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RECONSTRUCTION FOR THE POTTS MODEL1

BY ALLAN SLY

Microsoft Research

The reconstruction problem on the tree has been studied in numerous
contexts including statistical physics, information theory and computational
biology. However, rigorous reconstruction thresholds have only been estab-
lished in a small number of models. We prove the first exact reconstruction
threshold in a nonbinary model establishing the Kesten–Stigum bound for the
3-state Potts model on regular trees of large degree. We further establish that
the Kesten–Stigum bound is not tight for the q-state Potts model when q ≥ 5.
Moreover, we determine asymptotics for these reconstruction thresholds.

1. Introduction.

1.1. Preliminaries. We begin by giving a general description of broadcast (or
Markov) models on trees and the reconstruction problem. The broadcast model on
a tree T is a model in which information is sent from the root ρ across the edges,
which act as noisy channels, to the leaves of T . For some given finite set of states C ,
a configuration on T is an element of CT , that is an assignment of a state C to each
vertex. We will denote the elements of C as {1, . . . , q} and q = |C| as the number of
states. The broadcast model is a probability distribution on configurations defined
as follows. Some |C| × |C| probability transition matrix M is chosen as the noisy
channel on each edge. The spin σρ is chosen from C according to some initial
distribution and is then propagated along the edges of the tree according to the
transition matrix M . That is, if vertex u is the parent of v in the tree then the spin
at v is defined according to the probabilities

P(σv = j |σu = i) = Mi,j .

The focus of this paper is on the symmetric channels which are given by transition
matrices of the form

Mi,j =
⎧⎨⎩

1 − p, if i = j ,
p

q − 1
, otherwise,

where 0 < p ≤ 1. The state of the root is chosen according to the uniform distrib-
ution on C .
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The symmetric channel corresponds to the statistical physics model known as
the q-state Potts model on the tree. The Potts model weights configurations ac-
cording to the Hamiltonian H(σ) =∑(u,v)∈E 1{σu=σv} which counts the number
of edges in which the states on each side are equal. On a finite tree, the probability
distribution is given by

P(σ) = 1

Z
exp
(
β
∑

(u,v)∈E

1{σu=σv}
)
,

where Z is a normalising constant. On an infinite tree, more than one Gibbs mea-
sure may exist, the symmetric channel corresponds to the free Gibbs measure. The
two models coincide when 1 − p = eβ

eβ+q−1
. It will be convenient to parameterize

the symmetric channel by its second largest eigenvalue by absolute value (i.e., ei-
ther the second eigenvalue or the last eigenvalue, whichever is larger). It is given
by

λ = λ(M) = 1 − pq

q − 1
= eβ − 1

eβ + q − 1

and takes values in the interval [− 1
q−1 ,1). The special case of proper colorings

corresponds to λ = − 1
q−1 . In line with the terminology for the Potts model, we

will say the channel is ferromagnetic when λ > 0 and anti-ferromagnetic when
λ < 0.

We will restrict our attention to d-ary trees, that is the infinite rooted tree where
every vertex has d offspring. Let σ(n) denote the spins at distance n from the root
and let σ i(n) denote σ(n) conditioned on σρ = i.

DEFINITION 1. We say that a model is reconstructible on a tree T if for some
i, j ∈ C ,

lim sup
n

dTV(σ i(n), σ j (n)) > 0,

where dTV is the total variation distance. When the limsup is 0, we will say the
model has nonreconstruction on T .

Nonreconstruction is equivalent to the mutual information between σρ = σ(0)

and σ(n) going to 0 as n goes to infinity and also to {σ(n)}∞n=1 having a trivial tail
sigma-field. In the statistical physics, nomenclature nonreconstruction is equiva-
lent to the free measure being extremal, that is not a convex combination of two
other Gibbs measures. More equivalent formulations are given in [20], Proposi-
tion 2.1. In contrast, consider the uniqueness property of a Gibbs measure.

DEFINITION 2. We say that a model has uniqueness on a tree T if

lim sup
n

sup
A,B

dTV
(
P
(
σρ = ·|σ(n) = A

)
,P
(
σρ = ·|σ(n) = B

))
> 0,
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where the supremum is over all configurations A,B on the vertices at distance n

from the root.

Reconstruction implies nonuniqueness and is a strictly stronger condition. Es-
sentially uniqueness says that there is some configuration on the leaves which pro-
vides information on the root while reconstruction says that a typical configuration
on the leaves provides information on the root.

1.2. Background. For a given parameterized collection of models, the key
question in studying reconstruction is finding which models have reconstruction,
which typically involves finding a threshold. The reconstruction problem natu-
rally arises in biology, information theory and statistical physics and involves
the trade off between increasing numbers of leaves with increasingly noisy in-
formation as the distance from the root to the leaves increases. In the case of the
Potts model, this is the question of for which λ is there reconstruction for each
choice of q and d . Proposition 12 of [18] implies that for each q and d there exist
λ− < 0 < λ+ such that there is nonreconstruction when λ ∈ (−λ−, λ+) and recon-
struction when λ ∈ [− 1

q−1 , λ−) ∪ (λ+,1). The result does not say what happens
when λ ∈ {λ−, λ+}.

The most general result on reconstruction is the Kesten–Stigum bound [13]
which says that reconstruction holds when λ2d > 1 which in our parameterization
says that λ+ ≤ d−1/2 and λ− ≥ −d−1/2. When dλ2 > 1 it is possible to asymp-
totically reconstruct information on the root using only enumerations of each type
of spin at the leaves (census reconstruction) and without using the information on
their positions on the leaves.

The simplest collection of models is the binary (2-state) symmetric channel
which is defined on two states and corresponds to the Ising model on the tree with
no external field. It was shown in [4] and later in [9, 12] that this channel has recon-
struction if and only if dλ2 > 1, that is, the Kesten–Stigum bound is sharp. Before
this paper, exact reconstruction thresholds had only been calculated in the binary
symmetric channel and binary asymmetric channels with sufficiently small asym-
metry [5] where the Kesten–Stigum is also sharp. While it was once conjectured
that the Kesten–Stigum bound was tight for all channels, it was shown [18, 20]
that the Kesten–Stigum bound is not the bound for reconstruction in the binary-
asymmetric model with sufficiently large asymmetry or in the ferromagnetic Potts
model with q ≥ 18. For general Potts models, [21] showed nonreconstruction when

qdλ2

2 + (q − 2)λ
≤ 1

and these bounds were improved in [15] and recently for q ∈ {3,4,5} in [3, 10].
None of these results are tight. Several recent results deal with the special case
of proper colorings which is now known to good accuracy. By analyzing a simple
reconstruction algorithm, reconstruction was shown to hold when d ≥ q[logq +
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log logq + 1 + o(1)] see [21, 24]. The tightest bounds for nonreconstruction are
d ≤ q[logq + log logq + 1 − log 2 + o(1)] established by [25], the difference be-
tween the upper and lower bounds is just q log 2.

After the results of [18, 20], it was for a while thought that the Kesten–Stigum
bound may be tight only in 2-state channels. This intuition was overturned by
deep insights coming from statistical physics. Leading experts in the study of ran-
dom constraint satisfaction problems Mézard and Montanari [16] analyzed the re-
construction model for symmetric channels. The reconstruction problem plays a
key role in the analysis of replica-symmetry breaking transitions for distributions
such as random k-SAT and random colorings of random graphs and the efficiency
of belief-propagation algorithms. Using techniques developed to analyze transi-
tions in glassy systems, they made a series of conjectures for the symmetric chan-
nels.

CONJECTURE 1 ([16]). The Kesten–Stigum bound is tight for the ferromag-
netic symmetric channel when q ≤ 4 and is not tight when q ≥ 5. In the anti-
ferromagnetic model, the Kesten–Stigum bound is tight when q ≤ 3 and not tight
when q ≥ 4.

As this conjecture was based partially on numerical evidence, they qualified
it by stating that it might not hold for large d . This paper confirms much of the
predicted picture.

1.3. Main results. Our results rigorously confirm most of the picture predicted
by Mezard and Montanari [16]. We determine the asymptotic values of the thresh-
olds calculating the limit of d1/2λ± for large d . We give a complete answer to the
question of whether the Kesten–Stigum bound is tight for large d except in the case
of q = 4. When q = 3, we show that for large enough d the Kesten–Stigum bound
is tight. This is the first time a reconstruction threshold has been rigorously estab-
lished in a nonbinary model. Conversely, when q ≥ 5, the Kesten–Stigum bound
is never sharp. Our proof also gives significant new insight into the reasons why
this a transition occurs between q = 3 and q = 5.

THEOREM 1.1. When q = 3, there exists a dmin such that for d ≥ dmin the
Kesten–Stigum bound is sharp for both the ferromagnetic and antiferrmagnetic
channels, that is, λ+(d) = d−1/2 and λ−(d) = −d−1/2. Furthermore, there is non-
reconstruction at the Kesten–Stigum bound, when λ = λ+ or λ = λ−.

Conversely, when q ≥ 5, the Kesten–Stigum bound is never sharp.

THEOREM 1.2. When q ≥ 5 for every d , the Kesten–Stigum bound is not
sharp, that is, λ+ < d−1/2 and λ− > −d−1/2.
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1.3.1. Asymptotic results. When the Kesten–Stigum bound is not sharp, we
are not able to exactly compute the threshold, doing so involves finding a nontrivial
fixed point of an equation of vector-valued distributions. Nonetheless, we are able
to give precise asymptotics for the thresholds for fixed q as d goes to infintiy. In
light of the Kesten–Stigum bound, it makes sense to consider d1/2λ±. When q ≥ 5,
however, the limit is strictly bounded away from from ±1.

THEOREM 1.3. When q ≥ 5,

lim
d→∞d1/2λ+ = Cq,

lim
d→∞d1/2λ− = −Cq,

where Cq is a constant strictly less than 1.

Of course when q = 3, we have that d1/2λ± = ±1 for large d . The value Cq is
given by the maximum of a function which we shall describe in the proof.

1.4. Applications of reconstruction. Our results add to the knowledge of the
reconstruction problem which has numerous applications from various fields. In
computational biology, the broadcast model is the main model for the evolution
of base pairs of DNA. In phylogenetic reconstruction, the goal is to reconstruct
the ancestry tree of a collection of species given the genetic data of the present-
day species. The reconstruction threshold here determines the possibility of recon-
structing ancestral DNA sequences from a known phylogenetic tree. Establishing
a conjecture of Mike Steel, it was shown that the number of samples required
for phylogenetic reconstruction undergoes a phase transition at the reconstruction
threshold for the binary symmetric channel [7, 19].

