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TAIL APPROXIMATIONS OF INTEGRALS OF GAUSSIAN
RANDOM FIELDS

BY JINGCHEN LIU1

Columbia University

This paper develops asymptotic approximations of P(
∫
T ef (t) dt > b)

as b → ∞ for a homogeneous smooth Gaussian random field, f , living on a
compact d-dimensional Jordan measurable set T . The integral of an exponent
of a Gaussian random field is an important random variable for many generic
models in spatial point processes, portfolio risk analysis, asset pricing and so
forth.

The analysis technique consists of two steps: 1. evaluate the tail prob-
ability P(

∫
� ef (t) dt > b) over a small domain � depending on b, where

mes(�) → 0 as b → ∞ and mes(·) is the Lebesgue measure; 2. with � ap-
propriately chosen, we show that P(

∫
T ef (t) dt > b) = (1 + o(1))mes(T ) ×

mes−1(�)P (
∫
� ef (t) dt > b).

1. Introduction. We consider a Gaussian random field living on a d-
dimensional domain T ⊂ Rd , {f (t) : t ∈ T }. For every finite subset {t1, . . . , tn} ⊂
T , (f (t1), . . . , f (tn)) is a multivariate Gaussian random vector. The quantity of
interest is

P

(∫
T

ef (t) dt > b

)
as b → ∞.

The motivations of the study of
∫
T ef (t) dt are from multiple sources. We will

present a few of them. Consider a point process on Rd associated with a Poisson
random measure {NA}A∈B with intensity λ(t), where B represents the Borel sets
of Rd . One important task in spatial modeling is to build in dependence structures.
A popular strategy is to let f (t) = logλ(t), which can take all values in R, and
model f (t) as a Gaussian random field. Then,

∫
A ef (t) dt = E(N(A)|λ(·)) for all

A ∈ B. With the multivariate Gaussian structure, it is easy to include linear pre-
dictors in the intensity process. For instance, [19] models f (t) = U(t) + W(t),
where U(t) is the observed (deterministic) covariate process and W(t) is a station-
ary AR(1) process. Similar models can be found in [18, 23, 40] which are special
cases of the Cox process [21, 22]. Such a modeling approach has been applied
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to many disciplines, a short list of which is as follows: astronomy, epidemiology,
geography, ecology, material science and so forth.

In portfolio risk analysis, consider a portfolio consisting of equally weighted
assets (S1, . . . , Sn). One stylized model is that (logS1, . . . , logSn) is a multivariate
normal random vector (cf. [7, 12, 25, 26, 30]). The value of the portfolio S =∑n

i=1 Si is then the sum of correlated log-normal random variables. If one can
represent each asset price by the value of a Gaussian random field at one location
in T , that is, logSi = f (ti). As the portfolio size tends to infinity and the asset
prices become more correlated, the limit of the unit share price of the portfolio
is limn→∞ S/n = ∫

T ef (t) dt . For more general cases, such as unequally weighted
portfolios, the integral is possibly with respect to some other measures instead of
the Lebesgue measure.

In option pricing, if we let S(t) be a geometric Brownian motion (cf. [14], Chap-
ter 5 of [27], Chapter 3.2 of [29]), the payoff function of an Asian option (with
expiration time T ) is a function of

∫ T
0 S(t) dt . For instance, the payoff of an Asian

call option with strike price K is max(
∫ T

0 S(t) dt − K,0); the payoff of a digital
Asian call option is I (

∫ T
0 S(t) dt > K).

We want to emphasize that the extreme behavior of
∫
T ef (t) dt connects closely

to that of supT f (t). As we will show in Theorem 1, with the threshold u appro-
priately chosen according to b, the probabilities of events {∫T ef (t) dt > b} and
{supT f (t) dt > u} have asymptotically the same decaying rate. It suggests that
these two events have substantial overlap with each other. Therefore, we will bor-
row the intuitions and existing results on the high excursion of the supremum of
random fields for the analysis of

∫
T ef (t) dt .

There is a vast literature on the extremes of Gaussian random fields mostly
focusing on the tail probabilities of supT f (t) and its associated geometry. The
results contain general bounds on P(supT f (t) > b) as well as sharp asymp-
totic approximations as b → ∞. A partial literature contains [13, 16, 17, 31–33,
35, 37]. Several methods have been introduced to obtain asymptotic approxima-
tions, each of which imposes different regularity conditions on the random fields.
A few examples are given as follows. The double sum method [34] requires ex-
pansions of the covariance function and locally stationary structure. The Euler–
Poincaré Characteristic of the excursion set [χ(Ab)] approximation uses the fact
that P(M > b) ≈ E(χ(Ab)), which requires the random field to be at least twice
differentiable [1, 5, 38]. The tube method [36] uses the Karhunen–Loève expan-
sion and imposes differentiability assumptions on the covariance function (fast
decaying eigenvalues). The Rice method [9–11] represents the distribution of M

(density function) in an implicit form. Recently, the efficient simulation algorithms
are explored by [2, 3]. These two papers provided computation schemes that run in
polynomial time to compute the tail probabilities for all Hölder continuous Gaus-
sian random fields and in constant time for twice differentiable and homogeneous
fields. In addition, [4] studied the geometric properties of a high level excursion set
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for infinitely divisible non-Gaussian fields as well as the conditional distributions
of such properties given the high excursion.

The distribution of
∫

ef (t) dt for the special case that f (t) is a Wiener process
has been studied by [27, 39]. For other general functionals of Gaussian processes
and multivariate Gaussian random vectors, the tail approximation of the finite sum
of correlated log-normal random variables has been studied by [8]. The corre-
sponding simulation is studied in [15]. The gap between the finite sums of log-
normal r.v.’s and the integral of continuous fields is substantial in the aspects of
both generality and techniques.

The basic strategy of the analysis consists of two steps. The first step is to parti-
tion the domain T into n small squares of equal size denoted by Ai , i = 1, . . . , n,
and develop asymptotic approximations for each pi = P(

∫
Ai

ef (t) dt > b). The
size of Ai will be chosen carefully such that it is valid to use Taylor’s expan-
sion on f (t) to develop the asymptotic approximations of pi . The second step
is to show that P(

∫
T ef (t) dt > b) = (1 + o(1))

∑n
i=1 pi . This implies that when

computing P(
∫
T ef (t) dt > b), we can pretend that all the

∫
Ai

ef (t) dt’s are inde-
pendent, though they are truly highly dependent. The sizes of the Ai ’s need to be
chosen carefully. If Ai is too large, Taylor’s expansion may not be accurate; if Ai

is too small, the dependence of the fields in different Ai ’s will be high and the sec-
ond step approximation may not be true. Since the first step of the analysis requires
Taylor’s expansion of the field, we will need to impose certain conditions on the
field, which will be given in Section 2.

This paper is organized as follows. In Section 2 we provide necessary back-
ground and the technical conditions on the Gaussian random field in context. The
main theorem and its connection to asymptotic approximation of P(supT f (t) >

b) are presented in Section 3. In addition, two important steps of the proof are
given in the same section, which lay out the proof strategy. Sections 4 and 5 give
the proofs of the two steps presented in Section 3. Detailed lemmas and their proofs
are given in the Appendix.

2. Some useful existing results.

2.1. Preliminaries and technical conditions for Gaussian random field. Con-
sider a homogeneous Gaussian random field, f (t), living on a domain T . Denote
the covariance function by

C(t − s) = Cov(f (s), f (t)).

Throughout this paper, we assume that the random field satisfies the following
conditions:

(C1) f is homogeneous with Ef (t) = 0 and Ef 2(t) = 1.
(C2) f is almost surely at least three times continuously differentiable with

respect to t .
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(C3) T is a d-dimension Jordan measurable compact subset of Rd .
(C4) The Hessian matrix of C(t) at the origin is −I , where I is a d ×d identity

matrix.

Condition (C1) imposes unit variance. We will later study
∫
T eσf (t) dt and treat σ

as an extra parameter. Condition (C2) implies that C(t) is at least 6 times differen-
tiable. In addition, the first, third and fifth derivatives of C(t) evaluated at the ori-
gin are zero. For any f̃ (t) such that �C̃(0) = � and |�| > 0, (C4) can always be
achieved by an affine transformation on the domain T by letting f̃ (t) = f (�1/2t)

and ∫
T

eσ f̃ (t) dt =
∫
T

eσf (�1/2t) dt = |�|−1/2
∫
{s : �−1/2s∈T }

eσf (s) ds,

where for a symmetric matrix � we let �1/2 be a symmetric matrix such that
�1/2�1/2 = �.

For σ > 0, let

Iσ (A) =
∫
A

eσf (t) dt(1)

for the Jordan measurable set A ⊂ T . Of interest is

P
(
Iσ (T ) > b

)
as b → ∞. Equivalently, we may consider that the variance of f is σ 2. However,
it is notionally simpler to focus on a unit variance field and treat σ as a scale
parameter.

