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A PROBABILISTIC APPROACH TO DIRICHLET PROBLEMS OF
SEMILINEAR ELLIPTIC PDEs WITH SINGULAR COEFFICIENTS

BY TUSHENG ZHANG

University of Manchester

In this paper, we prove that there exists a unique solution to the Dirichlet
boundary value problem for a general class of semilinear second order el-
liptic partial differential equations. Our approach is probabilistic. The theory
of Dirichlet processes and backward stochastic differential equations play a
crucial role.

1. Introduction. In this paper, we will use probabilistic methods to solve the
Dirichlet boundary value problem for the semilinear second order elliptic PDE of
the following form:{ Au(x) = −f (x,u(x),∇u(x)), ∀x ∈ D,

u(x)|∂D = ϕ, ∀x ∈ ∂D,
(1.1)

where D is a bounded domain in Rd . The operator A is given by

Au = 1

2

d∑
i,j=1

∂

∂xi

(
aij (x)

∂u

∂xj

)
+

d∑
i=1

bi(x)
∂u

∂xi

− “div(b̂u)” + q(x)u,(1.2)

where a = (ai,j (x))1≤i,j≤d :D → Rd×d (d > 2) is a measurable, symmetric ma-
trix-valued function satisfying a uniform elliptic condition, b = (b1, b2, . . . , bd),
b̂ = (b̂1, b̂2, . . . , b̂d) :D → Rd and q :D → R are merely measurable functions
belonging to some Lp spaces, and f (·, ·, ·) is a nonlinear function. The operator
A is rigorously determined by the following quadratic form:

Q(u,v) = (−Au, v)L2(Rd)

= 1

2

d∑
i,j=1

∫
Rd

aij (x)
∂u

∂xi

∂v

∂xj

dx −
d∑

i=1

∫
Rd

bi(x)
∂u

∂xi

v(x) dx(1.3)

−
d∑

i=1

∫
D

b̂i(x)u
∂v

∂xi

dx −
∫
D

q(x)u(x)v(x) dx.
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We refer readers to [14, 18] and [24] for details of the operator A.
Probabilistic approaches to boundary value problems of second order differen-

tial operators have been adopted by many people. The earlier work went back as
early as 1944 in [15]. See the books [1, 7] and references therein. If f = 0 (i.e.,
the linear case), and moreover b̂ = 0, the solution u to problem (1.1) can be solved
by a Feynman–Kac formula

u(x) = Ex

[
exp

(∫ τD

0
q(X(s)) ds

)
ϕ(X(τD))

]
for x ∈ D,

where X(t), t ≥ 0 is the diffusion process associated with the infinitesimal gener-
ator

L1 = 1

2

d∑
i,j=1

∂

∂xi

(
aij (x)

∂

∂xj

)
+

d∑
i=1

bi(x)
∂

∂xi

,(1.4)

τD is the first exit time of the diffusion process X(t), t ≥ 0 from the domain
D. Very general results are obtained in the paper [6] for this case. When b̂ �= 0,
“div(b̂·)” in (1.2) is just a formal writing because the divergence does not really
exist for the merely measurable vector field b̂. It should be interpreted in the dis-
tributional sense. It is exactly due to the nondifferentiability of b̂, all the previous
known probabilistic methods in solving the elliptic boundary value problems such
as those in [1, 6, 15] and [13] could not be applied. We stress that the lower order
term div(b̂·) cannot be handled by Girsanov transform or Feynman–Kac transform
either. In a recent work [5], we show that the term b̂ in fact can be tackled by the
time-reversal of Girsanov transform from the first exit time τD from D by the sym-
metric diffusion X0 associated with L0 = 1

2
∑d

i,j=1
∂

∂xi
(aij (x) ∂

∂xj
), the symmetric

part of A. The solution to equation (1.1) (when f = 0 ) is given by

u(x) = E0
x

[
ϕ(X0(τD)) exp

{∫ τD

0
〈(a−1b)(X0(s)), dM0(s)〉

+
(∫ τD

0
〈(a−1b̂)(X0(s)), dM0(s)〉

)
◦ rτD

(1.5)

− 1

2

∫ τD

0
(b − b̂)a−1(b − b̂)∗(X0(s)) ds

+
∫ τD

0
q(X0(s)) ds

}]
,

where M0(s) is the martingale part of the diffusion X0, rt denotes the reverse
operator, and 〈·, ·〉 stands for the inner product in Rd .

Nonlinear elliptic PDEs [i.e., f �= 0 in (1.1)] are generally very hard to solve.
One can not expect explicit expressions for the solutions. However, in recent years
backward stochastic differential equations (BSDEs) have been used effectively to
solve certain nonlinear PDEs. The general approach is to represent the solution of
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the nonlinear equation (1.1) as the solution of certain BSDEs associated with the
diffusion process generated by the linear operator A. But so far, only the cases
where b̂ = 0 and b being bounded were considered. The main difficulty for treat-
ing the general operator A in (1.2) with b̂ �= 0, q �= 0 is that there are no associated
diffusion processes anymore. The mentioned methods used so far in the litera-
ture ceased to work. Our approach is to transform the problem (1.1) to a similar
problem for which the operator A does not have the “bad” term b̂. See below for
detailed description.

There exist many papers on BSDEs and their applications to nonlinear PDEs.
We mention some related earlier results. The first result on probabilistic interpreta-
tion for solutions of semilinear parabolic PDE’s was obtained by Peng in [19] and
subsequently in [21]. In [8], Darling and Pardoux obtained a viscosity solution to
the Dirichlet problem for a class of semilinear elliptic PDEs (through BSDEs with
random terminal time) for which the linear operator A is of the form

A = 1

2

d∑
i,j=1

aij (x)
∂2

∂xj ∂xi

+
d∑

i=1

bi(x)
∂

∂xi

,

where aij ∈ C2
b(D) and b ∈ C1

b(D). BSDEs associated with Dirichlet processes
and weak solutions of semi-linear parabolic PDEs were considered by Lejay in
[16] where the linear operator A is assumed to be

A = 1

2

d∑
i,j=1

∂

∂xi

(
aij (x)

∂

∂xj

)
+

d∑
i=1

bi(x)
∂

∂xi

,

for bounded coefficients a and b. BSDEs associated with symmetric Markov
processes and weak solutions of semi-linear parabolic PDEs were studied by Bally,
Pardoux and Stoica in [2] where the linear operator A is assumed to be symmetric
with respect to some measure m. BSDEs and solutions of semi-linear parabolic
PDEs were also considered by Rozkosz in [23] for the linear operator A of the
form

A = 1

2

d∑
i,j=1

∂

∂xi

(
aij (t, x)

∂

∂xj

)
.