The reconstruction threshold on trees is believed to play a critical role in the
dynamic phase transitions in certain glassy systems given by random constraint
satisfaction problems such as random k-SAT and the anti-ferromagnetic Potts
model on random graphs. We will briefly describe the broad picture conjectured by
physicists about such systems [14, 26], generally without rigorous proof. Recently,
much of this picture has been established by [1]. The theory relates to the structure
and connectivity of the set of satisfying configurations of the distribution, with the
topology given by the hamming distance on the space of configurations. At “high
temperatures” or low densities of constraints, the Gibbs measure places all but an
exponentially small fraction of its weight in a single “connected cluster.” As the
temperature decreases, there is a threshold called the “dynamical replica symme-
try breaking threshold” at which the set supporting most of the measure splits into
exponentially many smaller clusters. The clusters are each well separated from
each other and each contain an exponentially small amount of the measure. This
threshold is believed to exactly correspond to the reconstruction threshold on the
corresponding tree model but this has not yet been established.
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Recently, [1] proved that for random colorings on Erdős–Rényi random graphs
with average connectivity d when (1 + o(1))q logq ≤ d ≤ (2 − o(1))q logq the
space of solutions indeed breaks into exponentially many small clusters while
when (1 − o(1))q logq ≥ d most of the mass is contained in a giant component.
Similar results were also proved for K-SAT and other models. This phase tran-
sition from the connected to the clustered regimes corresponds to known bounds
on the reconstruction threshold for proper colorings on trees [21, 24, 25]. It is be-
lieved that message passing algorithms such as belief-propagation work up to this
threshold. Our results, therefore, have direct implications for phase transitions and
message passing algorithms on anti-ferromagnetic Potts models.

One can also ask whether the reconstruction threshold on trees corresponds to
the reconstruction threshold on locally treelike graphs. This problem was inves-
tigated by Gerschenfeld and Montanari [11] who showed that reconstruction on
trees is equivalent to reconstruction on random graphs when a certain “replica con-
dition” holds. In a large number of “frustrated” systems, this was shown to hold
including for the antiferromagnetic Potts model at nonzero temperature on random
graphs and in [17] it was established for colorings.

The reconstruction threshold is known to play an important role in the efficiency
of the Glauber dynamics on trees and random graphs. In [2], it was shown that the
mixing time for the the Glauber dynamics on trees is n1+�(1) when the model
has reconstruction which is slower than at higher temperatures when the mixing
time is O(n logn). In the case of the Ising model this is tight, the mixing time is
O(n logn) when dλ2 < 1.

Local MCMC algorithms are conjectured to be efficient up to the reconstruc-
tion threshold for sampling random colorings on random graphs but experience an
exponential slowdown beyond it [14]. This is to be expected since a local MCMC
algorithm can not move between clusters each of which has exponentially small
probability. Rigorous proofs of rapid mixing of MCMC algorithms, such as the
Glauber dynamics, fall a long way behind. For colorings of random regular graphs,
results of [8] imply rapid mixing when q ≥ 1.49d , well below the reconstruction
threshold and even the uniqueness threshold. Even less is known for Erdős–Rényi
random graphs as almost all MCMC results are given in terms of the maximum
degree which in this case grows with n. Polynomial time mixing of the Glauber
dynamics has been shown [22] for a constant number of colors in terms of d , the
average connectivity.

1.5. Proof sketch. The proof analyzes a quantity denoted by xn. One interpre-
tation of xn is that if we guess the value of σρ according to its postier distribution
given σ(n) then xn is the probability of being correct minus 1

q
, which is the chance

of being correct by simply guessing randomly. More formally, if Z is a C -valued
random variable with distribution given by P(Z = i|σ(n)) = P(σρ = i|σ(n)) then
xn = P(Z = σρ) − 1

q
. Our analysis is similar to the expansion of [5] but with
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more precise estimates derived by establishing certain concentration results. Such
expansions go back to [6] in the context of spin-glasses.

We show that xn is always positive and that nonreconstruction is equivalent to

lim
n→∞xn = 0.

In general, finding the reconstruction threshold requires understanding recursive
equations of vector-valued posterior distributions cf. [16]. However, when xn is
small, these recursive relationships become approximately too linear. Using Taylor
series expansions and concentration estimates, we establish that for small xn

xn+1 = dλ2xn + (1 + o(1)
)d(d − 1)

2

q(q − 4)

q − 1
λ4x2

n.(1)

A key role is played by the sign of q − 4. When q ≥ 5, it is positive and this allows
us to show that if dλ2 is sufficiently close to 1 then xn does not converge to 0 and
hence there is reconstruction beyond the Kesten–Stigum bound.

However, when q = 3 the second order term is negative. Suppose we could
establish that xn is eventually small when dλ2 ≤ 1. Then equation (1) implies that
xn converges to 0 which establishes nonreconstruction. Unfortunately for small d ,
we are not able to show that xn becomes sufficiently small to apply this argument.

A key new ingredient to our analysis is studying the problem when d is large
and the interactions between spins become very weak but there are many of them.
Using the central limit theorem, we approximate this collection of small indepen-
dent interactions to show that

xn+1 ≈ gq(dλ2xn)

for some increasing function gq . When q = 3 for all 0 < s < 1, the function satis-
fies g3(s) < s. Using this estimate for large enough d , it is established that xn be-
comes arbitrarily small. Crucially combining our analysis of what happens when
d is large and xn is small, we prove nonreconstruction for large enough d . When
q = 4 for all 0 < s < 1, the function also satisfies g4(s) < s while when q ≥ 5
the equation g5(s) = s has nonzero solutions. The function gq(s) determines the
limiting value of xn, a consequence of which is Theorem 1.3.

2. Proofs. We introduce the notation we use in the proofs. Denote the colors
by C = {1, . . . , q} and let T be the infinite d-ary tree rooted at ρ. Let u1, . . . , ud be
the children of ρ and for a vertex v ∈ T let Tv denote the subtree of descendants
of v (including v). We will use the convention that i will denote an element of C
and j will be an element of {1, . . . , d} corresponding to a child of ρ. Let σ denote a
random configuration given by the symmetric channel with transition matrix given
by

Mi,i′ =
⎧⎨⎩

1 − p, if i = i′,
p

q − 1
, otherwise,
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where 0 < p ≤ 1. Rather than looking at the unconditioned configurations σ we
will work mainly with configurations where the spin at the root is conditioned; we
let σ i denote a random configuration according to the symmetric channel condi-
tioned on σ i

ρ = i. Let λ denote the second eigenvalue of M which is given by

λ = λ(M) = 1 − pq

q − 1
.(2)

In light of the Kesten–Stigum bound, we will always assume that dλ2 ≤ 1.
Let S(n) denote the vertices on level n, {v ∈ T :d(v,ρ) = n}, let σ(n) := σS(n)

denote the spins on S(n) and let σj (n) denote the spins in S(n) ∩ Tuj
. For a con-

figuration A on S(n), define the posterior function fn as

fn(i,A) = P
(
σρ = i|σ(n) = A

)
.

By the recursive nature of the tree for a configuration A on S(n+ 1)∩Tuj
, we also

have (with a slight abuse of notation) that

fn(i,A) = P
(
σuj

= i|σj (n + 1) = A
)
.

Now define Xi(n) = Xi by

Xi(n) = fn(i, σ (n)).

These random variables are a deterministic function of the random configuration
σ(n) of the leaves which gives the posterior probability that the root is in state i.
Recall that a collection of random variables are exchangeable if their distribution
is invariant under permutations. By symmetry, the Xi are exchangeable. Now we
define two random variables

X+ = X+(n) = fn(1, σ 1(n))

and

X− = X−(n) = fn(2, σ 1(n)).

We will establish nonreconstruction (resp., reconstruction) by showing that X+
and X− both converge (resp., do not converge) to 1

q
in probability as n goes to

infinity. By symmetry, we have

fn(i2, σ
i1(n))

d=
{

X+, i1 = i2,
X−, otherwise,

and the set {fn(i, σ
1(n)) : 2 ≤ i ≤ q} is exchangeable. Moreover, they are condi-

tionally exchangeable given fn(1, σ 1(n)).
Now define

Yij = Yij (n) = fn

(
i, σ 1

j (n + 1)
)
.

This is none other than the posterior probability that σuj
= i given the random

configuration σ 1
j (n + 1) on the spins in S(n + 1) ∩ Tuj

. Conditional on the spin
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at the root, the spins in the subtrees Tuj
are conditionally independent for j =

1, . . . , d. Taking advantage of this and the symmetries of the model, the following
proposition is immediate.

PROPOSITION 2.1. The Yij satisfy the following properties:

• The random vectors Yj = (Y1j , . . . , Yqj ) are independent for j = 1, . . . , d.

• Conditional on σ 1
uj

the random variable Yσ 1
uj

j is equal in distribution to X+(n)

while for i �= σ 1
uj

the random variables Yij are equal in distribution to X−(n).

• Further given σ 1
uj

and Yσ 1
uj

j the collection of random variables {Yij }i �=σ 1
uj

are

conditionally exchangeable.

The key method of this paper will be to analyze the relation between the distri-
butions X+(n) and X+(n + 1) using the recursive structure of the tree. The recur-
sive analysis of posterior distributions is a central tool in analyzing reconstruction
problems, our approach is similar to [5] but we will make more precise estimates
by deriving concentration results. Suppose A is a configuration on S(n + 1) and
let Aj be its restriction to Tuj

∩ S(n + 1). Applying Bayes theorem, we have that

fn+1(1,A) =
∏d

j=1(M11fn(1,Aj ) +∑l �=1 M1lfn(l,Aj ))∑q
i=1
∏d

j=1(Miifn(i,Aj ) +∑l �=i Milfn(l,Aj ))

=
∏d

j=1(M12 + (M11 − M12)fn(1,Aj ))∑q
i=1
∏d

j=1(M12 + (M11 − M12)fn(i,Aj ))
(3)

=
∏d

j=1(1 + λq(fn(1,Aj ) − 1/q))∑q
i=1
∏d

j=1(1 + λq(fn(i,Aj ) − 1/q))
,

where the second equality is a consequence of the fact that
∑q

i=1 fn(i,Aj ) = 1 and
the symmetry of M and the final equality follows from equation (2) since

M12 + 1

q
(M11 − M12) = M12 + 1

q

(
1 − (q − 1)M12 − M12

)= 1

q

and

M11 − M12 = 1 − qM12 = λ.

Conditioning the root to be 1 and letting A = σ 1(n + 1), we have that

X+(n + 1) = Z1∑k
i=1 Zi

,(4)

where

Zi = Zi(n) =
d∏

j=1

(
1 + λq

(
Yij (n) − 1

q

))
.(5)
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Equation (4) will be our major tool for recursively analyzing the reconstruction
problem.

2.1. Basic identities. Denote

xn = E

(
X+(n) − 1

q

)
= Efn(1, σ 1(n)) − 1

q

and

zn = E

(
X+(n) − 1

q

)2

= E

(
fn(1, σ 1(n)) − 1

q

)2

.

As discussed in the Introduction, the main proof relies on analyzing recursions
of xn. One interpretation of xn is that if you were to choose a state randomly
according to the posterior distribution, then the probability of correctly guessing
the root is 1

q
+ xn [16]. This quantity (up to a constant factor) was also studied in

[5] for the binary asymmetric channel. The following lemma, which can be viewed
as the analogue of Lemma 1 of [5], allows us to relate the first and second moments
of X+.

