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THE STOCHASTIC REFLECTION PROBLEM ON AN INFINITE
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and Peking University and University of Bielefeld

In this paper, we introduce a definition of BV functions in a Gelfand
triple which is an extension of the definition of BV functions in [Atti Accad.
Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 21 (2010)
405–414] by using Dirichlet form theory. By this definition, we can consider
the stochastic reflection problem associated with a self-adjoint operator A

and a cylindrical Wiener process on a convex set � in a Hilbert space H . We
prove the existence and uniqueness of a strong solution of this problem when
� is a regular convex set. The result is also extended to the nonsymmetric
case. Finally, we extend our results to the case when � = Kα , where Kα =
{f ∈ L2(0,1)|f ≥ −α}, α ≥ 0.

1. Introduction. A definition of BV functions in abstract Wiener spaces has
been given by Fukushima in [9], Fukushima and Hino in [10], based upon Dirichlet
form theory. In this paper, we introduce BV functions in a Gelfand triple, which
is an extension of BV functions in a Hilbert space defined in [2]. Here, we use a
version of the Riesz–Markov representation theorem in infinite dimensions proved
by Fukushima using the quasi-regularity of the Dirichlet form (see [13]) to give a
characterization of BV functions.

In this paper, we consider the Dirichlet form

E ρ(u, v) = 1

2

∫
H

〈Du,Dv〉ρ(z)μ(dz)

(where μ is a Gaussian measure in H and ρ is a BV function) and its associated
process. By using BV functions, we obtain a Skorohod-type representation for the
associated process, if ρ = I� and � is a convex set.

As a consequence of these results, we can solve the following stochastic differ-
ential inclusion in the Hilbert space H :{

dX(t) + (
AX(t) + N�(X(t))

)
dt � dW(t),

X(0) = x,
(1.1)
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where our solution is strong (in the probabilistic sense), if � is regular. Here
A :D(A) ⊂ H → H is a self-adjoint operator. N�(x) is the normal cone to � at x

and W(t) is a cylindrical Wiener process in H . The precise meaning of the above
inclusion will be defined in Section 5.2. The solution to (1.1) is called distorted (if
ρ = I� , reflected) Ornslein–Uhlenbek (OU for short)-process.

Equation (1.1) was first studied (strongly solved) in [15], when H = L2(0,1),
A is the Laplace operator with Dirichlet or Neumann boundary conditions and �

is the convex set of all nonnegative functions of L2(0,1); see also [23]. In [5], the
authors study the situation when � is a regular convex set with nonempty interior.
They get precise information about the corresponding Kolmogorov operator, but
did not construct a strong solution to (1.1).

In this paper, we consider a convex set �. If � is a regular convex set, we show
that I� is a BV-function and thus obtain existence and uniqueness results for (1.1).
By a modification of [9] and using [6], we obtain the existence of an (in the proba-
bilistic sense) weak solution to (1.1). Then, we prove pathwise uniqueness. Thus,
by a version of the Yamada–Watanabe Theorem (see [12]), we deduce that (1.1)
has a unique strong solution. We also consider the case when � = Kα , where
Kα = {f ∈ L2(0,1)|f ≥ −α}, α ≥ 0, and prove our result about Skorohod-type
representation and that IKα is a BV function, if α > 0.

The solution of the reflection problem is based on an integration by parts for-
mula. The connection to BV functions is given in Theorem 3.1 below, which is
a key result of this paper. It asserts that the integration by parts formula for ρ · μ
gives a characterization of BV functions ρ, in the case where μ is a Gaussian
measure. This is an extension of the characterization of BV functions in finite
dimension. But an integration by parts formula is in fact enough for the reflec-
tion problem. This we show in Section 6, exploiting the beautiful integration
by parts formula for Kα,α ≥ 0, proved in [23], which in case α = 0, that is,
K0 = {f ∈ L2(0,1) :f ≥ 0}, is with respect to a non-Gaussian measure, namely a
Bessel bridge. Theorem 3.1 applies to prove that IKα is a BV function, but only if
α > 0.

This paper is organized as follows. In Section 2, we consider the Dirichlet form
and its associated distorted OU-process. We introduce BV functions in Section
3, by which we can get the Skorohod type representation for the OU-process. In
Section 4, we analyze the reflected OU-process. In Section 5, we get the existence
and uniqueness of the solution for (1.1) if � is a regular convex set. We also extend
these results to the nonsymmetric case. In Section 6, we consider the case when
� = Kα , where Kα = {f ∈ L2(0,1)|f ≥ −α}, α ≥ 0.

Finally, we would like to mention that apart from contributing to develop the
theory of BV functions on infinite dimensional spaces, one main motivation of
this paper is to provide the probabilistic counterpart to results in [5] and [6], by
exploiting Dirichlet form theory and its associated potential theory.
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2. The Dirichlet form and the associated distorted OU-process. Let H be
a real separable Hilbert space (with scalar product 〈·, ·〉 and norm denoted by | · |).
We denote its Borel σ -algebra by B(H). Assume that:

HYPOTHESIS 2.1. A :D(A) ⊂ H → H is a linear self-adjoint operator on H
such that 〈Ax,x〉 ≥ δ|x|2 ∀x ∈ D(A) for some δ > 0 and A−1 is of trace class.

Since A−1 is trace class, there exists an orthonormal basis {ej } in H consisting
of eigen-functions for A with corresponding eigenvalues αj ∈ R, j ∈ N, that is,

Aej = αjej , j ∈ N.

Then αj ≥ δ for all j ∈ N.
Below Dϕ :H → H denotes the Fréchet-derivative of a function ϕ :H → R.

By C1
b(H) we shall denote the set of all bounded differentiable functions with

continuous and bounded derivatives. For K ⊂ H , the space C1
b(K) is defined as

the space of restrictions of all functions in C1
b(H) to the subset K . μ will denote

the Gaussian measure in H with mean 0 and covariance operator

Q := 1
2A−1.

Since A is strictly positive, μ is nondegenerate and has full topological support.
Let Lp(H,μ),p ∈ [1,∞], denote the corresponding real Lp-spaces equipped with
the usual norms ‖ · ‖p . We set

λj := 1

2αj

∀j ∈ N

so that

Qej = λjej ∀j ∈ N.

For ρ ∈ L1+(H,μ) we consider

E ρ(u, v) = 1

2

∫
H

〈Du,Dv〉ρ(z)μ(dz), u, v ∈ C1
b(F ),

where F := Supp[ρ · μ] and L1+(H,μ) denotes the set of all nonnegative ele-
ments in L1(H,μ). Let QR(H) be the set of all functions ρ ∈ L1+(H,μ) such
that (E ρ,C1

b(F )) is closable on L2(F,ρ·μ). Its closure is denoted by (E ρ, F ρ).
We denote by F ρ

e the extended Dirichlet space of (E ρ, F ρ), that is, u ∈ F ρ
e if

and only if |u| < ∞ ρ · μ-a.e. and there exists a sequence {un} in F ρ such that
E ρ(um − un,um − un) → 0 as n ≥ m → ∞ and un → u ρ · μ-a.e. as n → ∞.

THEOREM 2.2. Let ρ ∈ QR(H). Then (E ρ, F ρ) is a quasi-regular local
Dirichlet form on L2(F ;ρ · μ) in the sense of [13], Chapter IV, Definition 3.1.



1762 M. RÖCKNER, R.-C. ZHU AND X.-C. ZHU

PROOF. The assertion follows from the main result in [21]. �

By virtue of Theorem 2.2 and [13], there exists a diffusion process Mρ =
(	, M, {Mt}, θt ,Xt , Pz) on F associated with the Dirichlet form (E ρ, F ρ). Mρ

will be called distorted OU-process on F . Since constant functions are in F ρ and
E ρ(1,1) = 0, Mρ is recurrent and conservative. We denote by Aρ

+ the set of all
positive continuous additive functionals (PCAF in abbreviation) of Mρ , and de-
fine Aρ := Aρ

+ − Aρ
+. For A ∈ Aρ , its total variation process is denoted by {A}.

We also define Aρ
0 := {A ∈ Aρ |Eρ·μ({A}t ) < ∞ ∀t > 0}. Each element in Aρ

+ has
a corresponding positive E ρ -smooth measure on F by the Revuz correspondence.
The set of all such measures will be denoted by S

ρ
+. Accordingly, At ∈ Aρ cor-

responds to a ν ∈ Sρ := S
ρ
+ − S

ρ
+, the set of all E ρ -smooth signed measure in

the sense that At = A1
t − A2

t for Ak
t ∈ Aρ

+, k = 1,2, whose Revuz measures are
νk, k = 1,2, and ν = ν1 − ν2 is the Hahn–Jordan decomposition of ν. The element
of Aρ corresponding to ν ∈ Sρ will be denoted byAν .

Note that for each l ∈ H the function u(z) = 〈l, z〉 belongs to the extended
Dirichlet space F ρ

e and

E ρ(l(·), v) = 1

2

∫
〈l,Dv(z)〉ρ(z) dμ(z) ∀v ∈ C1

b(F ).(2.1)

On the other hand, the AF 〈l,Xt −X0〉 of Mρ admits a unique decomposition into
a sum of a martingale AF (Mt ) of finite energy and CAF (Nt ) of zero energy. More
precisely, for every l ∈ H ,

〈l,Xt − X0〉 = Ml
t + Nl

t ∀t ≥ 0 Pz-a.s.(2.2)

for E ρ -q.e. z ∈ F .
Now for ρ ∈ L1(H,μ) and l ∈ H , we say that ρ ∈ BVl(H) if there exists a

constant Cl > 0,∣∣∣∣
∫

〈l,Dv(z)〉ρ(z) dμ(z)

∣∣∣∣≤ Cl‖v‖∞ ∀v ∈ C1
b(F ).(2.3)

By the same argument as in [10], Theorem 2.1, we obtain the following theorem.

THEOREM 2.3. Let ρ ∈ L1+ and l ∈ H .

