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CONCENTRATION OF THE INFORMATION IN DATA WITH
LOG-CONCAVE DISTRIBUTIONS

BY SERGEY BOBKOV! AND MOKSHAY MADIMAN?
University of Minnesota and Yale University

A concentration property of the functional —log f(X) is demonstrated,
when a random vector X has a log-concave density f on R”. This concentra-
tion property implies in particular an extension of the Shannon—McMillan—
Breiman strong ergodic theorem to the class of discrete-time stochastic
processes with log-concave marginals.

1. Introduction. Let (€2, B, P) be a probability space and let X = (X1,...,
X,) be a random vector defined on it with each X; taking values in R. Suppose
that the joint distribution of X has a density f with respect to a reference measure
v(dx) on R". For most of this paper (except for the purposes of discussion in
this section), the reference measure is simply Lebesgue measure dx on R". The
random variable

h(X) = —1log f(X)

may be thought of as the (random) information content of X. Such an interpreta-
tion is well-justified in the discrete case, when v is the counting measure on some
countable subset of R” on which the distribution of X is supported. In this case,
h(X) is essentially the number of bits needed to represent X by a coding scheme
that minimizes average code length [21]. In the continuous case (with reference
measure dx ), one may still call h (X) the information content even though the cod-
ing interpretation no longer holds. In statistics, one may think of the information
content as the log likelihood function.

The average value of the information content of X is known more commonly as
the entropy. Indeed, the entropy of X is defined by

hX) = — f £ log £(x) dx = —Elog f£(X).

Observe that we adopt here the usual abuse of notation: we write /4 (X) even though
the entropy is a functional depending only on the distribution of X and not on the
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value of X. In general, 4#(X) may or may not exist (in the Lebesgue sense); if it
does, it takes values in the extended real line [—oc0, +00].

Because of the relevance of the information content in various areas such as
information theory, probability and statistics, it is intrinsically interesting to un-
derstand its behavior. In particular, a natural question arises: is it true that the in-
formation content concentrates around the entropy in high dimension? In general,
there is no reason for such a concentration property to hold. A main purpose in
this note is, however, to show that when the probability measure on R” of inter-
est is absolutely continuous and log-concave, log f(X) does possess a powerful
concentration property. Specifically, we prove the following theorem.

THEOREM 1.1. Suppose X = (X1, ..., X,) is distributed according to a log-
concave density f on R". Then, for all t > 0,

P{|(X) — h(X)| > t/n} <27,

where ¢ > 0 is a universal constant. In fact, one may take c = 1/16.

Note that under the assumption of log-concavity and absolute continuity,
h(X) always exists and is finite (see, e.g., [6]). _

Let us emphasize that the distribution of the difference h(X) — h(X) is stable
under all affine transformations of the space, that is,

R(TX)—h(TX)=h(X)—h(X)

for all invertible affine maps 7 : R" — R”. In particular, the variance of the infor-
mation content

E|h(X) — h(X)|?

represents an affine invariant. By Theorem 1.1, when f is log-concave, this vari-
ance is bounded by Cn with some universal constant C.

_In fact, the deviation inequality in Theorem 1.1 amounts to a stronger bound
1A(X) —h(X)|ly, < C+/n withrespect to the Orlicz norm, generated by the Young
function v (¢) = e/l — 1. This is consistent with the observation that in many
standard examples h(X) behaves like the sum of n independent random variables.
For example, when X is standard normal, we have

~ X7 -1
h(X) —h(X)=)_ 5

i=l

More generally, if X = (X1, ..., X;;) has independent components, then

n
h(X) —h(X) =) h(X;) — h(X).
i=1
These examples show that /n-normalization in Theorem 1.1 is chosen correctly
and cannot be improved for the class of log-concave distributions.
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When the dimension 7 is large, the exponential decay in Theorem 1.1 may be
improved to the Gaussian decay on the interval 0 <7 < O(/n).

THEOREM 1.2. Given a random vector X in R" with log-concave density f,

P|-log 00— Elog /)| 2 1] <3¢, 012
NG

where ¢ > 0 is a universal constant. In fact, one may take c = 1/16.

