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SUFFICIENT CONDITIONS OF STANDARDNESS FOR
FILTRATIONS OF STATIONARY PROCESSES TAKING VALUES

IN A FINITE SPACE

BY GAËL CEILLIER

IUT Robert Schumann

Let X be a stationary process with finite state-space A. Bressaud et al.
[Ann. Probab. 34 (2006) 1589–1600] recently provided a sufficient condition
for the natural filtration of X to be standard when A has size 2. Their con-
dition involves the conditional laws p(·|x) of X0 conditionally on the whole
past (Xk)k≤−1 = x and controls the strength of the influence of the “old” past
of the process on its present X0. It involves the maximal gaps between p(·|x)

and p(·|y) for infinite sequences x and y which coincide on their n last terms.
In this paper, we first show that a slightly stronger result holds for any finite
state-space. Then, we provide sufficient conditions for standardness based on
average gaps instead of maximal gaps.

1. Introduction.

1.1. Setting. In this paper we study stationary processes X = (Xn)n∈Z indexed
by the integer line Z and with values in a finite set A. We assume that X is defined
recursively as follows: for every n ∈ Z, Xn is a function of the “past” X�

n−1 =
(Xk)k≤n−1 of X and of a “fresh” random variable Un, which brings in some “new”
randomness. In particular the process U = (Un)n∈Z is independent. To be more
specific, we introduce some notations and definitions about σ -algebras.

All σ -fields are assumed to be complete. For every process ξ = (ξn)n∈Z and ev-
ery n ∈ Z, let ξ�

n = (ξk)k≤n and F ξ
n = σ(ξ�

n ). The natural filtration of ξ is the non-
decreasing sequence F ξ = (F ξ

n )n∈Z. Furthermore, F ξ∞ = σ(ξk;k ∈ Z) and F ξ
−∞

is the tail σ -algebra F ξ
−∞ = ⋂

k∈Z F ξ
k .

We say that a process U is a governing process for X, or that U governs X

if, for every n ∈ Z, (i) Un+1 is independent of F X,U
n , and (ii) Xn+1 is measurable

with respect to σ(Un+1)∨ F X
n . In particular any governing process is independent.

If moreover the Un are uniform on [0,1], the process (U,X) is—according to
Schachermayer’s definition [9] and up to a time reversal—a parametrization of
the process X.

Likewise, we say that a process U is a generating process for X, or that U

generates X if, for every n ∈ Z, Xn is measurable with respect to F U
n . This is
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equivalent to the condition that F X
n ⊂ F U

n for every n ∈ Z, a property which, from
now on, we write as F X ⊂ F U .

One could be led to believe that when F X−∞ is trivial, any process governing
X generates X as well. But, although notoriously used by Wiener and Kallianpur
in [6] (not published, but see a discussion in [8]), this argument is false. As a simple
counterexample, assume that X is i.i.d., that every Xn is uniform on {−1,1} and
set Un = XnXn−1 for every n ∈ Z. Then F X−∞ is trivial, and U governs X, but X0

is independent of F U∞; hence U does not generate X.
Governing and generating processes are related to immersions of filtrations. Re-

call that the filtration F X is immersed in the filtration F U if F X ⊂ F U and if,
for every n ∈ Z, F X

n+1 and F U
n are independent conditionally on F X

n . Roughly
speaking, this means that F U

n gives no further information on Xn+1 than F X
n does.

Equivalently, F X is immersed in F U if every F X-martingale is an F U -martingale.
The following easy fact holds (see a proof in Section 5.2).

LEMMA 1.1. If U is a governing and generating process for X, then F X is
immersed in F U .

Another notable property of filtrations is standardness. Recall that F X is stan-
dard if, modulo an enlargement of the probability space, one can immerse F X in a
filtration generated by an i.i.d. process. Vershik introduced standardness in the con-
text of ergodic theory. Examples of nonstandard filtrations include the filtrations of
[T ,T −1] transformations, introduced in [5]. Split-word processes, inspired by Ver-
shik’s (rn)-adic sequences of decreasing partitions [11] and studied in [10] and [7],
for instance, also provide nonstandard filtrations.

Obviously, Lemma 1.1 above implies that if X has a generating and governing
process, then F X is standard. Whether the converse holds is not known.

Necessary and sufficient conditions for standardness include Vershik’s self-
joining criterion and Tsirelson’s notion of I -cosiness. Both notions are discussed
in [3] and are based on conditions which are subtle and not easy to use nor to check
in specific cases.

Our goal in this paper is to provide sufficient conditions of standardness that
are easier to use than the ones mentioned above. Each of our conditions involves
a measure of the influence of the “old” past of the process on its present. We
introduce them in the next section.

1.2. Statement of the results. We now introduce some measures of the influ-
ence of the past of a process on its present. To conveniently state these definitions
and, later on, our results, we first introduce some notations.

Recall that X is a stationary process indexed by the integer line Z with values
in some finite set A and with natural filtration F X .
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NOTATION 1. (1) Slabs: For any sequence (ξn)n∈Z in AZ, deterministic or
random, and any integers i ≤ j , ξi:j is the (j − i + 1)-uple (ξn)i≤n≤j in Aj−i+1.

(2) Shifts: If k − i = � − j , ξi:k = ζj :� means that ξi+n = ζj+n for every integer
n such that 0 ≤ n ≤ k − i.

Infinite case: Let A� denote the space of sequences (ξn)n≤−1. For every i in Z,
a sequence (ξn)n≤i is also considered as an element of A� since, similarly to the
finite case, one identifies ξ�

i = (ξn)n≤i and ζ�
j = (ζn)n≤j if ξi+n = ζj+n for every

integer n ≤ 0.
(3) Concatenation: For all i ≥ 0, j ≥ 0, x = (xn)1≤n≤i in Ai and y = (yn)1≤n≤j

in Aj , xy denotes the concatenation of x and y, defined as

xy = (x1, . . . , xi, y1, . . . , yj ), xy ∈ Ai+j .

Infinite case: i ≥ 0, y = (yn)1≤n≤i in Ai and x = (xn)n≤−1 in A�, xy denotes the
concatenation of x and y, defined as

xy = (. . . , x−2, x−1, y1, . . . , yi), xy ∈ A�.

NOTATION 2. For each n ≥ 0, x ∈ An and a ∈ A, set

p(a|x) = P(X0 = a|X−n:−1 = x)

with the convention

p(a|x) = P(X0 = a) if P[X−n:−1 = x] = 0.

In the following,

p(·|x) = P(X0 = ·|X�
−1 = x), x ∈ A�,

denotes a regular version of the conditional law of X0 given X�
−1.

We now introduce three quantities γn, αn and δn measuring the pointwise influ-
ence at distance n.

DEFINITION 1. For every n ≥ 0, let

γn = 1 − inf
{
p(a|xz)

p(a|yz)
;a ∈ A,x ∈ A�, y ∈ A�, z ∈ An,p(a|yz) > 0

}
,

αn = 1 − inf
z∈An

∑
a∈A

inf{p(a|yz);y ∈ A�},

δn = sup
{∥∥p(·|xz) − p(·|yz)

∥∥;x ∈ A�, y ∈ A�, z ∈ An}
,

where, for all probabilities μ and ν on A, ‖μ − ν‖ is the distance in total variation
between μ and ν, defined as

‖μ − ν‖ = 1

2

∑
a∈A

|μ(a) − ν(a)| = ∑
a∈A

[μ(a) − ν(a)]+.
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Note that the definitions of γn, αn and δn depend on the choice of the regular
version (p(·|x))x∈A� of the conditional law of X0 given X�

−1. One needs a “good”
version to get small influences for applying the theorems below.