LEMMA 2.2. The following relations hold:

xn + 1

q
= EX+ = E

q∑
i=1

(Xi(n))2 = E(X+(n))2 + (q − 1)E(X−(n))2

and

xn = E

q∑
i=1

(
Xi(n) − 1

q

)2

= E

(
X+(n) − 1

q

)2

+ (q − 1)E

(
X−(n) − 1

q

)2

≥ zn.

PROOF. From the definition of conditional probabilities and of fn and the fact
that P(σρ = 1) = 1

q
, we have that

EX+(n) = Efn(1, σ 1(n))

=∑
A

fn(1,A)P
(
σ(n) = A|σρ = 1

)
=∑

A

P (σ(n) = A,σρ = 1)

P (σρ = 1)
fn(1,A)

= q
∑
A

P
(
σ(n) = A

)
fn(1,A)2

= qE(X1(n))2

= E

q∑
i=1

(Xi(n))2
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and

E

k∑
i=1

(
Xi(n) − 1

q

)2

= E

q∑
i=1

(Xi(n))2 − 2

q
E

q∑
i=1

Xi(n) + 1

q
= EX+ − 1

q
.

Conditional on σρ , we have that Xσρ (n) is distributed as X+(n) and for i �= σρ we
have that Xi(n) is distributed as X−(n). It follows that

E

q∑
i=1

(Xi(n))2 = E(X+(n))2 + (q − 1)E(X−(n))2

and

E

q∑
i=1

(
Xi(n) − 1

q

)2

= E

(
X+(n) − 1

q

)2

+ (q − 1)E

(
X−(n) − 1

q

)2

which completes the result. �

Define σ̂ρ(n) to be the maximum likelihood estimator of σρ given σ(n) which
is given by

σ̂ρ(n) := arg max
i

Xi(n),

where in the case that multiple states maximize the likelihood the estimator
chooses randomly between these states. This estimator maximizes the probability
of correctly reconstructing the root. Define the probability of correct reconstruc-
tion as

pn := P
(
σρ = σ̂ρ(n)

)= E max
1≤i≤q

Xi(n).

This represents the probability of correctly reconstructing the spin at the root using
the maximum likelihood estimator which maximizes the probability of correctly
determining the root. Since σ(n) is a Markov process, pn is clearly decreasing.

LEMMA 2.3. We have that

xn ≤ pn − 1

q
≤ x1/2

n .

PROOF. The inequality xn + 1
q

≤ pn was shown in [16] by noting that the
algorithm that chooses σρ randomly according to probabilities Xi is correct with
probability xn + 1

q
. By the Cauchy–Schwarz inequality and Lemma 2.2,

pn = E max
i

Xi ≤ 1

q
+ E max

i

∣∣∣∣Xi − 1

q

∣∣∣∣≤ 1

q
+
(
E max

i

(
Xi − 1

q

)2)1/2

≤ 1

q
+
(
E

q∑
i=1

(
Xi − 1

q

)2
)1/2

= 1

q
+ x1/2

n
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as required. �

The following corollary of Lemmas 2.2 and 2.3 justifies our focus on xn.

COROLLARY 2.4. We have that xn ≥ 0 and the condition

lim
n

xn = 0

is equivalent to nonreconstruction.

PROOF. Lemma 2.2 implies that xn ≥ zn ≥ 0. By Lemma 2.2, xn converging
to 0 is equivalent to

k∑
i=1

E

(
Xi(n) − 1

q

)2

→ 0

which is equivalent to the posteriors converging to the stationary distribution which
is in turn equivalent to reconstruction [20]. �

Using the identities from Lemma 2.2, we calculate the means and covariances
of the Yij .

LEMMA 2.5. For each 1 ≤ j ≤ q , the following hold:

E

(
Y1j − 1

q

)
= λxn, E

(
Y1j − 1

q

)2

= λzn + 1

q
(1 − λ)xn.(6)

For i �= 1 we have that

E

(
Yij − 1

q

)
= − λxn

q − 1
, E

(
Yij − 1

q

)2

= 1

q

(
1 + λ

q − 1

)
xn − λ

q − 1
zn(7)

and

E

(
Y1j − 1

q

)(
Yij − 1

q

)
= − λ

q − 1
zn − 1 − λ

q(q − 1)
xn.(8)

When 1 < i1 < i2 ≤ q ,

E

(
Yi1j − 1

q

)(
Yi2j − 1

q

)
= 1

(q − 1)(q − 2)

[
2λzn − 1

q
(q − 2 + 2λ)xn

]
.(9)

PROOF. By Proposition 2.1, if σ 1
uj

= 1 then Y1j is distributed according to
X+(n) otherwise it is distributed according to X−(n). By equation (2), we have
that

P(σ 1
uj

= 1) = 1 + λ(q − 1)

q
.
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Noting that
∑q

i=1 Yij = 1 it follows that EX+(n) + (q − 1)EX−(n) = 1 and so
E(X−(n) − 1

q
) = − xn

q−1 . It follows that

E

(
Y1j − 1

q

)
= P(σ 1

uj
= 1)E

(
X+(n) − 1

q

)
+ (1 − P(σ 1

uj
= 1)
)
E

(
X−(n) − 1

q

)

= 1 + λ(q − 1)

q
xn +
(

1 − 1 + λ(q − 1)

q

) −xn

q − 1

= λxn.

Using Lemma 2.2 and Proposition 2.1 we have that

E

(
Y1j − 1

q

)2

= P(σ 1
uj

= 1)E

(
X+(n) − 1

q

)2

+ (1 − P(σ 1
uj

= 1)
)
E

(
X−(n) − 1

q

)2

= 1 + λ(q − 1)

q
zn +
(

1 − 1 + λ(q − 1)

q

)
(10)

× 1

q − 1

[
E

(
X+(n) − 1

q

)
− E

(
X+ − 1

q

)2]

= λzn + 1

q
(1 − λ)xn

which establishes equation (6). Now since
∑q

l=1 Ylj = 1 and since by Proposi-
tion 2.1 we have that Y2j , . . . , Yqj are exchangeable, for i �= 1 we have that

E

(
Yij − 1

q

)
= 1

q − 1

q∑
l=2

E

(
Ylj − 1

q

)

= − 1

q − 1
E

(
Y1j − 1

q

)

= − λxn

q − 1
.

Again using Lemma 2.2 and the exchangeability of Y2j , . . . , Yqj , we have that

E

(
Yij − 1

q

)2

= 1

q − 1

[
−E

(
Y1j − 1

q

)2

+
q∑

l=1

E

(
Ylj − 1

q

)2
]

= 1

q − 1

[
−
(
λzn + 1

q
(1 − λ)xn

)
+ xn

]

= 1

q

(
1 + λ

q − 1

)
xn − λ

q − 1
zn.
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By the fact that
∑q

l=2(Ylj − 1
q
) = −(Y1j − 1

q
),

E

(
Y1j − 1

q

)(
Yij − 1

q

)
= 1

q − 1

q∑
l=2

E

(
Y1j − 1

q

)(
Ylj − 1

q

)

= − 1

q − 1
E

(
Y1j − 1

q

)2

= − λ

q − 1
zn − 1 − λ

q(q − 1)
xn,

where the third equality follows from equation (10). Finally,

E

(
Yi1j − 1

q

)(
Yi2j − 1

q

)

= 1

(q − 1)(q − 2)
E

[(
Y1j − 1

q

)2

−
q∑

l=2

(
Ylj − 1

q

)2
]

= 1

(q − 1)(q − 2)

[(
λzn + 1

q
(1 − λ)xn

)

− (q − 1)

(
1

q

(
1 + λ

q − 1

)
xn − λ

q − 1
zn

)]

= 1

(q − 1)(q − 2)

[
2λzn − 1

q
(q − 2 + 2λ)xn

]
. �

2.2. Taylor series bounds. In the following lemma, we calculate precise es-
timates of the expected values of monomials of the Zi by expanding them using
Taylor series approximations. This allows us to make estimates using an expansion
of equation (4).

LEMMA 2.6. For each positive integer k, there exists a C = C(q, k) not de-
pending on λ or d such that for each 0 ≤ k1, . . . , kq ≤ k,

E

q∏
i=1

Z
ki

i ≤ C

and ∣∣∣∣∣E
q∏

i=1

Z
ki

i − 1 − d

(
E

q∏
i=1

(
1 + λq

(
Yi1 − 1

q

))ki

− 1

)∣∣∣∣∣≤ Cx2
n

and ∣∣∣∣∣E
q∏

i=1

Z
ki

i − 1 − d

(
E

q∏
i=1

(
1 + λq

(
Yi1 − 1

q

))ki

− 1

)

− d(d − 1)

2

(
E

q∏
i=1

(
1 + λq

(
Yi1 − 1

q

))ki

− 1

)2∣∣∣∣∣≤ Cx3
n.
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PROOF. Recall that

Zi = Zi(n) =
d∏

j=1

(
1 + λq

(
Yij (n) − 1

q

))
so each Zi is a product of independent and identically distributed terms and that

E

q∏
i=1

Z
ki

i =
(
E

q∏
i=1

(
1 + λq

(
Yi1(n) − 1

q

))ki
)d

.

As such, we begin with a simple bound on (1 + y)d using Taylor series. Suppose
that d|y| ≤ C′ for some constant C′ > 0. Then we have that∣∣∣∣∣(1 + y)d −

�∑
i=0

(
d

i

)
yi

∣∣∣∣∣ ≤
d∑

i=�+1

(
d

i

)
|y|i

≤
∞∑

i=�+1

di

i! |y|i
(11)

= ed|y| −
�∑

i=0

(d|y|)i
i!

≤ eC′ |dy|�+1,

where the third inequality follows by Taylor’s theorem since maxx≤C′ d�+1

dx�+1 ex =
eC′

.
Suppose that s1, . . . , sq are nonnegative integers. If for some �, s� ≥ 2, then

since by definition 0 ≤ Yij ≤ 1, by Lemma 2.2,∣∣∣∣∣E
q∏

i=1

(
Yi1 − 1

q

)si
∣∣∣∣∣≤ E

(
Y�1 − 1

q

)2

≤ xn.(12)

If for distinct integers �, �′, s� = s�′ = 1, then again by Lemma 2.2,∣∣∣∣∣E
q∏

i=1

(
Yi1 − 1

q

)si
∣∣∣∣∣≤ E

∣∣∣∣(Y�1 − 1

q

)(
Y�′1 − 1

q

)∣∣∣∣
(13)

≤ E

[(
Y�1 − 1

q

)2

+
(
Y�′1 − 1

q

)2]
≤ xn.

