
The Annals of Probability
2012, Vol. 40, No. 1, 1–18
DOI: 10.1214/10-AOP613
© Institute of Mathematical Statistics, 2012

DIMENSION RESULT AND KPZ FORMULA FOR
TWO-DIMENSIONAL MULTIPLICATIVE CASCADE PROCESSES

BY XIONG JIN

CNRS & Université Paris XIII

We prove a Hausdorff dimension result for the image of two-dimensional
multiplicative cascade processes, and we obtain from this result a KPZ-type
formula which normally has one point of phase transition.

1. Introduction. The famous Knizhnik–Polyakov–Zamolodchikov formula
in quantum gravity relates the conformal dimension �0 of any field operator of
a two-dimensional conformal field theory to the analogous dimension � of the
same operator when the theory is coupled to a two-dimensional quantum gravity,

�0 = � + γ 2

4
�(� − 1) for γ =

√
25 − c

6
−

√
1 − c

6
,(1)

where c is the central charge of the conformal field theory. This formula was first
derived by Knizhnik, Polyakov and Zamolodchikov [12] in 1988 via Liouville
quantum gravity in a light cone gauge, building on a earlier work of Polyakov [18]
in 1987. Shortly after, David [6] provided an alternative heuristic derivation of
the KPZ formula by using Liouville field theory in the so-called conformal gauge.
The KPZ formula has a great influence on string theory and conformal field theory,
and it plays a core role in studying the connections of two-dimensional quantum
gravity to random planar maps, two-dimensional lattice models, random matrix
theory and Schramm–Loewner evolution.

In a recent inspiring paper [8] Duplantier and Sheffield provide (in a mathe-
matically rigorous way) a geometrical KPZ formula under a similar framework as
used in [6]. They relate the Euclidean scaling exponent x of a fractal subset of the
domain D (with respect to the Lebesgue measure) to the quantum scaling expo-
nent � of the same set (with respect to the Liouville quantum gravity measure,
that is, roughly speaking, the measure eγh dz with h being the Gaussian free field
on D). By using large deviation estimates they prove that x and � satisfy the same
formula as (1) (replacing �0 by x) for γ ∈ [0,2).

Inspired by Duplantier and Sheffield’s work, Benjamini and Schramm [5] prove
a Hausdorff dimension version of the geometrical KPZ formula for random met-
rics built from Mandelbrot measures constructed in [11]. Adapting Benjamini
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and Schramm’s proof, Rhodes and Vargas [19] prove a similar result for one-
dimensional log-infinite divisible multifractal measures constructed in [1] and two-
dimensional Gaussian multiplicative chaos constructed in [9, 20] (like the Liou-
ville quantum gravity measure constructed in [8]). It is also worth mentioning that
following [8] there is the paper of David and Bauer [7] that gives a physicist’s
derivation of the geometrical KPZ formula via heat kernel methods.

A common feature of the random measures mentioned above (Liouville quan-
tum gravity measure, Mandelbrot measure, log-infinite divisible multifractal mea-
sure, etc.) is that they are all obtained through a limiting procedure, and along
the procedure the random densities that are used to construct these measures can
always be locally written as a product of independent weights. These random mea-
sures nowadays are mentioned as multiplicative chaos. The first work on this sub-
ject could be traced back to Kolmogorov [13] in 1941 regarding the local structure
of turbulence in probabiliy interpretation. The study was developed by Yaglom
[23] in 1966 (introducing the cascade structure) and Mandelbrot [16, 17] in the
early 70s (refining the cascade structure and pointing out the necessity of using
limiting procedures). Then in 1976 Kahane and Peyrière [11] completed the work
in [17] regarding Mandelbrot measures, and introduced several fundamental ideas
for the study of multiplicative chaos. Later in 1985 Kahane [9] defined rigorously
the Gaussian multiplicative chaos suggested by Mandelbrot in [16]; in particular
his theory gives a rigorous definition of the measure eγh dz where h is the Gaus-
sian free field. For more details on this subject one can see, for example, the survey
paper [4].

Of special interest to this paper, we would like to present here more precisely
Benjamini and Schramm’s result on the geometrical KPZ formula for Mandel-
brot measures: let W be a positive random variable of expectation 1/2, and let
{W(w) :w ∈ ⋃

n≥1{0,1}n} be a sequence of independent copies of W encoded by
the dyadic words. The Mandelbrot measure μ on [0,1] generated by W is defined
as the weak limit of(

dμn(x) = 2n · W(x|1)W(x|2) · · ·W(x|n) dx
)
n≥1,

where for i = 1,2, . . . , and x ∈ [0,1], x|i stands for the first i letters of the dyadic
expansion of x. From [11, 10] one knows that if E(W logW) < 0, then μ is almost
surely nondegenerate and without atom, so it induces a random metric ρμ on [0,1]
given by ρμ(x, y) = μ([x, y]) for 0 ≤ x < y ≤ 1 (such a metric was previously
considered in [2]). Denote by dimH the Hausdorff dimension with respect to the
Euclidean metric and by dim

ρμ

H the Hausdorff dimension with respect to ρμ, it is
shown in [5] that if E(W−s) < ∞ for all s ∈ [0,1), then for any Borel set K ⊂
[0,1] with dimH K = ξ0, almost surely dim