Substituting ¢ = s4/n, rewrite the above inequality as

(1.1) PHllog; — @ > s} < 3e‘s2”/16,
n ~ f(X) n

for 0 < s < 2. Equivalently, in terms of the entropy power N(X) = exp{—% X
Elog f(X)}, we get for the value, say, s = 1,

P{N(X)e_z/ﬂ < f(x)Z/l’l < N(X)eZ/n} > 1— 3€_n/16,

Thus, with high probability, f(x)*/" is very close to N (X), and the distribution of
X itself is effectively the uniform distribution on the class of typical observables,
or the “typical set” [defined to be the collection of all points x € R” such that f(x)
lies between e~ (X)=7¢ and ¢~"X)*1¢ for some small fixed & > 0].

A similar concentration inequality was obtained by Klartag and Milman [15],
who compared the value f(X) to the maximum M of the density f and proved
that

P{FXOY" > coM'"y > 1 —cff

with some absolute constants cg, c; € (0, 1). Note this result readily follows from
Theorem 1.2, but not conversely.

Theorems 1.1 and 1.2, by entailing an effective uniformity of the distribution of
X on some compact set, provide a strong, quantitative formulation of the asymp-
totic equipartition property for log-concave measures. To describe this interpre-
tation, suppose X = (X1, X», ...) is a stochastic process on the probability space
(2, B, P), with each X; taking values in R, and define the corresponding projec-
tions X = (X1, ..., Xp). If X is stationary, the limit

()
h(X) = lim hX™)

n—oo n

exists as long as the increments /(X n+Dy — p(X™) are finite, and is called the
entropy rate of X. For stationary processes X, the question of whether the infor-
. . hx®™ - . .
mation content per coordinate % converges to the limit #2(X) (in L? or in
probability or almost surely) has been extensively studied. In the discrete case, the

affirmative answer to this question goes back to Shannon [21], McMillan [17] and
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Breiman [10], and the eponymous theorem has been called “the basic theorem of
information theory.” The continuous case was partially developed by Moy [18],
Perez [20] and Kieffer [14]. The definitive version [almost sure convergence for
stochastic processes defined on a standard Borel space, and allowing more general
reference measures v(dx) than Lebesgue and counting measure] is due indepen-
dently to Barron [3] and Orey [19]; the former in particular gives a clear exposition
and recounting of the history. Specifically, these works imply that if X is stationary
and ergodic, then, as n — o0,

(1.2) —%log F(XM) = h(X)  as.

An elementary proof of this fact, called by McMillan the “asymptotic equipartition
property” was later given by Algoet and Cover [1]. For nonstationary processes
with arbitrary dependence, the entropy rate /(X) typically does not exist; so there
is no question of a statement like (1.2) holding. Nonetheless, together with Borel—
Cantelli’s lemma Theorem 1.1 immediately yields the following extension of the
Shannon-McMillan—-Breiman phenomenon.

COROLLARY 1.3.  Suppose that X has a log-concave distribution on R*> with
absolutely continuous finite-dimensional projections. If the limit h(X) exists, the
property (1.2) holds.

Note that log-concavity of a probability measure is defined on arbitrary locally
convex spaces via a Brunn—Minkowski type inequality and is equivalent to the
log-concavity of densities of finite-dimensional projections (in case they are ab-
solutely continuous with respect to Lebesgue measure; see [9] for a general the-
ory). Corollary 1.3 trivially extends to processes X = (X1, X2, ...) where each X;
takes values in R¥ instead of R, as long as the finite-dimensional projections X ™
have log-concave distributions. This, for instance, means that Corollary 1.3 can be
applied to nonstationary Markov chains in R¥ that preserve log-concavity of the
joint distribution and also have a unique invariant probability measure (the latter
condition ensures existence of the entropy rate, which can also be easily computed
as the mean under the invariant measure of the entropy of the conditional density
of X, given X1). Furthermore, if the process mixes well enough so that #(X™)/n
converges rapidly to /(X), then Theorem 1.2 may be used to give a convergence
rate in probability.

It should also be mentioned that, for Gaussian distributions, tight concentration
inequalities may be derived by simple explicit calculation. This was done by Cover
and Pombra [11] as an ingredient in studying the feedback capacity of time-varying
additive Gaussian noise channels.