Now we describe the contents of this paper in more details. Our strategy is
to transform the problem (1.1) by a kind of h-transform to a problem of a similar
kind, but with an operator A that does not have the “bad” term b̂. The first step will
be to solve (1.1) assuming b̂ = 0. In Section 2, we introduce the Feller diffusion
process (�, F , Ft ,X(t),Px, x ∈ Rd) whose infinitesimal generator is given by

L1 = 1

2

d∑
i,j=1

∂

∂xi

(
aij (x)

∂

∂xj

)
+

d∑
i=1

bi(x)
∂

∂xi

.(1.6)
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In general, X(t), t ≥ 0 is not a semimartingale. But it has a nice martingale part
M(t), t ≥ 0. In this section, we prove a martingale representation theorem for
the martingale part M(t), which is crucial for the study of BSDEs in subsequent
sections. In Section 3, we solve a class of BSDEs associated with the martingale
part M(t), t ≥ 0:

Y(t) = ξ +
∫ T

t
f (s, Y (s),Z(s)) ds −

∫ T

t
〈Z(s), dM(s)〉.(1.7)

The random coefficient f (t, y, z,ω) satisfies a certain monotonicity condition
which is particularly fulfilled in the situation we are interested. The BSDEs with
deterministic terminal time were solved first and then the BSDEs with random ter-
minal time were studied. In Section 4, we consider the Dirichelt problem for the
second order differential operator

L2 = 1

2

d∑
i,j=1

∂

∂xi

(
aij (x)

∂

∂xj

)
+

d∑
i=1

bi(x)
∂

∂xi

+ q(x),(1.8)

where bi ∈ Lp for some p > d and q ∈ Lβ for some β > d
2 . We first solve the

linear problem with a given function F{
L2u = F, in D,
u = ϕ, on ∂D,

(1.9)

and then the nonlinear problem{
L2u = −g(x,u(x),∇u(x)), in D,
u = ϕ, on ∂D,

(1.10)

with the help of BSDEs. Finally, in Section 5, we study the Dirichlet problem{ Au(x) = −f (x,u(x)), ∀x ∈ D,
u(x)|∂D = ϕ, ∀x ∈ ∂D,

(1.11)

where A is a general second order differential operator given in (1.2). We apply a
transform we introduced in [5] to transform the above problem to a problem like
(1.10) and then a reverse transformation will solve the final problem.

2. Preliminaries. Let A be an elliptic operator of the following general form:

A = 1

2

d∑
i,j=1

∂

∂xi

(
aij (x)

∂

∂xj

)
+

d∑
i=1

bi(x)
∂

∂xi

− “div(b̂·)” + q(x),

where a = (aij (x)) :D → Rd×d (d > 2) is a measurable, symmetric matrix-valued
function which satisfies the uniform elliptic condition

λ|ξ |2 ≤
d∑

i,j=1

aij (x)ξiξj ≤ 
|ξ |2, ∀ξ ∈ Rd and x ∈ D(2.1)
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for some constant λ,
 > 0, b = (b1, . . . , bd), b̂ = (b̂1, . . . , b̂d) :D → Rd and
q :D → R are measurable functions which could be singular and such that

|b|2 ∈ Lp(D), |b̂|2 ∈ Lp(D) and q ∈ Lp(D),

for some p > d
2 . Here D is a bounded domain in Rd whose boundary is regular,

that is, for every x ∈ ∂D, P(τx
D = 0) = 1, where τx

D is the first exit time of a
standard Brownian motion started at x from the domain D. Let f :Rd ×R×Rd →
R be a measurable nonlinear function. Consider the following nonlinear Dirichlet
boundary value problem:{ Au(x) = −f (x,u(x),∇u(x)), ∀x ∈ D,

u(x)|∂D = ϕ, ∀x ∈ ∂D.
(2.2)

Let W 1,2(D) denote the usual Sobolev space of order one:

W 1,2(D) = {u ∈ L2(D) :∇u ∈ L2(D;Rd)}.

DEFINITION 2.1. We say that u ∈ W 1,2(D) is a continuous, weak solution of
(2.2) if:

(i) for any φ ∈ W
1,2
0 (D),

1

2

d∑
i,j=1

∫
D

aij (x)
∂u

∂xi

∂φ

∂xj

dx −
d∑

i=1

∫
D

bi(x)
∂u

∂xi

φ dx

−
d∑

i=1

∫
D

b̂i(x)u
∂φ

∂xi

dx −
∫
D

q(x)u(x)φ dx =
∫
D

f (x,u,∇u)φ dx,

(ii) u ∈ C(D̄),
(iii) limy→x u(y) = ϕ(x), ∀x ∈ ∂D.

Next we introduce two diffusion processes which will be used later.
Let (�, F , Ft ,X(t),Px, x ∈ Rd) be the Feller diffusion process whose infini-

tesimal generator is given by

L1 = 1

2

d∑
i,j=1

∂

∂xi

(
aij (x)

∂

∂xj

)
+

d∑
i=1

bi(x)
∂

∂xi

,(2.3)

where Ft is the completed, minimal admissible filtration generated by X(s), s ≥ 0.
The associated nonsymmetric, semi-Dirichlet form with L1 is defined by

Q1(u, v) = (−L1u, v)L2(Rd)
(2.4)

= 1

2

d∑
i,j=1

∫
Rd

aij (x)
∂u

∂xi

∂v

∂xj

dx −
d∑

i=1

∫
Rd

bi(x)
∂u

∂xi

v(x) dx.



A PROBABILISTIC APPROACH TO DIRICHLET PROBLEMS OF PDEs 1507

The process X(t), t ≥ 0 is not a semimartingale in general. However, it is known
(see, e.g., [6, 10, 12] and [17]) that the following Fukushima’s decomposition
holds:

X(t) = x + M(t) + N(t) Px-a.s.,(2.5)

where M(t) is a continuous square integrable martingale with sharp bracket being
given by

〈〈Mi,Mj 〉〉t =
∫ t

0
ai,j (X(s)) ds,(2.6)

and N(t) is a continuous process of zero quadratic variation. Later we also write
Xx(t), Mx(t) to emphasize the dependence on the initial value x. Let M denote
the space of square integrable martingales w.r.t. the filtration Ft , t ≥ 0. The fol-
lowing result is a martingale representation theorem whose proof is a modification
of that of Theorem A.3.20 in [12]. It will play an important role in our study of the
backward stochastic differential equations associated with the martingale part M .

THEOREM 2.1. For any L ∈ M, there exist predictable processes Hi(t), i =
1, . . . , d such that

Lt =
d∑

i=1

∫ t

0
Hi(s) dMi(s).(2.7)

PROOF. It is sufficient to prove (2.7) for 0 ≤ t ≤ T , where T is an arbitrary,
but fixed constant T . Recall that M is a Hilbert space w.r.t. the inner product
(K1,K2)M = E[〈〈K1,K2〉〉T ], where 〈〈K1,K2〉〉 denotes the sharp bracket of K1
and K2. Let M1 denote the subspace of square integrable martingales of the form
(2.7). Let Rα,α > 0 be the resolvent operators of the diffusion process X(t), t ≥ 0.
Fix any g ∈ Cb(R

d), we know that Rαg ∈ D(L1) and L1Rαg = αRαg − g. More-
over, it follows from [12] and [17] that

Rαg(X(t)) − Rαg(X(0)) =
∫ t

0
〈∇Rαg(X(s)), dM(s)〉

+
∫ t

0
(αRαg − g)(X(s)) ds.

Hence,

Jt :=
∫ t

0
e−αs〈∇Rαg(X(s)), dM(s)〉

= e−αtRαg(X(t)) − Rαg(X(0)) +
∫ t

0
e−αsg(X(s)) ds

is a bounded martingale that belongs to M1. The theorem will be proved if we
can show that M⊥

1 = {0}. Take K ∈ M⊥
1 . Since M1 is stable under stopping, by
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Lemma 2 in Chapter IV in [22], we deduce 〈〈K,L〉〉 = 0 for all L ∈ M1. In partic-
ular, 〈〈K,J 〉〉 = 0. From here, we can follow the same proof of Theorem A.3.20 in
[12] to conclude K = 0. �

We will denote by (�, F 0, F 0
t ,X0(t),P 0

x , x ∈ Rd) the diffusion process gener-
ated by

L0 = 1

2

d∑
i,j=1

∂

∂xi

(
aij (x)

∂

∂xj

)
.(2.8)

The corresponding Fukushima’s decomposition is written as

X0(t) = x + M0(t) + N0(t), t ≥ 0.