ρμ

H K is equal to a constant ξ ∈ [0,1]
satisfying

2−ξ0 = E(Wξ ).(2)
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In the special case when W = 2−1 · 2−γ 2/4eγH/2, where H = N (0,2 ln 2) is a
normal random variable and γ ∈ [0,2) [notice that E(W logW) < 0 is equivalent
to γ < 2], they obtain a geometrical KPZ formula for ρμ,

ξ0 = ξ + γ 2

4
· ξ(1 − ξ).(3)

To recover (1) one may let �0 = 1 − ξ0 and � = 1 − ξ . Notice that if we consider
the indefinite integral of μ, that is the function Fμ(x) = μ([0, x]) for x ∈ [0,1],
then by definition one directly gets

dim
ρμ

H K = dimH Fμ(K).

So Benjamini and Schramm’s result can be also understood as a Hausdorff dimen-
sion result for the image of the increasing process Fμ.

The main goal of this paper is to extend Benjamini and Schramm’s result to
signed multiplicative cascade processes, a class of random multifractal functions
recently constructed in [3] as a natural generalization of Fμ. These processes are
no longer increasing functions, and their graphs normally have Hausdorff dimen-
sion greater than 1, so one would naturally expect a formula that relates sets with
dimension smaller than 1 to sets with dimension larger than 1. This remark led us
to directly consider the case of two signed multiplicative cascades simultaneously.
Before stating in more detail the result we need to recall the definition of two-
dimensional multiplicative cascade processes. Let us begin with some notations
on the coding space.

Coding space. Let b ≥ 2 be an integer, and let A = {0, . . . , b − 1} be the
alphabet. Let A ∗ = ⋃

n≥0 A n (by convention A 0 = {∅} the set of empty word)
and A N+ = {0, . . . , b − 1}N+ .

The word obtained by concatenation of u ∈ A ∗ and v ∈ A ∗ ∪ A N+ is denoted
by u · v and sometimes uv. If n ≥ 1 and u = u1 · · ·un ∈ A n, then for every 1 ≤
i ≤ n, the word u1 · · ·ui is denoted by u|i , and if i = 0 then u|0 stands for ∅. Also,
for any infinite word v = v1v2 · · · ∈ A N+ and n ≥ 1, v|n denotes the word v1 · · ·vn

and v|0 the empty word.
The length of a word w is denoted by |w| = n if w ∈ A n and |w| = ∞ if w ∈

A N+ . Let π :w ∈ A ∗ ∪ A N+ 	→ ∑|w|
i=1 wi · b−i be the canonical projection from

A ∗ ∪ A N+ onto the interval [0,1]. For w ∈ A ∗ denote by Iw = [π(w),π(w) +
b−|w|) the b-adic interval encoded by w.

For x ∈ [0,1) and n ≥ 1, let x|n = x1 · · ·xn be the unique element of A n such
that x ∈ Ix1···xn , as well as 1|n = b − 1 · · ·b − 1.

Two-dimensional multiplicative cascade processes. Let (�, A,P) be the prob-
ability space, and let W = (W1,W2) be a random vector satisfying:

(A0) E(W1) = E(W2) = b−1;
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(A1) ∃q ∈ (1,2] such that E(|W1|q) ∨ E(|W2|q) < b−1;
(A2) ∃s > 2 such that E(|W1|−s) ∨ E(|W2|−s) < ∞.

Let {W(w) :w ∈ A ∗} be a sequence of independent copies of W .
For k ∈ {1,2}, x ∈ [0,1] and n ≥ 1 define the product

Qk(x|n) = Qk(Ix|n) = Wk(x|1) · Wk(x|2) · · ·Wk(x|n).
For k ∈ {1,2} and n ≥ 1 define the random piecewise linear function

Fk,n : t ∈ [0,1] 	→
∫ t

0
bn · Qk(x|n) dx.

From [3] one has almost surely Fk,n converges uniformly to a limit Fk . The two-
dimensional multiplicative cascade process considered in this paper is defined as

F : t ∈ [0,1] 	→ (F1(t),F2(t)) ∈ R
2.

Notice that if P(W1 = W2) = 1, then almost surely F1 = F2, thus F degenerates to
a one-dimensional multiplicative cascade process.

Main result. Given ξ0 ∈ [0,1], denote by ξ the smallest solution of the equa-
tion

b−ξ0 = E(|W1|ξ ) ∨ E(|W2|ξ )(4)

and ζ the smallest solution of the equation

b−ξ0 = E(|W1|ζ−1 · |W2|) ∨ E(|W1| · |W2|ζ−1).(5)

Also denote by

ξ∗ = − logb

(
E(|W1|) ∨ E(|W2|)).

From assumptions (A0) and (A1) one can easily deduce that ξ∗ ∈ (1/2,1].

THEOREM 1. Let K ⊂ [0,1] be any Borel set with dimH K = ξ0.

(i) If P(W1 = W2) < 1, then almost surely

dimH F(K) = ξ ∧ ζ =
{

ξ, if ξ0 ∈ [0, ξ∗];
ζ, if ξ0 ∈ (ξ∗,1].

(ii) If P(W1 = W2) = 1, then almost surely

dimH F(K) = ξ ∧ 1 =
{

ξ, if ξ0 ∈ [0, ξ∗];
1, if ξ0 ∈ (ξ∗,1].