(1) The following two conditions are equivalent:

(i) ρ ∈ BVl(H).
(ii) There exists a (unique) signed measure νl on F of finite total variation such

that
1

2

∫
〈l,Dv(z)〉ρ(z) dμ(z) = −

∫
F

v(z)νl(dz) ∀v ∈ C1
b(F ).(2.4)

In this case, νl necessarily belongs to Sρ+1.
Suppose further that ρ ∈ QR(H). Then the following condition is also equiva-

lent to the above:
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(iii) Nl ∈ Aρ
0 .

In this case, νl ∈ Sρ and Nl = Aνl .
(2) Ml is a martingale AF with quadratic variation process

〈Ml〉t = t |l|2, t ≥ 0.(2.5)

REMARK 2.4. Recall that the Riesz representation theorem of positive lin-
ear functionals on continuous functions by measures is not applicable to obtain
Theorem 2.3, (i) ⇒ (ii), because of the lack of local compactness. However, the
quasi-regularity of the Dirichlet form provides a means to circumvent this diffi-
culty.

In the rest of this section, we shall introduce a special class of ρ ∈ QR(H),
which will be used in Section 4 below.

A nonnegative measurable function h(s) on R1 is said to possess the Hamza
property if h(s) = 0 ds-a.e. on the closed set R1 \ R(h) where

R(h) =
{
s ∈ R1 :

∫ s+ε

s−ε

1

h(r)
dr < ∞ for some ε > 0

}
.

We say that a function ρ ∈ L1+(H,μ) satisfies the ray Hamza condition in direction
l ∈ H (ρ ∈ Hl in notation) if there exists a nonnegative function ρ̃l such that

ρ̃l = ρ μ-a.e. and ρ̃l(z + sl) has the Hamza property in s ∈ R1 for each z ∈ H.

We set H :=⋂
k Hek

, where ek is as in Hypothesis 2.1. A function in the family H
is simply said to satisfy the ray Hamza condition. By [1] H ⊂ QR(H), and thus
we always have ρ + 1 ∈ QR(H), since clearly ρ + 1 ∈ H.

Next, we will present some explicit description of the Dirichlet form (E ρ, F ρ)

for ρ ∈ H.
For ej ∈ H as in Hypothesis 2.1, we set Hej

= {sej : s ∈ R1}. We then have the
direct sum decomposition H = Hej

⊕ Eej
given by

z = sej + x, s = 〈ej , z〉.
Let πj be the projection onto the space Eej

and μej
be the image measure of

μ under πj :H → Eej
, that is, μej

= μ ◦ π−1
j . Then we see that for any F ∈

L1(H,μ) ∫
H

F(z)μ(dz) =
∫
Eej

∫
R1

F(sej + x)pj (s) ds μej
(dx),(2.6)

where pj (s) = (1/
√

2πλj )e
−s2/2λj . Thus by [1], Theorem 3.10, for all u, v ∈

D(E ρ),

E ρ(u, v) =
∞∑

j=1

E ρ,ej (u, v),(2.7)
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where

E ρ,ej (u, v) = 1

2

∫
Eej

∫
R(ρ(·ej+x))

dũj (sej + x)

ds
× dṽj (sej + x)

ds
(2.8)

× ρ(sej + x)pj (s) ds μej
(dx),

and u, ũj satisfy ũj = u ρμ-a.e. and ũj (sej + x) is absolutely continuous in s on
R(ρ(· ej + x)) for each x ∈ Eej

. v and ṽj are related in the same way.

3. BV functions and distorted OU-processes in F . As in [10], we introduce
some function spaces on H . Let

A1/2(x) :=
∫ x

0

(
log(1 + s)

)1/2
ds, x ≥ 0,

and let ψ be its complementary function, namely,

ψ(y) :=
∫ y

0
(A′

1/2)
−1(t) dt =

∫ y

0

(
exp(t2) − 1

)
dt.

Define

L(logL)1/2(H,μ) := {f :H → R|f Borel measurable, A1/2(|f |) ∈ L1(H,μ)},
Lψ(H,μ) := {g :H → R|g Borel measurable, ψ(c|g|) ∈ L1(H,μ)

for some c > 0}.
From the general theory of Orlicz spaces (cf. [20]), we have the following proper-
ties:

(i) L(logL)1/2 and Lψ are Banach spaces under the norms

‖f ‖L(logL)1/2 = inf
{
α > 0

∣∣∣ ∫
H

A1/2(|f |/α)dμ ≤ 1
}
,

‖g‖Lψ = inf
{
α > 0

∣∣∣ ∫
H

ψ(|g|/α)dμ ≤ 1
}
.

(ii) For f ∈ L(logL)1/2 and g ∈ Lψ , we have

‖fg‖1 ≤ 2‖f ‖L(logL)1/2‖g‖Lψ .(3.1)

(iii) Since μ is Gaussian, the function x �→ 〈x, l〉 belongs to Lψ .

Let cj , j ∈ N, be a sequence in [1,∞). Define

H1 :=
{
x ∈ H

∣∣∣ ∞∑
j=1

〈x, ej 〉2c2
j < ∞

}
,
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equipped with the inner product

〈x, y〉H1 :=
∞∑

j=1

c2
j 〈x, ej 〉〈y, ej 〉.

Then clearly (H1, 〈·, ·〉H1) is a Hilbert space such that H1 ⊂ H continuously and
densely. Identifying H with its dual we obtain the continuous and dense embed-
dings

H1 ⊂ H(≡ H ∗) ⊂ H ∗
1 .

It follows that

H1〈z, v〉H ∗
1

= 〈z, v〉H ∀z ∈ H1, v ∈ H,

and that (H1,H,H ∗
1 ) is a Gelfand triple. Furthermore, { ej

cj
} and {cj ej } are or-

thonormal bases of H1 and H ∗
1 , respectively.

We also introduce a family of H -valued functions on H by

(C1
b)D(A)∩H1 :=

{
G :G(z) =

m∑
j=1

gj (z)l
j , z ∈ H,gj ∈ C1

b(H), lj ∈ D(A) ∩ H1

}
.

Denote by D∗ the adjoint of D :C1
b(H) ⊂ L2(H,μ) → L2(H,μ;H). That is

Dom(D∗) :=
{
G ∈ L2(H,μ;H)

∣∣∣
C1

b � u �→
∫

〈G,Du〉dμ is continuous with respect to L2(H,μ)

}
.

Obviously, (C1
b)D(A)∩H1 ⊂ Dom(D∗). Then∫

H
D∗G(z)f (z)μ(dz) =

∫
H

〈G(z),Df (z)〉μ(dz)

(3.2)
∀G ∈ (C1

b)D(A)∩H1, f ∈ C1
b(H).

For ρ ∈ L(logL)1/2(H,μ), we set

V (ρ) := sup
G∈(C1

b )D(A)∩H1 ,‖G‖H1≤1

∫
H

D∗G(z)ρ(z)μ(dz).

A function ρ on H is called a BV function in the Gelfand triple (H1,H,H ∗
1 )

[ρ ∈ BV(H,H1) in notation], if ρ ∈ L(logL)1/2(H,μ) and V (ρ) is finite. When
H1 = H = H ∗

1 , this coincides with the definition of BV functions defined in [2]
and clearly BV(H,H) ⊂ BV(H,H1). We can prove the following theorem by a
modification of the proof of [9], Theorem 3.1.
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REMARK 3.0. The introduction of BV functions in a Gelfand triple is natural
and originates from standard ideas when working with infinite dimensional state
spaces. The intersection of BVl(H), when l runs through D(A) ∩ H1, describes
functions which are “componentwise of bounded variation” in the sense that their
weak partial derivatives are measures. In contrast to finite dimensions, this does
not give rise to vector-valued measures representing their total weak derivatives or
gradients. Therefore, one introduces an appropriate “tangent space” H ∗

1 to H , in
which these total derivatives can be represented as a H ∗

1 -valued measure. This
approach substantially extends the applicability of the theory of BV functions
on Hilbert spaces. We document this by including the well-studied case of lin-
ear SPDE with reflection, more precisely, the randomly vibrating Gaussian string,
forced to stay above a level α ≥ 0 (see [15, 23]), which (in the case of α > 0) is
then just a special case of our general approach.

THEOREM 3.1. (i) BV(H,H1) ⊂⋂
l∈D(A)∩H1

BVl(H).
(ii) Suppose ρ ∈ BV(H,H1) ∩ L1+(H,μ), then there exist a positive finite

measure ‖dρ‖ on H and a Borel-measurable map σρ :H → H ∗
1 such that

‖σρ(z)‖H ∗
1

= 1‖dρ‖-a.e, ‖dρ‖(H) = V (ρ),
∫
H

D∗G(z)ρ(z)μ(dz) =
∫
H

H1〈G(z), σρ(z)〉H ∗
1
‖dρ‖(dz)

(3.3)
∀G ∈ (C1

b)D(A)∩H1

and ‖dρ‖ ∈ Sρ+1.
Furthermore, if ρ ∈ QR(H), ‖dρ‖ is E ρ -smooth in the sense that it charges no

set of zero E ρ
1 -capacity. In particular, the domain of integration H on both sides of

(3.3) can be replaced by F , the topological support of ρμ.
Also, σρ and ‖dρ‖ are uniquely determined, that is, if there are σ ′

ρ and ‖dρ‖′
satisfying relation (3.3), then ‖dρ‖ = ‖dρ‖′ and σρ(z) = σ ′

ρ(z) for ‖dρ‖-a.e. z.
(iii) Conversely, if equation (3.3) holds for ρ ∈ L(logL)1/2(H,μ) and for some

positive finite measure ‖dρ‖ and a map σρ with the stated properties, then ρ ∈
BV(H,H1) and V (ρ) = ‖dρ‖(H).

(iv) Let W 1,1(H) be the domain of the closure of (D,C1
b(H)) with norm

‖f ‖ :=
∫
H

(|f (z)| + |Df (z)|)μ(dz).