The sequences (γn)n≥0, (αn)n≥0 and (δn)n≥0 are nonincreasing, [0,1]-valued
and δn ≤ γn, δn ≤ αn for every n ≥ 0; see the proof in Section 5.1.

For every [0,1]-valued sequence (εn)n≥0, we consider the condition

+∞∑
k=0

k∏
n=0

(1 − εn) = +∞.(H(ε))

For instance, H(γ ) and H(2δ) are, respectively,

+∞∑
k=0

k∏
n=0

(1 − γn) = +∞ and
+∞∑
k=0

k∏
n=0

(1 − 2δn) = +∞.

Observe that if two [0,1]-valued sequences (εn)n≥0 and (ζn)n≥0 are such that
εn ≤ ζn for every n ≥ 0, then H(ζ ) implies H(ε). Hence condition (H(ε)) asserts
that (εn)n≥0 is “small enough” in a way.

The definition of (γn)n≥0 and the assumption H(γ ) are both stated in [1]. The
main result of [1] is the following.

THEOREM 1 (Bressaud et al. [1]). Assume that the size of A is 2, then H(γ )

implies that F X is standard.

The scope of Theorem 1 is restricted by the following three conditions. First,
the size of A must be 2. Second, one must control the ratios of probabilities which
define γn. Third, H(γ ) implies that γ0 < 1; therefore one can show that H(γ )

implies the existence of c > 0 such that p(a|x) ≥ c for every x in A� and a in A

such that P[X0 = a] > 0; see the proof in Section 5.4.
Our first result allows us to get rid of the first two restrictions.

THEOREM 2. (1) Assume that A is finite, that 2δ0 < 1 and that H(2δ) holds.
Then F X is standard.

(2) If the size of A is 2, H(δ) alone implies that F X is standard.

Theorem 2 generalizes and improves on Theorem 1 of [1], since δn ≤ γn for
every n. Note that the straight adaptation of the proof of [1] to sizes of A at least 3
leads to the more stringent condition H(2γ ).

Another measure of influence, based on the quantities αn defined before, is in-
troduced and used in [2] (actually the notation there is an = 1 − αn). The authors
show that if H(α) holds, there exists a perfect sampling algorithm for the pro-
cess X, a result which implies that F X is standard. But since δn ≤ αn for every
n ≥ 0, the result of [2] does not imply Theorem 1.
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Theorems 1 and 2 and the exact sampling algorithm of [2] all require an upper
bound of some pointwise influence sequence. Our next result uses a less restrictive
hypothesis based on some average influences ηn, defined below.

DEFINITION 2. For every n ≥ 0, let ηn denote the average influence at dis-
tance n, defined as

ηn = ∑
z∈An

E
[∥∥p(·|z) − p(·|X�

−n−1z)
∥∥] · P[X−n:−1 = z],

and call H′(η) the condition
+∞∑
k=0

ηk < +∞.(H′(η))

Note that ηn is also

ηn = E
[∥∥p(·|Y−n:−1) − p(·|X�

−n−1Y−n:−1)
∥∥]

,

where Y is an independent copy of X.

DEFINITION 3 (Priming condition). We say that the process X fulfills the
priming condition if for every a in A, p(a|X�

−1) > 0 almost surely.

THEOREM 3. Assume that A is finite and that X fulfills the priming condition.
Then, H′(η) implies that F X is standard.

The sequence (ηn)n≥0 is [0,1]-valued. If ηn < 1 for every n ≤ 0, then H′(η)

clearly implies H(η). Yet, since ηn ≤ δn for every n ≥ 0 (see the proof in Sec-
tion 5.1), the condition H′(η) cannot be compared to the conditions H(δ) and
H(2δ).

Theorem 3 gives a remarkable result for chains with memory of variable length.
These chains, studied notably in [4] and widely used for mathematical models, are
stationary processes X taking values in a finite alphabet A, such that the distribu-
tion of X0 given the past X�

−1 depends only on a past X−�:−1 of length �, where �

is random and measurable with respect to F X−1.
More precisely, for x ∈ A�, let

�(x) = inf{n ≥ 0;y 
→ p(·|yx−n:−1) is constant on A�}
= inf{n ≥ 0; ∀y ∈ A�,p(·|yx−n:−1) = p(·|x)}.

Then X is a variable length Markov chain if �(X�
−1) is almost surely finite. The

following result holds.

COROLLARY 1.2. If X fulfills the priming condition and if �(X�
−1) is inte-

grable, then the natural filtration F X is standard.
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Once again we refer the reader to Section 5.3 for the proof.
Here is a plan of the rest of the paper. In Section 2, we prove Theorem 2. In Sec-

tion 3, we prove Theorem 3. In Section 4, we compare Theorems 2 and 3 through
examples. Finally in Section 5, we prove some facts stated without proof in the
Introduction, namely Lemma 1.1, Corollary 1.2, a consequence of the assumption

H(γ ) and some inequalities involving the quantities αn, γn, δn and ηn.

2. Pointwise influence.

2.1. Construction of a governing sequence. We construct a governing se-
quence with values in the standard simplex on #A vertices.

NOTATION 3. Let H be the hyperplane in R
A defined by

H =
{
x = (xa)a∈A ∈ R

A :
∑
a∈A

xa = 1
}
.

Let S be the simplex in H defined by

S := (R+)A ∩ H =
{
x ∈ (R+)A :

∑
a∈A

xa = 1
}
.

In other words, S = Conv(EA) is the convex enveloppe of the canonical basis
EA = (Ea)a∈A of R

A.
Let λ denote the Lebesgue measure on H and μ = (1S/λ(S))λ the uniform

distribution on S.

NOTATION 4. For any probability p on A, let

G(p) = (p(a))a∈A = ∑
a∈A

p(a)Ea, G(p) ∈ S.

For a in A, denote by fa(·,p) the affine map from H to H which sends Ea on
G(p) and lets invariant Eb for every b in A, b �= a. Let

Sa(p) = fa(S,p) = Conv
({G(p)} ∪ EA \ {Ea}).

A short computation yields the interpretation of p(a) below.

LEMMA 2.1. For any a in A, det(fa(·,p)) = p(a). Therefore, for any mea-
surable B ⊂ S,

λ[fa(B,p)] = λ[B]p(a).

In particular λ(Sa(p)) = λ(S)p(a), hence μ(Sa(p)) = p(a).

We now characterize Sa(p).
By convention, for every r > 0, we set r/0 = ∞, and 0/0 = 0.
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LEMMA 2.2. Let p be a probability on A, a in A, then

Sa(p) =
{
x = (xa)a∈A ∈ S :

xa

p(a)
= min

b∈A

xb

p(b)

}

=
{
x ∈ S :∀bb ∈ A,

xa

p(a)
≤ b ∈ A

xb

p(b)

}
.

COROLLARY 2.3. S is the union of the simplices Sa(p), with a in A and that,
if a �= b, the simplices Sa(p) and Sb(p) meet only at their boundary.

Proof: It’s a straight corollary of the Lemmas 2.1 and 2.2.

PROOF. Call 
a(p) the right-hand side. Since 
a(p) is a convex polyedron
and contains the points G(p) and Eb for every b �= a, Sa(p) ⊂ 
a(p).

As regards the other inclusion, let x = (xa)a∈A in 
a(p). Then xa/p(a) is finite,
and

x = xa

p(a)
G(p) + ∑

b �=a

(
xb − p(b)

xa

p(a)

)
Eb.

