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A CONTINUOUS SEMIGROUP OF NOTIONS OF INDEPENDENCE
BETWEEN THE CLASSICAL AND THE FREE ONE

BY FLORENT BENAYCH-GEORGES AND THIERRY LEVY

In this paper, we investigate a continuous family of notions of indepen-
dence which interpolates between the classical and free ones for noncommu-
tative random variables. These notions are related to the liberation process
introduced by Voiculescu. To each notion of independence correspond new
convolutions of probability measures, for which we establish formulae and
of which we compute simple examples. We prove that there exists no reason-
able analogue of classical and free cumulants associated to these notions of
independence.

Introduction. Let u and v be two Borel probability measures on the real
line R. The classical convolution of u and v is the probability measure on R,
denoted by w * v, which is the distribution of the sum of two classical independent
random variables with respective distributions p and v. Let us describe w * v in an
alternative way. To each n x n matrix with eigenvalues A1, ..., A,, we associate its
spectral measure, which is the probability measure % 1185, Let (A,),>1 and
(Bn)n>1 be two sequences of diagonal real matrices, with A,, and B, of size n for
all n > 1, such that the spectral measure of A, (resp., of B,) converges, as n tends
to infinity, to @ (resp., to v). For each n > 1, let S, be a random matrix chosen
uniformly among the n! permutation matrices of size n. Then the spectral measure
of A, + S, B»S, I converges, as n tends to infinity, to @ * v.

If we replace, for each n > 1, the matrix S, by a random matrix U, chosen in
the unitary group U (n) according to the Haar measure, then the spectral measure
of A, +U,B,U, 1 converges, as n tends to infinity, to the free convolution of u
and v, a probability measure on R denoted by n H v.

This way of describing classical and free convolutions suggests a natural
way to interpolate between them. Indeed, consider, for all n > 1, a properly
scaled Brownian motion (U, );>o issued from the identity matrix on the uni-
tary group U (n). Given ¢t € [0, +00), one may consider the spectral measure of
Ap + Uy SuBnS, ! U,. ,1, and ask for the limit of this distribution as » tends to in-
finity. For t = 0, the matrix U, ¢ is the identity matrix and we find the classical
convolution of u and v. For t = 400, that is, when U, ; is replaced by its limit in
distribution as ¢ tends to infinity, which is a uniformly distributed unitary matrix,
we recover the free convolution of i and v. For any other ¢ € (0, +00), it turns out
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that one finds a probability measure which depends only on u, v and ¢ and which
we denote by w x; v.
Consider, for example, the case where u = v = %(81 4+ 6_1). Then p *v =

18_2+ 380+ 18 and it is well known that wBv = 1[5 2)(x) d: -,
T —X
the arcsine law ([10], Example 12.8). One may wonder which probability measures

interpolate between p * v and w B v. We will prove that

a dilation of

I} S_ S S5 4i arccos (x/2)
Vi>0 1+0-1 % 1+0-1 =]l[_22](x)’04t(e )dx.
2 2 ’ TN/4 — x2

Here, for all t > 0 and 6 € R, p; (eie) is the density at e'? with respect to the uni-
form probability measure on the unit circle, of the distribution of the free unitary
Brownian motion at time ¢. This distribution is also the limit, as n tends to infinity,
of the spectral measure of U, ;. There is no simple formula for this distribution,
which apparently has to be taken as a fundamental function in any problem involv-
ing the large n asymptotics of the Brownian motion on the unitary group U (n).
However, the moments of this distribution are known since Biane first computed
them [4]. It follows for instance from the previous expression that w *; v has a
density with respect to the Lebesgue measure for all ¢+ > 0 and that its support,
which one can compute for all ¢ > 0, is the whole interval [—2, 2] if and only if
t>1.

We have unfortunately not been able yet to give any other nontrivial examples
where u *; v can be computed. However, the tools offered by the computation rules
given in Section 3 allow one to develop a related notion of infinite divisibility, and
this will be done in the forthcoming paper [2] where a random matrix model is
presented to interpolate between Gaussian and Wigner distributions.