Then W 1,1(H) ⊂ BV(H,H) and equation (3.3) is satisfied for each ρ ∈ W 1,1(H).
Furthermore,

‖dρ‖ = |Dρ| · μ, V (ρ) =
∫
H

|Dρ|μ(dz), σρ = 1

|Dρ|DρI{|Dρ|>0}.
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PROOF. (i) Let ρ ∈ BV(H,H1) and l ∈ D(A)∩H1. Take G ∈ (C1
b)D(A)∩H1 of

the type

G(z) = g(z)l, z ∈ H,g ∈ C1
b(H).(3.4)

By (3.2)∫
H

D∗G(z)f (z)μ(dz) =
∫
H

〈G(z),Df (z)〉μ(dz)

= −
∫
H

〈l,Dg(z)〉f (z)μ(dz)

+ 2
∫
H

〈Al, z〉g(z)f (z)μ(dz) ∀f ∈ C1
b(H);

consequently,

D∗G(z) = −〈l,Dg(z)〉 + 2g(z)〈Al, z〉.(3.5)

Accordingly,∫
H

〈l,Dg(z)〉ρ(z)μ(dz) = −
∫
H

D∗G(z)ρ(z)μ(dz)

(3.6)
+ 2

∫
H

〈Al, z〉g(z)ρ(z)μ(dz).

For any g ∈ C1
b(H), satisfying ‖g‖∞ ≤ 1, by (3.1) the right-hand side is dominated

by

V (ρ)‖l‖H1 + 4‖ρ‖L(logL)1/2‖〈Al, ·〉‖Lψ < ∞,

hence, ρ ∈ BVl(H).
(ii) Suppose ρ ∈ L1+(H,μ) ∩ BV(H,H1). By (i) and Theorem 2.3 for each

l ∈ D(A) ∩ H1, there exists a finite signed measure νl on H for which equation
(2.4) holds. Define

DA
l ρ(dz) := 2νl(dz) + 2〈Al, z〉ρ(z)μ(dz).

In view of (3.6), for any G of type (3.4), we have∫
H

D∗G(z)ρ(z)μ(dz) =
∫
H

g(z)DA
l ρ(dz),(3.7)

which in turn implies

V (DA
l ρ)(H) = sup

g∈C1
b (H),‖g‖∞≤1

∫
H

g(z)DA
l ρ(dz) ≤ V (ρ)‖l‖H1,(3.8)

where V (DA
l ρ) denotes the total variation measure of the signed measure DA

l ρ.
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For the orthonormal basis { ej

cj
} of H1, we set

γ A
ρ :=

∞∑
j=1

2−jV (DA
ej /cj

ρ),

(3.9)

vj (z) :=
dDA

ej /cj
ρ(z)

dγ A
ρ (z)

, z ∈ H,j ∈ N.

γ A
ρ is a positive finite measure with γ A

ρ (H) ≤ V (ρ) and vj is Borel-measurable.
Since DA

ej /cj
ρ belongs to Sρ+1, so does γ A

ρ . Then for

Gn :=
n∑

j=1

gj

ej

cj

∈ (C1
b)D(A)∩H1, n ∈ N,(3.10)

by (3.7) the following equation holds:
∫
H

D∗Gn(z)ρ(z)μ(dz) =
n∑

j=1

∫
H

gj (z)vj (z)γ
A
ρ (dz).(3.11)

Since |vj (z)| ≤ 2j γ A
ρ -a.e. and C1

b(H) is dense in L1(H,γ A
ρ ), we can find vj,m ∈

C1
b(H) such that

lim
m→∞vj,m = vj γ A

ρ -a.e.

Substituting

gj,m(z) := vj,m(z)√∑n
k=1 vk,m(z)2 + 1/m

(3.12)

for gj (z) in (3.10) and (3.11) we get a bound

n∑
j=1

∫
H

gj,m(z)vj (z)γ
A
ρ (dz) ≤ V (ρ),

because ‖Gn(z)‖2
H1

=∑n
j=1 gj,m(z)2 ≤ 1 ∀z ∈ H . By letting m → ∞, we obtain

∫
H

√√√√ n∑
j=1

vj (z)2γ A
ρ (dz) ≤ V (ρ) ∀n ∈ N.

Now we define

‖dρ‖ :=
√√√√ ∞∑

j=1

vj (z)2γ A
ρ (dz)(3.13)
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and σρ :H → H ∗
1 by

σρ(z) =

⎧⎪⎪⎨
⎪⎪⎩

∞∑
j=1

vj (z)√∑∞
k=1 vk(z)2

· cj ej , if z ∈
{ ∞∑

k=1

vk(z)
2 > 0

}
,

0, otherwise.

(3.14)

Then

‖dρ‖(H) ≤ V (ρ), ‖σρ(z)‖H ∗
1

= 1 ‖dρ‖-a.e.,(3.15)

‖dρ‖ is Sρ+1-smooth and σρ is Borel-measurable. By (3.11) we see that the de-
sired equation (3.3) holds for G = Gn as in (3.10). It remains to prove (3.3) for
any G of type (3.4), that is, G = g · l, g ∈ C1

b(H), l ∈ D(A)∩H1. In view of (3.6),
equation (3.3) then reads

−
∫
H

〈l,Dg(z)〉ρ(z)μ(dz) + 2
∫
H

g(z)〈Al, z〉ρ(z)μ(dz)

(3.16)
=
∫
H

g(z)H1〈l, σρ(z)〉H ∗
1
‖dρ‖(dz).

We set

kn :=
n∑

j=1

〈l, ej 〉ej =
n∑

j=1

〈
l,

ej

cj

〉
H1

ej

cj

, Gn(z) := g(z)kn.

Thus, kn → l in H1 and Akn → Al in H as n → ∞. But then also

lim
n→∞

∫
H

〈Dg,kn〉ρ dμ =
∫
H

〈Dg, l〉ρ dμ

and ∣∣∣∣
∫
H

g(z)〈Akn, z〉ρ(z)μ(dz) −
∫
H

g(z)〈Al, z〉ρ(z)μ(dz)

∣∣∣∣
≤ 2‖g‖∞‖ρ‖L(logL)1/2‖〈Akn − Al, · 〉‖Lψ .

Furthermore,

lim
n→∞

∫
H

g(z)H1〈kn, σρ(z)〉H ∗
1
‖dρ‖(dz) =

∫
H

g(z)H1〈l, σρ(z)〉H ∗
1
‖dρ‖(dz).

So letting n → ∞ yields (3.16).
If ρ ∈ QR(H), we can get the claimed result by the same arguments as above.
Uniqueness follows by the same argument as [10], Theorem 3.9.
(iii) Suppose ρ ∈ L(log)1/2(H,μ) and that equation (3.3) holds for some posi-

tive finite measure ‖dρ‖ and some map σρ with the properties stated in (ii). Then
clearly

V (ρ) ≤ ‖dρ‖(H)
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and hence ρ ∈ BV(H,H1). To obtain the converse inequality, set

σj (z) := 〈cj ej , σρ(z)〉H ∗
1

=H1

〈
ej

cj

, σρ(z)

〉
H ∗

1

, j ∈ N.

Fix an arbitrary n. As in the proof of (ii), we can find functions

vj,m ∈ C1
b(H), lim

m→∞vj,m(z) = σj (z) ‖dρ‖-a.e.

Define gj,m(z) by (3.12). Substituting Gn,m(z) := ∑n
j=1 gj,m(z)

ej

cj
for G(z) in

(3.3) then yields

n∑
j=1

∫
H

gj,m(z)σj (z)‖dρ‖(dz) ≤ V (ρ).

By letting m → ∞, we get

∫
H

√√√√ n∑
j=1

σj (z)2‖dρ‖(dz) ≤ V (ρ) ∀n ∈ N.

We finally let n → ∞ to obtain ‖dρ‖(H) ≤ V (ρ).
(iv) Obviously the duality relation (3.2) extends to ρ ∈ W 1,1(H) replacing f ∈

C1
b(H). By defining ‖dρ‖ and σρ(z) in the stated way, the extended relation (3.2)

is exactly (3.3). �

THEOREM 3.2. Let ρ ∈ QR(H)∩BV(H,H1) and consider the measure ‖dρ‖
and σρ from Theorem 3.1(ii). Then there is an E ρ -exceptional set S ⊂ F such that
∀z ∈ F \ S under Pz there exists an Mt -cylindrical Wiener process Wz, such
that the sample paths of the associated distorted OU-process Mρ on F satisfy the
following: for l ∈ D(A) ∩ H1

〈l,Xt − X0〉 =
∫ t

0
〈l, dWz

s 〉 + 1

2

∫ t

0
H1〈l, σρ(Xs)〉H ∗

1
dL‖dρ‖

s

(3.17)

−
∫ t

0
〈Al,Xs〉ds ∀t ≥ 0 Pz-a.s.

Here L
‖dρ‖
t is the real valued PCAF associated with ‖dρ‖ by the Revuz correspon-

dence.
In particular, if ρ ∈ BV(H,H), then ∀z ∈ F \ S, l ∈ D(A) ∩ H

〈l,Xt − X0〉 =
∫ t

0
〈l, dWz

s 〉 + 1

2

∫ t

0
〈l, σρ(Xs)〉dL‖dρ‖

s −
∫ t

0
〈Al,Xs〉ds

∀t ≥ 0 Pz-a.s.
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PROOF. Let {ej } be the orthonormal basis of H introduced above. Define for
all k ∈ N

Wz
k (t) := 〈ek,Xt − z〉 − 1

2

∫ t

0
H1〈ek, σρ(Xs)〉H ∗

1
dL‖dρ‖

s

(3.18)

+
∫ t

0
〈Aek,Xs〉ds.

By (2.1) and (3.16), we get for all k ∈ N

E ρ(ek(·), g) =
∫
H

g(z)〈Aek, z〉ρ(z)μ(dz) − 1

2

∫
H

g(z)H1〈ek, σρ(z)〉H ∗
1
‖dρ‖(dz)

∀g ∈ C1
b(H).