From the definition of 
a(p), xb/p(b) ≥ xa/p(a) for every b �= a, hence one has
xb − p(b)xa/p(a) ≥ 0 for every b �= a. Furthermore,

xa

p(a)
+ ∑

b �=a

(
xb − p(b)

xa

p(a)

)
= xa

p(a)
+ ∑

b∈A

(
xb − p(b)

xa

p(a)

)
= ∑

b∈A

xb = 1,

hence x is indeed a barycenter of the points G(p) and Eb for b �= a. This concludes
the proof. �

One knows that the simplices (Sa(p))a∈A cover S and intersect only on a set of
measure zero. Hence, for almost every s in S, there exists a unique a in A such
that s ∈ Sa(p). Our next definition deals with the tie cases.

DEFINITION 4. Fix once and for all a total ordering of A. For every s in S and
every probability p on A with full support, define

g(s,p) = min{a ∈ A : s ∈ Sa(p)}.

LEMMA 2.4. Let U denote a random variable uniformly distributed on S.
Then the distribution of g(U,p) is p.

Indeed, up to negligible events, {g(U,p) = a} = {U ∈ Sa(p)}, hence

P[g(U,p) = a] = μ(Sa(p)) = p(a).

The following lemma is our main tool to construct governing sequences.
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FIG. 1. f (·,p) and g(·,p).

LEMMA 2.5. Let X be a random variable with distribution p on A. Let W be
a random variable with uniform distribution on S and independent of X. Introduce

U = fX(W,p) = ∑
a∈A

fa(W,p)1{X=a}.

Then U is uniformly distributed on S and X = g(U,p) almost surely.

PROOF. Since U ∈ fX(S,p) = SX(p), X = g(U,p) almost surely. We now
prove that U is uniformly distributed on S.

The sets Sa(p) for a in A cover S and their pairwise intersections are negligible
for λ. Hence, for every Borel subset B of S,

P[U ∈ B] = ∑
a∈A

P[X = a;fa(W,p) ∈ B] = ∑
a∈A

P[X = a] · P[W ∈ fa(·,p)−1(B)]

= ∑
a∈A

p(a)
λ(fa(·,p)−1(B) ∩ S)

λ(S)
= ∑

a∈A

λ(B ∩ Sa)

λ(S)
= λ(B)

λ(S)
= μ(B),

where the second equality stems from the independence of X and W , and the
fourth equality stems from Lemma 2.1. This concludes the proof. �

2.2. Upper bound of the error. In this section we study the dependence of the
random variable g(U,p) with respect to p. The following result will be used twice.
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FIG. 2. Computation of P[g(U,p) �= g(U,q)]. The gray area shows the s ∈ S such that
g(s,p) �= g(s, q).

PROPOSITION 2.6 (Upper bound of the error). Let U be a random variable
uniformly distributed on S. Let p and q be two probabilities on A. Then,

P[g(U,p) �= g(U,q)] ≤ 2‖p − q‖.
In the special case #A = 2,

P[g(U,p) �= g(U,q)] = ‖p − q‖.

REMARK 1. The better result when #A = 2 is the reason why Theorem 2
involves weaker hypotheses on (δn)n in this case.

PROOF OF PROPOSITION 2.6. Assume without loss of generality that U is
constructed from i.i.d. random variables (εa)a∈A exponentially distributed with
parameter 1, as follows. For every a in A,

Ua = εa∑
b∈A εb

.

The event {g(U,p) �= g(U,q)} depends on (εa)a , as follows. By definition of g,
up to negligible events,

{g(U,p) = g(U,q)} = ⋃
a∈A

Ca with Ca = {U ∈ Sa(p) ∩ Sa(q)}.

Furthermore, since for every a ∈ A, P[Ca] = 0 if p(a) = 0 or q(a) = 0, and since
μ(Ca ∩ Cb) = 0 for a �= b, one gets

P[g(U,p) = g(U,q)] = ∑
a∈A

P[Ca]1{p(a)>0,q(a)>0}.
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For every a ∈ A such that p(a) > 0 and q(a) > 0, Lemma 2.2 gives

Ca =
{

εa

p(a)
= min

b

εb

p(b)
; εa

q(a)
= min

b

εb

q(b)

}

=
{
εa ≤ min

b

(
p(a)

εb

p(b)
, q(a)

εb

q(b)

)}
,

hence

Ca = ⋂
b �=a

{εb ≥ λb/aεa}, λb/a = max
(

p(b)

p(a)
,
q(b)

q(a)

)
.

Conditioning on εa and using that the random variables (εb)b �=a are i.i.d., expo-
nentially distributed and independent of εa , one gets

P[Ca|εa] = P

[⋂
b �=a

{εb ≥ λb/aεa}
∣∣∣εa

]
= ∏

b �=a

exp(−λb/aεa),

hence

P[Ca] = E

(
exp

(
−

(∑
b �=a

λb/a

)
εa

))
= 1

1 + ∑
b �=a λb/a

.

Therefore

P[g(U,p) = g(U,q)] = ∑
a∈A

P[Ca]1{p(a)>0,q(a)>0} = ∑
a∈A

1{p(a)>0,q(a)>0}
1 + ∑

b �=a λb/a

.

This last expression is not so easy to compute because each λb/a is defined as a
maximum. However,

∑
a∈A

1{p(a)>0}
1 + ∑

b �=a p(b)/p(a)
= ∑

a∈A

p(a)1{p(a)>0}
p(a) + ∑

b �=a p(b)
= ∑

a

p(a) = 1.

Subtracting the expression for P[g(U,p) = g(U,q)] to this, one gets

P[g(U,p) �= g(U,q)] = ∑
a∈A

1{p(a)>0}
1 + ∑

b �=a p(b)/p(a)
− ∑

a∈A

1{p(a)>0,q(a)>0}
1 + ∑

b �=a λb/a

.

Coming back to the definition of λb/a and using simple algebraic manipulations,
one gets for any a ∈ A such that p(a) > 0 and q(a) > 0,

1

1 + ∑
b �=a p(b)/p(a)

− 1

1 + ∑
b �=a λb/a

=
∑

b �=a(λb/a − p(b)/p(a))

(1 + ∑
b �=a p(b)/p(a))(1 + ∑

b �=a λb/a)

= p(a)
r(a)

q(a) + r(a)
,
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where

r(a) = ∑
b

[q(b)p(a) − p(b)q(a)]+.

Furthermore, for any a ∈ A such that p(a) > 0 and q(a) = 0, one gets

1

1 + ∑
b �=a p(b)/p(a)

= p(a) = p(a)
r(a)

q(a) + r(a)
.

Summing on every a, one gets finally

P[g(U,p) �= g(U,q)] = ∑
a∈A

p(a)
r(a)

q(a) + r(a)
.

If A = {a, a′} and, for example, q(a) < p(a), then r(a) = p(a) − q(a) and
r(a′) = 0, hence

P[g(U,p) �= g(U,q)] = r(a) = p(a) − q(a) = ‖p − q‖.
In the general case, note that

q(a) + r(a) ≥ q(a) + ∑
b

(
q(b)p(a) − p(b)q(a)

) = p(a),

hence

P[g(U,p) �= g(U,q)] ≤ ∑
a∈A

r(a) = ∑
a∈A

∑
b �=a

[p(a)q(b) − q(a)p(b)]+

≤ ∑
a∈A

∑
b �=a

p(a)
[[q(b) − p(b)]+ + p(b)[p(a) − q(a)]+]

,

where the last inequality stems from the fact that (u+v)+ ≤ (u)+ + (v)+ for every
u and v. Finally, the last double sum is at most 2‖p − q‖, which ends the proof in
the general case. �

Recall that if p and q are two fixed probabilities on A, then for every random
variables Zp and Zq with laws p and q defined on the same probability space,

P[Zp �= Zq] ≥ ‖p − q‖.
Conversely, a standard construction in coupling theory provides random variables
Zp and Zq with laws p and q such that P[Zp �= Zq] = ‖p − q‖.