We adopt the following notation. Let “∂” and “�” denote the gradient and Hes-
sian matrix with respect to t , and “∂2” denote the vector of second derivatives with
respect to t . The difference between “�” and “∂2” is that, for a specific t , �f (t) is
a d × d symmetric matrix whose upper triangle entries are the elements of ∂2f (t)

which is a (d(d + 1)/2)-dimensional vector. Let ∂j denote the partial derivative
with respect to the j th component of t = (t1, . . . , td). We use similar notation for
higher order derivatives. For b large enough, let u be the unique solution to

(2π/σ)d/2u−d/2eσu = b.

The uniqueness of u is immediate by noting that the left-hand side is monotone
increasing with u for all u > d/(2σ). In addition, we use the following notation
and changes of variables:

μ1(t) = −(∂1C(t), . . . , ∂dC(t)),

μ2(t) = (
∂2
iiC(t), i = 1, . . . , d; ∂2

ijC(t), i = 1, . . . , d, j = i + 1, . . . , d
)
,

μ�
02 = μ20 = μ2(0), f (0) = u − w, ∂f (0) = y,

∂2f (0) = uμ02 + z, �f (0) = −uI + z.
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The vector μ20 contains the spectral moments of order two. Similar to �f (0) and
∂2f (0), z is a symmetric matrix whose entries consist of elements in z. We create
different notation because we will treat the second derivative of f as a matrix when
doing Taylor’s expansion and as a vector when doing integration. As stated in con-
dition (C4), we have �C(0) = −I . Equivalently, ∂f (0) is a vector of independent
unit variance Gaussian r.v.’s. We plan to show that in order to have

∫
T ef (t) dt > b,

supT f (t) needs to reach a level around u. The distance between f (0) and u is
denoted by w. In addition, since (f (0), ∂2f (0)) is jointly independent of ∂f (0),
the distribution of ∂f (0) is unaffected even if f (0) reaches a high level. Further,
the covariance between f (0) and ∂2f (0) is μ20. Given f (0) = u, the conditional
expectation of ∂2f (0) is uμ02. The distance between ∂2f (0) and this conditional
expectation is denoted by vector z.

A well-known result (see, e.g., Chapter 5.5 in [5]) is that the joint distribution of
(f (0), ∂2f (0), ∂f (0), f (t)) is multivariate normal with mean zero and variance⎛

⎜⎜⎜⎝
1 μ20 0 C(t)

μ02 μ22 0 μ�
2 (t)

0 0 I μ�
1 (t)

C(t) μ2(t) μ1(t) 1

⎞
⎟⎟⎟⎠ ,

where μ1(t), μ2(t) and μ20 = μ�
02 is defined previously. The matrix μ22 is a

d(d + 1)/2 by d(d + 1)/2 positive definite matrix and contains the 4th-order
spectral moments arranged in an appropriate order. Conditional on f (0) = u − w,
∂f (0) = y and �f (0) = −uI +z, f (t) is a continuous Gaussian random field with
conditional expectation

E(t) = (u − w,uμ20 + z�, y�)

(

−1 0

0 I

)⎛⎝ C(t)

μ2(t)

μ1(t)

⎞
⎠ ,(2)

where


 =
(

1 μ20
μ02 μ22

)
.(3)

Note that uμ20 + z is the vector version of −uI + z. Therefore, conditional on
(f (0), ∂f (0)�, ∂2f (0)�) = (u − w,y�, uμ20 + z�), we have representation

f (t) = E(t) + g(t),

where g(t) is a Gaussian random field with mean zero and

E(t) = E
(
f (t)|f (0) = u − w,∂f (0) = y, ∂2f (0) = uμ02 + z

)
,

whose form is given in (2). Since C(t) is six times differentiable, E(t) is at least
four times differentiable. Using the form of E(t) in (2) and 
 in (3), after some
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tedious calculations, we have

E(0) = u − w, ∂E(0) = y,

�E(0) = −uI + z, ∂3
ijkE(0) = y� ∂ijkμ1(0),(4)

∂4
ijklE(0) = (u − w,uμ20 + z�)
−1

(
∂ijklC(0)

∂ijklμ2(0)

)
.

In order to obtain the above identities, we need the following facts. The first, third
and fifth derivatives of C(t) evaluated at 0 are all zero. The first and second deriva-
tives of C(t) are contained in μ1(t) and μ2(t). We also need to use the fact that


−1 =

⎛
⎜⎜⎜⎜⎝

1

1 − μ20μ
−1
22 μ02

− μ20μ
−1
22

1 − μ20μ
−1
22 μ02

− μ−1
22 μ02

1 − μ20μ
−1
22 μ02

μ−1
22 + μ−1

22 μ02μ20μ
−1
22

1 − μ20μ
−1
22 μ02

⎞
⎟⎟⎟⎟⎠ .

With the derivatives of E(t), we can write

E(t) = u − w + y�t + 1
2 t�(−uI + z)t + g3(t) + g4(t) + R(t).(5)

If we let t = (t1, . . . , td), then

g3(t) = 1

6

∑
i,j,k

∂3
ijkE(0)ti tj tk, g4(t) = 1

24

∑
i,j,k,l

∂4
ijklE(0)ti tj tktl,(6)

and R(t) is the remainder term of the Taylor expansion. The Taylor expansion of
E(t) is the same as f (t) for the first two terms because g(t) is of order O(|t |3). It
is not hard to check that Var(g(t)) ≤ c|t |6 for some c > 0 and |t | small enough.

2.2. Some related existing results. For the comparison with the high excursion
of supT f (t), we cite one result for homogeneous random fields, which has been
proved in more general settings in many different ways. See, for instance, [5, 9,
34]. This result is also useful for the proof of Theorem 1. For comparison purpose,
we only present the result for the random fields discussed in this paper.

PROPOSITION 1. Suppose Gaussian random field f satisfies condition (C1)–
(C4). There exists a constant G such that

P
(
sup
t∈T

f (t) > u
)

= (
1 + o(1)

)
Gmes(T )udP

(
f (0) > u

)
as u → ∞.

We also present one existing result on the tail probability approximation of the
sum of correlated log-normal random variables which provides intuitions on the
analysis of

∫
T ef (t) dt .
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PROPOSITION 2. Let X = (X1, . . . ,Xn) be a multivariate Gaussian random
variable with mean μ and covariance matrix �, with det(�) > 0. Then,

P

(
n∑

i=1

eXi > b

)
= (

1 + o(1)
) n∑

i=1

P(eXi > b)(7)

as b → ∞.

The proof of this proposition can be found in [8, 28]. This result implies that the
large value of

∑n
i=1 eXi is largely caused by one of the Xi’s being large. In the case

that Xi’s are independent, Proposition 2 is a simple corollary of the subexponen-
tiality of log-normal distribution. Though the Xi’s are correlated, asymptotically
they are tail-independent. The result presented in the next section can be viewed
as a natural generalization of Proposition 2. Nevertheless, the techniques are quite
different from the following aspects. First, Proposition 2 requires � to be nonde-
generated. For the continuous random fields, this is usually not true. As shown in
the analysis, we indeed need to study the sum of random variables whose corre-
lation converges to 1 when b tends to infinity. Second, the approximation in (7)
is for a sum of a fixed number of random variables. The analysis of the continu-
ous field usually needs to handle the situation that the number of random variables
in a sum grows to infinity as b → ∞. Last but not least, to obtain approxima-
tions for P(

∫
T ef (t) dt > b), one usually needs to first obtain approximations for

P(
∫
�ε

ef (t) dt > b) for some small domain �ε ⊂ T . We will address all these is-
sues in later sections.

For notation convenience, we write au = O(bu) if there exists a constant c > 0
independent of everything such that au ≤ cbu for all u > 1, and au = o(bu) if
au/bu → 0 as u → ∞ and the convergence is uniform in other quantities. We write
au = �(bu) if au = O(bu) and bu = O(au). In addition, we write Xu = op(1) if

Xu
p→ 0 as u → ∞.

3. Main result. The main theorem of this paper is stated as follows.

THEOREM 1. Let f be a Gaussian random field living on T ⊂ Rd satisfying
(C1)–(C4). Given σ > 0, for b large enough, u is the unique solution to equation

(
2π

σ

)d/2
u−d/2eσu = b.(8)

Then,

P

(∫
T

eσf (t) dt > b

)
= (

1 + o(1)
)
H mes(T )ud−1 exp(−u2/2)
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as b → ∞, where mes(T ) is the Lebesgue measure of T ,

H = |
|−1/2 det(μ22)
1/2e((1/8)1�μ221+(1/8)

∑
i ∂4

iiiiC(0))/σ 2

(2π)(d+1)(d+2)/4
(9)

×
∫
Rd(d+1)/2

exp
{
−1

2

[
B�B + (μ20μ

−1/2
22 B + μ201/(2σ))2

1 − μ20μ
−1
22 μ02

]}
dB,


 is defined in (3), μ20, μ02, μ22 are defined in the previous section and

1 = (1, . . . ,1︸ ︷︷ ︸
d

,0, . . . ,0︸ ︷︷ ︸
d(d−1)/2

)�.

REMARK 1. The integral in (9) is clearly in an analytic form. We write it as
an integral because it arises naturally from the derivation.