Finally if s� = 1 and si = 0 for all i �= �, then by Lemma 2.5,∣∣∣∣∣E
q∏

i=1

(
Yi1 − 1

q

)si
∣∣∣∣∣=
∣∣∣∣EY�1 − 1

q

∣∣∣∣≤ |λ|xn.(14)
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Then applying equations (12)–(14),∣∣∣∣∣E
q∏

i=1

(
1 + λq

(
Yi1 − 1

q

))ki

− 1

∣∣∣∣∣
=
∣∣∣∣∣ ∑
(s1,...,sq )

E

q∏
i=1

(
ki

si

)
λsi qsi

(
Yi1 − 1

q

)si

− 1

∣∣∣∣∣
=
∣∣∣∣∣E

q∑
i=1

kiλq

(
Yi1 − 1

q

)
+ ∑

(s1,...,sq ),
∑

si≥2

E

q∏
i=1

(
ki

si

)
λsi qsi

(
Yi1 − 1

q

)si
∣∣∣∣∣

≤ C′λ2xn,

where the sum runs over all q-tuples of nonegative integers (s1, . . . , sq) with
si ≤ ki for all i and the constant C′ depends only on q and k1, . . . , kq . The fi-
nal inequality in the last equation follows from equations (12)–(14) since every
term is bounded by C′′λ2xn where C′′ depends only on q and k. Since 0 ≤ xn ≤ 1
and λ2d ≤ 1, applying equation (11) with

y = E

q∏
i=1

(
1 + λq

(
Yi1 − 1

q

))ki

− 1

completes the result. �

2.3. Main expansion. In order to evaluate the expected value of EX+(n + 1)

using equation (4), we expand it out using the identity

a

s + r
= a

s
− ar

s2 + r2

s2

a

s + r
.(15)

With this expansion and a = Z1, s = q and r = (
∑q

i=1 Zi) − q clearly,

xn+1 = E
Z1∑q
i=1 Zi

− 1

q
(16)

= E
Z1

q
− E

Z1((
∑q

i=1 Zi) − q)

q2 + E
Z1∑q
i=1 Zi

((
∑q

i=1 Zi) − q)2

q2 − 1

q
.

We estimate the expected value of each of the terms in the preceding equation.
First,

EZ1 = 1 + dλqE

(
Y11 − 1

q

)
+ d(d − 1)

2

(
λqE

(
Y11 − 1

q

))2

+ R1

(17)

= 1 + dλ2qxn + d(d − 1)

2
λ4q2x2

n + R1,
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where by Lemma 2.6 the error term satisfies |R1| ≤ C1x
3
n where C1 does not de-

pend on λ,d or xn. Next, applying Lemma 2.6 and Lemma 2.5 and canceling
terms

EZ1

( q∑
i=1

Zi − q

)
= EZ2

1 +
q∑

i=2

EZ1Zi − qEZ1

= d(d − 1)

2
λ4q2
[(

(3 − λ)xn + λqzn

)2
(18)

+ 1

q − 1

(
(q − 3 + λ)xn − λqzn

)2 − qx2
n

]
+ R2,

where by Lemma 2.6 |R2| ≤ C2x
3
n and C2 does not depend on λ,d or xn. Finally,

again using Lemma 2.6 and Lemma 2.5,

E

(( q∑
i=1

Zi

)
− q

)2

= EZ2
1 +

q∑
i=2

EZ2
i + 2

q∑
i=2

EZ1Zi + 2
q∑

i1=2

q∑
i2=i1+1

EZi1Zi2

− 2qEZ1 − 2q

q∑
i=2

EZi + q2

(19)

= d(d − 1)

2
λ4q2
[(

(3 − λ)xn + λqzn

)2
+ 3

q − 1

(
(q − 3 + λ)xn − λqzn

)2 − 2qx2
n − 2qx2

n

q − 1

+ 1

(q − 1)(q − 2)

(
(3q − 6 + 2λ)xn − 2λqzn

)2]+ R3,

where by Lemma 2.6 |R3| ≤ C3x
3
n and C3 does not depend on λ,d or xn. By

Lemma 2.2, we have that 0 ≤ zn ≤ xn and since |λ| ≤ 1 the expressions in equa-
tions (18) and (19) are both bounded by C d(d−1)

2 λ4x2
n where C depends only on q .

Now using the fact that 0 ≤ Z1∑
Zi

≤ 1 and substituting equations (17)–(19) into
equation (16), we have that

|xn+1 − dλ2xn| ≤ Cqλ4 d(d − 1)

2
x2
n ≤ Cqx

2
n,(20)

where Cq depends only on q since λ2d ≤ 1. In order to complete the proof, we
will need a more precise bound. To motivate the rest of the proof, suppose that we
could establish the following condition.
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CONDITION 2.7. Suppose the following hold:

• that zn = ( 1
q

+ o(1))xn,

• that Z1∑q
i=1 Zi

is sufficiently concentrated around 1
q

so that

E
Z1∑q
i=1 Zi

((
∑q

i=1 Zi) − q)2

q2 =
(

1

q
+ o(1)

)
E

((
∑q

i=1 Zi) − q)2

q2 .

If we established Condition 2.7 then by substituting equations (17)–(19) into
equation (16), we would have that

xn+1 = dλ2xn + (1 + o(1)
)q(q − 4)

q − 1

d(d − 1)

2
λ4x2

n.(21)

Proving Condition 2.7 is one of the main technical challenges in this paper.

2.4. Concentration lemmas. In this section, we establish a number of lemmas
in order to establish the Condition 2.7. The following lemma follows immediately
from equation (20).

LEMMA 2.8. For any ε > 0, there exists a constant δ = δ(q, ε) such that for
all n, if xn < δ then

|xn+1 − dλ2xn| ≤ εxn.

The following lemma ensures that the decrease from xn to xn+1 is never too
large.

LEMMA 2.9. For any κ > 0 there exists a constant γ = γ (q, κ, d) > 0 such
that for all n when κ < |λ|,

xn+1 ≥ γ xn.

PROOF. For a configuration A on Tu1 ∩ S(n + 1) define

f ∗
n+1(i,A) = P

(
σρ = i|σ1(n + 1) = A

);
that is, the probability the root is in state i given the configuration on the leaves in
Tu1 ∩ S(n + 1). Now

f ∗
n+1(i,A) = (eβfn(1,A) +∑l �=1 fn(l,A))∑q

i=1(e
βfn(i,A) +∑l �=i fn(l,A))

= (1 + λq(fn(1,A) − 1/q))

q

and so

Ef ∗
n+1
(
i, σ 1

1 (n + 1)
)= 1

q
+ λ2xn.

The estimator that chooses a state with probability f ∗
n+1(i, σ1(n + 1)) correctly

reconstructs the root with probability 1
q

+λ2xn. Since this probability must be less
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than the MLE, it follows that

λ2xn + 1

q
≤ pn+1 ≤ x

1/2
n+1 + 1

q

and so xn+1 ≥ λ4x2
n ≥ κ4x2

n for an value of xn. Now when xn < δ by Lemma 2.8
it follows that

xn+1 ≥ (dλ2 − ε)xn.

Combining these results completes the proof. �

2.4.1. Concentration. We will establish some concentration results which will
be required in order to make the approximation

Z1∑q
i=1 Zi

≈ 1

q
.

The first lemma establishes a technical uniqueness result where the set of vertices
which can be conditioned is limited to a set of k vertices.

LEMMA 2.10. For any ε > 0 and positive integer k there exists � =
�(q, d, ε, k) not depending on λ such that for any collection of vertices v1, . . . ,

vk ∈ S(�),

sup
i,i1,...,ik∈C

∣∣∣∣P(σρ = i|σvt = it ,1 ≤ t ≤ k) − 1

q

∣∣∣∣< ε.

PROOF. This lemma simply says that fixing the spins at k distant vertices a
long way from the root has only a small effect on the root. We note that

Ms
i1,i2

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

q
+
(

1 − 1

q

)
λs, i1 = i2,

1

q
− 1

q
λs, otherwise,

and so since λ2d ≤ 1,

1

q
− d−s/2 ≤ Ms

i1,i2
≤ 1

q
+ d−s/2.

Let γ be an integer sufficiently large such that(
1/q + d−γ /2

1/q − d−γ /2

)k

< 1 + ε.

Fix an integer � such that � > kγ . Now choose any v1, . . . , vk ∈ S(�) with
d(vi, ρ) = �. For 0 ≤ � ≤ � define a� to be the number of vertices distance
� from the root with a descendant in the set {v1, . . . , vk}, that is, a� = #{v ∈
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S(�) : |Tv ∩ {v1, . . . , vk}| > 0}. Then a0 = 1, a� = k and the a� are increasing
and integer valued. Therefore, there must be some � such that a� = a�+γ . Let
w1, . . . ,wa�

denote the vertices in the set {v ∈ S(�) : |Tv ∩ {v1, . . . , vk}| > 0} and
w1, . . . ,wa�

denote the vertices in the set {v ∈ S(� + γ ) : |Tv ∩ {v1, . . . , vk}| > 0}
such that wt is the descendant of wt . By the Markov random field property, the σwt

are conditionally independent given the σwt . The distribution of σwt given σwt is

P(σwt = i2|σwt = i1) = M
γ
i1,i2

.

By Bayes Rule and the Markov random field property, we have that for any
i, i′, i1, . . . , ia�

∈ C ,

P(σρ = i|σwt = it ,1 ≤ t ≤ a�)

P (σρ = i′|σwt = it ,1 ≤ t ≤ a�)

= P(σwt = it ,1 ≤ t ≤ a�|σρ = i)

P (σwt = it ,1 ≤ t ≤ a�|σρ = i′)

=
∑

h1,...,ha�
∈C P(∀tσwt = it |∀tσwt = ht )P (∀tσwt = ht |σρ = i)∑

h1,...,ha�
∈C P(∀tσwt = it |∀tσwt = ht )P (∀tσwt = ht |σρ = i ′)

=
∑

h1,...,ha�
∈C P(σwt = ht ,1 ≤ t ≤ a�|σρ = i)

∏a�

t=1 M
γ
ht ,it∑

h1,...,ha�
∈C P(σwt = ht ,1 ≤ t ≤ a�|σρ = i′)∏a�

t=1 M
γ
ht ,it

≤
∑

h1,...,ha�
∈C P(σwt = ht ,1 ≤ t ≤ a�|σρ = i)(1/q + d−γ /2)a�∑

h1,...,ha�
∈C P(σwt = ht ,1 ≤ t ≤ a�|σρ = i ′)(1/q − d−γ /2)a�

≤ (1/q + d−γ /2)a�

(1/q − d−γ /2)a�

≤ 1 + ε

so it follows that

P(σρ = i|σwt = it ,1 ≤ t ≤ a�) ≤ 1

q
(1 + ε)

and

P(σρ = i|σwt = it ,1 ≤ t ≤ a�) ≥ 1

q

1

1 + ε
≥ 1

q
(1 − ε).

By the Markov random field property since σρ is conditionally independent of the
collection σv1, . . . , σvk

given the spins σw1, . . . , σwa�
it follows that

sup
i,i1,...,ik∈C

∣∣∣∣P(σρ = i|σvt = it ,1 ≤ t ≤ k) − 1

q

∣∣∣∣
≤ sup

i,i1,...,ia�
∈C

∣∣∣∣P(σρ = i|σwt = it ,1 ≤ t ≤ a�) − 1

q

∣∣∣∣< ε
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which completes the result. �

The next lemma establishes concentration of the posterior distributions when xn

is small.

LEMMA 2.11. For any ε,α, κ > 0, there exists C = C(q, d, ε,α, κ) and N =
N(q, d, ε,α, κ) such that for any λ with κ < |λ| ≤ d−1/2 and for n > N ,

P

(∣∣∣∣ Z1∑q
i=1 Zi

− 1

q

∣∣∣∣> ε

)
≤ Cxα

n .