Let us give two examples to help understand the result.
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EXAMPLE 1. Let X1 and X2 be two random variables both taking values b−α

and −b−α with respective probabilities (1 + bα−1)/2 and (1 − bα−1)/2 for some
α ≤ 1. Suppose that P(X1 = X2) < 1. Let γ ≥ 0 and let H = N (0,2 lnb) be a
normal random variable independent of X1 and X2. Define

W1 = X1 · b−γ 2/4eγH/2 and W2 = X2 · b−γ 2/4eγH/2.

By simple calculation one has for {k, l} = {1,2},
E(|Wk|ξ ) = E(|Wl|ξ ) = E(|Wk|ξ−1 · |Wl|) = b−ξα · b−ξ(1−ξ)γ 2/4.

Then assumption (A1) [(A0) and (A2) are automatically satisfied] is equivalent to
requiring

γ < 2 and
{

γ − γ 2/4 < α ≤ 1, if γ ≥ 1;
γ 2/4 + 1/2 < α ≤ 1, if γ < 1.

(6)

In such a case, Theorem 1 says that for any Borel set K ⊂ [0,1] with dimH K = ξ0,
almost surely dimH F(K) is equal to a constant ξ ∈ [0,2) satisfying

ξ0 = α · ξ + γ 2

4
· ξ(1 − ξ).

Comparing to (3), this formula has a new parameter α varying in the region given
by (6), and when α < 1, the maximal dimension dimH F([0,1]) is equal to

γ 2 + 4α −
√

(γ 2 + 4α)2 − 16γ 2

2γ 2 ∈ (1,2)

if γ > 0 and is equal to 1/α ∈ (1,2) if γ = 0.

EXAMPLE 2. Now let

W1 = X1 · b−γ 2/4eγH/2 and W2 = b−1 · b−γ 2/4eγH/2,

so W2 is almost surely positive. For ξ ≥ 0 one has

E(|W1|ξ ) ∨ E(|W2|ξ ) = b−ξα · b−ξ(1−ξ)γ 2/4,

and for ζ ≥ 1 one has

E(|W1|ζ−1|W2|) ∨ E(|W2|ζ−1|W1|) = b−(ζ−1+α) · b−ζ(1−ζ )γ 2/4

as well as ξ∗ = α. We need the same condition as in (6). In this case, since F2 is
almost surely increasing, one can deduce a random metric ρF from F on [0,1]
given by ρF (x, y) = |F(x)−F(y)| for x, y ∈ [0,1]. Then Theorem 1 says that for
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any Borel set K ⊂ [0,1] with dimH K = ξ0, almost surely dimρF

H K is equal to a
constant ξ ∈ [0,2) satisfying⎧⎪⎪⎨⎪⎪⎩

ξ0 = α · ξ + γ 2

4
· ξ(1 − ξ), if ξ0 ∈ [0, α];

ξ0 = ξ − 1 + α + γ 2

4
· ξ(1 − ξ), if ξ0 ∈ (α,1].

If α = 1, then we go back to (3). If α < 1, then this KPZ-type formula has a phase
transition at α, and the maximal dimension dimρF

H [0,1] is equal to

γ 2 + 4 −
√

(γ 2 + 4)2 − 16γ 2(2 − α)

2γ 2 ∈ (1,2)

if γ > 0 and is equal to 2 − α ∈ (1,3/2) if γ = 0.

REMARK 1. The reason why we consider the two-dimensional case can be
easily seen from Theorem 1 and Examples 1, 2. If we only consider the one-
dimensional case, as already shown in Theorem 1(ii), the formula will also have a
phase transition at ξ∗, but such a phase transition is indeed caused by the limitation
of the image space.

REMARK 2. Examples 1 and 2 are special cases of Theorem 1. In general, the
theorem could provide us with more colorful formulas. In principle, the formula
can have as many points of phase transition as we want.

REMARK 3. Finding the Hausdorff dimension of the image of a stochastic
process restricted to any Borel set is a classical problem in probability theory. The
first work on this subject could be traced back to Lévy [14] and Taylor [21] in
1953, regarding the Hausdorff dimension and Hausdorff measure of the image of
Brownian motion. Since then much progress has been made for fractional Brown-
ian motion, stable Lévy process and many other processes. We refer to the survey
paper [22] and the references therein for more information on this subject.

The proof of Theorem 1 will be given in the next section. We end this section
with some preliminaries.

Hausdorff dimension. If (X,ρ) is a locally compact metric space, for d ≥ 0,
δ > 0 and K ⊂ X let

Hρ,d
δ (K) = inf

{∑
i∈I

|Ui |dρ
}
,

where the infimum is taken over the set of all the at most countable coverings
{Ui}i∈I of K such that 0 ≤ |Ui |ρ ≤ δ, where |Ui |ρ stands for the diameter of Ui
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with respect to ρ. Define

Hρ,d(K) = lim
δ↘0

Hρ,d
δ (K).

Then Hρ,d(K) is called the d-dimensional Hausdorff measure of K with respect
to ρ, and the Hausdorff dimension of K with respect to ρ is the number

dimρ
H K = inf{d : Hρ,d(K) < ∞}.