By Theorem 2.3, it follows that for all k ∈ N

N
ek
t = 1

2

∫ t

0
H1〈ek, σρ(Xs)〉H ∗

1
dL‖dρ‖

s −
∫ t

0
〈Aek,Xs〉ds.(3.19)

Here we get from (3.18), (3.19) and the uniqueness of decomposition (2.2) that for
E ρ -q.e. z ∈ F ,

Wz
k (t) = M

ek
t ∀t ≥ 0 Pz-a.s.,

where the E ρ -exceptional set and the zero measure set does not depend on ek .
Indeed, we can choose the capacity zero set S = ⋃∞

j=1 Sj , where Sj is the E ρ -
exceptional set for ej , and for z ∈ F \ S, we can use the same method to get a zero
measure set independent of ek . By Dirichlet form theory, we get 〈Mei ,Mej 〉t =
tδij . So for z ∈ F \ S, Wz

k is an Mt -Wiener process under Pz. Thus, with Wz

being an Mt -cylindrical Wiener process given by Wz(t) = (Wz
k (t)ek)k∈N, (3.17)

is satisfied for Pz-a.e., where z ∈ F \ S. �

4. Reflected OU-processes. In this section, we consider the situation where
ρ = I� ∈ BV(H,H1), where � ⊂ H and

I�(x) =
{

1, if x ∈ �,
0, if x ∈ �c.

Denote the corresponding objects σρ,‖dI�‖ in Theorem 3.1(ii) by −n�,‖∂�‖,
respectively. Then formula (3.3) reads∫

�
D∗G(z)μ(dz) = −

∫
F

H1〈G(z),n�〉H ∗
1
‖∂�‖(dz) ∀G ∈ (C1

b)D(A)∩H1,

where the domain of integration F on the right-hand side is the topological support
of I� · μ. F is contained in �̄, but we shall show that the domain of integration on
the right-hand side can be restricted to ∂�. We need to use the associated distorted
OU-process MI� on F , which will be called reflected OU-process on �.

First, we consider a μ-measurable set � ⊂ H satisfying

I� ∈ BV(H,H1) ∩ H.(4.1)
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REMARK 4.1. We emphasize that if � is a convex closed set in H , then ob-
viously I� ∈ H. Indeed, for each z, l ∈ H the set {s ∈ R|z + sl ∈ �} is a closed
interval in R, whose indicator function hence trivially has the Hamza property.
Hence, in particular, I� ∈ QR(H).

By a modification of [9], Theorem 4.2, we can prove the following theorem.

THEOREM 4.2. Let � ⊂ H be μ-measurable satisfying condition (4.1). Then
the support of ‖∂�‖ is contained in the boundary ∂� of �, and the following
generalized Gauss formula holds:∫

�
D∗G(z)μ(dz) = −

∫
∂�

H1〈G(z),n�〉H ∗
1
‖∂�‖(dz)

(4.2)
∀G ∈ (C1

b)D(A)∩H1 .

PROOF. For any G of type (3.4), we have from (2.1), (3.5) and (3.7) that

E I� (l(·), g) −
∫
�

g(z)〈Al, z〉μ(dz) = −1

2

∫
F

g(z)DA
l I�(dz).(4.3)

Since the finite signed measure DA
l I� charges no set of zero E I�

1 -capacity, equa-

tion (4.3) readily extends to any E I� -quasicontinuous function g ∈ F I�

b := F I� ∩
L∞(�,μ).

Denote by �0 the interior of �. Then �0 ⊂ F ⊂ �̄. In view of the construction
of the measure ‖dI�‖ in Theorem 3.1, it suffices to show that for ej

cj
∈ D(A) ∩ H1

V (DA
ej /cj

I�)(�0) = 0.

By linearity and since positive constants interchange with sup, it suffices to show
that

V (DA
ej

I�)(�0) = 0.(4.4)

Take an arbitrary ε > 0 and set

U := {z ∈ H :d(z,H \ �0) > ε}, V := {z ∈ H :d(z,H \ �0) ≥ ε},
where d is the metric distance of the Hilbert space H . Then Ū ⊂ V and V is a
closed set contained in the open set �0. We define a function h by

h(z) := 1 − Ez(e
−τV ), z ∈ F,(4.5)

where τV denotes the first exit time of MI� from the set V . The nonnegative func-
tion h is in the space F I�

b and furthermore it is E I� -quasicontinuous because it is
MI� finely continuous.

Moreover,

h(z) > 0 ∀z ∈ U, h(z) = 0 ∀z ∈ F \ V.(4.6)
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Set

νj (dz) := h(z)DA
ej

I�(dz)(4.7)

and

I j
g := E I� (ej (·), gh) −

∫
�

g(z)h(z)〈Aej , z〉μ(dz).(4.8)

Then equation (4.3) with the E I� -quasicontinuous function gh ∈ F I�

b replacing g

implies

I j
g = −1

2

∫
F

g(z)νj (dz).

In order to prove (4.4), it is enough to show that I
j
g = 0 for any function g(z) of

the type

g(z) = f (〈ej , z〉, 〈l2, z〉, . . . , 〈lm, z〉); l2, . . . , lm ∈ H,f ∈ C1
0(Rm)(4.9)

for we have then νj = 0.
On account of (2.8), we have the expression

E I� (ej (·), gh) = E I�,ej (ej (·), gh)
(4.10)

= 1

2

∫
Eej

∫
Rx

d(gh̃)(sej + x)

ds
pj (s) dsμej

(dx),

where Rx = R(I�(·ej + x)),Fx := {s : sej + x ∈ F } for x ∈ Eej
and h̃ is a I� · μ-

version of h appearing in the description of (2.8). For x ∈ Eej
, set

Vx := {s : sej + x ∈ V }, �0
x := {s : sej + x ∈ �0}.

We then have the inclusion Vx ⊂ �0
x ⊂ Rx ∩ Fx . By (4.6), h(sej + x) = 0 for

any x ∈ Eej
and for any s ∈ Rx \ Vx . On the other hand, there exists a Borel set

N ⊂ Eej
with μej

(N) = 0 such that for each x ∈ Eej
\ N ,

h(sej + x) = h̃(sej + x) ds-a.e.

Here we set h ≡ 0 on H \ F . Since h̃(·ej + x) is absolutely continuous in s, we
can conclude that

h̃(sej + x) = 0 ∀x ∈ Eej
\ N,∀s ∈ Rx \ Vx.

Fix x ∈ Eej
\ N and let I be any connected component of the one dimensional

open set Rx . Furthermore, for any function g of type (4.9) we denote the support
of g(·ej + x) by Kx (which is a compact set) and choose a bounded open interval
J containing Kx . Then I ∩ Vx ∩ Kx is a closed set contained in the bounded open
interval I ∩ J and

gh̃(sej + x) = 0 ∀s ∈ (I ∩ J ) \ (I ∩ Vx ∩ Kx).
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Therefore, an integration by part gives∫
I∩J

d(gh̃)(sej + x)

ds
pj (s) ds =

∫
I∩J

1

λj

(gh̃)(sej + x)spj (s) ds.

Combining this with (4.8) and (4.10), we arrive at

I j
g =

∫
Eej

∫
Rx

1

2λj

(gh̃)(sej + x)spj (s) ds μej
(dx)

−
∫
H

g(z)h(z)〈Aej , z〉I�(z)μ(dz) = 0. �

Now we state Theorem 3.2 for ρ = I� .

THEOREM 4.3. Suppose � ⊂ H is a μ-measurable set satisfying condition
(4.1). Then there is an E ρ -exceptional set S ⊂ F such that ∀z ∈ F \ S, under Pz

there exists an Mt -cylindrical Wiener process Wz, such that the sample paths of
the associated reflected OU-process Mρ on F with ρ = I� satisfy the following:
for l ∈ D(A) ∩ H1

〈l,Xt − X0〉 =
∫ t

0
〈l, dWz

s 〉 − 1

2

∫ t

0
H1〈l,n�(Xs)〉H ∗

1
dL‖∂�‖

s

(4.11)

−
∫ t

0
〈Al,Xs〉ds Pz-a.s.

Here, L
‖∂�‖
t is the real valued PCAF associated with ‖∂�‖ by the Revuz corre-

spondence, which has the following additional property: ∀z ∈ F \ S

I∂�(Xs) dL‖∂�‖
s = dL‖∂�‖

s Pz-a.s.(4.12)

In particular, if ρ ∈ BV(H,H), then ∀z ∈ F \ S, l ∈ D(A) ∩ H

〈l,Xt − X0〉 =
∫ t

0
〈l, dWz

s 〉 − 1

2

∫ t

0
〈l,n�(Xs)〉dL‖∂�‖

s

−
∫ t

0
〈Al,Xs〉ds ∀t ≥ 0 Pz-a.s.

PROOF. All assertions except for (4.12) follow from Theorem 3.2 for ρ := I� .
Equation (4.12) follows by Theorem 4.2 and [11], Theorem 5.1.3. �

5. Stochastic reflection problem on a regular convex set. In this section,
we consider � satisfying [5], Hypothesis 1.1(ii), with K := �, that is:

HYPOTHESIS 5.1. There exists a convex C∞ function g :H → R with g(0) =
0, g′(0) = 0, and D2g strictly positive definite, that is, 〈D2g(x)h, h〉 ≥ γ |h|2 ∀h ∈
H for some γ > 0, such that

� = {x ∈ H :g(x) ≤ 1}, ∂� = {x ∈ H :g(x) = 1}.
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Moreover, we also suppose that D2g is bounded on � and |Q1/2Dg|−1 ∈⋂
p>1 Lp(H,μ).

REMARK 5.2. By [5], Lemma 1.2, � is convex and closed and there exists
some constant δ > 0 such that |Dg(x)| ≤ δ ∀x ∈ �.

5.1. Reflected OU processes on regular convex sets. Under Hypothesis 5.1, by
[6], Lemma A.1, we can prove that I� ∈ BV(H,H) ∩ QR(H):

THEOREM 5.3. Assume that Hypothesis 5.1 holds. Then I� ∈ BV(H,H) ∩
QR(H).

PROOF. We first note that trivially by Remark 4.1 we have that I� ∈ QR(H).
Let

ρε(x) := exp
(
−(g(x) − 1)2

ε
1{g≥1}

)
, x ∈ H.

Thus,

lim
ε→0

ρε = I�.