PROOF. The conclusion is trivially true if both C and xn are large so we will
suppose that xn is small. Fix k an integer such that k > α. Choose � large enough
so that the conclusion of Lemma 2.10 holds with bound ε/2 and set N = �. Let
v1, . . . , v|S(�)| denote the vertices in S(�). For v ∈ S(�), let σ 1

v (n + 1) denote the
spins of the vertices in Tv ∩ S(n + 1) and define

W(i, v) = fn−�+1
(
i, σ 1

v (n + 1)
)

which is the conditional probability that σv is in state i given the boundary condi-
tion σ 1

v (n + 1). Conditional on σ 1(�), the spins of S(�), the W(i, v) are distrib-
uted as

W(i, v) ∼
{

X+(n + 1 − �), σ 1
v = i,

X−(n + 1 − �), σ 1
v �= i.

Also conditional on σ 1(�) the vectors (W(1, v), . . . ,W(q, v)) are conditionally
independent for different v ∈ S(�). Using the recursion of equation (3), a posterior
probability of a vertex can be written as a function of the posterior probabilities of
its children so there exists a function gλ(W) such that

Z1∑q
i=1 Zi

= fn+1
(
1, σ 1(n + 1)

)= gλ(W),

where W denotes the vector

W = (W(1, v1), . . . ,W
(
1, v|S(�)|

)
,W(2, v1), . . . ,W

(
q, v|S(�)|

))
.

When xn is small, we expect most of the W(i, v) to be close to 1
q

. If all the entries

in W are identically 1
q

, then gλ(W) = 1
q

. It follows by Lemma 2.10 that if there

are at most k vertices v ∈ S(�) such that for some 1 ≤ i ≤ q , W(i, v) �= 1
q

then∣∣∣∣gλ(W) − 1

q

∣∣∣∣< ε/2.

Observe that gλ is a continuous function of each of the elements of the vector W
and of λ. It follows that there exists a δ > 0 such that if W satisfies

#
{
v ∈ S(�) : max

1≤i≤q

∣∣∣∣W(i, v) − 1

q

∣∣∣∣> δ

}
≤ k
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then ∣∣∣∣gλ(W) − 1

q

∣∣∣∣< ε.

As the random variables max1≤i≤q |W(i, v) − 1
q
| are independent since they are

conditionally independent given σ(�) and by the symmetry of the model they
do not in fact depend on the spins in S(�). By Chebyshev’s inequality and
Lemma 2.2, we have that

P

(
max

1≤i≤q

∣∣∣∣W(i, v) − 1

q

∣∣∣∣> δ

)

≤ P

(∣∣∣∣X+(n + 1 − �) − 1

q

∣∣∣∣> δ

)
+ (q − 1)P

(∣∣∣∣X−(n + 1 − �) − 1

q

∣∣∣∣> δ

)

≤ δ−2
[
E

(
X+(n + 1 − �) − 1

q

)2

+ (q − 1)E

(
X−(n + 1 − �) − 1

q

)2]
= xn+1−�

δ2 .

As noted above, we may suppose that xn is very small so these events are rare. In
particular, we have that

P

(∣∣∣∣ Z1∑q
i=1 Zi

− 1

q

∣∣∣∣> ε

)
≤ P

(
#
{

max
1≤i≤q

∣∣∣∣W(i, v) − 1

q

∣∣∣∣> δ

}
> k

)

≤ P

(
Binom

(
|S(�)|, xn+1−�

δ2

)
> k

)
≤ C′xα

n+1−�

≤ Cxα
n ,

where the third inequality holds for large enough C′ since k > α and the final
inequality follows by Lemma 2.9 which completes the proof. Only in this final
inequality do we use the assumption that κ < |λ|. �

To establish the necessary concentration results, we will make use of Bennett’s
inequality which is stated below (see, e.g., [23], Appendix B, Lemma 4).

LEMMA 2.12. For independent mean 0 random variables, W1, . . . ,Wn satis-
fying Wi ≤ M,b2

n =∑n
i=1 E(W 2

i ). Then for any η ≥ 0,

P

(
n∑

i=1

Wi ≥ η

)
≤ exp

(
− b2

n

M2 θ

(
ηM

b2
n

))
,(22)

where θ(x) = (1 + x) log(1 + x) − x.
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The following concentration result holds uniformly provided λ is small enough.
It is necessary in taking limits for large d .

LEMMA 2.13. For any 0 < ε < 1 and α > 1 there exists C = C(q, ε,α) and
N = N(q, ε,α) depending only on q , α and ε such that whenever |λ|q ≤ 1

2 and

|λ|q + λ2q2 ≤ max{− log(1 − ε), log(1 + ε)}
4α

then for 1 ≤ i ≤ q and n > N ,

P
(|Zi(n) − 1| > ε

)≤ Cxα
n .

PROOF. Observe that the hypothesis only holds when |λ| is small, that is, the
interactions are weak enough. Let

M = max{− log(1 − ε), log(1 + ε)}
4α

.

By taking C large enough, we can assume that

xn <
q2

2
min{− log(1 − ε), log(1 + ε)},

since otherwise the conclusion is trivial.
Since 1 − 2y ≤ 1

1+y
≤ 1 when 0 ≤ y ≤ 1

2 and 1 − 2y ≥ 1
1+y

≥ 1 when −1
2 ≤

y ≤ 0 by integrating it follows that when |y| ≤ 1
2 ,

y − y2 ≤ log(1 + y) ≤ y.(23)

Taking y = λq(Yij − 1
q
), then

−M ≤ −|λq|−λ2q2 ≤ λq

(
Yij − 1

q

)
−λ2q2

(
Yij − 1

q

)2

≤ log
(

1+λq

(
Yij − 1

q

))
and

log
(

1 + λq

(
Yij − 1

q

))
≤ λq

(
Yij − 1

q

)
≤ |λq| ≤ M.

Let

Wj = λq

(
Y1j − 1

q

)
− λ2q2

(
Y1j − 1

q

)2

and so by Lemma 2.5,

EWj = λ3qxn − λ2q3zn ≤ |λ|3qxn



1388 A. SLY

and −(Wj − EWj) ≤ M + |λ|3q ≤ 2M . Also EWj = λ3qxn − λ3q2zn ≥
−|λ|3q2xn so dEWj ≥ −q2xn. Since by definition, 0 ≤ Yij ≤ 1, our assump-
tion that |λ|q < 1

2 implies that |λq(Y1j − 1
q
)| < 1

2 . From the inequality (a + b)2 ≤
2a2 + 2b2 and Lemma 2.5, it follows that

E(Wj − EWj)
2 ≤ EW 2

j ≤ 2E

(
λq

(
Y1j − 1

q

))2

+ 2E

(
λq

(
Y1j − 1

q

))4

≤ 4λ2q2xn

and so if B =∑d
j=1 E(Wj − EWj)

2 then B ≤ 4dλ2q2xn ≤ 4q2xn since dλ2 ≤ 1.
Now

P(Z1 ≤ 1 − ε) = P

(
d∑

j=1

log
(

1 + λq

(
Y1j − 1

q

))
≤ log(1 − ε)

)

≤ P

(
d∑

j=1

Wj ≤ log(1 − ε)

)

≤ P

(
d∑

j=1

−(Wj − EWj) ≥ − log(1 − ε) − q2xn

)
(24)

≤ P

(
d∑

j=1

−(Wj − EWj) ≥ −1

2
log(1 − ε)

)

≤ exp
(
− B

4M2 θ

(
(−(1/2) log(1 − ε))2M

B

))
,

where the first inequality follows from equation (23), the second from the fact
that dEWj ≥ −q2xn, the third from our assumption that xn <

q2

2 min{− log(1 −
ε), log(1 + ε)} and the final inequality by applying Lemma 2.12.

Since 1
x
θ(x) is increasing in x, the right-hand side of equation (24) is increasing

in B and hence substituting B ≤ 4q2xn gives

P(Z1 ≤ 1 − ε) ≤ exp
(
−4q2xn

4M2 θ

(− log(1 − ε)M

4q2xn

))

≤ exp
[
−− log(1 − ε)

4M

(
log
(− log(1 − ε)M

4q2xn

)
− 1
)]

(25)

≤ exp
[

log(1 − ε)

4M

(
log
(− log(1 − ε)M

4q2

)
− 1
)]

x−log(1−ε)/(4M)
n

≤ Cxα
n ,
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where the second inequality uses the fact that θ(x) < x(log(x) − 1). With essen-
tially the same argument, we have P(Z1 ≥ 1 + ε) < Cxα

n . Furthermore, the result
holds similarly for the other Zi as well which completes the result. �

Combining the results of this section, the following corollary gives us the con-
centration result we need.

COROLLARY 2.14. For any 0 < ε < 1 and α > 1 there exists C = C(q, ε,α)

and N = N(q, ε,α) depending only on q , α and ε such that for 1 ≤ i ≤ q and
n > N ,

P

(∣∣∣∣ Z1∑q
i=1 Zi

− 1

q

∣∣∣∣> ε

)
≤ Cxα

n .(26)

PROOF. In light of Lemmas 2.11 and Lemma 2.13, we split the result into two
cases, when |λ| is big and small. Let ε′(q) > 0 be small enough so that if for all i,
|Zi − 1| < ε′ then ∣∣∣∣ Z1∑q

i=1 Zi

− 1

q

∣∣∣∣< ε,

and let

M = max{− log(1 − ε′), log(1 + ε′)}
4α

.

For each fixed d , define

Kd = {λ : |λ|q < 1
2 , |λ|q + λ2q2 < M

}
,

an open set which includes 0. Let Jd = [−d−1/2, d1/2] \ Kd .
By Lemma 2.13, equation (26) holds with a bound C′ = C′(q, ε,α) not de-

pending on λ or d , provided λ ∈ Kd . For each fixed d , Lemma 2.11 implies that
equation (26) holds with a bound C′′

d = C′′
d (q, ε,α) not depending on λ, provided

λ ∈ Jd . Since λ2d ≤ 1, for large enough d so that d ≥ 4q2 and d−1/2q + d−1q2 ≤
M the set Jd is empty. It follows that equation (26) holds with a bound

C = max
{
C′, max

d ′ : Jd′ �=φ
C′′

d ′
}

that is independent of λ and d . �

2.5. Bound on zn − 1
q
xn. In this section, we bound the term zn − 1

q
xn when

xn is small.

LEMMA 2.15. For any ε, κ > 0 there exists a δ = δ(q, κ, d) and k =
k(q, κ, d) such that if xn < δ and |λ| ≥ κ then∣∣∣∣ zn+k

xn+k

− 1

q

∣∣∣∣≤ ε.
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PROOF. Using the identity (15), we have

zn+1 = E
(Z1 − (1/q)

∑q
i=1 Zi)

2

(
∑q

i=1 Zi)2

= E
1

q2

(
Z1 − 1

q

q∑
i=1

Zi

)2

− 1

q4

(
Z1 − 1

q

q∑
i=1

Zi

)2(( q∑
i=1

Zi

)2

− q2

)
(27)

+ 1

q4

(Z1 − (1/q)
∑q

i=1 Zi)
2

(
∑q

i=1 Zi)2

(( q∑
i=1

Zi

)2

− q2

)2

.