The paper is organized in the following way. As a first step, we consider a one-
dimensional version of Theorem 1.1 (Section 2). In Section 3, we recall some
previous work on reverse Lyapunov inequalities, and present a new variant. It is
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applied to establish a concentration property of the logarithm function under what
we call log-concave measures of order p (Sections 4 and 5). Section 6 uses the lo-
calization lemma of Lovasz and Simonovits to reduce the general case to a specific
one-dimensional statement. Section 7 completes the proof.

2. One-dimensional case in Theorem 1.1. We begin by proving the one-
dimensional case of Theorem 1.1.

PROPOSITION 2.1.  Ifa random variable X has a log-concave density f, then,
Ee(1/2Mlog f(X)—Elog f(X)] _ 4

PROOF. Let X be a random variable with log-concave density f(x). The dis-
tribution of X is supported on some interval (a, b), finite or not, where f is positive
and log f is concave. Introduce the function

1(1) = F(F~ 1)), 0<t<l,

where F~1:(0,1) — (a,b) is the inverse to the distribution function F(x) =
P{X < x}, a < x < b. The function I is positive and concave on (0, 1) and
uniquely determines F up to a shift parameter ([4], Proposition A.1).

Given a function W = W (u, v), write a general identity

1 1
/ W), FONF@)F() dxdy = /0 /0 W(I (1), 1(s))dt ds.

In particular, for any « € [0, 1),

1 1
@ //eauog.f(x)flogf(mdF(x)dF(y):/ / g I(—1og 1) g7 g
0 JO

Here the right-hand side does not change when multiplying / by a positive scalar,
so one may assume that /(1/2) = 1/2. But then, by concavity of I, we have
min{r, 1 —¢} < I(t) < 1.
From this,
logI(t) —logl(s) < —logmin{s, 1 — s},
logI(s) —logl(t) < —logmin{t, 1 —1t},
o)
[logI(¢) —logl(s)| < —logmin{t,s, 1 —1,1—s}.
Hence, the right-hand side of (2.1) does not exceed

1 rl _ 1/2 r1/2
/ / e~ togmintt:n 1615 gy s = 4 / min{r, s}~ dt ds
0 Jo 0 0
2l+a
PR
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Finally, by Jensen’s inequality with respect to d F'(y), the left-hand side of (2.1)
majorizes

/ ollog f()=[10g F(AF | g () = BeNlog S (X)—Elog f(X)|

so that we have

21+
(2.2) Ee@log f(X)—Elog f(X)| ~

T(l-0)2-a)

Choosing the value o = 1/2, and observing that %ﬁ < 4, we may conclude. [

Note also that a direct application of Chebyshev’s inequality yields
P{llog f(X) — Elog f(X)| > 1} < 4e™"/?

for all # > 0. While the exponent here is slightly better than that in Theorem 1.1, we
make no effort here (or anywhere in this paper) to come up with optimal constants.

3. Reverse Lyapunov inequalities. Given a random variable 1 > 0, the Lya-
punov inequality states that

(3.1 abmepa=b > ja=c a>b>c>0,

where A, = En” is the moment function of 1. Equivalently, it expresses a well-
known and obvious property that the function p — log A, is convex on the positive
half-axis p > 0.

What is less obvious, for certain classes of probability distributions on (0, +00),
the inequality (3.1) may be reversed after a suitable normalization of the moment
function. In particular, when n has a distribution with increasing hazard rate (in
particular, if  has a log-concave density), then as was shown by Barlow, Marshall
and Proschan ([2], page 384), we have

(3.2) )ZZ—CI\;’—” < Xz_c, a>b>c>1 (c is integer),

for the normalized moment function
- 1

A, = —— EnP.
PT T+

Note that A p = 1 forall p > 0 for the standard exponential distribution, which thus
plays an extremal role in this class.

This result has many interesting applications. For example, applying it to the
parametersa=p+1,b=p,c=p — 1, we have

1
(33) Eyp’ ! EnP~! < (1 + —)(En”)z,
14
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provided that p > 2 is integer. If the distribution of 7 is log-concave, the case p =1
can also be included in this inequality, which is due to a Khinchine-type inequality
by Karlin, Proschan and Barlow [13], namely,

En? <T(p+ 1)(En)?, p=>1.