Moreover,

Dρε = −2

ε
ρε1{g≥1}Dg(g − 1) μ-a.e.

By [6], Lemma A.1, we have for ϕ ∈ C1
b(H)

lim
ε→0

1

ε

∫
H

ϕ(x)1{g(x)≥1}
(
g(x) − 1

)〈Dg(x), z〉ρε(x)μ(dx)

= 1

2

∫
∂�

ϕ(y)〈n(y), z〉 |Dg(y)|
|Q1/2Dg(y)|μ∂�(dy),

where n := Dg/|Dg| is the exterior normal to ∂� at y and μ∂� is the surface
measure on ∂� induced by μ (cf. [5, 6, 14]), whereas by (3.2) for any ϕ ∈ C1

b(H)

and z ∈ D(A)

lim
ε→0

1

ε

∫
H

ϕ(x)1{g(x)≥1}
(
g(x) − 1

)〈Dg(x), z〉ρε(x)μ(dx)

= − lim
ε→0

1

2

∫
H

〈Dρε(x), ϕ(x)z〉μ(dx)

= −1

2
lim
ε→0

∫
H

ρε(x)D∗(ϕz)(x)μ(dx)

= −1

2

∫
H

1�(x)D∗(ϕz)(x)μ(dx).
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Thus, ∫
H

1�(x)D∗(ϕz)(x)μ(dx)

(5.1)

= −
∫
∂�

ϕ(x)〈n(x), z〉 |Dg(y)|
|Q1/2Dg(y)|μ∂�(dx) ∀z ∈ D(A),ϕ ∈ C1

b .

By the proof of [6], Lemma A.1, we get that g is a nondegenerate map. So we can
use the co-area formula (see [14], Theorem 6.3.1, Chapter V, or [6], (A.4)):∫

H
f μ(dx) =

∫ ∞
0

[∫
g=r

f (y)
1

|Q1/2Dg(y)|μ�r (dy)

]
dr.

By [14], Theorem 6.2, Chapter V, the surface measure is defined for all r ≥ 0,
moreover [14], Theorem 1.1, Corollary 6.3.2, Chapter V, imply that r �→ μ�r is
continuous in the topology induced by D

p
r (H) for some p ∈ (1,∞), r ∈ (0,∞)

(cf. [14]) on the measures on (H, B(H)). Take f ≡ 1 in the co-area formula, then
by the continuity property of the surface measure with respect to r we have that

1
|Q1/2Dg(y)|μ�r (dy) is a finite measure supported in {g = r}. By Remark 5.2 and

since μ∂� = μ�1 , we have that |Dg(y)|
|Q1/2Dg(y)|μ∂� is a finite measure. And hence by

Theorem 3.1(iii), we get I� ∈ BV(H,H). �

Thus by Theorem 4.3, we immediately get the following.

THEOREM 5.4. Assume Hypothesis 5.1. Then there exists an E ρ -exceptional
set S ⊂ F such that ∀z ∈ F \ S, under Pz there exists an Mt -cylindrical Wiener
process Wz, such that the sample paths of the associated reflected OU-process Mρ

on F with ρ = I� satisfy the following: for l ∈ D(A) ∩ H1

〈l,Xt − X0〉 =
∫ t

0
〈l, dWz

s 〉 − 1

2

∫ t

0
〈l,n�(Xs)〉dL‖∂�‖

s −
∫ t

0
〈Al,Xs〉ds

∀t ≥ 0 Pz-a.e.,

where n� := Dg
|Dg| is the exterior normal to � and

‖∂�‖(dy) = |Dg(y)|
|Q1/2Dg(y)|μ∂�(dy),

where μ∂� is the surface measure induced by μ (cf. [5, 6, 14]).

REMARK 5.5. It can be shown that for x ∈ ∂�, n�(x) = Dg
|Dg| is the exterior

normal to �, that is, the unique element in H of unit length such that

〈n�(x), y − x〉 ≤ 0 ∀y ∈ �.
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5.2. Existence and uniqueness of solutions. Let � ⊂ H and our linear operator
A satisfy Hypotheses 5.1 and 2.1, respectively. Consider the following stochastic
differential inclusion in the Hilbert space H ,{

dX(t) + (
AX(t) + N�(X(t))

)
dt � dW(t),

X(0) = x,
(5.2)

where W(t) is a cylindrical Wiener process in H on a filtered probability space
(	, F , Ft , P ) and N�(x) is the normal cone to � at x, that is,

N�(x) = {z ∈ H : 〈z, y − x〉 ≤ 0 ∀y ∈ �}.

DEFINITION 5.6. A pair of continuous H × R-valued and Ft -adapted pro-
cesses (X(t),L(t)), t ∈ [0, T ], is called a solution of (5.2) if the following condi-
tions hold:

(i) X(t) ∈ � for all t ∈ [0, T ] P -a.s.;
(ii) L is an increasing process with the property that

I∂�(Xs) dLs = dLs P -a.s.

and for any l ∈ D(A) we have

〈l,Xt −x〉 =
∫ t

0
〈l, dWs〉−

∫ t

0
〈l,n�(Xs)〉dLs −

∫ t

0
〈Al,Xs〉ds ∀t ≥ 0 P -a.s.,

where n� is the exterior normal to �.

REMARK 5.7. By Remark 5.5, we know that n�(x) ∈ N�(x) for all x ∈ ∂�.
Hence by Definition 5.6(ii), it follows that Definition 5.6 is appropriate to define a
solution for the multi-valued equation (5.2).

We denote the semigroup with the infinitesimal generator −A by S(t), t ≥ 0.

DEFINITION 5.8. A pair of continuous H × R valued and Ft -adapted pro-
cesses (X(t),L(t)), t ∈ [0, T ], is called a mild solution of (5.2) if:

(i) X(t) ∈ � for all t ∈ [0, T ] P -a.s.;
(ii) L is an increasing process with the property

I∂�(Xs) dLs = dLs P -a.s.

and

Xt = S(t)x +
∫ t

0
S(t − s) dWs −

∫ t

0
S(t − s)n�(Xs) dLs ∀t ∈ [0, T ] P -a.s.,

where n� is the exterior normal to �. In particular, the appearing integrals have to
be well defined.
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LEMMA 5.9. The process given by∫ t

0
S(t − s)n�(Xs) dLs

is P -a.s. continuous and adapted to Ft , t ∈ [0, T ]. This especially implies that it
is predictable.

PROOF. As |S(t − s)n�(Xs)| ≤ MT |n�(Xs)|, s ∈ [0, T ], the integrals
∫ t

0 S(t −
s)n�(Xs) dLs, t ∈ [0, T ], are well defined. For 0 ≤ s ≤ t ≤ T ,∣∣∣∣

∫ s

0
S(s − u)n�(Xu)dLu −

∫ t

0
S(t − u)n�(Xu)dLu

∣∣∣∣
≤
∣∣∣∣
∫ s

0
[S(s − u) − S(t − u)]n�(Xu)dLu

∣∣∣∣+
∣∣∣∣
∫ t

s
S(t − u)n�(Xu)dLu

∣∣∣∣
≤
∫ s

0
|[S(s − u) − S(t − u)]n�(Xu)|dLu +

∫ t

s
|S(t − u)n�(Xu)|dLu,

where the first summand converges to zero as s ↑ t or t ↓ s, because∣∣1[0,s)(u)[S(s − u) − S(t − u)]n�(Xu)
∣∣→ 0 as s ↑ t or t ↓ s.

For the second summand, we have∫ t

s
|S(t − u)n�(Xu)|dLu ≤ MT (Lt − Ls) → 0 as s ↑ t or t ↓ s.

By the same arguments as in [19], Lemma 5.1.9, we conclude that the integral is
adapted to Ft , t ∈ [0, T ]. �

THEOREM 5.10. (X(t),Lt ), t ∈ [0, T ], is a solution of (5.2) if and only if it
is a mild solution.

PROOF. (⇒) First, we prove that for arbitrary ζ ∈ C1([0, T ],D(A)) the fol-
lowing equation holds:

〈Xt, ζt 〉 = 〈x, ζ0〉 +
∫ t

0
〈ζs, dWs〉 −

∫ t

0
〈n�(Xs), ζs〉dLs

(5.3)

+
∫ t

0
〈Xs,−Aζs + ζ ′

s〉ds ∀t ≥ 0 P -a.s.

If ζs = ηfs for f ∈ C1([0, T ]) and η ∈ D(A), by Itô’s formula we have the
above relation for such ζ . Then by [19], Lemma G.0.10, and the same argu-
ments as the proof of Proposition G.0.11 we obtain the above formula for all
ζ ∈ C1([0, T ],D(A)). As in [19], Proposition G.0.11, for the resolvent Rn :=
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(n + A)−1 :H → D(A) and t ∈ [0, T ] choosing ζs := S(t − s)nRnη,η ∈ H , we
deduce from (5.3) that

〈Xt,nRnη〉 = 〈x,S(t)nRnη〉 +
∫ t

0
〈S(t − s)nRnη, dWs〉

−
∫ t

0
〈n�(Xs), S(t − s)nRnη〉dLs

+
∫ t

0
〈Xs,AS(t − s)nRnη〉 + 〈Xs,−AS(t − s)nRnη〉ds

=
〈
S(t)x +

∫ t

0
S(t − s) dWs +

∫ t

0
S(t − s)n�(Xs) dLs, nRnη

〉

∀t ∈ [0, T ] P -a.s.

Letting n → ∞, we conclude that (X(t),Lt ), t ∈ [0, T ], is a mild solution.
(⇐) By Lemma 5.9 and [19], Theorem 5.1.3, we have∫ t

0
S(t − s)n�(Xs) dLs and

∫ t

0
S(t − s) dWs, t ∈ [0, T ],

have predictable versions. And we use the same notation for the predictable ver-
sions of the respective processes. As (Xt ,Lt ) is a mild solution, for all η ∈ D(A)

we get∫ t

0
〈Xs,Aη〉ds =

∫ t

0
〈S(s)x,Aη〉ds

−
∫ t

0

〈∫ s

0
S(s − u)n�(Xu)dLu,Aη

〉
ds

+
∫ t

0

〈∫ s

0
S(s − u)dWu,Aη

〉
ds ∀t ∈ [0, T ] P -a.s.