The interest of Proposition 2.6 is to provide a global coupling of all probabilities
on A. One can wonder whether the constant 2 in this proposition can be improved.
Our next result (not used in the sequel) shows that the constant 2 is optimal for the
coupling (g(U,p))p , and that it is not possible to do much better with any other
global coupling.
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PROPOSITION 2.7 (Optimality of the upper bound of the error). If #A ≥ 3, the
constant 2 in the inequality P[g(U,p) �= g(U,q)] ≤ 2‖p − q‖ of Proposition 2.6
is optimal.

Furthermore, if (Zp)p is a family of random variables indexed by probabilities
on A, where each Zp follows the law p, then there exist two probabilities p �= q

such that

P[Zp �= Zq] ≥ 2(1 − 1/#A)‖p − q‖.

PROOF. The first part of the proposition follows from the explicit example
where {a, b, c} ⊂ A, p(a) = q(a) = 1 − ε and p(b) = q(c) = ε in the limit ε → 0.

With regard to the second part, let N = #A and for every a in A, let Za denote
the random variable of (Zp)p with uniform distribution on A\{a}. Choose a0 ∈ A,
and consider the random set D of the elements a of A such that Za = Za0 . For
every a, b ∈ A,

1[Za �=Zb] ≥ 1[a∈D,b/∈D] + 1[a /∈D,b∈D].

By summing over a, b ∈ A and by taking expectations, one gets∑
a,b

P[Za �= Zb] ≥ E[2#D(N − #D)].

Of course a0 ∈ D, and Za0 /∈ D, since Za �= a almost surely for every a. Thus
1 ≤ #D ≤ N − 1. Hence, ∑

a,b

P[Za �= Zb] ≥ 2(N − 1).

There are at most N(N − 1) nonzero terms in the sum above, hence there exist
a �= b such that

P[Za �= Zb] ≥ 2/N.

Since ‖pa − pb‖ = 1/(N − 1), this yields P[Za �= Zb] ≥ 2(1 − 1/N)‖pa − pb‖,
which ends the proof. �

2.3. Proof of Theorem 2. Let W = (Wn)n∈Z be an i.i.d. sequence of random
variables, uniformly distributed on S, independent of the process X. Applying the
construction of governing sequences in Section 2.1, we introduce, for every n in Z,

Un = fXn(Wn,Pn−1) with Pn−1 = p(·|X�
n−1).

Let n ∈ Z. Thanks to the stationarity of the process X and to the independence of X

and W , Pn is the conditional law of Xn+1 given F X,W
n . Since Wn+1 is independent

of F X,W
n and Xn+1, Lemma 2.5 yields that:

(1) Un+1 is independent of F X,W
n , and therefore of F X,U

n ;
(2) Un+1 is uniformly distributed on S;
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(3) Xn+1 = g(Un+1,Pn) almost surely.

For every T in Z, we now define a process XT which is a function of (Un)n≥T +1
in such a way that XT approximates X when T → −∞.

Let XT
n = a0 for n ≤ T with a0 ∈ A fixed, and assume that XT

n is defined up to
time n ≥ T . Define

XT
n+1 = g(Un+1,P

T
n ) where P T

n = p(·|(XT )�n ).

Proposition 2.6 implies that for n ≥ T ,

P[Xn+1 �= XT
n+1|F X,U

n ] = P[g(Un+1,Pn) �= g(Un+1,P
T
n )|F X,U

n ] ≤ 2‖Pn − P T
n ‖,

because Pn and P T
n are measurable for F X,U

n and Un+1 is independent of F X,U
n .

For n in Z, let LT
n count the number of consecutive times before n such that XT

and X coincide, that is,

LT
n = max{k ≥ 0 :XT

n−k+1:n = Xn−k+1:n}.
On the event {LT

n = �}, the sequences X�
n and (XT )�n coincide on their last �

terms. Hence, on the event {LT
n = �},

‖Pn − P T
n ‖ ≤ sup

{∥∥p(·|xz) − p(·|yz)
∥∥;x ∈ A�, y ∈ A�, z ∈ A�} = δ�.

One gets

P[Xn+1 �= XT
n+1|F X,U

n ] ≤ 2δLT
n
.

The end of our proof follows the method in [1]: consider a Z
+-valued Markov

chain, Z = (Zn)n≥0 starting from Z0 = 0, with transition probabilities

pi,i+1 = 1 − 2δi, pi,0 = 2δi for every i ≥ 0.

For any n ≥ T , it happens that LT
n dominates stochastically Zn−T , in the sense of

the following lemma.

LEMMA 2.8. For every k ≥ 0 and n ≥ T , P[LT
n ≥ k] ≥ P[Zn−T ≥ k].

PROOF. The result is obvious for n = T since Z0 = 0. Assume that the result
holds for n ≥ T . Then,

P[LT
n+1 ≥ k + 1] = P[LT

n ≥ k,Xn+1 = XT
n+1]

= E
[
1{LT

n ≥k}P[Xn+1 = XT
n+1|F X,U

n ]]
≥ E

[
1{LT

n ≥k}(1 − 2δLT
n
)
]
.

Since (δi)i is nonincreasing and since 2δi < 1 for every i, the sequence indexed by
i of general term 1{i≥k}(1 − 2δi) is nondecreasing. By induction, one obtains

P[LT
n+1 ≥ k + 1] ≥ E

[
1{Zn−T ≥k}(1 − 2δZn−T

)
]

= P[Zn−T ≥ k,Zn−T +1 = Zn−T + 1]
= P[Zn−T +1 ≥ k + 1],
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which ends the recurrence over n ≥ T and the proof of the lemma. �

Using this to estimate P[LT
n = 0], one gets

P[XT
n �= Xn] = P[LT

n = 0] ≤ P[Zn−T = 0].
Let μ be the measure defined on Z

+ by

ν(k) =
k∏

n=0

(1 − 2δn)

for every k ≥ 0. the hypothesis of Theorem 2 ensure that μ has infinite mass.
If

∏+∞
n=0(1 − 2δn) = 0, then μ is invariant and the state 0 is recurrent. But the

chain Z is irreducible since the hypothesis of Theorem 2 forces the positivity of
the probabilities (1 − 2δn). Hence Z is null recurrent.

If
∏+∞

n=0(1 − 2δn) > 0, then Z is transient since for every i, the probability of
never returning to i from i is

∏+∞
n=i (1 − 2δn) > 0. In both cases

P[XT
n �= Xn] → 0 when T → −∞.

In other words, XT
n converges in probability to Xn when T → −∞; in particular

Xn is measurable for F U
n , which proves that U generate X. Using Lemma 1.1 one

gets that the filtration F X is immersed in F U , and therefore F X is standard. This
ends the proof of Theorem 2.

3. Average influences. This section is devoted to the proof of Theorem 3.

3.1. Priming lemma. Recall that the governing sequence U with values in S

and based on Lemma 2.5 is defined by

Un = fXn(Wn,Pn−1) where Pn−1 = p(·|X�
n−1),

where W = (Wn)n∈Z is a sequence of i.i.d. random variables uniform on S, inde-
pendent of X. Recall also that, from Lemma 2.5, Xn = g(Un,Pn−1) almost surely
for every n ≥ 0.

Let � > 0. Let us show that with probability close to 1, for each x in A�, X1:� =
x as soon as U1:� ∈ Bx where Bx is a measurable subset of S� with μ-measure
independent of x.