When ρ is the standard Euclidean metric, we often omit the index ρ.

Stationary self-similarity of multiplicative cascade processes. For k ∈ {1,2},
w ∈ A ∗ and n ≥ 1 define

F
[w]
k,n : t ∈ [0,1] 	→

∫ t

0
bn · Wk(w · x|1) · · ·Wk(w · x|n) dx.

Since A ∗ is countable, we have almost surely for all w ∈ A ∗, F
[w]
k,n converges

uniformly to a limit F
[w]
k and F

[w]
k has the same law as Fk .

By construction for any w ∈ A ∗ and t ∈ [0,1] one has

Fk

(
π(w) + t · b−|w|) − Fk(π(w)) = Qk(w) · F [w]

k (t).(7)

For w ∈ A ∗ define

Zk(w) = F
[w]
k (1)

and

Xk(w) = sup
s,t∈[0,1]

∣∣F [w]
k (s) − F

[w]
k (t)

∣∣.
Then from (7) one has

Fk

(
π(w) + b−|w|) − Fk(π(w)) = Qk(w) · Zk(w)

and

Ok(w) = Ok(Iw) := sup
s,t∈Iw

|Fk(s) − Fk(t)| = |Qk(w)| · Xk(w),

where Qk(w) is independent of Zk(w) and Xk(w).
We will use the convention that Zk = Zk(∅) and Xk = Xk(∅).
By direct calculation, for any q1, q2 ∈ R and w ∈ A∗ one has

E(O1(w)q1O2(w)q2) = E(|W1|q1 |W2|q2)|w| · E(X
q1
1 X

q2
2 ),

whenever the expectation exists.

Moments control. It is proved in [3] that for k ∈ {1,2}:
(i) If E(|Wk|q) < b−1 for some q > 1, then E(X

q
k ) < ∞;

(8)
(ii) If E(|Wk|−s) < ∞ for some s > 0, then E(X−s

k ) < ∞.
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2. Proof of Theorem 1.

2.1. Upper bound estimate. For p ≥ 0 let

φ(p) = E(|W1|p) ∨ E(|W2|p)

and

φ̃(p) = E(|W1|p−1 · |W2|) ∨ E(|W1| · |W2|p−1).

We have the following lemma:

LEMMA 1. One has φ(p) ≤ φ̃(p) if p ∈ [0,1] and φ(p) ≥ φ̃(p) if p ≥ 1.

PROOF. Obviously φ(1) = φ̃(1).
Since |W1||W2| + |W2||W1| ≥ 2, we get φ̃(0) ≥ 1 = φ(0).
Let {k, l} = {1,2}. For p > 1 from Hölder’s inequality one gets

E(|Wk|p−1|Wl|) ≤ E
(|Wk|(p−1)·p/(p−1))(p−1)/p · E(|Wl|p)1/p

= E(|Wk|p)(p−1)/p · E(|Wl|p)1/p

≤ φ(p).

This implies φ̃(p) ≤ φ(p). For p ∈ (0,1) from Hölder’s inequality one gets

E(|Wk|p) = E
(|Wk|p · |Wl|−p(1−p) · |Wl|p(1−p))

≤ E
((|Wk|p · |Wl|−p(1−p))1/p)p · E

((|Wl|p(1−p))1/(1−p))1−p

= E(|Wk| · |Wl|p−1)p · E(|Wl|p)1−p

≤ φ̃(p)p · E(|Wl|p)1−p.

In an analogous way one can also obtain

E(|Wl|p) ≤ φ̃(p)p · E(|Wk|p)1−p.

Then

E(|Wk|p) ≤ φ̃(p)p · φ̃(p)p(1−p) · E(|Wk|p)(1−p)(1−p),

which implies E(|Wk|p) ≤ φ̃(p), thus φ(p) ≤ φ̃(p). �

Given ξ0 ∈ [0,1] recall the definition of ξ and ζ in (4) and (5).
Notice that under assumptions (A0) and (A1), Lemma 1 ensures that, by the

convexity of φ and φ̃, φ and φ̃ are non increasing on φ̃−1([0,1]). This implies that
ξ ≤ ζ ≤ 1 if ξ0 ∈ [0, ξ∗] and ξ ≥ ζ > 1 if ξ0 ∈ (ξ∗,1], as well as φ′(ξ+) ≤ 0 and
φ̃′(ζ+) ≤ 0. Thus given any ε > 0 small enough, one can find an η > 0 such that

φ(ξ + η) ≤ b−(ξ0+ε) and φ̃(ζ + η) ≤ b−(ξ0+ε).
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From the moments control (8) it is easy to deduce that

E(X
ξ+η
1 ) ∨ E(X

ξ+η
2 ) < ∞

as well as for {k, l} = {1,2} and ζ > 1,

E(X
ζ+η−1
k Xl) ≤ E(X

ζ+η
k )(ζ+η−1)/(ζ+η) · E(X

ζ+η
l )1/(ζ+η) < ∞.

From the definition of Hausdorff dimension, for each n ≥ 1 one can find a se-
quence In of b-adic intervals such that

K ⊂ ⋃
I∈In

I and
∑
I∈In

|I |ξ0+ε ≤ 2−n.