The assertion that (X(t),Lt ), t ∈ [0, T ], is a solution of (5.2) now follows as in
the proof of [19], Proposition G.0.9, because∫ t

0

〈∫ s

0
S(s − u)n�(Xu)dLu,Aη

〉
ds

=
∫ t

0

∫ s

0

〈
n�(Xu),− d

ds
S(s − u)η

〉
dLu ds

= −
〈∫ t

0
S(t − s)n�(Xs) dLs, η

〉
+
〈∫ t

0
n�(Xs) dLs, η

〉
. �

Below, we prove (5.2) has a unique solution in the sense of Definition 5.6.

THEOREM 5.11. Let � ⊂ H satisfy Hypothesis 5.1. Then the stochastic inclu-
sion (5.2) admits at most one solution in the sense of Definition 5.6.
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PROOF. Let (u,L1) and (v,L2) be two solutions of (5.2), and let {ek}k∈N be
the eigenbasis of A from above. We then have

〈ek, u(t) − v(t)〉 +
∫ t

0
〈αkek, u(s) − v(s)〉ds +

∫ t

0
〈ek,n�(u(s))〉dL1

s

−
∫ t

0
〈ek,n�(v(s))〉dL2

s = 0.

Setting φk(t) := 〈ek, u(t) − v(t)〉, we obtain

φ2
k (t) = 2

∫ t

0
φk(s) dφk(s)

= −2
(∫ t

0
〈αkek, u(s) − v(s)〉〈ek, u(s) − v(s)〉ds

+
∫ t

0
〈ek,n�(u(s))〉〈ek, u(s) − v(s)〉dL1

s

(5.4)

−
∫ t

0
〈ek,n�(v(s))〉〈ek, u(s) − v(s)〉dL2

s

)

≤ −2
∫ t

0
〈ek,n�(u(s))〉〈ek, u(s) − v(s)〉dL1

s

+ 2
∫ t

0
〈ek,n�(v(s))〉〈ek, u(s) − v(s)〉dL2

s .

By the dominated convergence theorem for all t ≥ 0, we have P -a.s.

∑
k≤N

∫ t

0
〈ek,n�(u(s))〉〈ek, u(s) − v(s)〉dL1

s

→
∫ t

0
〈n�(u(s)), u(s) − v(s)〉dL1

s as N → ∞
and ∑

k≤N

∫ t

0
〈ek,n�(v(s))〉〈ek, u(s) − v(s)〉dL2

s

→
∫ t

0
〈n�(v(s)), u(s) − v(s)〉dL2

s as N → ∞.

Summing over k ≤ N in (5.4) and letting N → ∞ yield that for all t ≥ 0 P -a.s.

|u(t) − v(t)|2 ≤ 2
∫ t

0
〈n�(u(s)), v(s) − u(s)〉dL1

s

+ 2
∫ t

0
〈n�(v(s)), u(s) − v(s)〉dL2

s .
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By Remark 5.5 it follows that

|u(t) − v(t)|2 ≤ 0,

which implies

u(t) = v(t),

and thus

L1(t) = L2(t). �

Combining Theorems 5.4 and 5.11 with the Yamada–Watanabe theorem, we
now obtain the following theorem.

THEOREM 5.12. If � satisfies Hypothesis 5.1, then there exists a Borel set
M ⊂ H with I� · μ(M) = μ(�) such that for every x ∈ M , (5.2) has a pathwise
unique continuous strong solution in the sense that for every probability space
(	, F , Ft , P ) with an Ft -Wiener process W , there exists a unique pair of Ft -
adapted processes (X,L) satisfying Definition 5.6 and P(X0 = x) = 1. Moreover,
X(t) ∈ M for all t ≥ 0 P -a.s.

PROOF. By Theorems 5.4 and 5.11, one sees that [12], Theorem 3.14(a) is sat-
isfied for the solution (X,L). So, the assertion follows from [12], Theorem 3.14(b).

�

REMARK 5.13. Following the same arguments as in the proof of [22], Theo-
rem 2.1, we can give an alternative proof of Theorem 5.12 for a stronger notion of
strong solutions (see, e.g., [22]). Also, because of Theorem 5.10, by a modification
of [16], Theorem 12.1, we can prove the Yamada Watanabe theorem for the mild
solution in Definition 5.8, and then also a corresponding version of Theorem 5.12
for mild solutions for (5.2). This will be contained in forthcoming work.

5.3. The nonsymmetric case. In this section, we extend our results to the non-
symmetric case. For � ⊂ H satisfying Hypothesis 5.1, we consider the nonsym-
metric Dirichlet form,

E �(u, v) =
∫
�

(
1

2
〈Du(z),Dv(z)〉 + 〈B(z),Du(z)〉v(z)

)
μ(dz),

u, v ∈ C1
b(�),

where B is a map from � to H such that

B ∈ L∞(� → H,μ),
(5.5) ∫

�
〈B,Du〉dμ ≥ 0 for all u ∈ C1

b(�),u ≥ 0.
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Then (E ,C1
b(�)) is a densely defined bilinear form on L2(�;μ) which is posi-

tive definite, since for all u ∈ C1
b(�)

E �(u,u) =
∫
�

1

2

(〈Du(z),Du(z)〉 + 〈B(z),Du2(z)〉(z))μ(dz) ≥ 0.

Furthermore, by the same argument as [13], Section II.3.e, we have (E ,C1
b(�))

is closable on L2(�,μ) and its closure (E �, F �) is a Dirichlet form on L2(�,μ).
We denote the extended Dirichlet space of (E �, F �) by F �

e : Recall that u ∈ F �
e if

and only if |u| < ∞ I� · μ-a.e. and there exists a sequence {un} in F � such that
E �(um − un,um − un) → 0 as n ≥ m → ∞ and un → u I� · μ-a.e. as n → ∞.
This Dirichlet form satisfies the weak sector condition

|E �
1 (u, v)| ≤ KE �

1 (u,u)1/2E �
1 (v, v)1/2.

Furthermore, we have the following theorem.

THEOREM 5.14. Suppose � ⊂ H satisfies Hypothesis 5.1. Then (E �, F �) is
a quasi-regular local Dirichlet form on L2(�;μ).

PROOF. The assertion follows by [13], Section IV. 4b, and [23]. �

By virtue of Theorem 5.14 and [13], there exists a diffusion process M� =
(Xt ,Pz) on � associated with the Dirichlet form (E �, F �). Since constant func-
tions are in F � and E �(1,1) = 0, M� is recurrent and conservative. We denote
by A�+ the set of all positive continuous additive functionals (PCAF in abbrevia-
tion) of M� , and define A� = A�+ − A�+. For A ∈ A� , its total variation process is
denoted by {A}. We also define A�

0 = {A ∈ A�|EI� ·μ({A}t ) < ∞ ∀t > 0}. Each el-
ement in A�+ has a corresponding positive E �-smooth measure on � by the Revuz
correspondence. The totality of such measures will be denoted by S�+. Accord-
ingly, A� corresponds to S� = S�+ − S�+, the set of all E �-smooth signed measure
in the sense that At = A1

t − A2
t for Ak

t ∈ Aρ
+, k = 1,2, whose Revuz measures are

νk, k = 1,2, and ν = ν1 − ν2 is the Hahn–Jordan decomposition of ν. The element
of A corresponding to ν ∈ S will be denoted byAν .

Note that for each l ∈ H the function u(z) = 〈l, z〉 belongs to the extended
Dirichlet space F �

e and

E �(l(·), v) =
∫
�

(
1

2
〈l,Dv(z)〉 + 〈B(z), l〉v(z)

)
μ(dz) ∀v ∈ C1

b(�).(5.6)

On the other hand, the AF 〈l,Xt − X0〉 of M� admits a decomposition into a
sum of a martingale AF (Mt) of finite energy and CAF (Nt) of zero energy. More
precisely, for every l ∈ H

〈l,Xt − X0〉 = Ml
t + Nl

t ∀t ≥ 0 Pz-a.s.(5.7)

for E ρ -q.e. z ∈ �.
Then we have the following theorem.
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THEOREM 5.15. Suppose � ⊂ H satisfies Hypothesis 5.1.
(1) The next three conditions are equivalent:

(i) Nl ∈ A0.
(ii) |E �(l(·), v)| ≤ C‖v‖∞ ∀v ∈ C1

b(�).
(iii) There exists a finite (unique) signed measure νl on � such that

E �(l(·), v) = −
∫
�

v(z)νl(dz) ∀v ∈ C1
b(�).(5.8)

In this case, νl is automatically smooth and

Nl = Aνl .

(2) Ml is a martingale AF with quadratic variation process

〈Ml〉t = t |l|2, t ≥ 0.(5.9)

PROOF. (1) By [17], Theorem 5.2.7, and the same arguments as in [8], we can
extend Theorem 6.2 in [8] to our nonsymmetric case to prove the assertions.

(2) Since

E �(u, v) =
∫
�

(
1

2
〈Du(z),Dv(z)〉 + 〈B(z),Du(z)〉v(z)

)
μ(dz), u, v ∈ F �,

by [17], Theorem 5.1.5, for u ∈ C1
b(�), f ∈ F � bounded we have∫

f̃ (x)μ〈M [u]〉(dx)

= 2E �(u,uf ) − E �(u2, f )

= 2
∫
�

(
1

2
〈Du(z),D(uf̃ )(z)〉 + 〈B(z),Du(z)〉u(z)f̃ (z)

)
μ(dz)

−
∫
�

(
1

2
〈D(u(z)2),Df̃ (z)〉 + 〈B(z),D(u2)(z)〉f̃ (z)

)
μ(dz)

=
∫
�
〈Du(z),Du(z)〉f̃ (z)μ(dz).

Here f̃ denotes the E �-quasi-continuous version of f , μ〈M [u]〉 is the Reuvz mea-
sure for 〈M [u]〉 and M [u] is the martingale additive functional in the Fukushima
decomposition for u(Xt). Hence, we have

μ〈M [u]〉(dz) = I�〈Du(z),Du(z)〉 · μ(dz).