Recall that X satisfies the priming condition if for every a in A, p(a|X�
−1) > 0

almost surely.

LEMMA 3.1 (Priming lemma). Set � > 0. If X verifies the priming condi-
tion, then for every ε ∈ ]0,1[, there exist a real number β� > 0 and a collection
(Bx)x∈A� of Borel sets of S� such that for every x ∈ A�,

μ⊗�[Bx] = β� and P[X1:� = x|U1:� ∈ Bx] ≥ 1 − ε.

Therefore if Y is a random variable valued in A� independent of (Xn,Un)n∈Z,

P[U1:� ∈ BY ] = β� and P[X1:� = Y |U1:� ∈ BY ] ≥ 1 − ε.
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PROOF. For every n ∈ Z, let Pn = p(·|X�
n ). Thanks to the stationarity of the

process X, Pn is the conditional law of Xn+1 given F X
n and the priming condition

ensures that the support of Pn is A almost surely.
Let ε ∈ ]0,1[ and � > 0. For any fixed x ∈ A� let us construct by induction Borel

sets Bx
1 , . . . ,Bx

� of S with positive measure such that for every m ∈ {1, . . . , �},
P(Cm) ≥

(
1 − ε

�

)
μ(Bx

m)P(Cm−1) > 0,

where C0 = � and for every m ∈ {1, . . . , �},
Cm = {X1:m = x1:m;U1:m ∈ Bx

1 × · · · × Bx
m}.

Let m ∈ {1, . . . , �}. Assume that Bx
1 , . . . ,Bx

m−1 are constructed verifying the in-
duction hypothesis. Since P[Cm−1] > 0, one gets, thanks to the priming condition,

P[Pm−1(xm) = 0|Cm−1] = 0.

Therefore one can choose a real number q ∈ ]0,1] such that

P[Pm−1(xm) ≤ q|Cm−1] <
ε

�
.

Set Um = (Um,1, . . . ,Um,N). Since Xm = g(Um,Pm−1) almost surely, one gets
up to negligible events,

{Xm = xm} ⊃ {Xm = xm;Pm−1(xm) > q}
= {g(Um,Pm−1) = xm;Pm−1(xm) > q}
=

{
Um,xm

Pm−1(xm)
= min

k∈A

Um,k

Pm−1(k)
;Pm−1(xm) > q

}

⊃
{
Um,xm

q
≤ min

k �=xm

Um,k;Pm−1(xm) > q

}
.

Set

Bx
m =

{
(y1, . . . , yN) ∈ S; yxm

q
≤ min

k �=xm

yk

}
.

Then μ(Bx
m) > 0 and

{Xm = xm;Um ∈ Bx
m} ⊃ {Um ∈ Bx

m;Pm−1(xm) > q}.
Since

Cm = {Xm = xm;Um ∈ Bx
m} ∩ Cm−1,

the independence of Um and F X,U
m−1 and the choice of q yield

P[Cm] ≥ P[Um ∈ Bx
m;Pm−1(xm) > q;Cm−1]

= μ(Bx
m)P[Pm−1(xm) > q;Cm−1]

≥ μ(Bx
m)

(
1 − ε

�

)
P[Cm−1].
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Therefore P[Cm] > 0.
By reducing the Borel set Bx

� at the last step of the induction, one can make the
measure μ⊗�[Bx

1 × · · · × Bx
� ] independent of x ∈ A�. Denote by β� this measure,

and then set Bx = Bx
1 × · · · × Bx

� . One gets

P[X1:� = x|U1:� ∈ Bx] = P[X1:� = x;U1:� ∈ Bx]
P[U1:� ∈ Bx] .

By independence,

P[X1:� = x,U1:� ∈ Bx] ≥
�∏

k=1

μ(Bx
k )

(
1 − ε

�

)
and P[U1:� ∈ Bx] =

�∏
k=1

μ(Bx
k ),

hence

P[X1:� = x|U1:� ∈ Bx] ≥
(

1 − ε

�

)�

≥ 1 − ε,

which ends the proof. �

3.2. Approximation until a given time. Choose ε > 0 and � ≥ 1 such that∑
n≥� ηn ≤ ε, and let J = [s, t] be an interval of integers such that t − s + 1 = �.
Then, let Y be a random variable taking values in A�, independent of

(Xn,Un)n∈Z and distributed like XJ .
Lemma 3.1 provides a real number β� and Borel sets (Bx)x∈A� , such that

P[XJ = Y |UJ ∈ BY ] ≥ 1 − ε and P[UJ ∈ BY ] = β�.

Using Y and the governing sequence (Un)n≥t+1, let us construct random vari-
ables (X′

n)n≥s by taking X′
J = Y and for every n > t

X′
n = g(Un,P

′
n−1) where P ′

n−1 = p(·|X′
s:n−1).

The random variable Y is useful in the proof of our following result.

LEMMA 3.2. For every n ≥ s, the law of X′
s:n is the law of Xs:n.

PROOF. For every n ≥ t + 1, y ∈ An−s and all x ∈ A,

P[X′
n = x|X′

s:n−1 = y] = p(x|y) = P[Xn = x|Xs:n−1 = y].
Since the law of X′

J = Y is the same as the law of XJ , the result follows by
induction. �

LEMMA 3.3. One has P[X′ �= X on [s,+∞[|UJ ∈ BY ] ≤ 3ε.
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PROOF. Since Xn = g(Un,Pn−1) and X′
n = g(Un,P

′
n−1), Proposition 2.6

yields for n > t ,

P[X′
n �= Xn|F X,U

n−1 ∨ σ(Y )] ≤ 2‖P ′
n−1 − Pn−1‖.

Let

(�) = P[X′
n �= Xn;X′

s:n−1 = Xs:n−1;UJ ∈ BY ].
Since

{X′
s:n−1 = Xs:n−1;UJ ∈ BY } ∈ F X,U

n−1 ∨ σ(Y ),

one gets

(�) ≤ E
[
2‖Pn−1 − P ′

n−1‖1{X′
s:n−1=Xs:n−1}1{UJ ∈BY }

]

= 2
∑

y∈A�

z∈An−t−1

E
[∥∥p(·|X�

s−1yz) − p(·|yz)
∥∥1{yz=X′

s:n−1=Xs:n−1}1{UJ ∈By}
]

≤ 2
∑
y,z

E
[∥∥p(·|X�

s−1yz) − p(·|yz)
∥∥1{UJ ∈By}1{yz=X′

s:n−1}
]

= 2
∑
y,z

E
[∥∥p(·|X�

s−1yz) − p(·|yz)
∥∥]

μ⊗�k (By)P[X′
s:n−1 = yz]

= 2β�

∑
x∈An−s

E
[∥∥p(·|X�

s−1x) − p(·|x)
∥∥]

P[Xs:n−1 = x]

= 2β�ηn−s,

where the last three equations stem from the independence of X�
s−1, UJ , Ut+1:n−1

and Y , from Lemma 3.2 and from the definition of ηn. Hence,

P[X′
n �= Xn;X′

s:n−1 = Xs:n−1|UJ ∈ BY ] ≤ 2ηn−s,

therefore,

P[X′
s:n = Xs:n|UJ ∈ BY ] ≥ P[X′

s:n−1 = Xs:n−1|UJ ∈ BY ] − 2ηn−s .

By induction, one gets

P[X′
s:n = Xs:n|UJ ∈ BY ] ≥ P[X′

J = XJ |UJ ∈ BY ] − 2
n−s∑
m=�

ηm.