COROLLARY 1. Let f be a Gaussian random field living on T ⊂ Rd satisfying
(C1)–(C4). Adopting all the notation in Theorem 1, let b̃ = b(2π/σ)−d/2 and

ũ = log b̃

σ
+ d

2σ
log
(

log b̃

σ

)
+
(

d

2

)2 log((log b̃)/σ )

σ log b̃
.(10)

Then,

P
(
Iσ (T ) > b

)= (
1 + o(1)

)
H mes(T )ũd−1 exp(−ũ2/2).

PROOF. The result is immediate by the Taylor expansion on the left-hand side
of equation (8) and note that u − ũ = o(u−1). �

As we see, the asymptotic tail decaying rates of supT f (t) and
∫
T eσf (t) dt take

a very similar form. More precisely,

P

(∫
T

eσf (t) dt > b

)
= �(1)P

(
sup
T

f (t) > u
)

with u and b connected via (8). This fact suggests the following intuition on the
tail probability of Iσ (T ). First, the event {Iσ (T ) > b} has substantial overlap with
event {supT f (t) > u}. It has been shown by many studies mentioned before that
given u sufficiently large {supT f (t) > u} is mostly caused by just a single f (t∗)
being large for some t∗ ∈ T . Put these two facts together, {Iσ (T ) > b} is mostly
caused by {f (t∗) > u}, for some t∗ ∈ T not too close to the boundary of T . There-
fore, conditional on {Iσ (T ) > b}, the distribution of f (t) is very similar to the
distribution conditional on {supT f (t) > u}. Of course, these two conditional dis-
tributions are not completely identical. The difference will be discussed momen-
tarily. Now we perform some informal calculation to illustrate the shape of f (t)
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given f (t∗) = u. Thanks to homogeneity, it is sufficient to study t∗ = 0. Given
f (0) = u,

E
(
f (t)|f (0) = u

)= uC(t).

Since C(t) is 6 times differentiable, ∂C(0) = 0 and �C(0) = −I , we obtain
E(f (t)|f (0) = u) ≈ u − u · t�t/2. For the exact Slepian model of the random
field given that f achieves a local maximum at t∗ of level u, see [6]. Note that for
b large, ∫

T
eσu−(1/2)σut�t dt > b

is approximately equivalent to

(2π/σ)d/2u−d/2eσu > b.

In Theorem 1, this is exactly how u is defined. As shown in Figure 1, the three
curves are exp{E(f (t)|f (t∗) = u)} for different t∗’s. Given that {supT f (t) > u},
these three curves are equally likely to occur.

Second, as mentioned before, the conditional distributions of f (t) are different
given {Iσ (T ) > b} or {supT f (t) > u}. This is why the two constants in Theorem 1
(H ) and Proposition 1 (G) are different. The difference is due to the fact that the
symmetric difference between {supT f (t) > u} and {∫T ef (t) dt > b} is substantial
though their overlap is significant too. Consider the following situation that con-
tributes to the difference. supT f (t) is slightly less than u [e.g., by a magnitude of
O(u−1)]. For this case, Iσ (T ) still has a large chance to be greater than b. For this

FIG. 1. One-dimensional example.
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sake we will need to consider the contribution of �f (0). As is shown in the tech-
nical proof, if t∗ = arg supf (t) = 0 and ∂f (0) = 0, then a sufficient and necessary
condition for Iσ (T ) > b is that

f (0) + 1

2σ
Tr
(
u−1�f (0) + I

)
> u + o(u−1),

where Tr denotes the trace of a squared matrix. Note that conditional on f (0) = u,
E(�f (0)|f (0) = u) = −uI . Therefore, �f (0) + uI is of size O(1). One well-
known result is that the trace of a symmetric matrix is the sum of its eigenvalues.
Let λi be the eigenvalues of u−1�f (0) + I = z/u. Then, the sufficient and nec-
essary condition is translated to f (0) + 1

2σ

∑d
i=1 λi > u. This also suggests that,

conditional on Iσ (T ) > b, w = f (0) − u is of size O(u−1). This forms the intu-
ition behind the proof of Theorem 2.

The proof of Theorem 1 consists of two steps presented in Sections 3.1 and 3.2,
respectively. Each of the two steps is summarized as one theorem.

3.1. Step 1. Construct a cover of T , {A1, . . . ,An}, such that T ⊂ ⋃n
i=1 Ai .

Each Ai is a closed square, mes(Ai ∩ Aj) = 0 for i �= j . Because T is Jordan
measurable, as supi mes(Ai) → 0, mes(

⋃n
i=1 Ai) − mes(T ) → 0. To simplify the

analysis, we make each Ai of identical shape and let Ai = {ti + s : s ∈ [0, ab]d}.
The size of the partition n and choice of ab depend on the threshold b. The first
step analysis involves computing the integral pi � P(

∫
Ai

eσf (t) dt > b). Because
f is homogeneous, it is sufficient to study p1.

The basic strategy to approximate p1 is as follows. Because f is at least
three times differentiable, the first and second derivatives are almost surely well
defined. Without loss of generality, we assume that 0 ∈ A1. Conditional on
(f (0), ∂f (0),�f (0)), f (t) = f (0) + ∂f (0)�t + 1

2 t��f (0)t + g3(t) + g4(t) +
R(t) + g(t), where g(t) is a Gaussian field with mean zero and variance of order
O(|t |6). Then,

p1 = P

(∫
A1

eσf (t) dt > b

)

=
∫

h(w,y, z)

(11)

× P

(∫
A1

eσ [u−w+y�t+(1/2)t�(−uI+z)t+g3(t)+g4(t)+R(t)+g(t)] dt

> b

)
dw dy dz,

where h(w,y, z) is the density function of (f (0), ∂f (0),�f (0)) evaluated at (u−
w,y,uμ20 + z), which is a multivariate Gaussian random vector. Let u be defined
in (8). There exists a δ > 0 (small enough) such that if we let Ai ’s be squares
of size ε = O(1)u−1/2+δ and, hence, n = O(1)mes(T )ud/2−dδ , the asymptotics
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of pi can be derived by repeatedly using Taylor’s expansion and evaluating the
integral on the right-hand side of (11). The main result of this step is presented
as follows. It establishes a similar result to that of Theorem 1 but within a much
smaller domain.

THEOREM 2. Let f be a Gaussian random field living in T satisfying con-
ditions (C1)–(C4). Let A1 = �ε = {t : |t |∞ < ε}, where |t |∞ = maxi |ti |. Let u

and H be defined in Theorem 1. Without loss of generality, assume �ε ⊂ T with
ε = κuδ−1/2 for some δ small enough and u large enough. Then, for any κ > 0

p1 = p(�ε) = P

(∫
�ε

eσf (t) dt > b

)
= (

1 + o(1)
)
H mes(�ε)u

d−1e−u2/2

as b → ∞.

The proof of this theorem is in Section 4. We will then choose each Ai to be of
the same shape as �ε . Then, all the pi’s are identical.

3.2. Step 2. The second step is to show that with the particular choice of Ai in
the first step, P(

∫
T eσf (t) dt > b) = (1 + o(1))

∑n
i=1 pi . We first present the main

result of the second step.

THEOREM 3. Let f be a Gaussian random field satisfying conditions (C1)–
(C4) and ε be chosen in Theorem 2. Let k ∈ Z

d and �ε,k = 2kε + �ε . Further, let
C− = {k :�ε,k ⊂ T } and C+ = {k :�ε,k ∩ T �= ∅}, then

P

(
Iσ

( ⋃
k∈C+

�ε,k

)
> b

)
= (

1 + o(1)
) ∑

k∈C+
P
(
Iσ (�ε,k) > b

)
and

P

(
Iσ

( ⋃
k∈C−

�ε,k

)
> b

)
= (

1 + o(1)
) ∑

k∈C−
P
(
Iσ (�ε,k) > b

)
.

We consider

Iσ

( ⋃
k∈C+

�ε,k

)
= ∑

k∈C+
Iσ (�ε,k)

as a sum of finitely many dependently and identically distributed random variables.
The conclusion of the above theorem implies that the tail distribution of the sum of
these dependent variables exhibits the so-called “one big jump” feature—the high
excursion of the sum is mainly caused by just one component being large. This
result is similar to that of the sum of correlated log-normal r.v.’s. Nevertheless,
the gap between the analyses of finite sum and integral is substantial because the
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correlation between fields in adjacent squares tends to 1. For finite sums, the cor-
relation is always bounded away from 1. The key step in the proof of Theorem 3 is
that the ε defined in Theorem 2, though tends to zero as b → ∞, is large enough
such that the one-big-jump principle still applies. We will connect the event of high
excursion of Iσ (

⋃
k∈C+ �ε,k) to the high excursion of sup⋃

k∈C+ �ε,k
f (t) and apply

existing results on the bound on the supremum of Gaussian random fields. A short
list of recent related literature on the “one-big-jump” principle and multivariate
Gaussian random variables is [8, 24, 28].

With the preparation of the two steps, we are ready to present the proof for
Theorem 1.

PROOF OF THEOREM 1. From Theorem 2,

∑
k∈C+

P
(
Iσ (�ε,k) > b

)= (
1 + o(1)

)
H mes

( ⋃
k∈C+

�ε,k

)
ud−1e−u2/2,

∑
k∈C−

P
(
Iσ (�ε,k) > b

)= (
1 + o(1)

)
H mes

( ⋃
k∈C−

�ε,k

)
ud−1e−u2/2.