The family of operations #*, is really just a by-product of a more fundamental
construction, which is that of a continuous family of independence (or dependence)
structures between noncommutative random variables which interpolates between
classical independence and freeness. Indeed, we will define, for all ¢ € [0, +o0],
a notion of independence between two subalgebras of a noncommutative proba-
bility space, which we call #-freeness, which, for ¢t = 0 (resp., t = 4-00), coincides
with classical independence (resp., freeness) and which, for all ¢ > 0, is related to
the so-called liberation process introduced by Voiculescu [12]. Once this structure
is defined, it is straightforward to define additive or multiplicative convolution of
t-free self-adjoint or unitary elements, thus giving rise to several operations on
probability measures: additive or multiplicative convolution of probability mea-
sures with compact support on R, denoted by *; and ®;; multiplicative convolution
of probability measures on the unit circle, also denoted by ©;.

The idea of seeking a continuous way of passing from classical to free indepen-
dence is presumably as old as the theory of free probability itself, but the research
of such a continuum has been broken off by a paper of Roland Speicher in 1997



906 F. BENAYCH-GEORGES AND T. LEVY

[11], where he has shown that no other notion of independence than the classi-
cal and the free ones can be the base of a reasonable probability theory. Indeed
t-freeness does not satisfy all the axioms enforced by Speicher because it is not
an associative notion of independence. This axiom of associativity states, roughly,
that if X, Y, Z are three random variables such that X is independent of Y and Z
is independent of {X, Y}, then X must be independent of {Y, Z}. Instead of this,
what is true with r-freeness is that for all s, > 0, if X, Y, Z are three random
variables such that X is ¢-free with Y and Y is s-free with Z, then under certain
additional hypotheses, X will be (s + ¢)-free with Z. This is of course related to
the semi-group property of the Brownian motion.

There are several ways to characterize and deal with independence and free-
ness. The first one, which we have already mentioned, is to relate them with matrix
models. The second one is to describe them by means of computation rules: the ex-
pectation factorizes with respect to independent subfamilies of random variables,
whereas the expectation of a product of free elements can be computed using the
fact that if xy, ..., x,, are centered and successively free, then their product is cen-
tered. The third way to describe independence and freeness is to identify integral
transforms which linearize them (namely the logarithm of Fourier transform or the
R-transform). This amounts to describing classical and free cumulants. The last
way, a bit more abstract, is to consider tensor or free products: a family of random
variables is independent (resp., free) if and only if it can be realized on a tensor
product (resp., free product) of probability spaces.

In the present paper, we look for the analogues of all these approaches for the
notion of 7-freeness. We begin, in Section 2, by giving the definition of a ¢-free
product and presenting the corresponding random matrix model. Then, in Sec-
tion 3, we state the computation rules, which are best understood as a family of
differential equations. Finally, in Section 4, we prove that no notion of cumulants
of order greater than 6 can be associated to the notion of 7-freeness. More pre-
cisely, we show that there does not exist a universally defined 7-linear form on any
noncommutative probability space with the property that this form vanishes when-
ever it is evaluated on arguments which can be split into two nonempty subfamilies
which are ¢-free, unless t = 0 or = +00. This can be summarized in Figure 1.

Matrix model Computation rules Cumulants Algebraic structures
Indep. A+ SBS™! Factorization Class. cumulants Tensor product
t-freeness A+ U; SBS™! U,_1 Differential system Do not exist t-free product
Freeness A+UBU™! @x1--x,) =0 Free cumulants Free product
FIG. 1. The main computation rule for freeness is that ¢(x1---x,) = 0 as soon as xi,...,xp

are successively free and centered. For t-freeness, the computation rules are best expressed as a
differential system relating the distributions of the t-free products of two families of random variables
for different values of t.
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1. Preliminaries. In this section, we review the notions of noncommutative
probability which are relevant to the definition of z-freeness.

1.1. Probability space, distribution. Noncommutative probability is based on
the following generalization of the notion of probability space.

DEFINITION 1.1 (Noncommutative probability space). A noncommutative
probability space is a pair (A, ¢), where:

e A is an algebra over C with a unit element denoted by 1, endowed with an
operation of adjunction x — x* which is C-antilinear, involutive and satisfies
(xy)* =y*x*forall x, y € A,

e ¢:A— Cisalinear form on A, satisfying ¢(1) =1, ¢(xy) = ¢(yx), p(x*) =
o(x) and p(xx*) >0 forall x, y € A.

The linear form ¢ is often called the expectation of the noncommutative probabil-
ity space.

Two fundamental examples are the algebra L°°~ (2, ¥, P) of complex-valued
random variables with moments of all orders on a classical probability space, en-
dowed with the complex conjugation and the expectation [we will say that this
noncommutative probability space is inherited from (2, A, P)]; and the algebra
M, (C) endowed with the matricial adjunction and the normalized trace.