Since X′
J = Y and P[XJ = Y |UJ ∈ BY ] ≥ 1 − ε, this yields

P
[
X′ = X on [s,+∞[|UJ ∈ BY

] ≥ 1 − ε − 2
∞∑

m=�

ηm ≥ 1 − 3ε,

which ends the proof. �
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FIG. 3. Splitting Z
∗− in intervals of times.

3.3. Successive approximations and end of the proof of Theorem 3. Our next
step in the proof of Theorem 3 is to approach the random variable X0 by measur-
able functions of the governing sequence. To this aim, we group the innovations
by intervals of times. For every m > 0 one chooses Lm such that∑

n≥Lm

ηn ≤ 1/m.

For each m, Lemma 3.1 (the priming lemma) applied to � = Lm and ε = 1/m

provides a real number βLm > 0 and Borel sets (Bx)x∈ALm of SLm with measure
βLm such that

P[X1:Lm = x|U1:Lm ∈ Bx] ≥ 1 − 1/m.

Choose an integer Mm ≥ 1/βLm . Split Z
∗− into M1 intervals of length L1, M2

intervals of length L2, . . . . More precisely set, for every n ≥ 1,

�n = Lm if M1 + · · · + Mm−1 < n ≤ M1 + · · · + Mm

and

εn = 1/m if M1 + · · · + Mm−1 < n ≤ M1 + · · · + Mm.

Therefore, for every k ≥ 0 one gets∑
n≥�k

ηn ≤ εk.

At last, for every k ≥ 0, set

tk = − ∑
1≤n≤k

�n;

that is to say t0 = 0 and tk = tk−1 − �k for k ≥ 1. Define, for k ≥ 0, the interval of
integers

Jk = [tk, tk + �k − 1] = [tk, tk−1 − 1] and XJk
= Xtk :tk−1−1.

Let Y = (Yk)k≥1 be a sequence of random variables, independent of (Xn,
Un)n∈Z and such that for every k ≥ 1, the law of Yk is the law of X1:�k

.
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For every k ≥ 0, let us use the construction of Section 3.2: set Xk
Jk

= Yk , and
then for every n ≥ tk + �k = tk−1,

Xk
n = g(Un,P

k
n−1) where P k

n−1 = p(·|Xk
tk :n−1).

Therefore Lemma 3.3 yields the inequality

P[Xtk :0 �= Xk
tk :0|UJk

∈ BYk
] ≤ 3εk

and

P[Xk
0 �= X0|UJk

∈ BYk
] → 0 when k → +∞.

Moreover each event {UJk
∈ BYk

} is independent of the others (indeed they are
functions of random variables Uk for disjoint sets of indices k) and

∑
k≥1

P[UJk
∈ BYk

] = ∑
k≥1

β�k
=

+∞∑
m=1

MmβLm = +∞

since MmβLm ≥ 1 by choice of Mm.
Lemma 3.4, stated below, provides a deterministic increasing function θ such

that ∑
k≥1

P
[
X

θ(k)
0 �= X0;UJθ(k)

∈ BYθ(k)

]
< +∞

and ∑
k≥1

P
[
UJθ(k)

∈ BYθ(k)

] = +∞.

Using the Borel–Cantelli lemma, one deduces that:

• {Xθ(k)
0 �= X0} ∩ {UJθ(k)

∈ BYθ(k)
} is realized for a finite number of k only, a.s.

• {UJθ(k)
∈ BYθ(k)

} is realized for an infinite number of k a.s.

Thus, for every a ∈ A,

{X0 = a} = lim sup
k→∞

{
UJθ(k)

∈ BYθ(k)

} ∩ {
X

θ(k)
0 = a

}
.

Therefore, {X0 = a} belongs to F U
0 ∨ σ(Y ). Since the sequence Y = (Yk)k≥0 is

independent of F U,X
0 , one gets

P[X0 = a|F U
0 ] = P[X0 = a|F U

0 ∨ σ(Y )] = 1{X0=a} a.s.,

therefore {X0 = a} ∈ F U
0 . By stationarity of the process (X,U), one gets the in-

clusion of the filtration F X into the filtration F U . Therefore Lemma 1.1 yields that
F X is immersed in F U , which ends the proof.

LEMMA 3.4. Let (an)n≥0 and (bn)n≥0 denote two bounded sequences of non-
negative real numbers such that the series

∑
n bn diverges and such that an � bn.

Then there exists an increasing function θ : N → N such that the series
∑

n aθ(n)

converges, and the series
∑

n bθ(n) diverges.
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4. Examples. In this section we study some examples showing the advantages
and the limitations of our results.

• Our first example (Section 4.1) is a chain with memory of variable length which
fulfills the hypotheses of Theorem 3, but not those of Theorem 1 nor Theorem 2.
Its natural filtration is standard.

• Our second example (Section 4.2) is derived from the well-known [T ,T −1]
transformation. It provides a stationary process with values in a finite space,
whose natural filtration is not standard. This example does not fulfill any of the
two conditions of Theorem 3 (viz., the priming condition and the summability
of the gaps).

• Our third example (Section 4.3) is a slight adaptation of the second one, where
the filtration of the process is still nonstandard, although the priming condition
is fulfilled.

• Our fourth and last example (Section 4.4) is another adaptation of the second
example in which the filtration is standard, although the condition of summabil-
ity of the gaps is not fulfilled and the related conditional probabilities are close
to those of the second example.

4.1. First example: Parity of the number of 1 in a row. This example provides
a setting where one proves standardness using Theorem 3.

Let (Xn)n∈Z be a stationary process taking values in {0,1} such that

P[X0 = 0|F X−1] = 1
3 + 1

31{T is even or T =−∞} where T := sup{k < 0 :Xk = 0}.
The existence of such a process is ensured by Proposition 2.10 in [4]. A simple

computation gives, for every n ≥ 0,

γn = 1
2 , δn = 1

3 , αn = 1
3 , ηn ≤ 1

3P[T < −n] ≤ (2
3

)n+1
.

Therefore this process fulfills the hypotheses of Theorem 3 (and its Corollary 1.2),
but neither those of Theorem 1 nor those of Theorem 2. The filtration F X is stan-
dard.

4.2. Second example: Random walk in random scenery. The following is a
process whose filtration is not standard.

Let X = (Xn)n∈Z and C = (Cs)s∈Z be two independent sequences of i.i.d. ran-
dom variables with uniform law on {−1,1}. Set

Sn = X1 + · · · + Xn if n ≥ 0,

Sn = −Xn+1 − · · · − X0 if n < 0.

Therefore Sn+1 = Sn + Xn+1 for every n ∈ Z. Set CSn = Yn. The stationary pro-
cess Z, defined by Zn = (Xn,Yn) for every n ∈ Z and taking values in A =
{−1,1}2, is called random walk in random scenery.
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This process is derived from the process ((Xn+·,CSn+·))n∈Z where Xn+· =
(Xn+m)m≤0 is the trajectory of X until time n and CSn+· = (CSn+s)s∈Z is the
scenery seen from Sn. It is easy to prove that the processes Z and (Xn+·,CSn+·)n∈Z

generate the same filtration. Indeed, given (Xk,CSk
) for every k ≤ n, one knows

the trajectory Xn+· and one can deduce the increments (Sn − Sk)k≤n. Since those
increments visit almost surely every integer, one can recover the scenery seen
from Sn.

The process ((Xn+·,CSn+·))n∈Z is the most famous [T ,T −1] process. Indeed
the [T ,T −1] transformation is the application from {−1,1}Z− × {−1,1}Z into it-
self defined by

[T ,T −1]((xn)n≤0, (cs)s∈Z) = ((xn−1)n≤0, (cs−x0)s∈Z).

One checks that for every n ≤ 0

(Xn+·,CSn+·) = [T ,T −1]−n(X,C).