Therefore, thanks to Theorem 3,

P
(
Iσ (T ) > b

)≥ P

(
Iσ

( ⋃
k∈C−

�ε,k

)
> b

)

≥ (1 + o(1)
)
H mes

( ⋃
k∈C−

�ε,k

)
ud−1e−u2/2;

similarly,

P
(
Iσ (T ) > b

)≤ P

(
Iσ

( ⋃
k∈C+

�ε,k

)
> b

)

≤ (1 + o(1)
)
H mes

( ⋃
k∈C+

�ε,k

)
ud−1e−u2/2.

Jordan measurability of T implies that

mes
( ⋃

k∈C+
�ε,k

)
− mes

( ⋃
k∈C−

�ε,k

)
→ 0+.

Therefore,

P
(
Iσ (T ) > b

)= (
1 + o(1)

)
H mes(T )ud−1e−u2/2. �
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4. Proof for Theorem 2. In this section we present the proof of Theorem 2.
We arrange all the lemmas and their proofs in the Appendix.

PROOF OF THEOREM 2. We evaluate the probability by conditioning on
(f (0), ∂f (0), ∂2f (0)),

p(�ε) = P

(∫
�ε

eσf (t) dt > b

)

=
∫

R
h(w,y, z)

× P

(∫
�ε

eσf (t) dt > b
∣∣∣f (0) = u − w,∂f (0) = y,(12)

∂2f (0) = uμ02 + z

)
dw dy dz

=
∫

R
h(w,y, z)P

(∫
�ε

eσE(t)+σg(t) dt > b

)
dw dy dz,

where R = R(d+1)(d+2)/2 and h(w,y, z) is the density function of (f (0), ∂f (0),
∂2f (0)) evaluated at (u − w,y,uμ02 + z). Now we take a closer look at the
integrand inside the above integral. Conditional on f (0) = u − w,∂f (0) =
y, ∂2f (0) = uμ02 + z,

Iσ (�ε) =
∫
|t |∞<ε

eσE(t)+σg(t) dt

=
∫
|t |∞<ε

exp
{
σ

[
u − w + y�t + 1

2
t�(−uI + z)t

+ g3(t) + g4(t) + R(t) + g(t)

]}
dt

= det(uI − z)−1/2

×
∫
|(uI−z)−1/2t |∞<ε

eσ {u−w+(1/2)y�(uI−z)−1y}

× exp
{
σ

[
−1

2

(
t − (uI − z)−1/2y

)�(
t − (uI − z)−1/2y

)
+ g3

(
(uI − z)−1/2t

)+ g4
(
(uI − z)−1/2t

)
+ R

(
(uI − z)−1/2t

)+ g
(
(uI − z)−1/2t

)]}
dt.

For the second equality, we plugged in (5). For the last step, we first change the
variable from t to (uI − z)1/2t and then write the exponent in a quadratic form
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of t . We write the term inside the exponent without the factor σ as

J (t) = −1
2

(
t − (uI − z)−1/2y

)�(
t − (uI − z)−1/2y

)+ g3
(
(uI − z)−1/2t

)
(13)

+ g4
(
(uI − z)−1/2t

)+ R
(
(uI − z)−1/2t

)
,

which is asymptotically a quadratic form. But, as is shown later, g3 and g4 terms
do play a role in the calculation. Also, it is useful to keep in mind that J (t) depends
on y and z. Hence, we can write

Iσ (�ε) =
∫
|t |∞<ε

eσf (t) dt

= det(uI − z)−1/2eσ {u−w+(1/2)y�(uI−z)−1y}

×
∫
|(uI−z)−1/2t |∞<ε

eσJ (t)+σg((uI−z)−1/2t) dt.

Let

eH0 =
∫
Rd

e−(σ/2)t�t dt = (2π/σ)d/2.(14)

Let u solve

u−d/2eσu+H0 = b.(15)

Then, ∫
�ε

eσf (t) dt > b,

if and only if

det(uI − z)−1/2eσ {u−w+(1/2)y�(uI−z)−1y}
∫
|(uI−z)−1/2t |∞<ε

eσJ (t)+σg((uI−z)−1/2t) dt

> u−d/2eσu+H0 .

We take the logarithm on both sides and rewrite the above inequality and have

0 <
σ

2
y�(uI − z)−1y − σw − 1

2
log det(I − u−1z)(16)

+ log
∫
|(uI−z)−1/2t |∞<ε

eσJ (t) dt − H0

+ logE exp
(
σg
(
(uI − z)−1/2S

))
= A(w,y, z) + logE exp

(
σg
(
(uI − z)−1/2S

))
,(17)
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where S is a random variable on the region that |(uI − z)−1/2S|∞ ≤ ε with density
proportional to eσJ (s) and

A(w,y, z) = σ

2
y�(uI − z)−1y − σw − 1

2
log det(I − u−1z)

(18)
+ log

∫
|(uI−z)−1/2t |<ε

eσJ (t) dt − H0.

Thanks to Lemma 1, we only need to consider the set that

L = {|f (0) − u| ≤ u2δ+ε0,
(19)

|∂f (0)| ≤ u1/2+δ+ε0, |∂2f (0) − uμ20| ≤ u1/2+ε0}.
Also, by abusing notation, we write

L = {|w| ≤ u2δ+ε0, |y| ≤ u1/2+δ+ε0, |z| ≤ u1/2+ε0}.(20)

Lemma 2 gives the form of h(w,y, z). We plug in the results in Lemmas 1 and 2,

p(�ε) =
∫

R
h(w,y, z)

× P
(
A(w,y, z) + logE exp

(
σg
(
(uI − z)−1/2S

))
> 0

)
dw dy dz

= o(1)u−αe−u2/2

+
∫

L
h(w,y, z)

× P
(
A(w,y, z) + logE exp

(
σg
(
(uI − z)−1/2S

))
> 0

)
dw dy dz

= o(1)u−αe−u2/2

+ 1

(2π)(d+1)(d+2)/4 |
|−1/2(21)

×
∫

L
P
(
A(w,y, z) + logE exp

(
σg
(
(uI − z)−1/2S

))
> 0

)
× exp

{
−
[

1

2
u2 + u

σ
A(w,y, z)

+ 1

2
y�(I − (I − z/u)−1)y

+ 1

2

(w + μ20μ
−1
22 z)2

1 − μ20μ
−1
22 μ02

+ 1

2
z�μ−1

22 z

+ u

2σ
log det(I − u−1z)

− u

σ
log
∫
|(uI−z)−1/2t |<ε

eσJ (t) dt + u

σ
H0

]}
dw dy dz.
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We define

I = 1

2
u2 + u

σ
A(w,y, z) + 1

2
y�(I − (I − z/u)−1)y

+ 1

2

(w + μ20μ
−1
22 z)2

1 − μ20μ
−1
22 μ02

+ 1

2
z�μ−1

22 z + u

2σ
log det(I − u−1z)(22)

− u

σ
log
∫
|(uI−z)−1/2t |<ε

eσJ (t) dt + u

σ
H0,

and proceed with some tedious algebra to write I in a friendly form for integration.
First notice that

(I − u−1z)−1 =
∞∑

k=0

u−nzn.

Plug this into the third term of I and obtain

I = 1

2
u2 + u

σ
A(w,y, z) − (

1 + O(|z|/u)
)u−1

2
y�zy

+ 1

2

(w + μ20μ
−1
22 z)2

1 − μ20μ
−1
22 μ02

+ 1

2
z�μ−1

22 z + u

2σ
log det(I − u−1z)

− u

σ
log
∫
|(uI−z)−1/2t |<ε

eσJ (t) dt + u

σ
H0.

Situation 1 of Lemma 5. Adopt the notation in Lemmas 4 and 5. Note that
according to the definition of Y in Lemma 4 that

Y = (y2
i , i = 1, . . . , d,2yiyj ,1 ≤ i < j ≤ d)�,

1 = (1, . . . ,1︸ ︷︷ ︸
d

,0, . . . ,0︸ ︷︷ ︸
d(d−1)/2

)�,

we obtain that

y�zy = Y�z.

We plug in results of Lemmas 4 and 5. First, considering the first situation in
Lemma 5, that is, L1 = L ∩ {|(uI − z)−1/2y|∞ ≤ κuδ − uδ/2}, we have

I = 1

2
u2 + u

σ
A(w,y, z) − (

1 + O(|z|/u)
)u−1

2
Y�z

+ 1

2

(w + μ20μ
−1
22 z)2

1 − μ20μ
−1
22 μ02

+ 1

2
z�μ−1

22 z + u

2σ
log det(I − u−1z)

+ 1

8
(u−1Y + 1/σ)�μ22(u

−1Y + 1/σ) − 1

8σ 2 1�μ221
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+ u

σ
H0 − u

σ
H
(
(uI − z)−1/2y, (uI − z)1/2, ε

)
− 1

8σ 2

∑
i

∂iiiiC(0) + o(1).