DEFINITION 1.2 (Noncommutative distribution). Let (A, ¢) be a noncommu-
tative probability space. The noncommutative distribution of a family (ay, ..., ay)
of elements of .4 with respect to ¢ is the linear map defined on the space of polyno-
mials in the noncommutative variables X1, X7, ..., X,;, X, which maps any such
polynomial P to ¢(P(ai,af,...,an,ay)).

The link between the classical notion of distribution and the noncommutative
one is the following. Consider a self-adjoint element a in a noncommutative prob-
ability space (A, @), that is, an element such that a = a™*. Since ¢(xx*) > 0 for all
x € A, the distribution of a is a linear form on C[X] which is nonnegative on the
polynomials which are nonnegative on the real line. Hence, it can be represented
as the integration with respect to a probability measure on the real line. This prob-
ability measure is unique if and only if it is determined by its moments, which is in
particular the case when it has compact support, or equivalently when there exists
a constant M such that for all n > 0, one has go(azn) < M?*,

Similarly, the distribution of a unitary element u, that is, an element such that
uu* = u*u = 1, is the integration with respect to a probability measure on the unit
circle of C. Since the circle is compact, there is no issue of uniqueness in this
case.
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1.2. Independence, freeness and random matrices.

1.2.1. Definitions and basic properties. We shall recall the definitions of the
two notions of independence in a noncommutative probability space between
which our main purpose is to interpolate. The first one is a straightforward transla-
tion of the classical notion of independence in the noncommutative setting, which
coincides with the original notion in the case of a noncommutative probability
space inherited from a classical one. The second one is the notion of freeness, as
defined by Voiculescu [13], which is called freeness.

In this paper, by a subalgebra of the algebra of a noncommutative probability
space, we shall always mean a subalgebra which contains 1 and which is stable
under the operation x > x*.

DEFINITION 1.3 (Independence and freeness). Let (M, ¢) be a noncommu-
tative probability space. The kernel of ¢ will be called the set of centered elements.
Consider a family (A;);c; of subalgebras of M.

e The family (A;);c; is said to be independent if
(i) foralli# j el, A; and A; commute,

@ii) forall n > 1, iy,...,i, € I pairwise distinct, for all family (ai,...,a,) €
A x -+ x A;, of centered elements, the product a; - - - a, is also centered.
e The family (A;);cs is said to be free if for all n > 1, iy, ..., i, € [ such that

i1 #i2,i0 #13,...,0p—1 # ip, for all family (ai,...,a,) € Ai; x --- x A;, of
centered elements, the product a; - - - a, is also centered.

On a classical probability space (2, X,P), a family (X;);c; of sub-o-fields
of ¥ is independent with respect to IP if and only if the subalgebras (L°°~ (2,
3i, P)ier of (L7 (2, 2, P), E) are independent in the sense of the definition
above.

In the classical setting again, a family of random variables is independent if and
only if its joint distribution is the tensor product of the individual ones. In the fol-
lowing definition and proposition, we translate this statement into our vocabulary,
and give its analogue for freeness. These definitions prepare those which we will
give later for ¢-freeness.

DEFINITION 1.4 (Tensor and free product). Let (A1, ¢1) and (A, ¢,) be two
noncommutative probability spaces.

e Their tensor product, denoted by (A1, ¢1) ® (A2, ¢2), is the noncommutative
probability space with algebra the tensor product of unital algebras A; ® A5, on
which the adjoint operation and the expectation are defined by

V(x1,x2) € Ar x Ay (X1 ®x2)* = x] ®x7, P(x1Qx2) = @1(xD)@2(x2).
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e Their free product, denoted by (A1, ¢1) * (A2, ¢2), is the noncommutative prob-
ability space with algebra the free product of unital algebras A x A5, with ad-
joint operation and expectation defined uniquely by the fact that for all n > 1,
forall iy # .-+ #i, €{1,2}, forall (xq,...,x,) € A;; X -+ x A,

(x]...xn)*:x;:...xik

and x1 - - - x, 1s centered whenever all x;’s are.

This definition can easily be extended to products of finite or infinite families
of noncommutative probability spaces, but we have restricted ourselves to what is
needed in this article. We can now explain the link between these products and the
notions of independence and freeness.