Let δn = supI∈In
|F(I)|. Since F is almost surely continuous, δn → 0 almost

surely. For any interval I ∈ In denote by

O∗(I ) = O1(I ) ∧ O2(I ) and O∗(I ) = O1(I ) ∨ O2(I ).

Then we can obtain the desired upper bounds from the following two facts:

(i) If ξ0 ∈ [0, ξ∗]: for each I ⊂ In one can use a single square of side length
2O∗(I ) to cover F(I), thus

E(Hξ+η
δn

(F (K))) ≤ 2ξ+η
E

( ∑
I∈In

O1(I )ξ+η ∨ O2(I )ξ+η

)

≤ 2ξ+η
∑
I∈In

E
(
O1(I )ξ+η + O2(I )ξ+η)

≤ C · ∑
I∈In

|I |ξ0+ε

≤ C · 2−n,

where C = 2ξ+η+1
E(X

ξ+η
1 ) ∨ E(X

ξ+η
2 ).

(ii) If ξ0 ∈ (ξ∗,1]: for each I ⊂ In one can use no more than �O∗(I )/O∗(I )�-
many squares of side length 2O∗(I ) to cover F(I), thus

E(Hζ+η
δn

(F (K)))

≤ 2ζ+η
E

( ∑
I∈In

(
O2(I )

O1(I )
· O1(I )ζ+η

)
∨

(
O1(I )

O2(I )
· O2(I )ζ+η

))

≤ 2ζ+η
∑
I∈In

E
(
O2(I )O1(I )ζ+η−1 + O1(I )O2(I )ζ+η−1)

≤ C′ · ∑
I∈In

|I |ξ0+ε

≤ C′ · 2−n,

where C′ = 2ζ+η+1
E(X

ζ+η−1
1 X2) ∨ E(X

ζ+η−1
2 X1).
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2.2. Lower bound estimate. We will use a similar method as in [5] to estimate
the lower bound. First we consider the case P(W1 = W2) < 1.

There is nothing to prove when dimH K = 0, since F(K) is always nonempty.
Let dimH K = ξ0 > 0. Given any δ ∈ (0, ξ0), due to Frostman’s lemma there exists
a Borel probability measure μ0 carried by K such that∫ ∫

s,t∈[0,1]
dμ0(s) dμ0(t)

|s − t |ξ0−δ
< ∞.

Let {k, l} = {1,2} and let d ∈ (0,2) be the unique number such that{
E(|Wk|d) = b−(ξ0−δ), if ξ0 ∈ (0, ξ∗];
E(|Wk| · |Wl|d−1) = b−(ξ0−δ), if ξ0 ∈ (ξ∗,1].

We may assume that δ is small enough such that d > 1 if ξ0 ∈ (ξ∗,1], and d ∈ (0,1)

if ξ0 ∈ (0, ξ∗].
For w ∈ A ∗ let

W̃ (w) =
{

bξ0−δ · |Wk(w)|d, if ξ0 ∈ (0, ξ∗];
bξ0−δ · |Wk(w)| · |Wl(w)|d−1, if ξ0 ∈ (ξ∗,1]

and

Q(w) = W̃ (w|1)W̃ (w|2) · · · W̃ (w).

For n ≥ 1 define the random measure μn by

dμn(x) = Q(x|n) dμ0(x).

By construction, (μn)n≥1 is a measure-valued martingale thus yields a weak
limit μ, and μ([0,1] \ K) = 0 almost surely.

For s, t ∈ [0,1] define

Kd
n(s, t) = |Fk(s) − Fk(t)|d ∨ Ok(s|n)d(9)

if d ∈ (0,1] and

Kd
n(s, t) = (|Fk(s) − Fk(t)|2 + |Fl(s) − Fl(t)|2)d/2

(10)
∨ (

Ok(s|n)2 + Ol(s|n)2)d/2

if d > 1. Due to the continuity of F , one has almost surely Kd
n converges uniformly

to

Kd(s, t) =
{ |Fk(s) − Fk(t)|d, if d ∈ (0,1];(|Fk(s) − Fk(t)|2 + |Fl(s) − Fl(t)|2)d/2

, if d > 1.

We have the following proposition:
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PROPOSITION 1. There exists a constant C such that for any 0 ≤ s < t ≤ 1
and n ≥ 1,

E

(
dμn(s) dμn(t)

Kd
n(s, t)

)
≤ C · dμ0(s) dμ0(t)

|s − t |ξ0−δ
.

By using Fubini’s theorem, Proposition 1 yields that for any n ≥ 1,

E

(∫ ∫
s,t∈[0,1]

dμn(s) dμn(t)

Kd
n(s, t)

)
≤ 2C

∫ ∫
s,t∈[0,1]

dμ0(s) dμ0(t)

|s − t |ξ0−δ
< ∞.(11)

For any s, t ∈ [0,1] one has

Kd
n(s, t) ≤ sup

s,t∈[0,1]
|Fk(s) − Fk(t)|d = Xd

k ,

so (11) implies

sup
n≥1

E
(
X−d

k · μn([0,1])2)
< ∞.(12)

Notice that for d ∈ (0,1) we have

E
(
μn([0,1])2/(1+d)) = E

(
X

d/(1+d)
k · X−d/(1+d)

k · μn([0,1])2/(1+d))
≤ E(Xk)

d/(1+d) · E
(
X−d

k · μn([0,1])2)1/(1+d)
,

and for d ∈ (1,2) we have for any ε > 0,

E
(
μn([0,1])1+ε) = E

(
X

d(1+ε)/2
k · X−d(1+ε)/2

k · μn([0,1])1+ε)
≤ E

(
X

d(1+ε)/(1−ε)
k

)(1−ε)/2 · E
(
X−d

k · μn([0,1])2)(1+ε)/2
.