However, in some problems, it is desirable to remove the requirement that ¢ is
integer in (3.2). This is implied by results of Borell [8] for the class of log-concave
densities. To be more precise, he proved the following (Theorem 2 in [8]).

PROPOSITION 3.1. Let 1 be a nonnegative concave function, defined on an
open convex body Q C R". Then the function

b (p+1)---(p+n)/ (o) dx
n! Q

is log-concave in p > 0.

To relate this to (3.2), let us start with a continuous convex function u# : A — R,
defined on some closed segment A C (0, +00), such that e 7™ is a probability
density. For large n, consider convex bodies

an{(xl,...,xn,x)eRixA:xl—i—---—i—xnfl—u(x)}.
n
Their volumes satisfy, as n — o0,
n
(3.4) n!IQn|:/ (1—@> dx—>/ e gy =1,
A n A

and for every p > 0,

1
(3.5) vn(p) = / xPdxy---dx,dx — v(p) :/ xPe 4™ gy .
12, Ja, A
By Proposition 3.1, applied to n(x1, ..., x,, X) = x, the functions
(p+1)---(p+n)
wn(p) = 1 Un(p), p= 0,
nPtin!

are log-concave, so the limit will also be a log-concave function, if it exists. (Note
that we have added a log-linear factor n”*!.) But
(p+D-—(ptn) =~ 1
nP+pn! F'(p+1)

Therefore, in view of (3.4) and (3.5), the resulting limit ﬁv( p) represents a
log-concave function, as well.

On this step, the assumption that u was defined on a closed segment can be
relaxed, and we arrive at the following corollary (which seems not to be mentioned
in [8] or anywhere else).
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COROLLARY 3.2. Ifa random variable n > 0 has a log-concave distribution,
then the function

- 1
)" == 7E p’ Z O’
PTrop+n P
is log-concave. Equivalently, we have a reverse Lyapunov’s inequality
(3.6) abmeqab < ja=c a>b>c>0.

In connection with the concentration problem and the Kannan-Lovész—
Simonovits conjecture within the class of spherically symmetric distributions
on R", reverse Lyapunov’s inequalities were considered in [5]. The following al-
ternative variant of Corollary 3.2 is proposed there.

PROPOSITION 3.3.  Given a random variable n > 0 with a log-concave distri-
bution, the function A, = E(%)p is log-concave in p > 0, and therefore satisfies
(3.6).

This is proved in [5] by an application of the Prékopa-Leindler inequality, and
is perhaps more convenient for applications involving asymptotics.

There is much more that can be (and has been) said about reverse Lyapunov
inequalities; a gentle introduction may be found in [7].

4. Log-concave distributions of order p.

DEFINITION 4.1. A random variable & > 0 will be said to have a log-concave
distribution of order p > 1, if it has a density of the form
fo=xrlg), x>0,

where the function g is log-concave on (0, +00).

When p = 1, we obtain the class of all (nondegenerate) log-concave probability
distributions on (0, +00).

The meaning of the parameter p is that it is responsible for a strengthened con-
centration. For example, the inequality (3.3), which holds by Corollary 3.2 for all
real p > 1, may equivalently be rewritten in terms of £ as

@.1) Var(g) < %(Esﬂ

Alternatively, if we start with Proposition 3.3 and apply (3.6) with a = p + 1,
b=p,c=p—1(p>1),weget EnT'EnP~! < C,(En”)? with constants C,, =
(p+ DP(p — )P~ p=2P Equivalently,

(4.2) Var(§) < (C, — 1)(E£)?

in the class of log-concave & of order p. Asymptotically C, =1+ % + 0(#), as
p — +00, so the bound (4.2) is very close to (4.1) for large values of p.
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EXAMPLE 4.2. Let § have a Gamma distribution with shape parameter p
(where p > 0 is real), that is, with density

= L p=1,—x >
fx) F(p)x e, x> 0.
It is log-concave if and only if p > 1, in which case p will be the order of log-
concavity for this distribution. Note that E€ = Var(§) = p, and (4.1) becomes
equality. Hence, the factor 1/p in (4.1) is optimal.