For v ∈ W 1,2(Rd), the Fukushima’s decomposition for the Dirichlet process
v(X0(t)) reads as

v(X0(t)) = v(X0(0)) + Mv(t) + Nv(t),(2.9)

where Mv(t) = ∫ t
0 ∇v(X0(s)) · dM0(s), Nv(t) is a continuous process of zero

energy (the zero energy part). See [3, 4, 12] for details of symmetric Markov
processes.

3. Backward SDEs with singular coefficients. Let (�, F , Ft ) be the prob-
ability space carrying the diffusion process X(t) described in Section 2. Recall
M(t), t ≥ 0 is the martingale part of X. In this section, we will study backward sto-
chastic differential equations (BSDEs) with singular coefficients associated with
the martingale part M(t).

3.1. BSDEs with deterministic terminal times. Let f (s, y, z,ω) : [0, T ]×R ×
Rd × � → R be a given progressively measurable function. For simplicity, we
omit the random parameter ω. Assume that f is continuous in y and satisfies:

(A.1) (y1 − y2)(f (s, y1, z) − f (s, y2, z)) ≤ −d1(s)|y1 − y2|2,
(A.2) |f (s, y, z1) − f (s, y, z2)| ≤ d2|z1 − z2|,
(A.3) |f (s, y, z)| ≤ |f (s,0, z)| + K(s)(1 + |y|),
where d1(·), K(s) are a progressively measurable stochastic process and d2 is a
constant. Let ξ ∈ L2(�, FT ,P ). Let λ be the constant defined in (2.1).

THEOREM 3.1. Assume E[e− ∫ T
0 2d1(s) ds |ξ |2] < ∞, E[∫ T

0 K(s) ds] < ∞ and

E

[∫ T

0
e− ∫ s

0 2d1(u) du|f (s,0,0)|2 ds

]
< ∞.

Then, there exists a unique (Ft -adapted) solution (Y,Z) to the following BSDE:

Y(t) = ξ +
∫ T

t
f (s, Y (s),Z(s)) ds −

∫ T

t
〈Z(s), dM(s)〉,(3.1)

where Z(s) = (Z1(s), . . . ,Zd(s)).
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PROOF. We first prove the uniqueness. Set d(s) = −2d1(s). Suppose (Y 1(t),

Z1(t)) and (Y 2(t),Z2(t)) are two solutions to equation (3.1). Then

d(|Y 1(t) − Y 2(t)|2)
= −2

(
Y 1(t) − Y 2(t)

)(
f (t, Y 1(t),Z1(t)) − f (t, Y 2(t),Z2(t))

)
dt

(3.2)
+ 2

(
Y 1(t) − Y 2(t)

)〈Z1(t) − Z2(t), dM(t)〉
+ 〈

a(X(t))
(
Z1(t) − Z2(t)

)
,Z1(t) − Z2(t)

〉
dt.

By the chain rule, using the assumptions (A.1), (A.2) and Young’s inequality, we
get

|Y 1(t) − Y 2(t)|2e
∫ t

0 d(s) ds

+
∫ T

t
e

∫ s
0 d(u)du〈a(X(s))

(
Z1(s) − Z2(s)

)
,Z1(s) − Z2(s)〉ds

= −
∫ T

t
e

∫ s
0 d(u)du|Y 1(s) − Y 2(s)|2d(s) ds

+ 2
∫ T

t
e

∫ s
0 d(u)du(

Y 1(s) − Y 2(s)
)

× (
f (s, Y 1(s),Z1(s)) − f (s, Y 2(s),Z2(s))

)
ds

− 2
∫ T

t
e

∫ s
0 d(u)du(

Y 1(s) − Y 2(s)
)〈Z1(s) − Z2(s), dM(s)〉

≤ −
∫ T

t
e

∫ s
0 d(u)du|Y 1(s) − Y 2(s)|2d(s) ds(3.3)

− 2
∫ T

t
e

∫ s
0 d(u)du|Y 1(s) − Y 2(s)|2d1(s) ds

+ 2
∫ T

t
e

∫ s
0 d(u)dud2|Y 1(s) − Y 2(s)||Z1(s) − Z2(s)|ds

− 2
∫ T

t
e

∫ s
0 d(u)du(

Y 1(s) − Y 2(s)
)〈Z1(s) − Z2(s), dM(s)〉

≤ Cλ

∫ T

t
e

∫ s
0 d(u)du|Y 1(s) − Y 2(s)|2 ds

+ 1

2

∫ T

t
e

∫ s
0 d(u)du〈

a(X(s))
(
Z1(s) − Z2(s)

)
,
(
Z1(s) − Z2(s)

)〉
ds

− 2
∫ T

t
e

∫ s
0 d(u)du(

Y 1(s) − Y 2(s)
)〈Z1(s) − Z2(s), dM(s)〉.
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Take expectation in above inequality to get

E
[|Y 1(t) − Y 2(t)|2e

∫ t
0 d(s) ds] ≤ Cλ

∫ T

t
E

[
e

∫ s
0 d(u)du|Y 1(s) − Y 2(s)|2]

ds.

By Gronwall’s inequality, we conclude Y 1(t) = Y 2(t) and hence Z1(t) = Z2(t) by
(3.3).

Next, we prove the existence. Take an even, nonnegative function φ ∈ C∞
0 (R)

with
∫
R φ(x) dx = 1. Define

fn(t, y, z) =
∫
R

f (t, x, z)φn(y − x)dx,

where φn(x) = nφ(nx). Since f is continuous in y, it follows that fn(t, y, z) →
f (t, y, z) as n → ∞. Furthermore, it is easy to see that for every n ≥ 1,

|fn(t, y1, z) − fn(t, y2, z)| ≤ Cn|y1 − y2|, y1, y2 ∈ R,(3.4)

for some constant Cn. Consider the following BSDE:

Yn(t) = ξ +
∫ T

t
fn(s, Yn(s),Zn(s)) ds −

∫ T

t
〈Zn(s), dM(s)〉.(3.5)

In view of (3.4) and the assumptions (A.2), (A.3), it is known (e.g., [20]) that
the above equation admits a unique solution (Yn,Zn). Our aim now is to show
that there exists a convergent subsequence (Ynk

,Znk
). To this end, we need some

estimates. Applying Itô’s formula, in view of assumptions (A.1)–(A.3) it follows
that

|Yn(t)|2e
∫ t

0 d(s) ds +
∫ T

t
e

∫ s
0 d(u)du〈a(X(s))Zn(s),Zn(s)〉ds

= |ξ |2e
∫ T

0 d(s) ds −
∫ T

t
e

∫ s
0 d(u)duY 2

n (s)d(s) ds

+ 2
∫ T

t
e

∫ s
0 d(u)duYn(s)fn(s, Yn(s),Zn(s)) ds

− 2
∫ T

t
e

∫ s
0 d(u)duYn(s)〈Zn(s), dM(s)〉

≤ |ξ |2e
∫ T

0 d(s) ds −
∫ T

t
e

∫ s
0 d(u)duY 2

n (s)d(s) ds

− 2
∫ T

t
e

∫ s
0 d(u)dud1(s)Y

2
n (s) ds + 2C

∫ T

t
e

∫ s
0 d(u)du|Yn(s)||Zn(s)|ds

+ 2
∫ T

t
e

∫ s
0 d(u)du|Yn(s)|f (s,0,0) ds

− 2
∫ T

t
e

∫ s
0 d(u)duYn(s)〈Zn(s), dM(s)〉(3.6)
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≤ |ξ |2e
∫ T

0 d(s) ds + Cλ

∫ T

t
e

∫ s
0 d(u)duY 2

n (s) ds

+ 1

2

∫ T

t
e

∫ s
0 d(u)du〈a(X(s))Zn(s),Zn(s)〉ds

+
∫ T

t
e

∫ s
0 d(u)duY 2

n (s) ds +
∫ T

t
e

∫ s
0 d(u)du|f (s,0,0)|2 ds

− 2
∫ T

t
e

∫ s
0 d(u)duYn(s)〈Zn(s), dM(s)〉.