Thus by using the corresponding martingale convergence theorem we get from
(12) that E(μ([0,1])) = 1. Then by using the same tail event argument as in [5]
we can get P(μ([0,1]) > 0) = 1.

Due to the fact that almost surely μn converges weakly to μ and Kd
n converges

uniformly to Kd , we get from (11) that

E

(∫ ∫
s,t∈[0,1]

dμ(s) dμ(t)

Kd(s, t)

)
≤ lim inf

n→∞ E

(∫ ∫
s,t∈[0,1]

dμn(s) dμn(t)

Kd
n(s, t)

)
< ∞.

Since almost surely μ is carried by K and μ(K) > 0, by using the mass distribution
principle we get the desired lower bound.

For the case P(W1 = W2) = 1, it is the same proof as above when ξ0 ∈ (0, ξ∗].
When ξ0 ∈ (ξ∗,1], we may take d ∈ (0,1) such that E(|Wk|d) = b−(ξ∗−δ) and for
w ∈ A∗ let

W̃ (w) = bξ∗−δ · |Wk(w)|d .

Then the same procedure as the case ξ0 ∈ (0, ξ∗] will yield a lower bound d , which
can be arbitrarily close to 1, thus the conclusion.
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2.3. Proof of Proposition 1. Recall that Zk = Fk(1). We will frequently use
the following lemma, whose proof will be given in the Section 2.4.

LEMMA 2.
(i) For any d ∈ (0,1) there exists a constant Cd such that for any constants

A,B ∈ R with A �= 0, one has

E(|AZk + B|−d) ≤ Cd · |A|−d .

(ii) If P(W1 = W2) < 1, then for any d ∈ (1,2) there exists a constant Cd such
that for any constants A1,A2,B1,B2 ∈ R with A1A2 �= 0, one has

E
(
(|A1Zk + B1|2 + |A2Zl + B2|2)−d/2) ≤ Cd · |A1|−1 · |A2|−d+1.

For n ≥ 1 and w ∈ A n \ {b − 1 · · ·b − 1} denote by w+ the unique word in A n

such that π(w+) = π(w) + b−n.
Since s < t , there exists a unique j ≥ 0 such that s|+j = t |j and s|+j+1 �= t |j+1.

This implies π(s|+j+1) + b−j−1 ≤ t and

b−(j+1) ≤ |s − t | ≤ 2b−j ≤ b−(j−1).

Notice that one has either sj+1 ∈ {0, . . . , b − 2} or sj+1 = b − 1. Without loss
of generality we may assume sj+1 ∈ {0, . . . , b − 2} thus s|+j+1 = s|j · r for r =
sj+1 + 1 ∈ {1, . . . , b − 1}.

Recall the definition of Kd
n in (9) and (10). We have the following two situations.

2.3.1. When d < 1.
(i) If j ≥ n, then

dμn(s) dμn(t)

Kd
n(s, t)

≤ Ok(s|n)−d · Q(s|n) · Q(t |n) dμ0(s) dμ0(t)

= bn(ξ0−δ) · Xk(s|n)−d · |Q(t |n)|dμ0(s) dμ0(t).

Since Xk(s|n) and Q(t |n) are independent, we get

E

(
dμn(s) dμn(t)

Kd
n(s, t)

)
≤ bn(ξ0−δ) · E(X−d

k ) dμ0(s) dμ0(t)

≤ bξ0−δ · E(X−d
k ) · b(j−1)(ξ0−δ) dμ0(s) dμ0(t)

≤ bξ0−δ · E(X−d
k ) · dμ0(s) dμ0(t)

|s − t |ξ0−δ
.

(ii) If j ≤ n − 1, then

Kd
n(s, t)−1 ≤ |Fk(s) − Fk(t)|−d

= ∣∣Qk(s|+j+1) · Zk(s|+j+1) + �k

∣∣−d
,
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where �k = Fk(t) − Fk(π(s|+j+1) + b−j−1) + Fk(s|+j+1) − Fk(s). Notice that

Zk(s|+j+1) is independent of Q(s|n), Q(t |n), Qk(s|+j+1) and �k . Let

A(s|+j+1) = σ
(
W(w) : |w| ≤ j + 1 or w|j+1 �= s|+j+1

)
.(13)

From Lemma 2(i) we get

E

(
dμn(s) dμn(t)

Kd
n(s, t)

∣∣∣ A(s|+j+1)

)
≤ Cd · ∣∣Qk(s|j · r)∣∣−d · Q(s|n) · Q(t |n) dμ0(s) dμ0(t)

= Cd · ∣∣Wk(s|j · r)∣∣−d · b(j+1)(ξ0−δ) ·
n∏

i=j+1

W̃ (s|i) · Q(t |n) dμ0(s) dμ0(t).