Also, it is useful to keep in mind that 1 is NOT a vector of 1’s. The next step is to
plug in the result of Lemma 3 and replace the log det(I − u−1z) term by

−u−1 Tr(z) + 1
2u−2E 2(z) + o(u−1)

= −u−11�z + 1
2u−2E 2(z) + o(u−1)

and obtain

I = 1

2
u2 + u

σ
A(w,y, z) − (1 + O(|z|/u)

)u−1

2
Y�z

+ 1

2

(w + μ20μ
−1
22 z)2

1 − μ20μ
−1
22 μ02

+ 1

2
z�μ−1

22 z − 1

2σ
1�z + 1

4σu
E 2(z)

+ 1

8
(u−1Y + 1/σ)�μ22(u

−1Y + 1/σ) − 1

8σ 2 1�μ221

+ u

σ
H0 − u

σ
H
(
(uI − z)−1/2y, (uI − z)1/2, ε

)
− 1

8σ 2

∑
i

∂iiiiC(0) + o(1).

Then, we group the terms −(1 + O(|z|/u))u−1

2 Y�z and − 1
2σ

1�z and leave the
O(|z|/u) to the end and have

I = 1

2
u2 + u

σ
A(w,y, z) + 1

2

(w + μ20μ
−1
22 z)2

1 − μ20μ
−1
22 μ02

+ 1

2
z�μ−1

22 z − 1

2
(u−1Y + 1/σ)�z

+ 1

8
(u−1Y + 1/σ)�μ22(u

−1Y + 1/σ)

+ u

σ
H0 − u

σ
H
(
(uI − z)−1/2y, (uI − z)1/2, ε

)
− 1

8σ 2 1�μ221 − 1

8σ 2

∑
i

∂iiiiC(0) + o(1)

+ O(u−2|z|2|y|2) + O(u−1E 2(z)).
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Note that second and third lines in the above display is in fact in a quadratic form.
We then have

I = 1

2
u2 + u

σ
A(w,y, z) + 1

2

(w + μ20μ
−1
22 z)2

1 − μ20μ
−1
22 μ02

+ 1

2

[
μ

−1/2
22 z − 1

2
μ

1/2
22 (u−1Y + 1/σ)

]�

×
[
μ

−1/2
22 z − 1

2
μ

1/2
22 (u−1Y + 1/σ)

]

+ u

σ
H0 − u

σ
H
(
(uI − z)−1/2y, (uI − z)1/2, ε

)
− 1

8σ 2 1�μ221 − 1

8σ 2

∑
i

∂iiiiC(0) + o(1)

+ O(u−2|z|2|y|2) + O(u−1E 2(z)).

Now, consider another change of variable,

A = A(w,y, z),
(23)

B = μ
−1/2
22 z − 1

2μ
1/2
22 (u−1Y + 1/σ), y = y.

Then, by noting that μ20 is a row vector in which the first d entries are −1’s and
the rest are 0’s, we have

w + μ20μ
−1
22 z = −A

σ
+ μ20μ

−1/2
22 B + 1

2σ
μ201 + o(1).

Therefore, we have

I = 1

2
u2 + u

σ
A + 1

2
B�B

+ 1

2

(−A/σ + μ20μ
−1/2
22 B + (1/(2σ))μ201 + o(1))2

1 − μ20μ
−1
22 μ02

+ u

σ
H0 − u

σ
H
(
(uI − z)−1/2y, (uI − z)1/2, ε

)
− 1

8σ 2 1�μ221 − 1

8σ 2

∑
i

∂iiiiC(0)

+ o(1) + O(u−2|z|2|y|2)
+ O(u−1E 2(z)).
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We write Xu = op(1) if Xu → 0 in probability as u → ∞. We insert the above
form back to the integral in (21) and apply Lemma 7,

p(�ε) = o(1)u−αe−u2/2

+ 1

(2π)(d+1)(d+2)/4 |
|−1/2

×
∫

L
P
(
u · A > op(1)

)
× exp

{
−
[

1

2
u2 + u

σ
A + 1

2
B�B

+ 1

2

(−A/σ + μ20μ
−1/2
22 B + 1/(2σ)μ201 + o(1))2

1 − μ20μ
−1
22 μ02

+ u

σ
H0 − u

σ
H
(
(uI − z)−1/2y, (uI − z)1/2, ε

)
− 1

8σ 2 1�μ221 − 1

8σ 2

∑
i

∂iiiiC(0) + o(1)

+ O(u−2|z|2|y|2) + O(u−1E 2(z))
]}

dw dy dz.

Note that Jacobian determinant is∣∣∣∣det
(

∂(w, z, y)

∂(A,B,y)

)∣∣∣∣= σ−1 det(μ22)
1/2.

Note that when |(uI − z)−1/2y| ≤ κuδ − uδ/2 (the first situation in Lemma 5),

uH0 − uH
(
(uI − z)−1/2y, (uI − z)1/2, ε

)= o(1).

Then, with another change of variable, A′ = uA, the integration on L1 is∫
L1

h(w,y, z)P

(∫
�ε

eσE(t)+σg(t) dt > b

)
dw dy dz

= |
|−1/2

(2π)(d+1)(d+2)/4

×
∫

L1

P
(
u · A > op(1)

)

× exp
{
−
[

1

2
u2 + u

σ
A + 1

2
B�B

+ 1

2

(−A/σ + μ20μ
−1/2
22 B + 1/(2σ)μ201 + o(1))2

1 − μ20μ
−1
22 μ02

(24)
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+ u

σ
H0 − u

σ
H
(
(uI − z)−1/2y, (uI − z)1/2, ε

)
− 1

8σ 2 1�μ221 − 1

8σ 2

∑
i

∂iiiiC(0) + o(1)

+ o(u−2|z|2|y|2) + O(u−1E 2(z))
]}

dw dy dz

= σ−1|
|−1/2

(2π)(d+1)(d+2)/4 det(μ22)
1/2

× e−(1/2)u2+(1/(8σ 2))1�μ221+(1/(8σ 2))
∑

i ∂iiiiC(0)

×
∫

L1

P
(
u · A > op(1)

)

× exp
{
−
[
u

σ
· A + B�B

2

+ (−A/σ + μ20μ
−1/2
22 B + 1/(2σ)μ201 + o(1))2

2(1 − μ20μ
−1
22 μ02)

+ o(1) + O
(
u−2|z|2|y|2 + u−1E 2(z)

)]}
dAdB dy

= σ−1|
|−1/2

(2π)(d+1)(d+2)/4 det(μ22)
1/2u−1

× e−(1/2)u2+(1/(8σ 2))1�μ221+(1/(8σ 2))
∑

i ∂iiiiC(0)

×
∫

L1

P
(
A′ > op(1)

)

× exp
{
−
[
A′

σ
+ B�B

2

+ (−A′/(σu) + μ20μ
−1/2
22 B + 1/(2σ)μ201 + o(1))2

2(1 − μ20μ
−1
22 μ02)

+ o(1) + O
(
u−2|z|2|y|2 + u−1E 2(z)

)]}
dA′ dB dy.

The second equality is a change of variable from (w,y, z) to (A,B,y). The third
equality is a change of variable from (A,B,y) to (A′,B, y). Note that P(A′ >

op(1)) → I (A′ > 0) as u → ∞. In addition, on the set L,

O
(
u−2|z|2|y|2 + u−1E 2(z)

)= O(u−1+2δ+2ε0 |z|2).
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By choosing δ and ε0 small enough, when |B| < u1/4, u−1+2δ+2ε0 |z|2 = o(1);
|B| > u1/4, |B| = �(|z|), therefore,

B�B

2
+ O(u−1+2δ+2ε0 |z|2) = (

1 + o(1)
)B�B

2
.

The integrant in (24) has the following bound, for A′ > 0

P
(
A′ > op(1)

)
× exp

{
−
[
A′

σ
+ B�B

2

+ (−A′/(σu) + μ20μ
−1/2
22 B + (1/(2σ))μ201 + o(1))2

2(1 − μ20μ
−1
22 μ02)

+ o(1) + O
(
u−2|z|2|y|2 + u−1E 2(z)

)]}

≤ 2 exp
{
− 1

δ′
[
A′

σ
+ B�B

2
+ (−A′/(σu) + μ20μ

−1/2
22 B + (1/(2σ))μ201)2

2(1 − μ20μ
−1
22 μ02)

]}

for δ′ small enough. Note that the op(1) is in fact −u logE exp(g((uI −z)−1/2S)).
Thanks to the result of Lemma 7, the integral of the left-hand side of the above dis-
play in the region A′ < 0 is o(1). By dominated convergence theorem, (24) equals

(
1 + o(1)

) σ−1|
|−1/2

(2π)(d+1)(d+2)/4

× det(μ22)
1/2u−1e−(1/2)u2+(1/(8σ 2))1�μ221+(1/(8σ 2))

∑
i ∂iiiiC(0)

×
∫
A′>0,|y|∞<κuδ+1/2−uδ/2+1/2

exp
{
−
[
A′/σ + B�B

2
(25)

+ (μ20μ
−1/2
22 B + (1/(2σ))μ201)2

2(1 − μ20μ
−1
22 μ02)

]}
dA′ dB dy

= (
1 + o(1)

)
H mes(u�ε)u

−1e−(1/2)u2
,

where H is defined in (9). The above display is obtained by the fact that
mes(u�ε) = ud mes(�ε) = κdud/2+dδ .