Take expectation in (3.6) to obtain

E
[|Yn(t)|2e

∫ t
0 d(s) ds] + 1

2
E

[∫ T

t
e

∫ s
0 d(u)du〈a(X(s))Zn(s),Zn(s)〉ds

]

≤ E
[|ξ |2e

∫ T
0 d(s) ds] + Cλ

∫ T

t
E

[
e

∫ s
0 d(u)duY 2

n (s)
]
ds(3.7)

+ E

[∫ T

t
e

∫ s
0 d(u)du|f (s,0,0)|2 ds

]
.

Gronwall’s inequality yields

sup
n

sup
0≤t≤T

E
[|Yn(t)|2e

∫ t
0 d(s) ds]

(3.8)

≤ C

{
E

[|ξ |2e
∫ T

0 d(s) ds] + E

[∫ T

0
e

∫ s
0 d(u)du|f (s,0,0)|2 ds

]}

and also

sup
n

E

[∫ T

0
e

∫ s
0 d(u)du〈a(X(s))Zn(s),Zn(s)〉ds

]
< ∞.(3.9)

Moreover, (3.6)–(3.9) further imply that there exists some constant C such that

E
[

sup
0≤t≤T

Y 2
n (t)e

∫ t
0 d(s) ds

]

≤ C + CE

[
sup

0≤t≤T

∫ t

0
e

∫ s
0 d(u)duYn(s)〈Zn(s), dM(s)〉

]

≤ C + CE

[(∫ T

0
e2

∫ s
0 d(u)duY 2

n (s)〈a(X(s))Zn(s),Zn(s)〉ds

)1/2]

≤ C + CE

[
sup

0≤s≤T

(
e(1/2)

∫ s
0 d(u)du|Yn(s)|)

×
(∫ T

0
e

∫ s
0 d(u)du〈a(X(s))Zn(s),Zn(s)〉ds

)1/2]
(3.10)
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≤ C + 1

2
E

[
sup

0≤s≤T

(
e

∫ s
0 d(u)duY 2

n (s)
)]

+ C1E

[∫ T

0
e

∫ s
0 d(u)du〈a(X(s))Zn(s),Zn(s)〉ds

]
.

In view of (3.9), this yields

sup
n

E
[

sup
0≤t≤T

Y 2
n (t)e

∫ t
0 d(s) ds

]
< ∞.(3.11)

By (3.9) and (3.11), we can extract a subsequence nk such that Ynk
(t)e(1/2)

∫ t
0 d(s) ds

converges to some Ŷ (t) in L2(�,L∞[0, T ]) equipped with the weak star topol-
ogy and Znk

(t)e(1/2)
∫ t

0 d(s) ds converges weakly to some Ẑ(t) in L2(�T ;R), where
�T = [0, T ] × �. Observe that

Ynk
(t)e(1/2)

∫ t
0 d(s) ds

= e(1/2)
∫ T

0 d(s) dsξ +
∫ T

t
e(1/2)

∫ s
0 d(u)dufnk

(s, Ynk
(s),Znk

(s)) ds

(3.12)

− 1

2

∫ T

t
e(1/2)

∫ s
0 d(u)duYnk

(s)d(s) ds

−
∫ T

t
e(1/2)

∫ s
0 d(u)du〈Znk

(s), dM(s)〉.
Letting k → ∞ in (3.12), using the monotonicity of f , following the same argu-
ments as that in the proof of Proposition 2.3 in Darling and Pardoux in [8], we can
show that the limit (Ŷ , Ẑ) satisfies

Ŷ (t) = e(1/2)
∫ T

0 d(s) dsξ

+
∫ T

t
e(1/2)

∫ s
0 d(u)duf

(
s, e−(1/2)

∫ s
0 d(u)duŶ (s), e−(1/2)

∫ s
0 d(u)duẐ(s)

)
ds(3.13)

− 1

2

∫ T

t
Ŷ (s)d(s) ds −

∫ T

t
〈Ẑ(s), dM(s)〉.

Set

Y(t) = e−(1/2)
∫ t

0 d(u)duŶ (t), Z(t) = e−(1/2)
∫ t

0 d(u)duẐ(t).

An application of Itô’s formula yields that

Y(t) = ξ +
∫ T

t
f (s, Y (s),Z(s)) ds −

∫ T

t
〈Z(s), dM(s)〉,

namely, (Y,Z) is a solution to the backward equation (3.1). The proof is complete.
�
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3.2. BSDEs with random terminal times. Let f (t, y, z) satisfy (A.1)–(A.3) in
Section 3.1. In this subsection, set d(s) = −2d1(s) + δd2

2 . The following result
provides existence and uniqueness for BSDEs with random terminal time. Let τ

be a stopping time. Suppose ξ is Fτ -measurable.

THEOREM 3.2. Assume E[e
∫ τ

0 d(s) ds |ξ |2] < ∞, E[∫ τ
0 K(s) ds] < ∞ and

E

[∫ τ

0
e

∫ s
0 d(u)du|f (s,0,0)|2 ds

]
< ∞,(3.14)

for some δ > 1
λ

, where λ is the constant appeared in (2.1). Then, there exists a
unique solution (Y,Z) to the BSDE

Y(t) = ξ +
∫ τ

τ∧t
f (s, Y (s),Z(s)) ds −

∫ τ

τ∧t
〈Z(s), dM(s)〉.(3.15)

Furthermore, the solution (Y,Z) satisfies

E

[∫ τ

0
e

∫ s
0 d(u)duY 2(s) ds

]
< ∞, E

[∫ τ

0
e

∫ s
0 d(u)du|Z(s)|2 ds

]
< ∞,(3.16)

and

E
[

sup
0≤s≤τ

{
e

∫ s
0 d(u)duY 2(s)

}]
< ∞.(3.17)

PROOF. After the preparation of Theorem 3.1, the proof of this theorem is
similar to that of Theorem 3.4 in [8], where d1(s), d2 were both assumed to be con-
stants. We only give a sketch highlighting the differences. For every n ≥ 1, from
Theorem 3.1 we know that the following BSDE has a unique solution (Yn,Zn) on
0 ≤ t ≤ n:

Yn(t) = E[ξ |Fn] +
∫ τ∧n

τ∧t
f (s, Yn(s),Zn(s)) ds −

∫ τ∧n

τ∧t
〈Zn(s), dM(s)〉.(3.18)

Extend the definition of (Yn,Zn) to all t ≥ 0 by setting

Yn(t) = E[ξ |Fn], Zn(t) = 0 for t ≥ n.