Since all the random variables in the above products are independent, we get

E

(
dμn(s) dμn(t)

Kd
n(s, t)

)
≤ Cd · E(|Wk|−d) · b(j+1)(ξ0−δ) dμ0(s) dμ0(t)

≤ Cd · b2(ξ0−δ) · E(|Wk|−d) · dμ0(s) dμ0(t)

|s − t |ξ0−δ
.

2.3.2. When d > 1.
(i) If j ≥ n, then

dμn(s) dμn(t)

Kd
n(s, t)

≤ Q(s|n) · Q(t |n) dμ0(s) dμ0(t)

(Ok(s|n)2 + Ol(s|n)2)d/2

≤ Q(s|n) · Q(t |n) dμ0(s) dμ0(t)

((Qk(s|n) · Zk(s|n))2 + (Ql(s|n) · Zl(s|n))2)d/2 .

Let An = σ(W(w) : |w| ≤ n). From Lemma 2(ii) we get

E

(
dμn(s) dμn(t)

Kd
n(s, t)

∣∣∣ An

)
≤ Cd · (|Qk(s|n)| · |Ql(s|n)|d−1)−1 · Q(s|n) · Q(t |n) dμ0(s) dμ0(t)

= Cd · bn(ξ0−δ) · Q(t |n) dμ0(s) dμ0(t).

This implies

E

(
dμn(s) dμn(t)

Kd
n(s, t)

)
≤ Cd · bn(ξ0−δ) dμ0(s) dμ0(t)

≤ Cd · bξ0−δ · dμ0(s) dμ0(t)

|s − t |ξ0−δ
.
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(ii) If j ≤ n − 1, like in Section 2.3.1(ii) one has

Kd
n(s, t)−1

≤ (|Fk(s) − Fk(t)|2 + |Fl(s) − Fl(t)|2)−d/2

= (∣∣Qk(s|+j+1) · Zk(s|+j+1) + �k

∣∣2 + ∣∣Ql(s|+j+1) · Zl(s|+j+1) + �l

∣∣2)−d/2
.

By using Lemma 2(ii) we get

E

(
dμn(s) dμn(t)

Kd
n(s, t)

∣∣∣ A(s|+j+1)

)
≤ Cd · (∣∣Qk(s|j · r)∣∣ · ∣∣Ql(s|j · r)∣∣d−1)−1 · Q(s|n) · Q(t |n) dμ0(s) dμ0(t)

= Cd · Q(s|j · r)−1 · Q(s|n) · Q(t |n) dμ0(s) dμ0(t)

= Cd · W̃ (s|j · r)−1 · b(j+1)(ξ0−δ) ·
n∏

i=j+1

W̃ (s|i) · Q(t |n) dμ0(s) dμ0(t).

All the random variables in the above products are independent, so

E

(
dμn(s) dμn(t)

Kd
n(s, t)

)
≤ Cd · E(|Wk|−1|Wl|1−d) · b(j+1)(ξ0−δ) dμ0(s) dμ0(t)

≤ Cd · E(|Wk|−1|Wl|1−d)b2(ξ0−δ) · dμ0(s) dμ0(t)

|s − t |ξ0−δ
.

2.3.3. Conclusion. Let

C =
{

max
{
bξ0−δ

E(X−d
k ),Cdb2(ξ0−δ)

E(|Wk|−d)
}
, if ξ0 ∈ (0, ξ∗];

max
{
Cdbξ0−δ,Cdb2(ξ0−δ)

E(|Wk|−1|Wl|1−d)
}
, if ξ0 ∈ (ξ∗,1].

Then we get the conclusion from Section 2.3.1 and 2.3.2.

2.4. Proof of Lemma 2.
(i) Let ϕk(x) = E(eixZk ) be the characteristic function of Zk . From (7) we have

the following functional equation:

Zk =
b−1∑
j=0

Wk(j) · Zk(j).(14)

This implies

ϕk(x) = E

(
b−1∏
j=0

ϕk

(
x · Wk(j)

))
.
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Notice that given x ∈ R one has |ϕk(x)| = |ϕk(−x)| = |ϕk(|x|)|, so

|ϕk(x)| ≤ E

(
b−1∏
j=0

∣∣ϕk

(
x · Wk(j)

)∣∣)

= E

(
b−1∏
j=0

∣∣ϕk

(
x · |Wk(j)|)∣∣),

which implies

|ϕk(x)| ≤ E
(∣∣ϕk(x · |Wk|)

∣∣)b.(15)

Starting from (15) and following the proof of Theorem 2.1 in [15] one can prove
the following result:

If E(|Wk|−s) < ∞ for some s > 0, then |ϕk(x)| = O(|x|−s) when x → ∞.

Under assumption (A2) this result will imply that ϕk ∈ L1(R), thus Zk has a
bounded density function fk with ‖fk‖∞ ≤ Ck := ∫

R
|ϕk(x)|dx < ∞. This gives

us

E(|AZk + B|−d) =
∫

R

fk(x)

|Ax + B|d dx

= |A|−d
∫

R

fk(x)

|x + B/A|d dx

= |A|−d
∫

R

fk(u − B/A)

|u|d du

= |A|−d

(∫
|u|>1

fk(u − B/A)

|u|d du +
∫
|u|≤1

fk(u − B/A)

|u|d du

)

≤ |A|−d ·
(

1 + Ck

∫
|u|≤1

1

|u|d du

)
.