By [17], (5.1.3), we also have

e(〈Ml〉) = e(Ml) =
∫
�

1

2
〈l, l〉μ(dz),

where e(Ml) is the energy of Ml . Then (5.9) easily follows. �

By Theorem 3.1, we can now prove the following theorem.
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THEOREM 5.16. Suppose � ⊂ H satisfies Hypothesis 5.1. Then there is an
E �-exceptional set S ⊂ � such that ∀z ∈ � \ S, under Pz there exists an Mt -
cylindrical Wiener process Wz, such that the sample paths of the associated OU-
process M� on � satisfy the following: for l ∈ D(A) ∩ H1

〈l,Xt − X0〉 =
∫ t

0
〈l, dWz

s 〉 − 1

2

∫ t

0
H1〈l,n�(Xs)〉H ∗

1
dL‖∂�‖

s

(5.10)

−
∫ t

0
〈Al,Xs〉ds −

∫ t

0
〈l,B(Xs)〉ds Pz-a.s.

Here, L
‖∂�‖
t is the real valued PCAF associated with ‖∂�‖ by the Revuz corre-

spondence, which has the following additional property: ∀z ∈ � \ S

I∂�(Xs) dL‖∂�‖
s = dL‖∂�‖

s Pz-a.s.(5.11)

Here n� := Dg
|Dg| is the exterior normal to �, and

‖∂�‖(dy) = |Dg(y)|
|Q1/2Dg(y)|μ∂�(dy),

where μ∂� the surface measure induced by μ.

PROOF. By (5.6) and (3.16), we have

E �(l(·), v) =
∫
�

1

2
〈l,Dv(z)〉 + 〈B(z), l〉v(z)μ(dz)

=
∫
�
〈B(z), l〉v(z)μ(dz) +

∫
�

v(z)〈Al, z〉μ(dz)

+ 1

2

∫
∂�

v(z)〈l,n�(z)〉‖∂�‖(dz).

Thus, by Theorem 5.15

Nl
t = −

〈
Al,

∫ t

0
Xs(ω)ds

〉
−
〈
l,

∫ t

0
B(Xs(ω)) ds

〉

− 1

2

〈
l,

∫ t

0
n�(Xs(ω)) dL‖∂�‖

s (ω)

〉
.

By Theorem 5.15 and the same method as in Theorem 3.2 one then proves the first
assertion, and the last assertion follows by Theorems 5.3 and 5.4. �

Let � ⊂ H and our linear operator A satisfy Hypotheses 5.1 and 2.1, respec-
tively. As in Section 5.2 we shall now prove the existence and uniqueness of a
solution of the following stochastic differential inclusion on the Hilbert space H ,{

dX(t) + (
AX(t) + B(X(t)) + N�(X(t))

)
dt � dW(t),

X(0) = x,
(5.12)
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where B satisfies condition (5.5), W(t) is a cylindrical Wiener process in H on a
filtered probability space (	, F , Ft , P ) and N�(x) is the normal cone to � at x,
that is,

N�(x) = {z ∈ H : 〈z, y − x〉 ≤ 0 ∀y ∈ �}.

DEFINITION 5.17. A pair of continuous H × R-valued and Ft -adapted pro-
cesses (X(t),L(t)), t ∈ [0, T ], is called a solution of (5.12) if the following con-
ditions hold:

(i) X(t) ∈ � for all t ∈ [0, T ] P -a.s.;
(ii) L is an increasing process with the property that

I∂�(Xs) dLs = dLs P -a.s.,

and for any l ∈ D(A) we have

〈l,Xt − x〉 =
∫ t

0
〈l, dWs〉 −

∫ t

0
〈l,n�(Xs)〉dLs −

∫ t

0
〈l,B(Xs)〉ds

−
∫ t

0
〈Al,Xs〉ds ∀t ≥ 0 P -a.s.,

where n� is the exterior normal to �.

Below we prove (5.12) has a unique solution in the sense of Definition 5.17.

THEOREM 5.18. Let � ⊂ H satisfy Hypothesis 5.1 and B satisfy the mono-
tonicity condition

〈B(u) − B(v),u − v〉 ≥ −α|u − v|2(5.13)

for all u, v ∈ dom(B), for some α ∈ [0,∞) independent of u, v. The stochastic
inclusion (5.12) admits at most one solution in the sense of Definition 5.17.

PROOF. Let (u,L1) and (v,L2) be two solutions of (5.12), and let {ek}k∈N be
the eigenbasis of A from above. We then have

〈ek, u(t) − v(t)〉 +
∫ t

0
〈αkek, u(s) − v(s)〉ds +

∫ t

0
〈ek,B(u(s)) − B(v(s))〉ds

+
∫ t

0
〈ek,n�(u(s))〉dL1

s −
∫ t

0
〈ek,n�(v(s))〉dL2

s = 0.

Setting φk(t) := 〈ek, u(t) − v(t)〉, and we have

φ2
k (t) = 2

∫ t

0
φk(s) dφk(s)

= −2
(∫ t

0
〈αkek, u(s) − v(s)〉〈ek, u(s) − v(s)〉ds(5.14)
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+
∫ t

0
〈ek,B(u(s)) − B(v(s))〉〈ek, u(s) − v(s)〉ds

+
∫ t

0
〈ek,n�(u(s))〉〈ek, u(s) − v(s)〉dL1

s

−
∫ t

0
〈ek,n�(v(s))〉〈ek, u(s) − v(s)〉dL2

s

)

≤ −2
∫ t

0
〈ek,B(u(s)) − B(v(s))〉〈ek, u(s) − v(s)〉ds

− 2
∫ t

0
〈ek,n�(u(s))〉〈ek, u(s) − v(s)〉dL1

s

+ 2
∫ t

0
〈ek,n�(v(s))〉〈ek, u(s) − v(s)〉dL2

s .

By the same argument as Theorem 5.11, we have the following P -a.s.:

∑
k≤N

∫ t

0
〈ek,B(u(s)) − B(v(s))〉〈ek, u(s) − v(s)〉ds

→
∫ t

0
〈B(u(s)) − B(v(s)), u(s) − v(s)〉ds as N → ∞,

∑
k≤N

∫ t

0
〈ek,n�(u(s))〉〈ek, u(s) − v(s)〉dL1

s

→
∫ t

0
〈n�(u(s)), u(s) − v(s)〉dL1

s as N → ∞
and ∑

k≤N

∫ t

0
〈ek,n�(v(s))〉〈ek, u(s) − v(s)〉dL2

s

→
∫ t

0
〈n�(v(s)), u(s) − v(s)〉dL2

s as N → ∞.

Summing over k ≤ N in (5.14) and letting N → ∞ yield that for all t ≥ 0, P -a.s.

|u(t) − v(t)|2 + 2
∫ t

0
〈B(u(s)) − B(v(s)), u(s) − v(s)〉ds

≤ 2
∫ t

0
〈n�(u(s)), v(s) − u(s)〉dL1

s + 2
∫ t

0
〈n�(v(s)), u(s) − v(s)〉dL2

s .

By Remark 5.5, it follows that

|u(t) − v(t)|2 + 2
∫ t

0
〈B(u(s)) − B(v(s)), u(s) − v(s)〉ds ≤ 0.
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By (5.13) and Gronwall’s lemma, it follows that

u(t) = v(t),

and thus

L1(t) = L2(t). �

Combining Theorems 5.16 and 5.18 with the Yamada–Watanabe theorem, we
obtain the following.

THEOREM 5.19. If � satisfies Hypothesis 5.1 and B in (5.12) satisfies (5.13),
then there exists a Borel set M ⊂ H with I� ·μ(M) = μ(�) such that for every x ∈
M , (5.12) has a pathwise unique continuous strong solution in the sense that for
every probability space (	, F , Ft , P ) with an Ft -Wiener process W there exists a
unique pair of Ft -adapted processes (X,L) satisfying Definition 5.17 and P(X0 =
x) = 1. Moreover, X(t) ∈ M for all t ≥ 0 P -a.s.

PROOF. The proof is completely analogous to that of Theorem 5.12. �

6. Reflected OU-processeses on a class of convex sets. Below for a topolog-
ical space X we denote its Borel σ -algebra by B(X). In this section, we consider
the case where H := L2(0,1), ρ = IKα , where Kα := {f ∈ H |f ≥ −α}, α ≥ 0,
and A = −1

2
d2

dr2 with Dirichlet boundary conditions on (0,1). So in this case
ej = √

2 sin(jπr), j ∈ N, is the corresponding eigenbases. We recall that (cf. [23])
we have μ(C0([0,1])) = 1. In [23], L. Zambotti proved the following integration
by parts formulae in this situation:

• for α > 0,∫
Kα

〈l,Dϕ〉dμ

= −
∫
Kα

ϕ(x)〈x, l′′〉μ(dx) −
∫ 1

0
dr l(r)

∫
ϕ(x)σα(r, dx)

∀l ∈ D(A),ϕ ∈ C1
b(H),

• for α = 0,∫
K0

〈l,Dϕ〉dν

= −
∫
K0

ϕ(x)〈x, l′′〉ν(dx) −
∫ 1

0
dr l(r)

∫
ϕ(x)σ0(r, dx)(6.1)

∀l ∈ D(A),ϕ ∈ C1
b(H),
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where ν is the law of the Bessel Bridge of dimension 3 over [0,1] which is zero at
0 and 1, σα(r, dx) = σα(r)μα(r, dx), and for α > 0, σα is a positive bounded func-
tion, and for α = 0, σ0(r) = 1√

2πr3(1−r)3
, where μα(r, dx),α ≥ 0, are probability

kernels from (H, B(H)) to ([0,1], B([0,1])).

REMARK 6.1. Since each l in D(A) has a second derivative in L2, its first
derivative is bounded, hence l goes faster than linear to zero at any point where l

is zero, in particular at the boundary points r = 0 and r = 1. Hence, the second
integral in the right-hand side of the above equality is well defined.