Then the extended (Yn,Zn) satisfies a bsde similar to (3.18) with f replaced by
χ{s≤n∧τ }f (s, y, z). Let n ≥ m. By Itô’s formula, we have

|Yn(t ∧ τ) − Ym(t ∧ τ)|2e
∫ t∧τ

0 d(s) ds

+
∫ n∧τ

t∧τ
e

∫ s
0 d(u)du〈

a(X(s))
(
Zn(s) − Zm(s)χ{s≤m∧τ }

)
,

Zn(s) − Zm(s)χ{s≤m∧τ }
〉
ds

= e
∫ n∧τ

0 d(s) ds(E[ξ |Fn] − E[ξ |Fm])2(3.19)
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−
∫ n∧τ

t∧τ
e

∫ s∧τ
0 d(u)du|Yn(s ∧ τ) − Ym(s ∧ τ)|2d(s) ds

+ 2
∫ n∧τ

t∧τ
e

∫ s∧τ
0 d(u)du(

Yn(s ∧ τ) − Ym(s ∧ τ)
)

× (
f

(
s, Yn(s ∧ τ),Zn(s ∧ τ)

)
− f

(
s, Ym(s ∧ τ),Zm(s ∧ τ)

))
ds

+ 2
∫ n∧τ

m∧τ
e

∫ s∧τ
0 d(u)du(

Yn(s ∧ τ) − Ym(s ∧ τ)
)

× f
(
s, Ym(s ∧ τ),Zm(s ∧ τ)

)
ds

− 2
∫ n∧τ

t∧τ
e

∫ s∧τ
0 d(u)du(

Yn(s ∧ τ) − Ym(s ∧ τ)
)〈Zn(s ∧ τ), dM(s)〉

+ 2
∫ m∧τ

t∧τ
e

∫ s∧τ
0 d(u)du(

Yn(s ∧ τ) − Ym(s ∧ τ)
)〈Zm(s ∧ τ), dM(s)〉.

Choose δ1, δ2 such that 1
λ

< δ1 < δ and 0 < δ2 < δ − δ1. In view of the (A.1) and
(A.2), we have

2
∫ n∧τ

t∧τ
e

∫ s∧τ
0 d(u)du(

Yn(s ∧ τ) − Ym(s ∧ τ)
)

× (
f

(
s, Yn(s ∧ τ),Zn(s ∧ τ)

) − f
(
s, Ym(s ∧ τ),Zm(s ∧ τ)

))
ds

≤ −2
∫ n∧τ

t∧τ
e

∫ s∧τ
0 d(u)du(

Yn(s ∧ τ) − Ym(s ∧ τ)
)2

d1(s) ds

(3.20)

+ δ1d
2
2

∫ n∧τ

t∧τ
e

∫ s∧τ
0 d(u)du(

Yn(s ∧ τ) − Ym(s ∧ τ)
)2

ds

+ 1

λδ1

∫ n∧τ

t∧τ
e

∫ s
0 d(u)du〈

a(X(s))
(
Zn(s) − Zm(s)χ{s≤m∧τ }

)
,

Zn(s) − Zm(s)χ{s≤m∧τ }
〉
ds.

On the other hand, by (A.3), it follows that

2
∫ n∧τ

m∧τ
e

∫ s∧τ
0 d(u)du(

Yn(s ∧ τ) − Ym(s ∧ τ)
)
f

(
s, Ym(s ∧ τ),Zm(s ∧ τ)

)
ds

≤ δ2d
2
2

∫ n∧τ

t∧τ
e

∫ s∧τ
0 d(u)du(

Yn(s ∧ τ) − Ym(s ∧ τ)
)2

ds(3.21)

+ 1

δ2d
2
2

∫ n∧τ

m∧τ
e

∫ s∧τ
0 d(u)du(|f (s,0,0)| + K + K|E[ξ |Fm]|)2

ds.
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Take expectation and utilize (3.19)–(3.21) to obtain

E
[|Yn(t ∧ τ) − Ym(t ∧ τ)|2e

∫ t∧τ
0 d(s) ds]

+
(

1 − 1

λδ1

)
E

[∫ n∧τ

t∧τ
e

∫ s
0 d(u)du〈

a(X(s))
(
Zn(s) − Zm(s)χ{s≤m∧τ }

)
,

Zn(s) − Zm(s)χ{s≤m∧τ }
〉
ds

]

(3.22)

+ (δ − δ1 − δ2)d
2
2E

[∫ n∧τ

t∧τ
e

∫ s
0 d(u)du(

Yn(s ∧ τ) − Ym(s ∧ τ)
)2

ds

]

≤ E
[
e

∫ n∧τ
0 d(s) ds(E[ξ |Fn] − E[ξ |Fm])2]

+ 1

δ2d
2
2

E

[∫ n∧τ

m∧τ
e

∫ s∧τ
0 d(u)du(|f (s,0,0)| + K + K|E[ξ |Fm]|)2

ds

]
.

Since the right-hand side tends to zero as n,m → ∞, we deduce that
{(

e(1/2)
∫ t∧τ

0 d(s) dsYn(t), e
(1/2)

∫ t∧τ
0 d(s) dsZn(t)

)}
converges to some (Ŷ , Ẑ) in M2(0, τ ;R × Rd). Furthermore, for every t ≥ 0,
e(1/2)

∫ t∧τ
0 d(s) dsYn(t) converges in L2. We may as well assume

Ŷ (t) = lim
n→∞ e(1/2)

∫ t∧τ
0 d(s) dsYn(t)(3.23)

for all t . Observe that for any n ≥ t ≥ 0,

e(1/2)
∫ t∧τ

0 d(s) dsYn(t)

= e(1/2)
∫ n∧τ

0 d(s) dsE[ξ |Fn] +
∫ n∧τ

τ∧t
e(1/2)

∫ s∧τ
0 d(u)duf (s, Yn(s),Zn(s)) ds

(3.24)

− 1

2

∫ n∧τ

τ∧t
e(1/2)

∫ s∧τ
0 d(u)duYn(s)d(s) ds

−
∫ n∧τ

τ∧t
e(1/2)

∫ s∧τ
0 d(u)du〈Zn(s), dM(s)〉.

Letting n → ∞ yields that

Ŷ (t) = e(1/2)
∫ τ

0 d(s) dsξ +
∫ τ

τ∧t
e(1/2)

∫ s∧τ
0 d(u)duf

(
s, e−(1/2)

∫ s∧τ
0 d(u)duŶ (s),

e−(1/2)
∫ s∧τ

0 d(u)duẐ(s)
)
ds(3.25)

− 1

2

∫ τ

τ∧t
Ŷ (s)d(s) ds −

∫ τ

τ∧t
〈Ẑ(s), dM(s)〉.

Put

Y(t) = e−(1/2)
∫ t∧τ

0 d(s) ds Ŷ (t), Z(t) = e−(1/2)
∫ t∧τ

0 d(s) dsẐ(t).
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An application of Itô’s formula and (3.25) yield that

Y(t) = ξ +
∫ τ

τ∧t
f (s, Y (s),Z(s)) ds −

∫ τ

τ∧t
〈Z(s), dM(s)〉.(3.26)

Hence, (Y,Z) is a solution to the bsde (3.15) proving the existence. To obtain the
estimates (3.16) and (3.17), we proceed to get an uniform estimate for Yn(s) and
then pass to the limit. Let δ1, δ2 be chosen as before. Similar to the proof of (3.8),
by Itô’s formula, we have

|Yn(t ∧ τ)|2e
∫ t∧τ

0 d(s) ds +
∫ n∧τ

t∧τ
e

∫ s
0 d(u)du〈a(X(s))Zn(s),Zn(s)〉ds

≤ |E[ξ |Fn]|2e
∫ n∧τ

0 d(s) ds −
∫ n∧τ

t∧τ
e

∫ s
0 d(u)du|Yn(s)|2d(s) ds

− 2
∫ n∧τ

t∧τ
e

∫ s
0 d(u)dud1(s)Y

2
n (s) ds

+ 2
∫ n∧τ

t∧τ
e

∫ s
0 d(u)dud2|Yn(s)||Zn(s)|ds

+ 2
∫ n∧τ

t∧τ
e

∫ s
0 d(u)du|Yn(s)||f (s,0,0)|ds

− 2
∫ n∧τ

t∧τ
e

∫ s
0 d(u)duYn(s)〈Zn(s), dM(s)〉(3.27)