(ii) First we assume that Zk and Zl have a bounded joint density function f

with ‖f ‖∞ = C < ∞, then

E
(
(|A1Zk + B1|2 + |A2Zl + B2|2)−d/2)

=
∫ ∫

f (x, y)

(|A1x + B1|2 + |A2y + B2|2)d/2 dx dy

= |A2|−d
∫ ∫

f (x, y)

(|(A1/A2)x + B1/A2|2 + |y + B2/A2|2)d/2 dx dy

≤ |A2|−d |A2|
|A1|

∫ ∫
f ((A2/A1)u − B1/A1, v − B2/A2)

(u2 + v2)d/2 dudv

≤ |A1|−1|A2|−d+1
(

1 + C

∫ ∫
|u|2+|v|2≤1

1

(u2 + v2)d/2 dudv

)
,
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which gives us the conclusion. So it is enough to show that the characteristic func-
tion

ϕ : (x, y) ∈ R
2 	→ ϕ(x, y) = E

(
ei(xZk+yZl)

)
is in L1(R2). For we consider the polar coordinates: for r ∈ R+ and θ ∈ [0,2π)

define

ϕ(r, θ) = ϕ(r cos θ, r sin θ) = E
(
ei(r cos θZk+r sin θZl)

)
.(16)

Let ψ(r) = supθ∈[0,2π) |ϕ(r, θ)|. Clearly ψ(r) ≤ 1, so it is enough to show that
ψ(r) = O(r−s) for some s > 2 when r → ∞. This can be done by using a similar
argument as in (i): from (16) and (14) one has

ϕ(r, θ) = E

(
b−1∏
j=0

ϕ
(
r · W(j), θ + θ(j)

))
,

where W(j) =
√

|Wk(j)|2 + |Wl(j)|2 and θj = arccos(Wk(j)/W(j)). This gives
us

ψ(r) ≤ E
(
ψ(r · W)

)b where W =
√

|Wk|2 + |Wl|2.(17)

Again, starting from inequality (17) and following the proof of Theorem 2.1 in
[15] (with a nontrivial modification which we will present later), one can prove the
following result:

If E(W
−s

) < ∞ for some s > 0, then ψ(r) = O(r−s) when r → ∞.(18)

Then we can get the conclusion due to assumption (A2).
The nontrivial modification for proving (18) is the part that proves ψ(r) < 1

holds for all r > 0, the rest of the proof will follow easily from the proof of Theo-
rem 2.1 in [15]. In order to prove that ψ(r) < 1 holds for all r > 0, first we show
that ψ(r) < 1 holds for all r small enough.

Suppose that it is not the case. Then we can find sequences rn → 0 and
θn ∈ [0,2π) such that |ϕ(rn, θn)| = 1, and thus there exists a subset �′ ⊂ � with
P(�′) = 1 and a sequence ζn ∈ [0,2π) such that

rn cos θnZk(ω) + rn sin θnZl(ω) ∈ ζn + 2πZ

holds for all n ≥ 1 and ω ∈ �′. In other words, for any ω,ω′ ∈ �′ one has

rn cos θn

(
Zk(ω) − Zk(ω

′)
) + rn sin θn

(
Zl(ω) − Zl(ω

′)
) ∈ 2πZ ∀n ≥ 1.

From rn → 0 one gets

cos θn

(
Zk(ω) − Zk(ω

′)
) + sin θn

(
Zl(ω) − Zl(ω

′)
) = 0
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for all n large enough. Since cos θn and sin θn cannot be equal to 0 at the same
time and Zk , Zl are not almost surely a constant, there exist a subset �′′ ⊂ �′ with
P(�′′) = 1 and a constant c �= 0 such that

Zk(ω) − Zk(ω
′) = c

(
Zl(ω) − Zl(ω

′)
)

holds for all ω,ω′ ∈ �′′. This implies that Zk − cZl is a constant on �′′. In
other words,

∑b−1
j=0 Wk(j)Zk(j) − cWl(j)Zl(j) is almost surely a constant. But

this could happen only if Wk(j)Zk(j) − cWl(j)Zl(j) is almost surely equal to
0 for each j = 0, . . . , b − 1 (since they are i.i.d. random variables). So we get
c = 1 and Wk = Wl almost surely, which is contradictory to the assumption
P(W1 = W2) < 1.

Now suppose that there exists an h > 0 such that ψ(h) = 1, and we may assume
that ψ(r) < 1 holds for all 0 < r < h. From (17) we get

1 = ψ(h) ≤ E
(
ψ(h · W)

)b ≤ 1.

This implies that almost surely ψ(h · W) = 1. Due to (A1) there exists q ∈ (1,2]
such that E(|W1|q) ∨ E(|W2|q) < b−1. Since q/2 < 1, by using subadditivity of
x → xq/2, we get that

P(W ≥ 1) ≤ E
(
(|Wk|2 + |Wl|2)q/2)

≤ E(|Wk|q + |Wl|q)

< 2b−1

≤ 1.

Thus there exists δ < 1 such that ψ(h · δ) = 1, which is a contradiction.
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