PROPOSITION 4.3. If & > 0 has a log-concave distribution of order p > 1,

then
2

d
Var(log§) < —— logI'(p).
dp?
Equality is attained at the Gamma distribution with shape parameter p.

PROOF. Write the density of £ as f(x) = x? _lg(x) with log-concave g. One
may assume that g is a density, as well. Indeed, otherwise consider random vari-
ables £, = c& (¢ > 0). Then Var(log&.) = Var(log &) and &, has density

fe) =cTPaP g (x/e) =xP " ge (),
where g.(x) =c¢ Pg(x/c). Since f decays at infinity exponentially fast, the same
is true for g. Hence, g is integrable, and one can choose ¢ such that [ g.(x)dx = 1.
So the reduction to the case where g is a density is achieved.

Thus, let g be a log-concave probability density, such that f(x) = x?~'g(x)
is the density of £. Consider a random variable n > 0 with density g. Then, by
Corollary 3.2, the function

u(g) =logEn?~' —logT'(g), ¢ =0,
is concave. Differentiating twice with respect to g, we get

En?~'log?n — (En?~'logn)?  d?
Vi _ -
u(q) = Egi—1)? g2 logI'(g) <0.

But at the point ¢ = p, we have
EnP~! :/xp_lg(x)dx:/f(x)dx =1,

and so
2

d
W'(p) + 73 logT(p) =B “'log®n — (En?~ " logn)
2
= /xp_llogzxg(x) dx — (/x”_l log xg(x) dx)

= Var(logé&).
Proposition 4.3 is proved. [
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It is to be noted that the right-hand side in Proposition 4.3 is the trigamma
function, which has the alternate representation

o0

vi(p)=)_

n=1

(n+ p)?’

and behaves like 1/ p for large values of p. Hence,
C

4.3) Var(logé&) < —
p

with some absolute constant C (in fact, one may take C = 1). This can also be seen
by using Proposition 3.3. Indeed, the same argument as above yields

d? 1
4.4 Var(logé) < —(p — Dlog(p — 1) = —,
dp p—1
which holds for any p > 1. Here the right-hand side has an incorrect behavior
when p is close to 1. In fact, for all log-concave &, we have

4.5) Var(log&) <C

with some absolute constant C. For the proof, one can apply, for example, Borell’s
concentration lemma ([9], Lemma 3.1). Together with (4.5), (4.4) also yields the
bound (4.3).

In the proof of Theorem 1.1, we use the values p = n, the dimension of the
space. Since the one-dimensional case can be treated separately (rather easily), the
assumption p > 2 can be made in applications.

REMARK 4.4. The notion of a log-concave measure of order p may be ex-
tended in a natural way to the class of one-dimensional log-concave probability
measures 1 on R”. More precisely, we say that u has order p, if u is supported on
some interval A C R”, bounded or not, and has a density there of the form

dp(x)
dx
where £ is a positive affine function on A, g is log-concave on A, and where dx
stands for the Lebesgue measure on this interval. In this case, the inequality (4.3)
and other similar results should be properly read in terms of £. For example, we
have Var(log ¢) < % with respect to u.

()" g(x),  xeA,

5. Concentration of the logarithm function. It is natural to try to sharpen
Proposition 4.3 and the resulting asymptotic bound (4.3) in terms of deviations of
log & from its mean or quantiles.

Let £ > 0 be a random variable with log-concave distribution of order p + 1,
that is, with density of the form

fx)=xPg(x), x>0,
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where p > 0 and g is a log-concave function. Let ¢ be an independent copy of &.
Then for all « € [0, p],

Ee¢logé—logsl _ 2Eea(logf—10g§)1{s>§}

< 2Eeo{(log$—10g{) — 2E$O{E§—O{
:2/xp+°‘g(x)dx/xp_°‘g(x)dx.

The quantity Ee*/l02§-102¢l does not change if we multiply & and ¢ by a pos-
itive scalar. Hence, as in the proof of Proposition 4.3, we may assume that g is a
probability density of some random variable, say, . Applying Jensen’s inequality,
we thus conclude that

(5.1) Eevllogs—Rlogsl < ogprtegyr—e  0<a <p,

provided that En? = 1 (which means that f is a density). But by the reverse Lya-
punov’s inequality of Corollary 3.2, applied witha=p+a,b=p,c=p —a, we
obtain that
- Fpta+Dl(p—a+1)
- C(p+1)?2
Note that when o = 1, this inequality returns us to inequality (4.1).