≤ |E[ξ |Fn]|2e
∫ n∧τ

0 d(s) ds −
∫ n∧τ

t∧τ
e

∫ s
0 d(u)duδd2

2Y 2
n (s) ds

+
∫ n∧τ

t∧τ
e

∫ s
0 d(u)duδ1d

2
2Y 2

n (s) ds

+ 1

δ1λ

∫ n∧τ

t∧τ
e

∫ s
0 d(u)du〈a(X(s))Zn(s),Zn(s)〉ds

+
∫ n∧τ

t∧τ
δ2d

2
2e

∫ s
0 d(u)duY 2

n (s) ds + 1

δ2d
2
2

∫ n∧τ

t∧τ
e

∫ s
0 d(u)du|f (s,0,0)|2 ds

− 2
∫ n∧τ

t∧τ
e

∫ s
0 d(u)duYn(s)〈Zn(s), dM(s)〉.

Recalling the choices of d(s), δ1 and δ2, using Burkholder’s inequality, we obtain
from (3.27) that

E
[

sup
0≤t≤n

|Yn(t ∧ τ)|2e
∫ t∧τ

0 d(s) ds
]

≤ E
[|ξ |2e

∫ n∧τ
0 d(s) ds] + E

[∫ τ

0
e

∫ s
0 d(u)du 1

δ2d
2
2

|f (s,0,0)|2 ds

]
(3.28)
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+ 2CE

[(∫ n∧τ

0
e2

∫ s
0 d(u)duY 2

n (s)〈a(X(s))Zn(s),Zn(s)〉ds

)1/2]

≤ E
[|ξ |2e

∫ n∧τ
0 d(s) ds] + E

[∫ τ

0
e

∫ s
0 d(u)du 1

δ2d
2
2

|f (s,0,0)|2 ds

]

+ 1

2
E

[
sup

0≤t≤n

|Yn(t ∧ τ)|2e
∫ t∧τ

0 d(s) ds
]

+ C1E

[∫ n∧τ

0
e

∫ s
0 d(u)du〈a(X(s))Zn(s),Zn(s)〉ds

]
.

In view of (3.27), as the proof of (3.9), we can show that

sup
n

E

[∫ n∧τ

0
e

∫ s
0 d(u)du〈a(X(s))Zn(s),Zn(s)〉ds

]
< ∞.(3.29)

(3.29) and (3.28) together with our assumptions on f and ξ imply

sup
n

E
[

sup
0≤t≤n

|Yn(t ∧ τ)|2e
∫ t∧τ

0 d(s) ds
]
< ∞.(3.30)

Applying Fatou lemma, (3.17) follows. �

3.3. A particular case. Let f (x, y, z) :Rd × R × Rd → R be a Borel measur-
able function. Assume that f is continuous in y and satisfies:

(B.1) (y1 − y2)(f (x, y1, z) − f (x, y2, z)) ≤ −c1(x)|y1 − y2|2, where c1(x) is a
measurable function on Rd .

(B.2) |f (x, y, z1) − f (x, y, z2)| ≤ c2|z1 − z2|.
(B.3) |f (x, y, z)| ≤ |f (x,0, z)| + c3(x)(1 + |y|).
Let D be a bounded regular domain. Define

τx
D = inf{t ≥ 0 :Xx(t) /∈ D}.(3.31)

Given g ∈ Cb(R
d). Consider for each x ∈ D the following BSDE:

Yx(t) = g(Xx(τ
x
D)) +

∫ τx
D

t∧τx
D

f (Xx(s), Yx(s),Zx(s)) ds

(3.32)

−
∫ τx

D

t∧τx
D

〈Zx(s), dMx(s)〉,

where Mx(s) is the martingale part of Xx(s). As a consequence of Theorem 3.2,
we have the following theorem.

THEOREM 3.3. Suppose c3 ∈ LP (D) for p > d
2 ,

Ex

[
exp

(∫ τx
D

0

(−2c1(X(s)) + δc2
2
)
ds

)]
< ∞,
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for some δ > 1
λ

and

Ex

[∫ τx
D

0
|f (X(s),0,0)|2 ds

]
< ∞.

The BSDE (3.32) admits a unique solution (Yx(t),Zx(t)). Furthermore,

sup
x∈D̄

|Yx(0)| < ∞.(3.33)

4. Semilinear PDEs. As in previous sections, (X(t),Px) will denote the dif-
fusion process defined in (2.5).

4.1. Linear case. Consider the second order differential operator

L2 = 1

2

d∑
i,j=1

∂

∂xi

(
aij (x)

∂

∂xj

)
+

d∑
i=1

bi(x)
∂

∂xi

+ q(x).(4.1)

Let D be a bounded domain with regular boundary (w.r.t. the Laplace operator �)
and F(x) a measurable function satisfying

|F(x)| ≤ C + C|q(x)|.(4.2)

Take ϕ ∈ C(∂D) and consider the Dirichlet boundary value problem{
L2u = F, in D,
u = ϕ, on ∂D.

(4.3)

THEOREM 4.1. Assume (4.2) and that there exists x0 ∈ D such that

Ex0

[
exp

(∫ τ
x0
D

0
q(X(s)) ds

)]
< ∞.

Then there is a unique, continuous weak solution u to the Dirichlet boundary value
problem (4.3) which is given by

u(x) = Ex

[
ϕ(X(τx

D)) +
∫ τx

D

0
e

∫ t
0 q(X(s)) dsF (X(t) dt

]
.(4.4)

PROOF. Write

u1(x) = Ex[ϕ(X(τx
D))],

and

u2(x) = Ex

[∫ τx
D

0
e

∫ t
0 q(X(s)) dsF (X(t)) dt

]
.

We know from Theorem 4.3 in [6] that u1 is the unique, continuous weak solution
to the problem {

L2u = 0, in D,
u = ϕ, on ∂D.

(4.5)



A PROBABILISTIC APPROACH TO DIRICHLET PROBLEMS OF PDEs 1519

So it is sufficient to show that u2 is the unique, continuous weak solution to the
following problem:

{
L2u = F, in D,
u = 0, on ∂D.

(4.6)

By Lemma 5.7 in [6] and Proposition 3.16 in [7], we know that u2 belong to
C0(D). Let Gβ,β ≥ 0 denote the resolvent operators of the generator L2 on D

with Dirichlet boundary condition, that is,

Gβf (x) = Ex

[∫ τx
D

0
e−βte

∫ t
0 q(X(s)) dsf (X(t)) dt

]
.

By the Markov property, it is easy to see that

β
(
u2(x) − βGβu2(x)

) = βGβF(x).

Since Gβ is strong continuous, it follows that

lim
β→∞β(u2 − βGβu2) = F

in L2(D). This shows that u2 ∈ D(L2) ⊂ W 1,2(D) and L2u2 = F . The proof is
complete. �

4.2. Semilinear case. Let g(x, y, z) :Rd ×R×Rd → R be a Borel measurable
function that satisfies:

(C.1) (y1 − y2)(g(x, y1, z) − g(x, y2, z)) ≤ −k1(x)|y1 − y2|2,
(C.2) |g(x, y, z1) − g(x, y, z2)| ≤ k2|z1 − z2|,
(C.3) |g(x, y, z)| ≤ C + C|q(x)|,
where k1(x) is a measurable function and k2,C are constants. Consider the semi-
linear Dirichlet boundary value problem

{
L2u = −g(x,u(x),∇u(x)), in D,
u = ϕ, on ∂D,

(4.7)

where ϕ ∈ C(∂D).