Expanding and using Lemma 2.6 and Lemma 2.5, we get that∣∣∣∣∣E 1

q2

(
Z1 − 1

q

q∑
i=1

Zi

)2

− dλ2
(
(1 − λ)

1

q
xn + λzn

)∣∣∣∣∣≤ Cqx2
n.

Similarly, ∣∣∣∣∣E 1

q4

(
Z1 − 1

q

q∑
i=1

Zi

)2(( q∑
i=1

Zi

)2

− q2

)∣∣∣∣∣≤ Cqx2
n

and

E

(( q∑
i=1

Zi

)2

− q2

)2

≤ Cqx2
n.

Substituting these bounds into equation (27) and noting that∣∣∣∣(Z1 − (1/q)
∑q

i=1 Zi)
2

(
∑q

i=1 Zi)2

∣∣∣∣≤ 1

so we have that ∣∣∣∣zn+1 − dλ2
(
(1 − λ)

1

q
xn + λzn

)∣∣∣∣≤ C′
qx2

n.

Dividing by xn+1, we get∣∣∣∣ zn+1

xn+1
− dλ2xn

xn+1

(
(1 − λ)

1

q
+ λ

zn

xn

)∣∣∣∣≤ C′
q

x2
n

xn+1
.

By Lemma 2.9, we have that xn

xn+1
≤ γ −1 and by equation (20) |dλ2xn

xn+1
− 1| ≤

C′′′
q

x2
n

xn+1
. It follows that∣∣∣∣ zn+1

xn+1
−
(
(1 − λ)

1

q
+ λ

zn

xn

)∣∣∣∣≤ C′′
q xn+1.(28)
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Iterating this equation, we get that∣∣∣∣ zn+k

xn+k

− (1 − λk)
1

q
+ λk zn

xn

∣∣∣∣
≤

k∑
�=1

∣∣∣∣(1 − λk−�)
1

q
+ λk−� zn+�

xn+�

− (1 − λk−�+1)
1

q
− λk−�+1 zn+�−1

xn+�−1

∣∣∣∣
(29)

≤
k∑

�=1

|λ|k−�

∣∣∣∣ zn+�

xn+�

−
(
(1 − λ)

1

q
+ λ

zn+�−1

xn+�−1

)∣∣∣∣
≤ C′′

q

k∑
�=1

|λ|k−�xn+�−1.

Iteratively applying Lemma 2.8 implies that if δ > 0 is small enough and xn < δ

then for 0 ≤ � ≤ k, xn+� ≤ 2δ. Since 0 ≤ zn ≤ xn it follows from equation (29)
that ∣∣∣∣ zn+k

xn+k

− 1

q

∣∣∣∣≤ λk + 2δC′′
q

k∑
�=1

λk−�.

By taking k sufficiently large and δ sufficiently small, we complete the result.
�

COROLLARY 2.16. For any ε, κ > 0 there exists a δ = δ(q, κ, d) and k =
k(q, κ, d) such that if xn < δ, n > k and |λ| ≥ κ then∣∣∣∣ zn

xn

− 1

q

∣∣∣∣≤ ε.

PROOF. By Lemma 2.9, if xn < δ then xn−k < γ −kxn and so the result follows
by Lemma 2.15. �

3. Reconstruction for q ≥ 5. The lemmas proved in Sections 2.4 and 2.5
establish Condition 2.7. We now use these results to establish the change from xn

to xn+1 when xn is small.

LEMMA 3.1. There exists a δ = δ(q) > 0 and N = N(q) such that if xn ≤ δ

and n > N then

xn+1 ≥ dλ2xn + 1

2

d(d − 1)

2

q(q − 4)

q − 1
λ4x2

n.
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PROOF. Let ε > 0. Then

∣∣∣∣E Z1∑q
i=1 Zi

((
∑q

i=1 Zi) − q)2

q2 − E
1

q

((
∑q

i=1 Zi) − q)2

q2

∣∣∣∣
≤ εE

1

q

((
∑q

i=1 Zi) − q)2

q2 + EI

(∣∣∣∣ Z1∑q
i=1 Zi

− 1

q

∣∣∣∣> ε

)
((
∑q

i=1 Zi) − q)2

q2

≤ εE
1

q

((
∑q

i=1 Zi) − q)2

q2

(30)

+ P

(∣∣∣∣ Z1∑q
i=1 Zi

− 1

q

∣∣∣∣> ε

)1/2(
E

(
((
∑q

i=1 Zi) − q)2

q2

)2)1/2

≤ εE
1

q

((
∑q

i=1 Zi) − q)2

q2 + C′x3
n

(
E

(
((
∑q

i=1 Zi) − q)2

q2

)2)1/2

≤ εE
1

q

((
∑q

i=1 Zi) − q)2

q2 + Cx3
n,

where the second inequality comes from the Cauchy–Schwarz inequality and the
third follows by Corollary 2.14 provided that n is sufficiently large while the fourth
inequality follows by Lemma 2.6.

Now by substituting equations (17)–(19), we have that

E
Z1

q
− E

Z1((
∑q

i=1 Zi) − q)

q2 + E
1

q

((
∑q

i=1 Zi) − q)2

q2

= 1

q
+ dλ2xn

+ d(d − 1)

2
λ4
[

2q(q − 2)

q − 1
x2
n − q − 1

q

(
(3 − λ)xn + λqzn

)2
− q − 3

q(q − 1)

(
(q − 3 + λ)xn − λqzn

)2(31)

+ 1

q(q − 1)(q − 2)

(
(3q − 6 + 2λ)xn − 2λqzn

)2]+ R

≥ 1

q
+ dλ2xn + d(d − 1)

2

q(q − 4)

q − 1
λ4x2

n

− C′ d(d − 1)

2
λ5
∣∣∣∣ zn

xn

− 1

q

∣∣∣∣x2
n − R,
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where |R| ≤ Cx3
n and C and C′ depend only on q . Let κ = q(q−4)

3C′(q−1)
then if |λ| ≤ κ

then since 0 ≤ zn ≤ xn,

C′ d(d − 1)

2
λ5
∣∣∣∣ zn

xn

− 1

q

∣∣∣∣x2
n ≤ C′κλ4

∣∣∣∣ zn

xn

− 1

q

∣∣∣∣x2
n

(32)

≤ 1

3

d(d − 1)

2

q(q − 4)

q − 1
λ4x2

n.

When d > κ−2 then we always have |λ| < κ because dλ2 ≤ 1. For the finite num-
ber of cases when d ≤ κ2 by taking δ to be sufficiently small and N to be suf-
ficiently large, we may assume by Corollary 2.16 that when |λ| > κ and n > N

then ∣∣∣∣ zn

xn

− 1

q

∣∣∣∣< κ.

It follows that we may take equation (32) to hold for all d and λ.
Now combining equations (16), (30), (31) and (32) and taking δ and ε to be

sufficiently small and N sufficiently large, we complete the result. �

PROOF OF THEOREM 1.2. We will prove the result for the ferromagnetic case,
the anti-ferromagnetic case will follow similarly. We will establish that when λ is
close enough to d−1/2 then xn does not converge to 0. First, we will verify that xn

does not drop from a very large value to a very small one. Fix some κ < d−1/2. By
Lemma 2.9, there exists 0 < γ < 1 such that if κ < λ ≤ d−1/2 then xn+1 ≥ γ xn.
Now we use Lemma 3.1. We can take δ > 0 and N so that if n ≥ N and xn < δ

then

xn+1 ≥ dλ2xn + 1

2

d(d − 1)

2

q(q − 4)

q − 1
λ4x2

n.(33)

Let ε = min{1
2γ N+1, δγ } > 0. Since q −4 > 0, we can choose κ < λ < d−1/2 such

that

1 ≤ dλ2 + 1

2

d(d − 1)

2

q(q − 4)

q − 1
λ4ε.(34)

We now show by induction that for all n that xn ≥ ε. Since x0 = 1 − 1
q

> 1
2 , then

xn ≥ 1
2γ n ≥ ε when n ≤ N so suppose that n > N . Now if xn ≥ εγ −1 then xn+1 ≥

γ xn ≥ ε. If ε ≤ xn ≤ γ −1ε ≤ δ, then by Lemma 3.1 and equation (34) we have
that

xn+1 ≥ dλ2xn + 1

2

d(d − 1)

2

q(q − 4)

q − 1
λ4x2

n

≥ xn

(
dλ2 + 1

2

d(d − 1)

2

q(q − 4)

q − 1
λ4ε

)
≥ xn.
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It follows by induction that for all n, xn ≥ ε which implies that λ+ ≤ λ < d−1/2

which establishes that the Kesten–Stigum bound is not tight. �

4. Large degree asymptotics. In this section, we will analyze what happens
as we let d grow. As d increases, the interactions become weaker and λ decreases.
We will parameterize the interaction strengths with λ̂ defined by λ̂ = λ̂(d) = λd1/2.
With this parameterization, λ̂ = 1 corresponds to the Kesten–Stigum bound in the
ferromagnetic case while λ̂ = −1 corresponds to the Kesten–Stigum bound in the
antiferromagnetic case. We will, therefore, restrict our attention to |λ̂| ≤ 1. We
define

Uij = log
(

1 + λq

(
Yij − 1

q

))
and denote Uj = (U1j , . . . ,Uqj ) ∈ R

q . We have the following estimates on the
means and covariances of the Uij .

LEMMA 4.1. There exists constants C and d ′ depending only on q such that
when d > d ′, ∣∣dEU1j − 1

2 λ̂2qxn

∣∣≤ Cd−1/2,(35)

and for i ≥ 2, ∣∣∣∣dEUij +
(

1

2
+ 1

q − 1

)
λ̂2qxn

∣∣∣∣≤ Cd−1/2.(36)

For any 1 ≤ i ≤ q ,

|d Var(Ui) − λ̂2qxn| ≤ Cd−1/2(37)

and for and 1 ≤ i1 < i2 ≤ q ,∣∣∣∣d Cov(Ui1j ,Ui2j ) + 1

q − 1
λ̂2qxn

∣∣∣∣≤ Cd−1/2.(38)

PROOF. Using the Taylor series expansion of log(1 + w), there exists a con-
stant W > 0 such that when |w| < W then | log(1 + w) − w + 1

2w2| ≤ |w|3. Since
by definition 0 ≤ Yij ≤ 1 by taking d ′ to be sufficiently large we may assume that
|λq(Yij − 1

q
)| ≤ |λ|q ≤ W since |λ| ≤ d−1/2. Then by Lemma 2.5,

E

∣∣∣∣U1j − λq

(
Yij − 1

q

)
+ 1

2
λ2q2
(
Yij − 1

q

)2∣∣∣∣≤ E|λ|3q3
∣∣∣∣Yij − 1

q

∣∣∣∣3

≤ d−3/2q3E

∣∣∣∣Yij − 1

q

∣∣∣∣3(39)

≤ q3d−3/2.
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Now since by Lemma 2.2, 0 ≤ zn ≤ xn ≤ 1 and applying the identities of Lem-
ma 2.5, ∣∣∣∣Eλq

(
Yij − 1

q

)
− E

1

2
λ2q2
(
Yij − 1

q

)2

− 1

2
λ2qxn

∣∣∣∣
=
∣∣∣∣λ2qxn − 1

2
λ2q2
(
λzn + 1

q
(1 − λ)xn

)
− 1

2
λ2qxn

∣∣∣∣
(40)

= 1

2
|λ|3q2

∣∣∣∣zn − 1

q
xn

∣∣∣∣
≤ 1

2
q2d−3/2.