Situations 2 and 3 of Lemma 5. For the second situation in Lemma 5, let L2 =
L ∩ {κuδ − uδ/2 < |(uI − z)−1/2y|∞ ≤ (1 + ε1)κuδ} and there exists c1 > 0 such
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that∫
L2

P
(
u · A > op(1)

)

× exp
{
−
[

1

2
u2 + u

σ
A + 1

2
B�B

+ 1

2

(−A/σ + μ20μ
−1/2
22 B + (1/(2σ))μ201 + o(1))2

1 − μ20μ
−1
22 μ02

+ u

σ
H0 − u

σ
H
(
(uI − z)−1/2y, (uI − z)1/2, ε

)
(26)

− 1

8σ 2 1�μ221 − 1

8σ 2

∑
i

∂iiiiC(0) + o(1)

+ o(u−2|z|2|y|2) + O(u−1E 2(z))
]}

dw dy dz

≤ (c1ε
d
1 + o(1)

)
H mes(u�ε)u

−1e−(1/2)u2
.

For the third situation, L3 = L ∩ {(1 + ε1)κuδ < |(uI − z)−1/2y| ≤ uδ+ε0},
∫

L3

P
(
u · A > op(1)

)

× exp
{
−
[

1

2
u2 + u

σ
A + 1

2
B�B

+ 1

2

(−A/σ + μ20μ
−1/2
22 B + (1/(2σ))μ201 + o(1))2

1 − μ20μ
−1
22 μ02

+ u

σ
H0 − u

σ
H
(
(uI − z)−1/2y, (uI − z)1/2, ε

)
(27)

− 1

8σ 2 1�μ221 − 1

8σ 2

∑
i

∂iiiiC(0) + o(1)

+ o(u−2|z|2|y|2) + O(u−1E 2(z))
]}

dw dy dz

≤ O(1)

(
1

2

)u/σ

u−1u(1/2+δ+ε0)de−(1/2)u2

= o(1)mes(u�ε)u
−1e−(1/2)u2

.

We put (25), (26) and (27) together and conclude the proof. �



TAIL APPROXIMATIONS OF INTEGRALS OF GAUSSIAN RANDOM FIELDS 1091

5. Proof for Theorem 3. Similar to Section 4, we arrange all the lemmas and
their proofs in the Appendix.

PROOF OF THEOREM 3. Since the proofs for C+ and C− are complete ana-
logue, we only provide the proof for C+. We prove for the asymptotics by provid-
ing bounds from both sides. We first discuss the easy case: the lower bound. Note
that

P

(
Iσ

( ⋃
k∈C+

�ε,k

)
> b

)

≥ P
(

max
k∈C+ Iσ (�ε,k) > b

)
≥ ∑

k∈C+
P
(
Iσ (�ε,k) > b

)− ∑
k�=k′

P
(
Iσ (�ε,k) > b, Iσ (�ε,k′) > b

)
.

Thanks to Lemma 8,

P

(
Iσ

( ⋃
k∈C+

�ε,k

)
> b

)
≥ (1 + o(1)

) ∑
k∈C+

P
(
Iσ (�ε,k) > b

)
.

The rest of the proof is to establish the asymptotic upper bound. To simplify our
writing, we let

A = Iσ (�ε), B = Iσ

(
sup
k∈N

�ε,k

)
, D = Iσ

( ⋃
k′∈C+\[{0}∪N ]

�ε,k′
)
,(28)

where N is the set of neighbors of �ε , that is, k ∈ N if and only if

inf
s∈�ε,t∈�ε,k

|s − t | = 0.

An illustration of A, B and D is given in Figure 2.

FIG. 2. Illustration of A, B and D.
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Further, let

b0 = u−1−d/2b, b − b0 = (1 − u−1−d/2)b = e−(1+o(1))u−1−d/2
b,(29)

and u0 solves

u
−d/2
0 eσu0+H0 = b0,

and there exists c0 > 0 such that u0 > u − c0 logu. The first step in developing the
upper bound is to use the following inequality

P(A + B + D > b)

≤ P(A > b − b0) + P(A ≤ b0, A + B + D > b)

+ P(b0 < A ≤ b − b0, A + B + D > b)(30)

≤ P(A > b − b0) + P(B + D > b − b0)

+ P(A > b0, B + D > b0, A + B + D > b).

From Theorem 2,

P(A > b − b0) = (
1 + o(1)

)
P(A > b).

The next step is to show that the last term in (30) is ignorable. Note that

P(A > b0, B + D > b0, A + B + D > b)

= P(A + B > b − b0, A > b0, B + D > b0, A + B + D > b)

+ P(D > b − b0, A > b0, B + D > b0, A + B + D > b)

+ P(A + B > b0, D > b0, A > b0, B + D > b0, A + B + D > b)

≤ P(A + B > b − b0, A > b0, B + D > b0, A + B + D > b)

+ 2P(D > b0, A > b0)

= o
(
P(A > b)

)
.

The last step is due to Lemmas 9 and 10. By noting that #(C+)u−1−d/2 = o(u−1),
the conclusion of the theorem is immediate by induction, where #(·) is the cardi-
nality of a set. �

APPENDIX: LEMMAS IN SECTIONS 4 AND 5

Lemma 1 isolated the dominating event so that we will be in good shape to use
Taylor’s expansion.
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LEMMA 1. There exist ε0, δ > 0 small enough and κ large. Let ε = κu−1/2+δ

such that for any α > 0,

P

(
|f (0) − u| > u2δ+ε0 or |∂f (0)| > u1/2+δ+ε0 or

|∂2f (0) − uμ20| > u1/2+ε0,

∫
�εe

f (t) dt > b

)

= o(1)u−αe−(1/2)u2
.

PROOF. Note that there exists c1 such that σu ≤ logb + c1 log logb. Let
σ ũ = log(b). Since we only consider the case that u is large, we always have
mes(�ε) < 1:

P

(
f (0) < u − u2δ+ε0,

∫
�ε

ef (t) dt > b

)

≤ P
(
f (0) < u − u2δ+ε0, supf (t) > ũ

)
≤ CP

(
f (0) < u − u2δ+ε0 | supf (t) > ũ

)
ũd−1e−ũ2/2.

The last inequality is an application of Proposition 1. Because for any u′ > ũ, for
some ε1 > 0,

inf
t∈�ε

E
(
f (t)

∣∣ sup
�ε

f (t) = u′)

≥ u′ inf
t∈�ε

C(t) ≥ u − κ2ε1u
2δ(1 + o(1)

)
and

sup
t∈(−ε,ε)

Var
(
f (t)

∣∣ sup
�ε

f (t) = u′)= O(ε2) = O(u−1+2δ),

one can choose κ large enough such that

P
(
f (0) < u − u2δ+ε0

∣∣ sup
�ε

f (t) > ũ
)

= O(1) exp(−u1+ε0/c2).

Therefore,

P

(
f (0) < u − u2δ+ε0,

∫
�ε

ef (t) dt > b

)
= o(1)u−αe−u2/2

for all α > 0. Also, P(f (0) > u + u2δ+ε0) = o(1)u−αe−(1/2)u2
. Hence,

P

(
|f (0) − u| > u2δ+ε0,

∫
�ε

ef (t) dt > b

)
= o(1)u−αe−(1/2)u2

.
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Similarly, we have

P

(
|f (0) − u| < u2δ+ε0, |∂f (0)| > u1/2+δ+ε0,

∫
�ε

ef (t) dt > b

)

= o(1)u−αe−(1/2)u2
,

P

(
|f (0) − u| < u2δ+ε0, |∂2f (0) − uμ20| > u1/2+ε0,

∫
�ε

ef (t) dt > b

)

= o(1)u−αe−(1/2)u2
.

The above two displays are immediate by noting that (f (0), ∂f (0), ∂2f (0)) is a
multivariate Gaussian random vector. In addition, (f (0), ∂2f (0)) is independent
of ∂f (0) and the covariance between f (0) and ∂2f (0) is μ02. �

LEMMA 2. Let h(w,y, z) be the density of (f (0), ∂f (0), ∂2f (0)). Then,

h(w,y, z)

= 1

(2π)(d+1)(d+2)/4 |
|−1/2

× exp
{
−
[

1

2
u2 + u

σ
A(w,y, z) + 1

2
y�(I − (I − z/u)−1)y

+ 1

2

(w + μ20μ
−1
22 z)2

1 − μ20μ
−1
22 μ02

+ 1

2
z�μ−1

22 z + u

2σ
log det(I − u−1z)

− u

σ
log
∫
|(uI−z)−1/2t |<ε

eσJ (t) dt + uH0/σ

]}
.