PROPOSITION 1.5 (Characterization of independence and freeness). Let
(M, @) be a noncommutative probability space. Let Ay, Ay be subalgebras of A.
Then the family (A;, Ap) is

o independent if and only if Ay commutes with Ay and the unique algebra mor-
phism defined from Ay ® Ay to M which, for all (ay,a) € A1 x Ay, maps
a1 ®1 to a; and 1 @ ay to ay, preserves the expectation from (A, ¢ 4,) ®
(A2, ¢4,) 10 (M, @),

e free if and only if the unique algebra morphism defined from the free product
of unital algebras Ay x Ay to M which, restricted to Ay U A, is the canonical
injection, preserves the expectation from (A1, ¢|4,) * (A2, ¢4,) to (M, ).

Let us finally recall the definition of the free analogue of the classical convolu-
tion, which is meaningful thanks to the last proposition.

DEFINITION 1.6 (Additive free convolution). Let i and v be two probability
measures on R. The distribution of the sum of two free self-adjoint elements with
respective distributions p and v depends only on p and v and will be called the
free additive convolution of p and v, and be denoted by p B v.

1.2.2. Asymptotic behavior of random matrices. In this section, we recall ma-
trix models for the classical and free convolution. The main notion of convergence
which is involved is the following.

DEFINITION 1.7 (Convergence in noncommutative distribution). Let p be a
positive integer and let, for each n > 1, (M(1,n),..., M(p,n)) be a family of
n x n random matrices. This family is said to converge in noncommutative distri-
bution if its noncommutative distribution converges in probability to a nonrandom
one, that is, if the normalized trace of any word in the M (i, n)’s and the M (i, n)*’s
converges in probability to a constant.
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THEOREM 1.8 (Asymptotic independence and asymptotic freeness). Let us
fix p,g>1.Foreachn > 1,let F,, = (A(1,n),...,A(p,n), B(1,n), ..., B(qg,n))
be a family of n x n random matrices and assume that the sequence (F,),>1 con-
verges in noncommutative distribution. Assume also that for all r > 1, the entries
of these random matrices are uniformly bounded in L".

o Assume that these matrices are diagonal and consider, for each n, the matrix S,

of a uniformly distributed random permutation of {1, ..., n} independent of the
family F,. Then the family

(1) (A(L,n), ..., A(p,n), Su B(A,n)S; ', ..., S, B(q,m)S, 1)
converges in distribution to the distribution of a commutative family (ay, ..., ap,
by,...,by) of elements of a noncommutative probability space such that the
algebras generated by {ay, ...,ap} and {by, ..., by} are independent.

e Consider, for each n, the matrix U, of a uniformly distributed random unitary n
by n matrix independent of the family JF,,. Then the family

(2) (A(l,n),..., A(p,n), U, B(L, U, ... U, B(qg,m)U Y
converges in distribution to the distribution of a family (ay, ...,ap, by, ..., by)
of elements of a noncommutative probability space such that the algebras gen-
erated by {ay, ...,ap} and {by, ..., by} are free.

REMARK 1.9. The hypothesis of uniform boundedness of the entries of the
matrices in each L could be sharply weakened for the first part of the theorem
if, instead of asking for the convergence of the noncommutative distribution of
the family (1), one would ask for the weak convergence of the empirical joint
spectral measure. This would amount to choosing, as set of test functions, the set of
bounded continuous functions of p + ¢ variables instead of the set of polynomials
in p 4+ g variables (see [3], where this is precisely proved).

The first part of this theorem is much simpler than the second but seems to be
also less well known. It is in any case harder to locate a proof in the literature,
so that we offer one. We shall need the following lemma. We denote by || - ||2 the
usual Hermitian norm on C".

LEMMA 1.10. Let, for each n > 1, x(n) = (Xp,1,...,%n.n) and y(n) =
Vn.1s -+ Yn.n) be two complex random vectors defined on the same probability
space such that the random variables

——  Xp 1t A Xpn —— Yaat A Yan
x(n) = . ; y(n) = "

converge in probability to constant limits x, y as n tends to infinity. Suppose more-
over that the sequences %Hx(n) ||% and %lly(n) ||% are bounded in L. Consider, for
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all n, a uniformly distributed random permutation o, of {1, ..., n}, independent of
(x(n), y(n)), and define ys,(n) := (Yn,0,(1)» - - - » Yn,00(n))- Then the scalar product

1 X 44 x
—(x(n), yg,(n)) = n,1Yn,0,(1) n,nYn,on(n)
" n

converges in probability to xy as n tends to infinity.