Thus, from (5.1),

Enp—l—OlEnp—Ol

[ oo/logé~Elogé| _ 2F(p +a+DI'(p—a+1)
- C(p+1)2
The right-hand side here seems perhaps not quite convenient to deal with, espe-
cially when p &+ « are not integer. Alternatively, it might be better to use Proposi-
tion 3.3, which gives

, O0<ac=<p.

5 (p+ )Pt (p—a)p™
p3P

EeallogS—ElogE\ < , 0<a<p.

Indeed, write

+a p+a — )P 0(2 p—a o 2a
(pta) 2(p ) :(1__2> (1+_> '
p-P p p

The first factor on the right may be bounded just by 1. For the second one, using
(1+0Y" <e(t = 0), one has

2 (p/a)(20?/p)
<1 + E) = (1 + ﬁ) <0,
p p

Therefore, we have a preliminary Gaussian estimate:

Eevllogé—Elogsl < 9,2a%/p <y < p.
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Similarly, one may also obtain a one-sided estimate, since like in inequality
(5.1) we also have

Ee¢(logé—logf) EnPH‘Enp*a, 0<|x| <p,

provided that En” = 1. These estimates are collected below after replacing p by
p — 1 for convenience.

LEMMA 5.1.  If§ > 0 has a log-concave distribution of order p > 1, then
(5.2) Eeollogé—Elogé| 2e2"‘2/(”_1), O<a<p—1,

(5.3) Ee¢logé—Elogé) < 620!2/([)—1), O<|al<p-—1.

In particular, we obtain for log-concave densities of order p on the positive half-
line a p-dependent version of Proposition 2.1 (which was stated for log-concave
densities on the line).

COROLLARY 5.2. If&¢ > 0 has a log-concave distribution of order p > 1, then

Eo(1/6)/pllogé—Elogé| _ 3

PROOF. First, assume p > 2 and choose o = ¢, /p in (5.2) with 0 < ¢ < 1/v2
(sothat @ < p — 1). Then, using p/(p — 1) <2, we have

Ee¢/Pllogé—Elogé| 2e4c2_

1/9

Taking, for example, ¢ = 1/6, the right-hand side will not exceed 2¢'/” < 3.

Hence,

Ee(1/6)V/pllogé—Elogs| _ 3.

For the remaining range 1 < p < 2, one has ,/p/6 < 1/4, and we have by
Proposition 2.1 [or more precisely, inequality (2.2)] that

5/4
(54)  EeWPlOlloge—Elogs| _ g, (1/4)llogs—Elogsl - 2 -

= 3/4x7/4

Thus, the desired statement is proved with a uniform bound of 3. [J

Observe that Proposition 2.1 corresponds to p = 1, and that while it clearly
applies as stated to log-concave densities of order p (since these are subclasses
of the log-concave densities), Corollary 5.2 with the additional ,/p term in the
exponent provides the correct generalization for large p.
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6. Reduction to dimension one. To reduce Theorems 1.1 and 1.2 to a spe-
cific statement about dimension one (in fact—about log-concave distributions of
order p = n), we apply a localization argument of Lovész and Simonovits [16].
More precisely, we need one variant of the localization lemma, proposed in [12],
Corollary 2.4, which we state with minor modification as a lemma.

LEMMA 6.1. Let g and h be integrable continuous functions on a bounded
open convex set Q in R", such that

[swax=0. [ nwax=o

Then for some interval A C Q2 and a positive affine function € on A,

f gt" >0, / el =0,
A A

where the integrals are with respect to Lebesgue measure on A.

Equivalently, given that [ h(x)dx = 0, if for all couples (A, £) with [, h x
2"~ =0, we have that
/ gen—l S 0’
A

then
/ g(x)dx <0.
Q

This formulation enables the desired-dimensional reduction.