In addition,


−1 =

⎛
⎜⎜⎜⎜⎝

1

1 − μ20μ
−1
22 μ02

− μ20μ
−1
22

1 − μ20μ
−1
22 μ02

− μ−1
22 μ02

1 − μ20μ
−1
22 μ02

μ−1
22 + μ−1

22 μ02μ20μ
−1
22

1 − μ20μ
−1
22 μ02

⎞
⎟⎟⎟⎟⎠ .(31)

PROOF. The form of 
−1 in (31) is a result from linear algebra. The form of

−1 is direct application of the block matrix inverse from linear algebra. Note that

h(w,y, z) = 1

(2π)(d+1)(d+2)/4 |
|−1/2

× exp

⎧⎨
⎩−1

2
(u − w,z� + uμ20, y

�)

(

−1 0

0 I

)⎛⎝ u − w

z + uμ02
y

⎞
⎠
⎫⎬
⎭ .
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By plugging in the form of 
−1, we have

(u − w,z� + uμ20, y
�)

(

−1 0

0 I

)⎛⎝ u − w

z + uμ02
y

⎞
⎠

= y�y + (u − w)2

1 − μ20μ
−1
22 μ02

+ (z + uμ02)
�
[
μ−1

22 + μ−1
22 μ02μ20μ

−1
22

1 − μ20μ
−1
22 μ02

]
(z + uμ02)

− 2(u − w)
μ20μ

−1
22

1 − μ20μ
−1
22 μ02

(z + uμ02)

= u2 + y�y − 2wu + w2

1 − μ20μ
−1
22 μ02

+ z�
[
μ−1

22 + μ−1
22 μ02μ20μ

−1
22

1 − μ20μ
−1
22 μ02

]
z + 2w

μ20μ
−1
22

1 − μ20μ
−1
22 μ02

z

= u2 + 2u

σ
A(w,y, z) + y�(I − (uI − z)−1)y + (w + μ20μ

−1
22 z)2

1 − μ20μ
−1
22 μ02

+ z�μ−1
22 z + u

σ
log det(I − u−1z)

− 2u

σ
log
∫
|(uI−z)−1/2t |<ε

eJ (t) dt + 2u

σ
H0.

Therefore, we conclude the proof. �

LEMMA 3.

log
(
det(I − u−1z)

)= −u−1 Tr(z) + 1
2u−2E 2(z) + o(u−2),

where Tr is the trace of a matrix, E 2(z) =∑d
i=1 λ2

i , and λi ’s are the eigenvalues
of z.

PROOF. The result is immediate by noting that

det(I − u−1z) =
d∏

i=1

(1 − λi/u)

and Tr(z) =∑d
i=1 λi . �



1096 J. LIU

LEMMA 4. Let y = (y1, . . . , yd)� and X ∼ N(y/
√

u, I/
√

σ). Then, on the
set L defined in (20),

E
(
g3
(
X/

√
u
)+ g4

(
X/

√
u
))

= −u−1

8
(u−1Y + 1/σ)�μ22(u

−1Y + 1/σ)

+ u−1

8σ 2 1�μ221 + u−1

8σ 2

∑
i

∂iiiiC(0) + o(u−1),

where

Y = (y2
i , i = 1, . . . , d,2yiyj ,1 ≤ i < j ≤ d)�,

1 = (1, . . . ,1︸ ︷︷ ︸
d

,0, . . . ,0︸ ︷︷ ︸
d(d−1)/2

)�.

PROOF. Using the derivatives in (4), we have that

∂ijkE(0) = −
d∑

l=1

∂4
ijklC(0)yl,

∂4
ijkE(0) = (

u + O(|z| + |w|))∂ijklC(0).

We plug this into the definition of g3 and g4 in (6) and obtain, on the set L,

E
(
g3
(
X/

√
u
)+ g4

(
X/

√
u
))

= −1

6
u−3/2

∑
ijkl

∂4
ijklC(0)E(XiXjXkyl)

+ u−1

24

∑
ijkl

∂4
ijklC(0)E(XiXjXkXl) + o(u−1)

= −1

8
u−3/2

∑
ijkl

∂4
ijklC(0)E(XiXjXkyl)

+ u−1

24

∑
ijkl

∂4
ijklC(0)E

(
XiXjXk

(
Xl − yl/

√
u
))+ o(u−1)

= −1

8
u−3

∑
ijkl

∂4
ijklC(0)yiyjykyl − 3

8σ
u−2

∑
il

yiyl

∑
j

∂4
iljjC(0)

+ u−2

8σ

∑
ij

yiyj

∑
l

∂4
ij llC(0) + 3u−1

24σ 2

∑
i

∂4
iiiiC(0) + o(u−1)
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= −1

8
u−3

∑
ijkl

∂4
ijklC(0)yiyjykyl − 1

4σ
u−2

∑
ij

yiyj

∑
l

∂4
ij llC(0)

+ u−1

8σ 2

∑
i

∂4
iiiiC(0) + o(u−1).

This last step is true because
∑

il yiyl

∑
j ∂4

iljjC(0) =∑
ij yiyj

∑
l ∂

4
ij llC(0), which

is just a change of index. Then, with the definition of Y and 1 in the statement of
this lemma (note that 1 is NOT a vector of 1’s), we have

E
(
g3
(
X/

√
u
)+ g4

(
X/

√
u
))

= −u−3

8
Y�μ22Y − u−2

4σ
Y�μ221 + u−1

8σ 2

∑
i

∂4
iiiiC(0) + o(1)

= −u−1

8
(u−1Y + 1/σ)�μ22(u

−1Y + 1/σ) + u−1

8σ 2 1�μ221

+ u−1

8σ 2

∑
i

∂4
iiiiC(0) + o(1).

�

LEMMA 5. Let J (t) be defined in (13). Then, on the set L the approximations
of
∫
|(uI−z)−1/2t |∞<ε eσJ (t) dt under different situations are as follows:

(1) When |(uI − z)−1/2y|∞ ≤ κuδ − uδ/2,∫
|(uI−z)−1/2t |∞<ε

eσJ (t) dt

= exp
[
σE

(
g3
(
X/

√
u
)+ g4

(
X/

√
u
))

+ H
(
(uI − z)−1/2y, (uI − z)1/2, ε

)+ o(u−1)
]
,

where

eH(y,�,ε) =
∫
|�−1t |<ε

e−(σ/2)(t−y)�(t−y) dt,

and X is the random vector defined in Lemma 4. In addition,

H
(
0, (uI − z)1/2, ε

)− H0 = o(u−1).

(2) For any ε1 > 0, when κuδ − uδ/2 ≤ |(uI − z)−1/2y|∞ ≤ (1 + ε1)κuδ ,∫
|(uI−z)−1/2t |<ε

eσJ (t) dt

≤ exp
[
σE

(
g3
(
X/

√
u
)+ g4

(
X/

√
u
))

+ H
(
(uI − z)−1/2y, (uI − z)1/2, ε

)+ o(u−1)
]
.
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(3) When (1 + ε1)κuδ < |(uI − z)−1/2y|∞ ≤ uδ+ε0∫
|(uI−z)−1/2t |<ε

eσJ (t) dt

≤ 1

2
exp

[
σE

(
g3
(
X/

√
u
)+ g4

(
X/

√
u
))+ H0 + o(u−1)

]
.

PROOF. Note that∫
|(uI−z)−1/2t |<ε

eσJ (t) dt

= eH((uI−z)−1/2y,(uI−z)−1/2,ε)

× E
{
exp

[
σg3

(
(uI − z)−1/2X′)

+ σg4
(
(uI − z)−1/2X′)+ σR

(
(uI − z)−1/2X′)];

|(uI − z)−1/2X′| < ε
}
.

Also, (uI − z)−1/2X′ = (1 + O(z/u))X′/
√

n and

X′ = X − y/
√

u + (uI − z)−1/2y = X + O(u−3/2)|zy|.
For the first situation, |(uI − z)−1/2y|∞ ≤ κuδ − uδ/2 and |z| < u1/2+ε0 ,

E
{
exp

[
σg3

(
(uI − z)−1/2X′)+ σg4

(
(uI − z)−1/2X′)+ σR

(
(uI − z)−1/2X′)];

|(uI − z)−1/2X′| < ε
}

= E
{
exp

[
σg3

(
X′/

√
u
)+ σg4

(
X′/

√
u
)+ σR

(
X′/

√
u
)+ o(u−1)

];
|(uI − z)−1/2X′| < ε

}
= E

{
exp

[
σg3

(
X′/

√
u
)+ σg4

(
X′/

√
u
)+ σR

(
X′/

√
u
)+ o(u−1)

]}
= E

{
exp

[
σg3

(
X/

√
u
)+ σg4

(
X/

√
u
)+ σR

(
X/

√
u
)+ o(u−1)

]}
.

In addition, because |R(t)| = O(u1/2+δt5), then

E
{
exp

[
σg3

(
X/

√
u
)+ σg4

(
X/

√
u
)+ σR

(
X/

√
u
)]}

= E
{
exp

[
σg3

(
X/

√
u
)+ σg4

(
X/

√
u
)+ o(u−1)

]}
.

Further, g3(X/
√

u) = o(u−1/2+δ) and g4(X/
√

u) = o(u−1/2+δ), then by repeat-
edly using Talyor’s expansion, we have

E
{
exp

[
σg3

(
X′/

√
u
)+ σg4

(
X′/

√
u
)+ σR

(
X′/

√
u
)]; |(uI − z)−1/2X′| < ε

}
= exp

{
E
[
σg3

(
X/

√
u
)+ σg4

(
X/

√
u
)+ o(u−1)

]}
.