According to [5], the natural filtration of the process ((Xn+·,CSn+·))n∈Z is not
standard though its asymptotic σ -field at −∞ is trivial. Therefore the same holds
for the natural filtration of Z.

Let n ≥ 0. Let us study the probabilities p(a|z) for a ∈ A and z ∈ An. Note
z = (z−n, . . . , z−1), zk = (xk, yk) and a = (x0, y0).

First, note that some of the events

{Z−n:−1 = z} = {X−n:−1 = x−n:−1;Y−n:−1 = y−n:−1}
are impossible. Indeed, by definition of the process Y for i < j , Yi = Yj on the
event Xi+1 + · · · + Xj = 0. When the event {Z−n:−1 = z} is impossible, one says
that z is not admissible. Note that to compute ηn, one only needs to consider prob-
abilities p(·|z) and p(·|wz) for admissible z ∈ An and w ∈ A�. Yet, wz may be
nonadmissible, even if z and w are admissible.

Assume that z is admissible. Then P[X0 = x0|Z−n:−1 = z] = 1/2. If for some
i ∈ {−n, . . . ,−1}, xi+1 +· · ·+x0 = 0, then the conditions Z−n:−1 = z and X0 = x0
imply that Y0 = yi . Otherwise, the color Y0 is independent of Z−n:−1 and X0. Thus
for any admissible word z ∈ An,

p(a|z) =
⎧⎨
⎩

1/2, if there exists i such that xi+1 + · · · + x0 = 0 and y0 = yi ,
0, if there exists i such that xi+1 + · · · + x0 = 0 and y0 �= yi ,
1/4, otherwise.

Therefore for every n ≥ 0, γn = 1 and δn = αn = 1/2.
Furthermore, for almost every admissible word w = (xn, yn)n<0 in A�, there

exists t < 0 such that xt+1 + · · · + x0 = 0 and the same argument gives that

p(a|w) = 1
21{yt=y0}.

For nonadmissible w ∈ A�, the value of p(a|w) can be chosen arbitrarily. Set

p(a|w) = 1
21{yd=y0} where d = sup{t ≤ −1 :xt+1 + · · · + x0 = 0},
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if d is well defined, and p(a|w) = 1/4 otherwise.
With this convention, one gets that, for almost any admissible w ∈ A� and z =

((x−n, y−n), . . . , (x−1, y−1)) ∈ An,

∣∣p(a|z) − p(a|wz)
∣∣ =

⎧⎨
⎩

0, if there exists t ∈ [−n,−1]
such that xt + · · · + x0 = 0,

1/4, otherwise.

Therefore, for every n ≥ 0,

ηn = 1
4(P[∀i ∈ {−n, . . . ,−1},Xi+1 + · · · + X−1 ≥ 0]

+ P[∀i ∈ {−n, . . . ,−1},Xi+1 + · · · + X−1 ≤ 0])
= 1

2P[∀i ∈ {−n, . . . ,−1},Xi+1 + · · · + X−1 ≥ 0].
One sees that ηn ∼ C/

√
n with C ∈ R

+∗ . Hence the process Z does not fulfill any
of the hypotheses of Theorem 3.

4.3. Third example: Random walk in random scenery with misreading. We
construct a variant of the random walk in random scenery which fulfills the priming
condition but whose natural filtration is not standard.

Construct Zn = (Xn,Yn) as in Section 4.2. Fix q ∈ ]0,1/2[. Let (ξn)n∈Z be a
sequence of i.i.d. random variables taking values in {−1,1}, independent of F Z

and such that P[ξ0 = 1] = 1 − q . Define a process (Z′
n)n∈Z by

Z′
n = (Xn,Ynξn).

The process (Z′
n)n∈Z is a random walk in random scenery in which at each time,

one misreads the color of the site Yn with probability q .
The processes Z′ and (Zn, ξn)n∈Z generate the same filtration. Indeed, the ran-

dom variables ξm associated to the times m < n where Sm = Sn are independent
and take the value 1 with probability 1 − q > 1/2, therefore the color Yn is the
most common color among the colors Ymξm seen at those times. Therefore, for
almost every z ∈ A� and a ∈ A, the corresponding conditional probability p′(a|z)
is equal to q/2 or to (1 − q)/2, depending on these colors.

Moreover, by independent enlargement, F Z is immersed into F Z,ξ = F Z′
.

Since F Z is nonstandard, one deduces that F Z′
is not standard either.

By a short calculation, one gets for every n > 0,

γn = q

1 − q
, δn = 1 − 2q

4
, αn = 1 − 2q.

Since the probabilities p′(a|z) related to this process satisfy p′(a|z) ≥ q/2, for
every a ∈ A and z ∈ A�, the priming condition is fulfilled. The exact value of



2002 G. CEILLIER

p′(a|z) for z ∈ An is difficult to compute, but the corresponding gaps η′
n verify

η′
n ≥

(
1

4
− q

2

)
(P[∀i ∈ {−l, . . . ,−1},Xi+1 + · · · + X−1 ≥ 0]
+ P[∀i ∈ {−l, . . . ,−1},Xi+1 + · · · + X−1 ≤ 0])

= (1 − 2q)ηn.

Therefore for q < 1/2, the sequence (η′
n)n is not summable; thus the process Z′

does not verify the condition of summability of the gaps.

4.4. Fourth example: Random walk in renewed random scenery. We construct
another variant of the random walk in random scenery in which the natural filtra-
tion is standard although the condition of summability of the gaps of Theorem 3 is
not fulfilled.

We consider a variant of the process (Xn,CSn+·)n∈Z in which at each time n,
the color at 0 of the scenery seen from Sn is changed with probability q ∈ ]0,1/2[.
For every g ∈ {−1,1}Z, denote g ∈ {−1,1}Z the application defined by

g(s) = g(s) for s �= 0 and g(0) = −g(0).

Let (Xn,Gn) be a stationary Markov chain with values in {−1,1}×{−1,1}Z, with
transition probabilities

p((x, g), (x′, g′)) =
{

(1 − q)/2, if g′ = g(x′ + ·),
q/2, if g′ = g(x′ + ·).

The random walk in renewed random scenery is the process Z′′ = (Z′′
n)n∈Z defined

by Z′′
n = (Xn,Gn(0)).

The corresponding probabilities p′′(a|z) are close to the probabilities p(a|z).
Indeed,

p′′(a|z) =
⎧⎨
⎩

(1 − q)/2, if p(a|z) = 1/2,
q/2, if p(a|z) = 0,
1/4, if p(a|z) = 1/4.

Therefore the corresponding gaps verify

η′′
n = (1 − 2q)ηn.

To show that the filtration F Z′′
is standard, one can use the following trick:

instead of changing the color at 0 of the scenery Gn with probability q , one draws
at random this color with probability 2q . One needs a random variable εn, taking
the value 1, if this drawing occurs and 0 otherwise, and a random variable κn,
giving the color obtained if the drawing occurs.

To construct these random variables, consider two independent sequences of
random variables (βn)n∈Z and (Vn)n∈Z, independent of F X,G such that:

• the βn are i.i.d. Bernoulli variables of parameter (1 − 2q)/(1 − q);
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• the Vn are i.i.d. and uniform on {−1,1}.
Let, for every n ∈ Z,

εn = 1 − βn1{Gn(0)=Gn−1(Xn)} and κn = Gn(0)1{εn=1} + Vn1{εn=0}.
Let us show that the random variables Un = (Xn, εn, κn) constitute a governing

sequence for the process Z′′. Given Z′′
n−1 and Un, one deduces Z′′

n , thanks to the
equalities

Gn(s) = Gn−1(Xn + s) if εn = 0 or s �= 0,

Gn(0) = κn if εn = 1.