Combining equation (39) and (40) establishes equation (35). Equations (36)–(38)
follow similarly. �

Since the random vectors Yj = (Y1j , . . . , Yqj ) are independent and identically
distributed so are the Uj = (U1j , . . . ,Uqj ) for j = 1, . . . , d . Also each Uij satisfies

|Uij | ≤ max{log(1 + d−1/2q), | log(1 − d−1/2q)|} → 0

as d → ∞. Such a collection of random vectors suggests the use of a central limit
theorem.

The following standard proposition can be established using the central limit
theorem and Gaussian approximation.

PROPOSITION 4.2. Let ψ : Rq �→ R be a differentiable bounded function and
let ε > 0. Let V1, . . . , VD be a sequence of i.i.d. q-dimensional vectors denoted
Vj = (V1j , . . . , Vqj ). Let μ ∈ R

q be a vector and let � ∈ R
q×q be a positive semi-

definite symmetric q × q-matrix. Let (W1, . . . ,Wq) be distributed according to the
q-dimensional Gaussian vector N(μ,�).

Suppose there exists some C > 0 such that for 1 ≤ i < j ≤ q the follow-
ing holds: ‖μi‖∞ ≤ C, ‖�ij‖∞ ≤ C, ‖μ − DEV1‖∞ ≤ CD−1/2 and ‖� −
D Cov(V1)‖∞ ≤ CD−1/2 and ‖ · ‖∞ denotes the standard L∞ norm. Then there
exists a D′ depending only on q,C and ψ such that if D > D′ then∣∣∣∣∣ψ

( q∑
i=1

V1j , . . . ,

q∑
i=1

Vqj

)
− ψ(W1, . . . ,Wq)

∣∣∣∣∣≤ ε.

Let μ be the q-dimensional vector given by

μi =

⎧⎪⎪⎨⎪⎪⎩
q

2
, i = 1,

−q

(
1

2
+ 1

q − 1

)
, i �= 2,
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and let � is the q × q-covariance matrix given by

�ij =
⎧⎨⎩q, i = j ,

− q

q − 1
, i �= j .

Define

ψ(w1, . . . ,wq) = ew1∑q
i=1 ewi

.

The function ψ is positive, analytic and bounded by 1. Now if (W1, . . . ,Wq) is a
Gaussian vector distributed according to N(0,�) then (sμ1 + √

sW1, . . . , sμq +√
sWq) is distributed according to N(sμ, s�). We define

g(s) = gq(s) = Eψ
(
sμ1 + √

sW1, . . . , sμq + √
sWq

)− 1

q
(41)

= esμ1+√
sW1∑q

i=1 esμi+√
sWi

− 1

q
.

Since Zi = exp(
∑q

i=1 Uij ), we have that

xn+1 = E
Z1∑q
i=1 Zi

− 1

q
= Eψ

(
d∑

j=1

U1j , . . . ,

d∑
j=1

Uqj

)
− 1

q
.

Then Proposition 4.2 and Lemma 4.1 immediately imply the following lemma.

LEMMA 4.3. For each ε > 0 there exists a d ′ such that when d > d ′,

|xn+1 − g(λ̂2xn)| ≤ ε.

Understanding the function gq(s), and in particular the solutions to the equation
gq(s) = s, provides key information into the reconstruction problem when d is
large. Since 0 < xn ≤ q−1

q
, we will restrict our attention on g to this interval.

LEMMA 4.4. For each q , the function gq is continuously differentiable on the

interval (0,
q−1
q

] and increasing.

PROOF. Since

sup
x

∣∣∣∣ ddx

ex

1 + ex

∣∣∣∣= sup
x

∣∣∣∣ ex

(1 + ex)2

∣∣∣∣= 1

4
(42)

we have that when s > 0,

E

∣∣∣∣ dds
ψ
(
sμ1 + √

sW1, . . . , sμq + √
sWq

)∣∣∣∣≤ 1

4
E

q∑
i=1

∣∣∣∣ dds
sμi + √

sWi

∣∣∣∣< ∞
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which establishes that gq is differentiable. Now let (W̃1, W̃2, . . . , W̃q) be an inde-
pendent copy of (W1, . . . ,Wq). Then when 0 ≤ s′ < s the following equality in
distribution holds:√

s(W1, . . . ,Wq)
d= √

s′(W1, . . . ,Wq)

+ √
s − s′(W̃1, W̃2, . . . , W̃q).

Recall that if W is distributed as N(μ, s2) then EeW = eμ+(1/2)s2
. For 2 ≤ i ≤ q ,

since W̃i − W̃1 is distributed as N(0,2q + 2q
q−1),

E
[
exp
(√

s′(Wi − W1) + √
s − s′(W̃i − W̃1)

)|{W }qj=1

]
= exp

(√
s′(Wi − W1) + (s − s′)

(
q + q

q − 1

))
.

Noting that 1
1+u

is convex, by Jensen’s inequality

gq(s) = Eψ
(
sμ1 + √

sW1, . . . , sμq + √
sWq

)− 1

q

= E

(
1
/(

1 +
q∑

i=2

exp
(
−s

(
q + q

q − 1

)
+ √

s′(Wi − W1)

+ √
s − s′(W̃i − W̃1)

)))
− 1

q

≥ E

(
1
/(

1 + E

[ q∑
i=2

exp
(
−s

(
q + q

q − 1

)
+ √

s′(Wi − W1)

+ √
s − s′(W̃i − W̃1)

)∣∣∣
{W }qj=1

]))
− 1

q

= E
1

1 +∑q
i=2 exp(−s′(q + q/(q − 1)) + √

s′(Wi − W1))
− 1

q

= gq(s
′)

which establishes that gq(s) is increasing. �

LEMMA 4.5. For all q and small s, we have that

gq(s) = s + 1

2

(q − 4)q

q − 1
s2 + 1

6

(q2 − 18q + 42)q2

(q − 1)2 s3 + O(s4)(43)

and so when q ≥ 5 there is a root 0 < s∗ <
q−1
q

to the equation g(s∗) = s∗.
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PROOF. Using the identity

a

r + s
=
(

m∑
i=1

(−1)i−1 ari−1

si

)
+ (−1)m

rm

sm

a

r + s

and taking a = exp(sμ1 + √
sW1), s = q and r = (

∑q
i=1 exp(sμi + √

sWi) − q),
we have that

gq(s) = Eψ
(
sμ1 + √

sW1, . . . , sμq + √
sWq

)− 1

q

= E

4∑
i=1

(−1)i−1 (
∑q

i=1 exp(sμi + √
sWi) − q)i−1 exp(sμ1 + √

sW1)

qi
(44)

+ E
(
∑q

i=1 exp(sμi + √
sWi) − q)4

q4

exp(sμ1 + √
sW1)∑q

i=1 exp(sμi + √
sWi)

− 1

q
.

Now again using the fact that if W is distributed as N(μ, s2) then EeW = eμ+s2/2

and doing Taylor series expansions with the help of Mathematica we have that

E

4∑
i=1

(−1)i−1 (
∑q

i=1 exp(sμi + √
sWi) − q)i−1 exp(sμ1 + √

sW1)

qi

= (4qe6qs + 6eqs(q−10)/(q−1) − e10qs + 8e3(q−2)sq/(q−1)q2

− 3e2qs(3q−5)/(q−1)q + 3e2qs(3q−5)/(q−1) − 6e2qs(q−5)/(q−1)

− q3 − 6q2e3qs + 4e2qs(2q−5)/(q−1) − 11eqs(q−10)/(q−1)q

− 12eqs(q−6)/(q−1)q2 − eqs(q−10)/(q−1)q3 + 4e2qs(q−3)/(q−1)q2

− 4e2qs(q−3)/(q−1)q + 4eqs(q−6)/(q−1)q3 + 8eqs(q−6)/(q−1)q

− 4e2qs(2q−5)/(q−1)q − 3eqs(−10+3q)/(q−1)q2 − 3e2qs(q−5)/(q−1)q2

+ 9e2qs(q−5)/(q−1)q + 6eqs(q−3)/(q−1)q2 − 6q3eqs(q−3)/(q−1)

− 6eqs(−10+3q)/(q−1) + 4q3eqs − 8e3(q−2)sq/(q−1)q

+ 6eqs(q−10)/(q−1)q2 + 9eqs(−10+3q)/(q−1)q
)
q−4

= 1

q
+ s + 1

2

(q − 4)q

q − 1
s2 + 1

6

(q2 − 18q + 42)q2

(q − 1)2 s3 + O(s4)

and

E
(
∑q

i=1 exp(sμi + √
sWi) − q)4

q4

= −(4qe6qs + 60eqs(q−10)/(q−1) − e10qs + 16e3(q−2)sq/(q−1)q2
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− 5e2qs(3q−5)/(q−1)q + 4e−6qs/(q−1)q4 − 6q4e−3qs/(q−1)

− 12e−3qs/(q−1)q2 − e−10qs/(q−1)q4 − 35e−10qs/(q−1)q2

− 24e−6qs/(q−1)q + 50e−10qs/(q−1)q + 44e−6qs/(q−1)q2

+ 5e2qs(3q−5)/(q−1) + 10e−10qs/(q−1)q3 − 30e2qs(q−5)/(q−1)

− q4 − 6q2e3qs + 4q4e−qs/(q−1) + 10e2qs(2q−5)/(q−1)

− 110eqs(q−10)/(q−1)q − 72eqs(q−6)/(q−1)q2 − 10eqs(q−10)/(q−1)q3

+ 12e2qs(q−3)/(q−1)q2 − 12e2qs(q−3)/(q−1)q + 24eqs(q−6)/(q−1)q3

+ 48eqs(q−6)/(q−1)q − 10e2qs(2q−5)/(q−1)q − 10eqs(−10+3q)/(q−1)q2

− 15e2qs(q−5)/(q−1)q2 + 45e2qs(q−5)/(q−1)q + 18eqs(q−3)/(q−1)q2

− 18q3eqs(q−3)/(q−1) − 24e−10qs/(q−1) − 24e−6qs/(q−1)q3

+ 18q3e−3qs/(q−1) − 20eqs(−10+3q)/(q−1) − 4q3e−qs/(q−1) + 4q3eqs

− 16e3(q−2)sq/(q−1)q + 60eqs(q−10)/(q−1)q2 + 30eqs(−10+3q)/(q−1)q
)
q−4

= O(s4).

Since 0 ≤ (
∑q

i=1 exp(sμi+√
sWi)−q)4

q4 and 0 ≤ exp(sμ1+√
sW1)∑q

i=1 exp(sμi+√
sWi)

≤ 1 combining these
estimates establishes equation (43).