For the second situation, the inequality is immediate by noting that

E
{
exp

[
σg3

(
X′/

√
u
)+ σg4

(
X′/

√
u
)+ σR

(
X′/

√
u
)]; |(uI − z)−1/2X′| < ε

}
≤ E

{
exp

[
σg3

(
X′/

√
u
)+ σg4

(
X′/

√
u
)+ σR

(
X′/

√
u
)]}

.
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For the third situation, note that the integral is not focusing on the dominating part,
and the conclusion follows immediately. �

The next lemma is known as the Borel-TIS lemma, which was proved indepen-
dently by [16, 20].

LEMMA 6 (Borel-TIS). Let f (t), t ∈ U , U is a parameter set, be a mean zero
Gaussian random field. f is almost surely bounded on U . Then,

E
(
sup

U
f (t)

)
< ∞

and

P
(
max
t∈U

f (t) − E
[
max
t∈U

f (t)
]
≥ b

)
≤ e−b2/(2σ 2

U ),

where

σ 2
U = max

t∈U
Var[f (t)].

LEMMA 7. Let logE exp(g((uI − z)−1/2S)) be defined in (17), then there
exists a λ > 0 such that for all x > 0

P
(
u−3/2−3δ

∣∣logE exp
(
σg
(
(uI − z)−1/2S

))∣∣> x
)≤ e−λx2

for u sufficiently large.

PROOF. Note that g(t) is a mean zero Gaussian random field with Var(g(t)) =
O(|t |6) and |S| ≤ κuδ . A direct application of the Borel-TIS lemma yields the
result of this lemma. �

LEMMA 8. For each k �= k′,

P
(
Iσ (�ε,k) > b, Iσ (�ε,k′) > b

)= O(1)ud−1e−u2/2−�(u).

PROOF. Without loss of generality, we consider �ε,k′ = �ε . If �ε and �ε,k′
are connected to each other,

P
(
Iσ (�ε,k) > b, Iσ (�ε) > b

) ≤ P
(
Iσ (�ε ∪ �ε,k) > 2b

)
= O(1)m(�ε)u

d−1e−(1/2)(u+log 2+o(1))2

= O(1)ud−1e−(1/2)u2−(log 2+o(1))u.



1100 J. LIU

The second step is an application of Theorem 2. If �ε and �ε,k′ are not connected,
that is, infs∈�ε,t∈�ε,k′ |s − t | ≥ ε = κu−1/2+δ , then

P
(
Iσ (�ε,k) > b, Iσ (�ε) > b

)
≤ P

(
sup
t∈�ε

f (t) > u − c logu, sup
t∈�ε,k

f (t) > u − c logu
)

≤ P
(

sup
t∈�ε,s∈�ε,k

f (t) + f (s) > 2u − 2c logu
)

≤ O(1)P

(
Z >

2u − 2c logu + O(1)√
4 − �(1)u−1+2δ

)

= O(1)ud−1e−(1/2)u2−�(1)u1+2δ

,

where Z is a standard Gaussian random variable. The last inequality is an applica-
tion of the Borel-TIS lemma in Lemma 6. �

LEMMA 9. Let A and D be defined in (28) and b0 be defined in (29). Then,

P(D > b0, A > b0) = o
(
P(A > b)

)
.

PROOF. Similar to the second case in the proof of Lemma 8, we have

P(D > b0,A > b0)

≤ P
(
sup
�ε

f (t) > u − c1 logu, sup⋃
k∈C+\{0,k} �ε,k

f (t) > u − c1 logu
)

≤ P
(

sup
s∈�ε,t∈⋃k∈C+\{0,k} �ε,k

f (s) + f (t) > 2u − 2c1 logu
)

≤ uαe−(2u−2c1 logu)2/(2(4−2κ2u−1+2δ)) ≤ e−u2/2−�(1)u1+2δ

.

The conclusion follows immediately. �

LEMMA 10. Let A, B and D be defined in (28) and b0 be defined in (29).
Then,

P(A + B > b − b0, A > b0, B + D > b0) = o(1)P (A > b).

PROOF. Note that there exists c′ > 0 such that

P(A + B > b − b0, A > b0, B + D > b0)

≤ P
(

A + B > b − b0, sup
�ε

f (t) > u − c′ logu,

sup⋃
k∈C+\{0} �ε,k

f (t) > u − c′ logu
)
.

It suffices to show that the right-hand side of the above inequality is o(1)P (A >

b) and also o(1)P (A + B > b). In order to do so, we will borrow part of the
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derivations in the proof of Theorem 2. Let u∗ solve

(2π/σ)d/2u−d/2∗ eσu∗ = b − b0.

Note that because b0 = u−1−d/2b, we have |u − u∗| = o(u−1) and e−u2/2 = (1 +
o(1))e−u2∗/2. By the results in (25), (26) and (27), we have

P
(

A + B > b − b0, sup
�ε

f (t) > u − c′ logu, sup⋃
k∈C+\{0} �ε,k

f (t) > u − c′ logu
)

= o(1)P (A + B > b − b0)

+ (
1 + o(1)

)
σ−1 det(
)−1/2 det(μ22)

1/2u−1

× e−(1/2)u2+(1/(8σ 2))1�μ221+(1/(8σ 2))
∑

i ∂iiiiC(0)

×
∫
{|y|∞≤3κu1/2+δ}

P
(
A′ > op(1), sup

�ε

E(t) + g(t) > u∗ − c′ logu∗,

sup⋃
k∈C+\{0} �ε,k

E(t) + g(t) > u∗ − c′ logu∗
)

× exp
{
−
[
A′

σ
+ B�B

2

+ (−A′/(σu) + μ20μ
−1/2
22 B + (1/(2σ))μ201)2

2(1 − μ20μ
−1
22 μ02)

]}
dA′ dB dy.

Note that the only change in the above display from (25) is the probability inside
the integral. In what follows, we show that it is almost always o(1). Note that
Var(g(t)) = O(|t |6). Therefore, for any f (0) < u + uε0 with ε0 < δ/2, if

sup
�ε

E(t) < u − c′ logu − �(u−1) or

(32)
sup

�3ε\�ε

E(t) < u − c′ logu − �(u−1),

then

P
(
sup
�ε

E(t)+ g(t) > u− c′ logu, sup⋃
k∈C+\{0} �ε,k

E(t)+ g(t) > u− c′ logu
)

= o(1).

This fact implies that g(t) can be basically ignored. Therefore, it is useful to keep
in mind that “E(t) ≈ f (t).”

Since

P
(
sup
T

f (t) > u + u−1+ε0
)

= o(1)P (A + B > b − b0),

we only need to consider the case that supT E(t) ≤ u + u−1+ε0 . Given the form

E(t) = u∗ − w + y�t + 1
2 t�(−u∗I + z)t + g3(t) + g4(t) + R(t),
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which is asymptotically quadratic in �3ε , let t∗ = arg sup�3ε
E(t). On the set that

supT E(t) ≤ u + u−1+ε0 , we have

sup
|t−t∗|>2u−1/2+ε0/2

E(t) < u − c′ logu − �(u−1).

Let ∂�ε be the border of �ε . Then

sup
�ε

E(t) > u − c′ logu − �(u−1) and

(33)
sup

�3ε\�ε

E(t) > u − c′ logu − �(u−1),

only when inft∈∂�ε |t − t∗| < u
−1/2+ε0∗ . This implies that

inf
t∈∂�ε

|t − (u∗I − z)−1y| < u−1/2+ε0∗ .

Therefore, t∗ = arg supf (t) must be very closed to the boundary of �ε so as to
have (33) hold.

Therefore, for all ε0 < δ

P
(

A + B > b − b0, sup
�ε

f (t) > u − c′ logu,

sup⋃
k∈C+\{0} �ε,k

E(t) + g(t) > u − c′ logu
)

= o(1)P (A + B > b − b0)

+ (
1 + o(1)

)
σ−1 det(
)−1/2 det(μ22)

1/2u−1

× e−(1/2)u2+(1/(8σ 2))1�μ221+(1/(8σ 2))
∑

i ∂iiiiC(0)

×
∫

inft∈∂�ε |t−(u∗I−z)−1y|<u
−1/2+ε0∗

P
(
A′ > op(1),

sup
�ε

E(t) + g(t) > u − c′ logu,

sup⋃
k∈C+\{0} �ε,k

E(t) + g(t) > u − c′ logu
)

× exp
{
−
[
A′

σ
+ B�B

2

+ (−A′/(σu) + μ20μ
−1/2
22 B + (1/(2σ))μ201)2

2(1 − μ20μ
−1
22 μ02)

]}
dA′ dB dy

= o(1)P (A + B > b − b0).
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The last equation is because

mes
({

y : inf
t∈∂�ε

|t − (u∗I − z)−1y| < u−1/2+ε0∗
})

= o
(
mes

({y : |(uI − z)−1/2y|∞ ≤ κuδ − uδ/2})).
Hereby, we conclude the proof. �
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