It remains to check that Un is independent of the σ -field Gn−1 = F X,G,β,V
n−1 and a

fortiori of F Z′′,U
n−1 . Thanks to the independence of the processes β , V and (X,G)

one gets for every x ∈ {−1,1},
P[Xn = x;Gn = Gn−1(Xn + ·)|Gn−1] = (1 − q)/2,

P[Xn = x;Gn �= Gn−1(Xn + ·)|Gn−1] = q/2.

Therefore, for every c and x in {−1,1},
P[εn = 1;κn = c;Xn = x|Gn−1] = P[εn = 1;Gn(0) = c;Xn = x|Gn−1]

= (1) + (2) + (3)

with

(1) = P[βn = 0;Gn �= Gn−1(Xn + ·);Gn−1(Xn) = −c;Xn = x|Gn−1],
(2) = P[βn = 0;Gn = Gn−1(Xn + ·);Gn−1(Xn) = c;Xn = x|Gn−1],
(3) = P[β = 1;Gn �= Gn−1(Xn + ·);Gn−1(Xn) = −c;Xn = x|Gn−1].

One gets

(1) = q

1 − q
× P[Gn �= Gn−1(Xn + ·);Gn−1(x) = −c;Xn = x|Gn−1]

= q

2
× q

1 − q
× P[Gn−1(x) = −c|Gn−1]

= q

2
× q

1 − q
× 1{Gn−1(x)=−c},

(2) = q

1 − q
× P[Gn = Gn−1(Xn + ·);Gn−1(x) = c;Xn = x|Gn−1]

= 1 − q

2
× q

1 − q
× P[Gn−1(x) = c|Gn−1]

= q

2
× 1{Gn−1(x)=c}
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and

(3) = 1 − 2q

1 − q
× P[Gn �= Gn−1(Xn + ·);Gn−1(x) = −c;Xn = x|Gn−1]

= q

2
× 1 − 2q

1 − q
× P[Gn−1(x) = −c|Gn−1]

= q

2
× 1 − 2q

1 − q
× 1{Gn−1(x)=−c}.

Thus, for every c and x in {−1,1},
P[εn = 1;κn = c;Xn = x|Gn−1] = q

2
.

Moreover, by independence of βn, Vn and Gn−1,

P[εn = 0;κn = c;Xn = x|Gn−1]
= P[βn = 1;Gn = Gn−1(Xn + ·);Vn = c;Xn = x|Gn−1]
= 1 − 2q

1 − q
× 1

2
× 1 − q

2

= 1 − 2q

4
.

This shows that the random variables Un = (Xn, εn, κn) constitute a governing
sequence for the process Z′′.

Let us show the inclusion F Z′′
n ⊂ F U

n for any n ∈ Z, that is to say that the se-
quence (Uk)k≤n is sufficient to recover the scenery Gn seen from Sn. The variables
(Xk)k≤n determine the increments (Sn − Sk)k≤n and for every s ∈ Z, Sn − Sk = s

for an infinite number of times k ≤ n. Among those times, there is an infinite
number of times such that εk = 1. The value of κk at the last time k ≤ n, such
that Sn − Sk = s and εk = 1, is equal to Gn(s). Therefore F G ⊂ F U , and since
F X ⊂ F U , one gets F Z′′ ⊂ F U . Finally, Lemma 1.1 yields that F Z′′

is immersed
in F U , and therefore the natural filtration of the process (Z′′

n)n∈Z is standard.

5. Proofs of auxiliary facts.

5.1. Inequalities involving αn, δn, γn and ηn. To prove that δn ≤ γn for every
n ≥ 0, consider x and y in A� and z ∈ An. Then,∥∥p(·|xz) − p(·|yz)

∥∥ = ∑
a∈A

[p(a|xz) − p(a|yz)]+

= ∑
a∈A

p(a|xz)

(
1 − p(a|yz)

p(a|xz)

)
+

≤ ∑
a∈A

p(a|xz)γn = γn.
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Taking the supremum over x, y and z, one gets δn ≤ γn.
To prove that ηn ≤ δn for every n ≥ 0, consider for every z ∈ An, the law Qz of

X�
−n−1 conditionally on X−n:−1 = z. Then,

p(·|z) =
∫
A�

p(·|yz)Qz(dy).

Thus, for every x in A� and z in An,

∥∥p(·|z) − p(·|xz)
∥∥ =

∥∥∥∥
∫
y∈A�

(
p(·|yz) − p(·|xz)

)
Qz(dy)

∥∥∥∥
≤

∫
y∈A�

∥∥p(·|yz) − p(·|xz)
∥∥Qz(dy)

≤ sup
y∈A�

∥∥p(·|yz) − p(·|xz)
∥∥ ≤ δn.

For every z in An, ‖p(·|z) − p(·|X�
−n−1z)‖ ≤ δn almost surely. Taking the expec-

tation and the average over z, one gets ηn ≤ δn.
To prove that δn ≤ αn for every n ≥ 0, consider z ∈ An and y, y′ ∈ A�. Then,

∥∥p(·|yz) − p(·|y′z)
∥∥ = ∑

a∈A

∣∣p(a|yz) − p(a|y′z)
∣∣+

= ∑
a∈A

(
p(a|yz) − min(p(a|yz),p(a|y′z))

)

≤ 1 − inf
z∈An

∑
a∈A

inf{p(a|yz) :y ∈ A�}

= αn.

This ends the proof.

5.2. Proof of Lemma 1.1. Assume that X is a process valued in a mea-
surable space (E,E) and that U is a governing and generating process of X.
Let n ∈ Z. Since U governs X, there exists a measurable function ψn such that
Xn+1 = ψn(Un+1,X

�
n ) [axiom (ii)]. Let B ∈ E. We try to estimate

ρ = P[Xn+1 ∈ B|F X,U
n ] = P[ψn(Un+1,X

�
n ) ∈ B|F X,U

n ].
Since U governs X, Un+1 and F X,U

n are independent [axiom (i)]; hence ρ is a
function of X�

n only, that is,

ρ = P[ψ(Un+1,X
�
n ) ∈ B|F X

n ] = P[Xn+1 ∈ B|F X
n ].

Hence F X
n+1 is independent of F U

n conditionally on F X
n . This shows that F X is

immersed in F U .
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5.3. Proof of Corollary 1.2. Assume that X is a chain with memory of vari-
able length, and let Y be an independent copy of X. As p(·|X�

−n−1Y−n:−1) =
p(·|Y−n:−1). on the event {�(Y�

−1) ≤ n},
∥∥p(·|X�

−n−1Y−n:−1) − p(·|Y−n:−1)
∥∥ ≤ 1{�(Y�

−1)≥n+1}.

Taking expectations, one gets ηn ≤ P[�(Y�
−1) ≥ n + 1], hence

∑
n≥0

ηn ≤ E[�(Y�
−1)] < +∞.

This ends the proof.

5.4. Proof that H(γ ) provides a positive lower bound for p(a|x). We show
that H(γ ) implies the existence of c > 0 such that p(a|x) ≥ c for every x in A�

and a such that P[X0 = a] > 0.
Assume that H(γ ), that is,

+∞∑
k=0

k∏
n=0

(1 − γn) = +∞.

Therefore, 1 − γ0 > 0. By definition of γ0, for every a ∈ A, x, y ∈ A�,

p(a|x) ≥ (1 − γ0)p(a|y).

Integrating this inequality with respect to the law of X�, one gets

p(a|x) ≥ (1 − γ0)P[X0 = a].
Since A is finite, this ends the proof.
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