LEMMA 6.2. Suppose X is a random vector taking values in an open convex
set Q in R, where it has a positive continuous density f, such that E|log f(X)| is
finite. Let (¢ denote a probability measure on a line segment A C 2 with density

1
fe(x) = ff(X)ﬁ(X)”_l,

where { is a positive affine function, defined on A, and Z = [ F)e)" Vdx is
a normalizing constant. Given o > 0 and A > 1, if for any such one-dimensional
measure Ly, we have

6.1) Bel@/vmllog f~Erlog fl _ 4

where E, stands for the expectation with respect to L¢, then
o

(6.2) Eexp{ NG

llog £ (X) — Elog f(X)I} <Al
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PROOF. Without loss of generality, take 2 to be bounded, and assume that
Elog f(X) =0, or in other words,

(6.3) /Qlog fXx)f(x)dx=0.

In this case, (6.2) becomes

6.4) /Q (e@/VDlIog fO _ A) £ () dx < 0.
This corresponds to Lemma 6.1 with

h(x) =log f(x) f(x) and g(x) = (e@/ VMRSl _ A) £ (x).

Hence, to derive (6.4) under (6.3), it suffices to take an arbitrary interval A C Q
and a positive affine function £ on A, such that

6.5) [ tog £ p e dx =0,
A
and to show that
(6.6) / (e@/VMog FII _ A) £ (x)e(x)" ' dx <0.
A

Using the definition of w,, inequalities (6.5) and (6.6) take the form

flogfdw =0, /(e(a/«/ﬁ)llogf\ _ A) dpe <0,

which can be written together as (6.1). [J

7. Proofs of Theorems 1.1 and 1.2. Keeping the same notation as in the pre-
vious section, first note that

log f — E¢log f = (log fe — E¢log fr) — (n — 1)(log £ — E¢log ),
o)

|log f —E¢log f| < |log fr —E¢log f¢| 4+ (n — 1)|logf — Eglog¥]|.
By convexity of the functional £ — log Ee?, we have that

1OgE€e(a/(2\/ﬁ))|logf—Eelogf-l < %logEee(a/\/ﬁ)llogﬂ—E(logf[|

(7.1)
+ Llog Ege@n=D/vmllog—Ecloge|

Since f; is the density of the one-dimensional log-concave probability mea-
sure (¢, by Proposition 2.1, whenever 0 < o < %\/ﬁ ,

(7.2) Eee(a/ﬁ)llogfz—Eelogfel <4,
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To estimate the second expectation in (7.1), it is useful to note that p, has or-
der p = n (cf. Remark 4.4). If n = 1, this expectation is just 1. If n > 2, by the
inequality (5.2) of Lemma 5.1, we have

(7.3) Eze(a(n—l)/ﬁ)llogK—Eg10g€| < 262a2(n—1)/n < 282012’

provided that 0 < a < +/n. This bound automatically holds for n = 1, as well.
Collecting the bounds (7.2) and (7.3) in (7.1), we get that, for all 0 < o < %ﬁ,

log Ege @/ @vmllog f~Eclog fI < 1 log(8¢%%).
Hence, using +/8 < 3 (to simplify the constant),
Eye@/@vm)llog f—E¢log fI 3%
Now, replace o with 2«c. We then get that
Ee@/vmllog f—E¢log f| - 3e4°‘2, O<a< %\/ﬁ

Recalling Lemma 6.2 (whose assumptions hold for all log-concave densities), we
arrive at the following theorem.

THEOREM 7.1. Given a random vector X in R" with log-concave density

f ),

E exp{

N

Choose o = 1/4. Denoting & = ﬁﬂog f(X) —Elog f(X)|, we have Eef <
3e!/4. Hence, Eef/4 < 31/4¢1/16 < 2 This gives the following.

log £~ Elog f(01} <3¢, 0=a= VA

COROLLARY 7.2. Given a random vector X in R" with log-concave density
f ),
1

1640

By applying Chebyshev’s inequality, we arrive at Theorem 1.1 with ¢ = 1/16.
From Theorem 7.1, by Chebyshev’s inequality, we also have

Eexp{ llog f(X) — Elog f(X)I} <.

1
P{Tﬂog f(X)—Elog f(X)| > z} < 3¢t t>0,
n

provided that 0 < o < %\/ﬁ . Taking the optimal value o = ¢/8 gives Theorem 1.2.
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