THEOREM 4.2. Assume

Ex

[
exp

(∫ τx
D

0

(
q(X(s)) − 2k1(X(s)) + δk2

2
)
ds

)]
< ∞,

for some δ > 1
λ

.
The Dirichlet boundary value problem (4.7) has a unique continuous weak so-

lution.
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PROOF. Set f (x, y, z) = q(x)y + g(x, y, z). According to Theorem 3.3, for
every x ∈ D the following BSDE:

Yx(t) = φ(Xx(τ
x
D)) +

∫ τx
D

t∧τx
D

f (Xx(s), Yx(s),Zx(s)) ds

(4.8)

−
∫ τx

D

t∧τx
D

〈Zx(s), dMx(s)〉,

admits a unique solution (Yx(t),Zx(t)), t ≥ 0. Put u0(x) = Yx(0) and v0(x) =
Zx(0). By the strong Markov property of X and the uniqueness of the BSDE (4.8),
it is easy to see that

Yx(t) = u0(Xx(t)), Zx(t) = v0(Xx(t)), 0 ≤ t ≤ τx
D.(4.9)

Now consider the following problem:{
L1u = −f (x,u0(x), v0(x)), in D,
u = ϕ, on ∂D,

(4.10)

where L1 is defined as in Section 2. By Theorem 4.1, problem (4.10) has a unique
continuous weak solution u(x). As u ∈ W 1,2(D), it follows from the decomposi-
tion of the Dirichlet process u(X(t ∧ τx

D)) (see [12, 17]) that

u
(
X(t ∧ τx

D)
) = ϕ(Xx(τ

x
D)) +

∫ τx
D

t∧τx
D

f
(
Xx(s), u0

(
X(s ∧ τx

D)
)
, v0

(
X(s ∧ τx

D)
))

ds

−
∫ τx

D

t∧τx
D

〈∇u
(
X(s ∧ τx

D)
)
, dMx(s)

〉
(4.11)

= ϕ(Xx(τ
x
D)) +

∫ τx
D

t∧τx
D

f (Xx(s), Yx(s),Zx(s))) ds

−
∫ τx

D

t∧τx
D

〈∇u
(
X(s ∧ τx

D)
)
, dMx(s)

〉
.

Take conditional expectation both in (4.11) and (4.8) to discover

Yx(t ∧ τx
D) = u

(
X(t ∧ τx

D)
)

= E

[
ϕ(Xx(τ

x
D)) +

∫ τx
D

t∧τx
D

f (Xx(s), Yx(s),Zx(s)) ds
∣∣∣Ft∧τx

D

]
.

In particular, let t = 0 to obtain u(x) = u0(x). On the other hand, comparing (4.8)
with (4.11) and by the uniqueness of decomposition of semimartingales, we de-
duce that ∫ τx

D

t∧τx
D

〈∇u
(
X(s ∧ τx

D)
)
, dMx(s)

〉 =
∫ τx

D

t∧τx
D

〈Zx(s), dMx(s)〉
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for all t . By Itô’s isometry, we have

E

[(∫ ∞
0

〈(∇u(X(s)) − Zx(s)
)
χ{s<τx

D}, dMx(s)
〉)2]

= E

[(∫ ∞
0

〈(∇u(X(s)) − v0(Xx(s))
)
χ{s<τx

D}, dMx(s)
〉)2]

(4.12)

= E

[∫ ∞
0

〈
a(Xx(s))

(∇u(X(s)) − v0(Xx(s))
)
,

∇u(X(s)) − v0(Xx(s))
〉
χ{s<τx

D} ds

]
= 0.

By Fubini theorem and the uniform ellipticity of the matrix a(x), we deduce that

P D
s (|∇u − v0|2) = E

[|∇u(X(s)) − v0(Xx(s))|2χ{s<τx
D}

] = 0

a.e. in s with respect to the Lebesgue measure, where P D
s h(x) = Ex[h(X(t)), t <

τx
D]. The strong continuity of the semigroup P D

s , s ≥ 0 implies that

|∇u − v0|2(x) = lim
s→0

P D
s (|∇u − v0|2) = 0(4.13)

a.e. Returning to problem (4.10), we see that u actually is a weak solution to the
nonlinear problem:{

L0u = −f (x,u(x),∇u(x)), in D,
u = φ, on ∂D.

(4.14)

Suppose ū is another solution to the problem (4.14). By the decomposition of the
Dirichlet process ū(Xx(s)), we find that (ū(Xx(s)),∇ū(Xx(s))) is also a solution
to the BSDE (4.8). The uniqueness of the BSDE implies that ū(Xx(s)) = Yx(s). In
particular, ū(x) = u0(x) = Yx(0). This proves the uniqueness. �

5. Semilinear elliptic PDEs with singular coefficients. In this section, we
study the semilinear second order elliptic PDEs of the following form:{ Au(x) = −f (x,u(x)), ∀x ∈ D,

u(x)|∂D = ϕ, ∀x ∈ ∂D,
(5.1)

where the operator A is given by

A = 1

2

d∑
i,j=1

∂

∂xi

(
aij (x)

∂

∂xj

)
+

d∑
i=1

bi(x)
∂

∂xi

− “div(b̂·)” + q(x)

as in Section 2 and ϕ ∈ C(∂D). Consider the following conditions:

(D.1) (y1 − y2)(f (x, y1) − f (x, y2)) ≤ −J1(x)|y1 − y2|2,
(D.2) |f (x, y, z)| ≤ C,
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where J1(x) is a measurable function, C is a constant. The following theorem is
the main result of this section.

THEOREM 5.1. Suppose that (D.1), (D.2) hold and

E0
x

[
exp

{∫ τD

0
〈(a−1b)(X0(s)), dM0(s)〉

+
(∫ τD

0
〈(a−1b̂)(X0(s)), dM0(s)〉

)
◦ rτD

− 1

2

∫ τD

0
(b − b̂)a−1(b − b̂)∗(X0(s)) ds(5.2)

+
∫ τD

0
q(X0(s)) ds − 2

∫ τD

0
J1(X

0(s)) ds

}]

< ∞
for some x ∈ D, where X0 is the diffusion generated by L0 as in Section 2 and
τD is the first exit time of X0 from D. Then there exists a unique, continuous weak
solution to equation (5.1).

PROOF. Set

Zt = exp
{∫ t

0
〈(a−1b)(X0(s)), dM0(s)〉 +

(∫ t

0
〈(a−1b̂)(X0(s)), dM0(s)〉

)
◦ rt

− 1

2

∫ t

0
(b − b̂)a−1(b − b̂)∗(X0(s)) ds +

∫ t

0
q(X0(s)) ds(5.3)

− 2
∫ t

0
J1(X

0(s)) ds

}
.

Put

M̂(t) =
∫ t

0
〈(a−1b̂)(X0(s)), dM0(s)〉 for t ≥ 0.