Since q − 4 > 0 when q ≥ 5 for small s > 0 we have that gq(s) > s. Since

gq

(
1 − 1

q

)
= Eψ

(
sμ1 + √

sW1, . . . , sμq + √
sWq

)− 1

q
< 1 − 1

q

by the Intermediate Value theorem, there must be some 0 < s∗ <
q−1
q

such that
g(s∗) = s∗. �

THEOREM 4.6. When q ≥ 5, define

w∗ = inf
{
w :∃0 < s∗ <

q − 1

q
, g(ws∗) = s∗

}
.

Then 0 < w∗ < 1 and for each δ > 0 there exists a d ′(q, δ) such that if d > d ′ then
the model has reconstruction when λ̂2 ≥ w∗ + δ but does not have reconstruction
when λ̂2 ≤ w∗ − δ.

PROOF. The key idea of this result is that when λ̂2 > w∗, gq(λ̂s) has a nonzero
attractive fixed point as a function of s while if λ̂ < w∗ then gq(λ̂s) < s for
s > 0. By Lemma 4.5, we have the expansion gq(s) = s + 1

2
(q−4)q
q−1 s2 + o(s2) so

for small s, gq(s) > s. It also implies that for any 0 < w < 1, the set {0 < s <
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q−1
q

:gq(ws) ≥ s} is a compact set bounded away from 0. By the continuity of gq ,{
0 < s <

q − 1

q
:g(w∗s) = s

}
= ⋂

w∗<w<1

{
0 < s <

q − 1

q
:g(ws) ≥ s

}
and by the Finite Intersection Property of compact sets it is nonempty and compact
so let s∗ ∈ {0 < s <

q−1
q

:g(w∗s) = s}.
Now set λ̂2 = w∗ + δ and so

gq

(
(w∗ + δ)

(
s∗ w∗

w∗ + δ

))
= gq(s

∗w∗) = s∗ > s∗ w∗

w∗ + δ
.

Take d large enough so that Lemma 4.3 holds with 0 < ε < s∗ − s∗ w∗
w∗+δ

. Then
when xn > s∗ w∗

w∗+δ
since gq is monotone it follows that

xn+1 ≥ gq

(
(w∗ + δ)xn

)− ε

> gq

(
(w∗ + δ)

(
s∗ w∗

w∗ + δ

))
−
(
s∗ − s∗ w∗

w∗ + δ

)
= s∗ w∗

w∗ + δ

and hence infxn ≥ s∗ w∗
w∗+δ

which establishes reconstruction.
By equation (20)

|xn+1 − λ̂2xn| ≤ Cqλ
4 d(d − 1)

2
x2
n ≤ Cqx2

n,

where Cq does not depend on d or λ̂. So when |λ̂| < 1 and if xn < 1−λ̂2

2Cq
then

xn+1 ≤ λ̂2xn + Cqx
2
n ≤ λ̂2xn + 1 − λ̂2

2
xn <

1 + λ̂2

2
xn.

When λ̂2 < w∗ then g(λ̂2s) ≤ λ̂2

w∗ s and so by Lemma 4.3 for large enough d , we

have that for some n, xn < 1−λ̂2

2Cq
. It follows then that xn converges to 0 which

proves nonreconstruction for large enough d . �

4.1. Nonreconstruction for q = 3.

LEMMA 4.7. When q = 3 for all 0 ≤ s ≤ q−1
q

, then gq(s) < s.

We defer this proof to the Appendix.

LEMMA 4.8. When q = 3 there exists a δ > 0 and N not depending on d or λ

such that if xn ≤ δ and n > N then

xn+1 ≤ dλ2xn − 3

4

d(d − 1)

2
λ4x2

n.
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The proof is essentially identical to the proof of Lemma 3.1 and so we omit it.

PROOF OF THEOREM 1.1. At the Kesten–Stigum bound, we have that |λ̂| = 1.
Since g(s) < s for all s > 0 by Lemma 4.3 there exists a d ′ such that when d > d ′
and m is sufficiently large then xm < δ where δ is the constant in Lemma 4.8. It
follows from Lemma 4.8 that if for some m, xm < δ then limn xn = 0 and hence
nonreconstruction. �

APPENDIX: DEFERRED PROOF

PROOF OF LEMMA 4.7. Recall that μ is the q-dimensional vector given by

μi =

⎧⎪⎪⎨⎪⎪⎩
q

2
, i = 1,

−q

(
1

2
+ 1

q − 1

)
, i �= 2,

and that � is the q × q-covariance matrix given by

�ij =
⎧⎨⎩q, i = j ,

− q

q − 1
, i �= j .

With (W1, . . . ,Wq) a Gaussian vector distributed according to N(0,�) the func-
tion gq(s) is defined as

gq(s) = Eψ
(
sμ1 + √

sW1, . . . , sμq + √
sWq

)− 1

q
,

where

ψ(w1, . . . ,wq) = ew1∑q
i=1 ewi

.

In this lemma we consider the case of q = 3. By equation (42) we have that for
any x, y,∣∣∣∣ ex

1 + ex
− ey

1 + ey

∣∣∣∣≤ 1

4
|x − y|,

∣∣∣∣ 1

1 + ex
− 1

1 + ey

∣∣∣∣≤ 1

4
|x − y|.

Using this estimate and the fact that E|Wi | =
√

6
π

it follows that

|g3(s1) − g3(s2)| ≤ 1

4

3∑
i=1

|μi(s1 − s2)| +
∣∣√s1 − √

s2
∣∣E|Wi |

= 15

8
|s1 − s2| +

√
27

8π

∣∣√s1 − √
s2
∣∣.
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Now maxx∈[0.1,2/3] d
dx

x1/2 = 1
2

√
10. Hence if we take 0.1 ≤ s1 < s2 ≤ 2

3 then

|g3(s1) − g3(s2)| ≤
(

15

8
+
√

135

16π

)
|s1 − s2| ≤ 3|s1 − s2|.(45)

Let

S =
{

100

1000
,

101

1000
, . . . ,

667

1000

}
and suppose that

∀s∗ ∈ S g3(s
∗) − s∗ < − 5

1000
.(46)

Now fix some s ∈ [0.1, 2
3 ]. Then for some s∗ ∈ S , |s − s∗| < 1

1000 which implies
that

g3(s) − s ≤ g3(s
∗) − s∗ + |g3(s) − g3(s

∗)| + |s − s∗|
< − 5

1000
+ 4|s − s∗| + |s − s∗| < 0,

where the second inequality follows from equation (45). So proving equation (46)
would imply that g3(s) < s for all 0.1 ≤ s ≤ 2

3 . We do this by a rigorous method
of numerical integration.

Let U1,U2 be independent standard Gaussians. The random vectors (W2 −
W1,W3 − W1) and (3U1,

3
2U1 + 3

√
3

2 U2) have the same covariance matrix and
therefore are equal in distribution. Hence

g3(s) = E
1

1 +∑3
i=2 exp(−(9s)/2 + √

s(W̃i − W̃1))
− 1

3

= E

(
1
/(

1 + exp
(
−9s

2
+ 3

√
sU1

)

+ exp
(
−9s

2
+ 3

2

√
sU1 + 3

√
3

2

√
sU2

)))
− 1

3

=
∫

R2

(
1
/(

1 + exp
(
−9s

2
+ 3

√
sx

)
+ exp

(
−9s

2
+ 3

2

√
sx + 3

√
3

2

√
sy

)))
(47)

· exp(−x2/2 − y2/2)

2π
dx dy − 1

3

≤
∫ 5

−5

∫ 5

−5

(
1
/(

1 + exp
(
−9s

2
+ 3

√
sx

)

+ exp
(
−9s

2
+ 3

2

√
sx + 3

√
3

2

√
sy

)))

· exp(−x2/2 − y2/2)

2π
dx dy − 1

3
+ 10−5,
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where the inequality uses the standard inequality that∫ ∞
x

exp(−x2/2)√
2π

dx ≤ exp(−x2/2)

x
√

2π

which implies that∫ ∫
R2\[−5,5]2

exp(−x2/2 − y2/2)

2π
≤ 4

exp(−52/2)

5
√

2π
≤ 10−5.

Define the function φ(i) = min{|i|, |i + 1|}. Then for integers i and j ,∫ (i+1)/200

i/200

∫ (j+1)/200

j/200

((
exp(−x2/2 − y2/2) dx dy

)
/(

1 + exp
(
−9s

2
+ 3

√
sx

)

+ exp
(
−9s

2
+ 3

2

√
sx + 3

√
3

2

√
sy

))
2π

)
(48)

≤
(

exp
(
−
(

φ(i)

200

)2/
2 −
(

φ(j)

200

)2/
2
)

40,000−1
)

/(
1 + exp

(
−9s

2
+ 3

√
s

i

200

)

+ exp
(
−9s

2
+ 3

2

√
s

i

200
+
(

3
√

3

2

)√
s

j

200

))
2π.

Let ψ(i, j) denote the right-hand side of equation (48). Substituting this bound in
(47) we have that

g3(s) ≤ −1

3
+ 10−5 +

999∑
i=−1000

999∑
j=−1000

ψ(i, j).(49)

The right-hand side of equation (49) is merely a combination of basic arith-
metic operations and exponentials and so can be rigorously computed to arbi-
trarily high precision (e.g., in Mathematica). Evaluating this expression for each
s∗ ∈ S establishes equation (46). As noted above this implies that g(s) < s when
s ∈ [0.1, 2

3 ].
It remains to show that g3(s) < s when 0 < s ≤ 0.1. Using equation (44) and

noting that

exp(sμ1 + √
sW1)∑3

i=1 exp(sμi + √
sWi)

≤ 1
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we have that

g3(s) ≤ E

4∑
i=1

(−1)i−1 (
∑3

i=1 exp(sμi + √
sWi) − 3)i−1 exp(sμ1 + √

sW1)

3i

+ E
(
∑3

i=1 exp(sμi + √
sWi) − 3)4

81
− 1

3
.

Using the fact that if W is distributed as N(μ,σ 2) then EeW = eμ+σ 2/2 we have
after simplifying that

g3(s) ≤ 74

27
− 4

27
e−9s/2 + 4

27
e3s − 202

81
e−3s/2

(50)

+ 8

27
e−6s + 4

81
e12s − 16

27
e9s/2.

By Taylor’s theorem we have that if |x| ≤ 1.2 then∣∣∣∣∣exp(x) −
5∑

i=0

xi

i!
∣∣∣∣∣≤ x6

6! max
y∈[−1.2,1.2]

∣∣∣∣d6ey

dy6

∣∣∣∣≤ 2
x6

6! .

Applying this to equation (50) we get that when 0 ≤ s ≤ 0.1 that

g3(s) − s ≤ 1

1280
s2h(s),

where

h(s) = −960 − 1440s + 58,860s2 + 98,334s3 + 595,795s4.

Now h(s) is convex and h(0) < 0 and h(0.1) < 0 which imples that h(s) < 0 for
all 0 ≤ s ≤ 0.1. It follows that g3(s) < s for all 0 < s ≤ 0.1 which completes the
proof. �
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