We know by (3.5) that for all l ∈ D(A)

D∗(ϕ(·)l) = −〈l,Dϕ〉 − ϕ〈l′′, ·〉.
Hence, for α > 0,∫

Kα

D∗(ϕ(·)l) dμ =
∫ 1

0
l(r)

∫
ϕ(x)σα(r, dx) dr

(6.2)
∀l ∈ D(A),ϕ ∈ C1

b(H).

Now take

cj :=
{

(jπ)1/2+ε, if α > 0,
(jπ)β, if α = 0,

(6.3)

where ε ∈ (0, 3
2 ] and β ∈ (3

2 ,2], respectively, and define

H1 :=
{
x ∈ H

∣∣∣ ∞∑
j=1

〈x, ej 〉2c2
j < ∞

}

equipped with the inner product

〈x, y〉H1 :=
∞∑

j=1

c2
j 〈x, ej 〉〈y, ej 〉.

We note that D(A) ⊂ H1 continuously for all α ≥ 0, since ε ≤ 3
2 , β ≤ 2. Further-

more, (H1, 〈·, ·〉H1) is a Hilbert space such that H1 ⊂ H continuously and densely.
Identifying H with its dual we obtain the continuous and dense embeddings

H1 ⊂ H(≡ H ∗) ⊂ H ∗
1 .

It follows that

H1〈z, v〉H ∗
1

= 〈z, v〉H ∀z ∈ H1, v ∈ H,

and that (H1,H,H ∗
1 ) is a Gelfand triple.
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The following is the main result of this section.

THEOREM 6.2. If α > 0, then IKα ∈ BV(H,H1) ∩ H.

PROOF. First, for σα as in (6.2) we show that for each B ∈ B(H) the function
r �→ σα(r,B) is in H ∗

1 and that the map B �→ σα(·,B) is in fact an H ∗
1 -valued

measure of bounded variation, that is,

sup

{ ∞∑
n=1

‖σα(·,Bn)‖H ∗
1

:Bn ∈ B(H),n ∈ N,H =
∞⋃̇

n=1

Bn

}
< ∞,

that is,

sup

{ ∞∑
n=1

( ∞∑
j=1

c−2
j

(∫ 1

0
σα(r,Bn) sin(jπr) dr

)2
)1/2

:

Bn ∈ B(H),n ∈ N,H =
∞⋃̇

n=1

Bn

}
< ∞,

where
⋃̇∞

n=1Bn means disjoint union.
For α > 0, we have

∞∑
n=1

( ∞∑
j=1

c−2
j

(∫ 1

0
σα(r,Bn) sin(jπr) dr

)2
)1/2

≤
∞∑

n=1

( ∞∑
j=1

c−2
j

(∫ 1

0
σα(r,Bn) dr

)2
)1/2

≤ C

∞∑
n=1

∫ 1

0
σα(r,Bn) dr

= C

∫ 1

0
σα(r) dr < ∞.

Thus, σα in (6.2) is of bounded variation as an H ∗
1 -valued measure. Hence by

the theory of vector-valued measures (cf. [3], Section 2.1), there is a unit vector
field nα :H → H ∗

1 , such that σα = nα‖σα‖, where

‖σα‖(B) := sup

{ ∞∑
n=1

‖σα(·,Bn)‖H ∗
1

:Bn ∈ B(H),n ∈ N,B =
∞⋃̇

n=1

Bn

}

is a nonnegative measure, which is finite by the above proof. So (6.2) becomes∫
Kα

D∗(ϕ(·)l) dμ =
∫

H1〈ϕ(x)l, nα(x)〉H ∗
1
‖σα‖(dx) ∀l ∈ D(A),ϕ ∈ C1

b(H),
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which by linearity extends to all G ∈ (C1
b)D(A)∩H1 . Thus by Theorem 3.1(iii), we

get that IKα ∈ BV(H,H1).
IKα ∈ H follows by Remark 4.1. �

REMARK 6.3. It has been proved by Guan Qingyang that IKα is not in
BV(H,H).

THEOREM 6.4. For α = 0, then there exist a positive finite measure ‖σ0‖ on
H and a Borel-measurable map n0 :H → H ∗

1 such that ‖n0(z)‖H ∗
1

= 1 ‖σ0‖-a.e.,
and

−
∫
K0

〈l,Dϕ〉dν −
∫
K0

ϕ(x)〈x, l′′〉ν(dx)

(6.4)
=
∫

H1〈ϕ(x)l, n0(x)〉H ∗
1
‖σ0‖(dx) ∀l ∈ D(A),ϕ ∈ C1

b(H).

PROOF. For α = 0 using that | sin(jπr)| ≤ 2jπr(1 − r) ∀r ∈ [0,1], we have

∞∑
n=1

( ∞∑
j=1

c−2
j

(∫ 1

0
σ0(r,Bn) sin(jπr) dr

)2
)1/2

≤
∞∑

n=1

( ∞∑
j=1

c−2
j

(∫ 1

0
σ0(r,Bn)2jπr(1 − r) dr

)2
)1/2

≤ C

∞∑
n=1

∫ 1

0
σ0(r,Bn)r(1 − r) dr

= C

∫ 1

0
σ0(r)r(1 − r) dr < ∞.

Thus, σ0 in (6.1) is of bounded variation as an H ∗
1 -valued measure. Hence by the

theory of vector-valued measures (cf. [3], Section 2.1), there is a unit vector field
n0 :H → H ∗

1 , such that σ0 = n0‖σα‖, where

‖σ0‖(B) := sup

{ ∞∑
n=1

‖σ0(·,Bn)‖H ∗
1

:Bn ∈ B(H),n ∈ N,B =
∞⋃̇

n=1

Bn

}

is a nonnegative measure, which is finite by the above proof. So the result follows
by (6.1). �

Since here μ(K0) = 0, we have to change the reference measure of the Dirichlet
form. Consider

E K0(u, v) = 1

2

∫
K0

〈Du,Dv〉dν, u, v ∈ C1
b(K0).
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Since IK0 ∈ H by Remark 4.1, the closure of (E IK0 ,C1
b(K0)) is also a quasi-regular

local Dirichlet form on L2(F ;ρ ·ν) in the sense of [13], Chapter IV, Definition 3.1.
As before, there exists a diffusion process MIK0 = (	, M, {Mt}, θt ,Xt , Pz) on F

associated with this Dirichlet form. MIK0 will also be called distorted OU-process
on K0. As before, MIK0 is recurrent and conservative. As before, we also have the
associated PCAF and the Revuz correspondence.

Combining these two cases: for α > 0 by Theorem 3.2 and for α = 0 by the
same argument as Theorem 3.2, since we have (6.4), we have the following theo-
rem.

THEOREM 6.5. Let ρ := IKα ,α ≥ 0 and consider the measure ‖σα‖ and nα

appearing in Theorems 6.2 and 6.4. Then there is an E ρ -exceptional set S ⊂ F

such that ∀z ∈ F \ S, under Pz there exists an Mt -cylindrical Wiener process Wz,
such that the sample paths of the associated distorted OU-process Mρ on F satisfy
the following: for l ∈ D(A)

〈l,Xt − X0〉 =
∫ t

0
〈l, dWs〉 + 1

2

∫ t

0
H1〈l, nα(Xs)〉H ∗

1
dL‖σα‖

s

(6.5)

−
∫ t

0
〈Al,Xs〉ds Pz-a.e.

Here L
‖σα‖
t is the real valued PCAF associated with ‖σα‖ by the Revuz correspon-

dence with respect to Mρ , satisfying

I{Xs+α �=0} dL‖σα‖
s = 0,(6.6)

and for l ∈ H1 with l(r) ≥ 0 we have∫ t

0
H1〈l, nα(Xs)〉H ∗

1
dL‖σα‖

s ≥ 0.(6.7)

Furthermore, for all z ∈ F

Pz

[
Xt ∈ C0[0,1] for a.e. t ∈ [0,∞)

]= 1.(6.8)

PROOF. For α > 0, the first part of the assertion follows by Theorem 3.2 and
the uniqueness part of Theorem 3.1(ii). For α = 0, the assertion follows by the
same argument as in Theorem 3.2. (6.6) and (6.7) follow by the property of σα in
[23]. By [18], p. 135, Theorem 2.4, we have C0[0,1] is a Borel subset of L2[0,1].
By [11], (5.1.13), we have

Eρμ

[∫ k

k−1
1F\C0[0,1](Xs) ds

]
= ρμ(F \ C0[0,1]) = 0 ∀k ∈ N,
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hence

Eρμ

[∫ ∞
0

1F\C0[0,1](Xs) ds

]
= 0.

Since Ex[∫∞
0 1F\C0[0,1](Xs) ds] is a 0-excessive function in x ∈ Kα , it is finely

continuous with respect to the process X. Then for E ρ -q.e. z ∈ F ,

Ez

[∫ ∞
0

1F\C0[0,1](Xs) ds

]
= 0,

thus, for E ρ -q.e. z ∈ F ,

Pz

[∫ ∞
0

1F\C0[0,1](Xs) ds = 0
]

= 1.

As a consequence, we have that �0 := {Xt ∈ C0[0,1] for a.e. t ∈ [0,∞)} is mea-
surable and for E ρ -q.e. z ∈ F

Pz(�0) = 1.

As �0 =⋂
t∈Q,t>0 θ−1

t �0 and since by [4] we have that the semigroup associated
with Xt is strong Feller, by the Markov property as in [7], Lemma 7.1, we obtain
that for any z ∈ F, t ∈ Q, t > 0,

Pz(θ
−1
t �0) = 1.

Hence, for any z ∈ F we have

Pz

[
Xt ∈ C0[0,1] for a.e. t ∈ [0,∞)

]= 1. �

REMARK 6.6. We emphasize that in the present situation it was proved in
[15], Theorem 1.3, that for all initial conditions x ∈ H , there exists a unique
strong solution to (1.1). By [23], the solution in [15] is associated to our Dirich-
let form, hence satisfies (6.5) by Theorem 6.5. Hence, it follows that the solu-
tion in [15], Theorem 1.3, is solution to an infinite-dimensional Skorohod prob-
lem.
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