Let R > 0 so that D ⊂ BR := B(0,R). By Lemma 3.2 in [5] (see also [9]), there
exits a bounded function v ∈ W

1,p
0 (BR) ⊂ W

1,2
0 (BR) such that

(M̂(t)) ◦ rt = −M̂(t) + Nv(t),

where Nv is the zero energy part of the Fukushima decomposition for the Dirichlet
process v(X0(t)). Furthermore, v satisfies the following equation in the distribu-
tional sense:

div(a∇v) = −2 div(b̂) in BR.(5.4)
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Note that by Sobolev embedding theorem, v ∈ C(Rd) if we extend v = 0 on Dc.
This implies that M̂ and Nv are continuous additive functionals of X0 in the strict
sense (see [9, 12]), and so is t → (M̂(t)) ◦ rt . Thus,(∫ t

0
〈(a−1b̂)(X0(s)), dM0(s)〉

)
◦ rt

= −
∫ t

0
〈(a−1b̂)(X0(s)), dM0(s)〉 + Nv(t)

= −
∫ t

0
〈(a−1b̂)(X0(s)), dM0(s)〉 + v(X0(t)) − v(X0(0)) − Mv(t)

= −
∫ t

0
〈(a−1b̂)(X0(s)), dM0(s)〉 + v(X0(t)) − v(X0(0))

−
∫ t

0
〈∇v(X0(s)), dM0(s)〉.

Hence,

Zt = ev(X0(t))

ev(X0(0))

× exp
(∫ t

0
〈a−1(b − b̂ − a∇v)(X0(s)), dM0(s)〉 − 2

∫ t

0
J1(X

0(s)) ds

(5.5)

+
∫ t

0

(
q − 1

2
(b − b̂ − a∇v)a−1(b − b̂ − a∇v)∗

)
(X0(s)) ds

+
∫ t

0

(
1

2
(∇v)a(∇v)∗ − 〈b − b̂,∇v〉

)
(X0(s)) ds

)
.

Note that Zt is well defined under P 0
x for every x ∈ D. Set h(x) = ev(x). Introduce

Â = 1

2

d∑
i,j=1

∂

∂xi

(
aij (x)

∂

∂xj

)
+

d∑
i=1

[bi(x) − b̂i(x) − (a∇v)i(x)] ∂

∂xi

− 〈b − b̂,∇v〉(x) + 1

2
(∇v)a(∇v)∗(x) + q(x).

Let (�, F , Ft , X̂(t), P̂x, x ∈ Rd) be the diffusion process whose infinitesimal gen-
erator is given by

L̂ = 1

2

d∑
i,j=1

∂

∂xi

(
aij (x)

∂

∂xj

)
+

d∑
i=1

[bi(x) − b̂i (x) − (a∇v)i(x)] ∂

∂xi

.

It is known from [17] that P̂x is absolutely continuous with respect to P 0
x and

dP̂x

dP 0
x

∣∣∣∣
Ft

= Ẑt ,
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where

Ẑt = exp
(∫ t

0
〈a−1(b − b̂ − a∇v)(X0(s)), dM0(s)〉

(5.6)

−
∫ t

0

(
1

2
(b − b̂ − a∇v)a−1(b − b̂ − a∇v)∗

)
(X0(s)) ds

)
.

Put

f̂ (x, y) = h(x)f (x,h−1(x)y).

Then

(y1 − y2)
(
f (x, y1) − f (x, y2)

) ≤ −J1(x)|y1 − y2|2.
Consider the following nonlinear elliptic partial differential equation:

{
Âû(x) = −f̂ (x, û(x)), ∀x ∈ D,
û(x)|∂D = h(x)v(x), ∀x ∈ ∂D.

(5.7)

In view of (5.5), condition (5.2) implies that

Êx

[
exp

(
−2

∫ τD

0
J1(X

0(s)) ds +
∫ τD

0
q(X0(s)) ds

(5.8)

+
∫ τD

0

(
1

2
(∇v)a(∇v)∗ − 〈b − b̂,∇v〉

)
(X0(s)) ds

)]
< ∞,

where Êx indicates that the expectation is taken under P̂x . From Theorem 4.2,
it follows that equation (5.7) admits a unique weak solution û. Set u(x) =
h−1(x)û(x). We will verify that u is a weak solution to equation (5.1).

Indeed, for ψ ∈ W
1,2
0 (D), since û(x) = h(x)u(x) is a weak solution to equation

(5.7), it follows that

1

2

d∑
i,j=1

∫
D

aij (x)
∂[h(x)u(x)]

∂xi

∂[h−1(x)ψ]
∂xj

dx

−
d∑

i=1

∫
D

[bi(x) − b̂i (x) − (a∇v)i(x)] ∂[h(x)u(x)]
∂xi

h−1(x)ψ dx

+
∫
D

〈b − b̂,∇v(x)〉u(x)ψ(x)dx

− 1

2

∫
D

(∇v)a(∇v)∗(x)u(x)ψ dx −
∫
D

q(x)u(x)ψ(x)dx

=
∫
D

f (x,u(x))ψ(x) dx.
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Denote the terms on the left of the above equality, respectively, by T1, T2, T3, T4,
T5. Clearly,

T1 = 1

2

d∑
i,j=1

∫
D

aij (x)
∂u(x)

∂xi

∂ψ

∂xj

dx − 1

2

d∑
i,j=1

∫
D

aij (x)
∂u(x)

∂xi

∂v

∂xj

ψ dx

+ 1

2

d∑
i,j=1

∫
D

aij (x)
∂v

∂xi

∂ψ

∂xj

u(x) dx(5.9)

− 1

2

d∑
i,j=1

∫
D

aij (x)
∂v

∂xi

∂v

∂xj

ψu(x)dx.

Using chain rules, rearranging terms, it turns out that

T2 + T3 = −
d∑

i=1

∫
D

bi(x)
∂u(x)

∂xi

ψ dx −
d∑

i=1

∫
D

b̂i(x)
∂ψ

∂xi

u(x) dx

+
d∑

i=1

∫
D

[b̂i(x) + (a∇v)i(x)] ∂[ψu(x)]
∂xi

dx(5.10)

−
d∑

i=1

∫
D

(a∇v)i(x)
∂ψ

∂xi

u(x) dx +
d∑

i=1

∫
D

(a∇v)i(x)
∂v

∂xi

u(x)ψ dx.

In view of (5.4),

d∑
i=1

∫
D

[b̂i(x) + (a∇v)i(x)] ∂[ψu(x)]
∂xi

dx

(5.11)

= 1

2

d∑
i=1

∫
D

(a∇v)i(x)
∂[ψu(x)]

∂xi

dx.

Thus,

T2 + T3 = −
d∑

i=1

∫
D

bi(x)
∂u(x)

∂xi

ψ dx −
d∑

i=1

∫
D

b̂i(x)
∂ψ

∂xi

u(x) dx

+ 1

2

d∑
i=1

∫
D

(a∇v)i(x)
∂[ψu(x)]

∂xi

dx(5.12)

−
d∑

i=1

∫
D

(a∇v)i(x)
∂ψ

∂xi

u(x) dx +
d∑

i=1

∫
D

(a∇v)i(x)
∂v

∂xi

u(x)ψ dx.
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After cancelations, it is now easy to see that

T1 + T2 + T3 + T4 + T5 = 1

2

d∑
i,j=1

∫
D

aij (x)
∂u(x)

∂xi

∂ψ

∂xj

dx

−
d∑

i=1

∫
D

bi(x)
∂u(x)

∂xi

ψ dx

(5.13)

−
d∑
i

∫
D

b̂
∂ψ

∂xi

u(x) dx −
∫
D

q(x)u(x)ψ(x)dx

=
∫
D

f (x,u(x))ψ(x) dx.

Since ψ is arbitrary, we conclude that u is a weak solution of equation (5.1). Sup-
pose u is a continuous weak solution to equation (5.1). Put û(x) = h(x)u(x). Re-
versing the above process, we see that û is a weak solution to equation (5.7). The
uniqueness of the solution of equation (5.1) follows from that of equation (5.7).

�
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