the process Y typically hits sets which contain enough
points close to the starting place of the process:

LEMMA 5.4. Assume that a process Y satisfies Conditions B, E, CA with
A = ∅, and suppose that Y0 = x. Consider an arbitrary δ > 0 and a set U and
suppose that |B(x,m1/2) \ U | ≤ m1−b/2−2δ , for some m. Then, there exists γ ′

4 > 0
such that

P[τY
U ≥ m1−δ] ≤ e−γ ′

4m
δ

.

PROOF. First, by (4.2), we have that

P[Yk ∈ B(x,m1/2) for all k ≤ m1−δ] ≥ 1 − e−Cmδ

.

Then, by Lemma 5.3, with probability at least 1 − e−Cmδ
by time m1−δ every site

from B(x,m1/2) will be visited less than mb/2+δ times, so we have

|RY
m1−δ | = |{Y0, . . . , Ym1−δ }| > m1−δ

mb/2+δ
= m1−b/2−2δ

with probability at least 1 − e−C′mδ
. To complete the proof of Lemma 5.4, it re-

mains to observe that, since |B(x,m1/2) \ U | ≤ m1−b/2−2δ , on the event

{|B(x,m1/2) ∩ RY
m1−δ | > m1−b/2−2δ}

we have {Y0, . . . , Ym1−δ } ∩ U �= ∅. �
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5.2. Proof of Proposition 4.1. Fix a ∈ (0, 1
2) and ε > 0 in such a way that

(1 − a + ε) ∧ (1
2 + a

2 (1 − b) − 4ε) > 1
2 , where b is from Lemma 5.2; also, fix

n ≥ 1. In the rest of this section, we will not explicitly indicate the dependence on
a, b, ε, n by sub/superscripts in the notation. Let us denote by

Hj = H
(
2(j − 1)na/2,2(j + 1)na/2)

the corresponding strip of width 4na/2. We say that the strip Hj is a trap if |RX
n ∩

Hj | ≥ na(1−b/2)−2ε .
Consider the event

G = {|RX
n | ≥ 1

2n(1−a+ε)∧(1/2+(a/2)(1−b)−4ε)}.
We are going to prove that

P[G] ≥ 1 − e−C1n
ε/2

,(5.12)

thus establishing Proposition 4.1. Let us introduce the event

G1 = {Ln(k) ≤ n1/2+ε for all k ∈ [−Kn,Kn]}.
By Lemma 5.1, it holds that

P[G1] ≥ 1 − (2Kn + 1)e−γ ′
1n

ε/2
.(5.13)

Next, denote σ0 = 0, and, inductively (assuming, of course, that 
na−ε� ≥ 1),

σk+1 = min
{
j ≥ σk + 
na−ε� : |RX

j ∩ B(Xj ,n
a/2)| ≤ na(1−b/2)−2ε}(5.14)

(formally, if such j does not exist, we put σk+1 = ∞). Consider the event (to hit a
new point means to visit a previously unvisited site)

G2 = {
at least one new point is hit on each

of the time intervals [σj−1, σj ), j = 1, . . . , 1
2n1−a+ε}.

Now, the key observation is the following: when the process is walking on previ-
ously visited sites, it has zero drift. So, if we only want to assure that at least one
new point it visited, this is equivalent to considering the first moment when the
process Y (the process without cookies) enters the previously unvisited set. Then,
by Lemma 5.4 we have

P
[
at least one new point is hit on each

of the time intervals [σj−1, σj ), j = 1, . . . , k
]

≥ 1 − ke−γ ′
4n

ε/a

,

so we obtain that

P[G2] ≥ 1 − 1
2n1−a+εe−γ ′

4n
ε/a

.(5.15)
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Next, assuming that n is so large that 8n1−ε < n/2, let us show that (G1 ∩G2) ⊂
G. Indeed, suppose that both G1 and G2 occur, but |RX

n | < n1/2+a/2(1−b)−4ε . De-
note by

L̂j =
2(j+1)na/2−1∑
k=2(j−1)na/2

Ln(k)

the total number of visits to Hj . Then, on {|RX
n | < n1/2+a/2(1−b)−4ε} the number

of traps is at most 2n1/2−a/2−2ε . On the event G1, we can write∑
j

L̂j 1{Hj is a trap} ≤ 4na/2 × 2n1/2−a/2−2ε × n1/2+ε = 8n1−ε.

On the other hand, note that, since for j ≤ n we have RX
j ⊂ RX

n , if |RX
j ∩

B(Xj ,n
a/2)| > na(1−b/2)−2ε then Xj must be in a trap. Since n is such that

8n1−ε < n/2, we obtain that, on the event{∑
j

L̂j 1{Hj is a trap} ≤ 8n1−ε

}

we have that σn1−a+ε/2 < n (indeed, the total time spent in nontraps is at least
n/2; on the other hand, from the definition (5.14) one can see that up to the mo-
ment σk we can have at most kna−ε instances j such that |RX

j ∩ B(Xj ,n
a/2)| ≤

na(1−b/2)−2ε). But then, on the event G2 we have that |RX
n | ≥ 1

2n(1−a+ε). So, in-
deed (G1 ∩ G2) ⊂ G, and (5.12) follows from (5.13) and (5.15). The proof of
Proposition 4.1 is finished.
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