PROOF. First of all, note that one can suppose that for all n, x(n) = y(n) =0
almost surely. Indeed, if the result is proved under this additional hypothesis, then
since for all n, one has

1 - - -
(x(n) =x) - 1, yo,,(n) — y(n) - 1) + x(n) - y(n)

1
(x(m), yo, (M) = —
n

n

[with 1, =(1,..., D],

the result holds for general x(n), y(n). So we henceforth assume that for all n,

x(n) = y(n) = 0. The equality y(n) = 0 implies, for all n and all i, j =1, ...,n,
that

1 . .
;ny(n)n%, ifi = j,
E[yn,an(i)yn,an(j) | x(n), y(n)] = 1 5 o .
|y}, ifi#].
nn—1)

Then, using the fact that x (n) = 0, we have

1 1 1
B 500 30,012 | = B e e By 13 + 51 Byl

1
- 0 (_> '
n
which completes the proof. [J

PROOF OF THEOREM 1.8. The second point is a well-known result of
Voiculescu (see [13]). To prove the first one, we shall prove that the normalized
trace any word in the random matrices A(1,n),..., A(p,n), SnB(l,n)S,jl, e,
SwB(gq,n)S,; 1 converges to a constant which is the product in two terms: the lim-
iting normalized trace of the A(i, n)’s and the A(i, n)*’s which appear in the word
on one hand and the limiting normalized trace of the B(j, n)’s and the B(j, n)*’s
which appear in the word on the other hand. Since the A(i, n)’s, the A(i,n)*’s,
the SnB(j,n)Srjl’s and the SnB(j,n)*S,;]’s commute, are uniformly bounded
and their noncommutative distribution converges, this amounts to proving that if
M (n), N(n) are two diagonal random matrices with entries uniformly bounded
in L” for all r > 1, whose normalized traces converge in probability to constants
m, n, then for §,, the matrix of a uniform random permutation of {1, ..., n} inde-
pendent of (M (n), N(n)), the normalized trace of M (n)S,N (n)S,’ ! converges to
mn. This follows directly from the previous lemma and the proof is complete. [
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COROLLARY 1.11 (Matricial model for classical and free convolutions). Let
W, v be two probability measures on the real line. Let, for each n > 1, M,,, N,
be n by n diagonal random matrices with empirical spectral measures converg-
ing weakly in probability to u and v, respectively. For each n > 1, let S, (resp.,
U,) be a uniformly distributed n by n permutation (resp., unitary) random matrix
independent of (M,,, Ny,). Then

o the empirical spectral measure of M, + S, N, S, 1 converges weakly in proba-
bility to the classical convolution p * v of 1 and v,

e the empirical spectral measure of M, + U, N, U, I converges weakly in proba-
bility to the free convolution w B v of u and v.

PROOF. In the case where u, v have compact supports and the entries of the
diagonal matrices M,,, N,, are uniformly bounded, it is a direct consequence of
the previous theorem. The general case can easily be deduced using functional
calculus, like in the proof of Theorem 3.13 of [1]. [

1.3. Unitary Brownian motion, free unitary Brownian motion. In this para-
graph, we give a brief survey of the definition and the main convergence result for
the Brownian motion on the unitary group.

Let n > 1 be an integer. Let 7, denote the n>-dimensional real linear subspace
of M, (C) which consists of Hermitian matrices. On M, (C), we denote by Tr the
usual trace and by tr = % Tr the normalized trace. Let us endow H,, with the scalar
product (-, -) defined by

VA, B € H, (A,B)=nTr(A*B) =nTr(AB).

There is a linear Brownian motion canonically attached to the Euclidean space
(Hp, (-, -)). It is the unique Gaussian process H indexed by R, with values in H,,
such that for all s, € R, and all A, B € H,,, one has

E[(Hy, A)(H;, B)] = min(s, 1)(A, B).
Let us consider the following stochastic differential equation:
Uo=1,, dU,=i(dH)U, —3U,dt,

where (U;);>0 is a stochastic process with values in M,,(C). This linear equation
admits a strong solution. The process (U;");>0, where U;" denotes the adjoint of
U,, satisfies the stochastic differential equation

Uy=1,,  dUf=-iUfdH, — $U} dt.

An application of Itd’s formula to the process U,U;" shows that, for all ¢+ > 0,
U;U = I,. This proves that the process (U;);>¢ takes its values in the unitary
group U (n).
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DEFINITION 1.12.  The process (U;);>0 is called the unitary Brownian motion
of dimension n.

As n tends to infinity, the unitary Brownian motion has a limit in distribution
which we now describe. For all # > 0, the numbers

k=1 Nj _
e kt/2 l ) k kj—l, k>0,
) Jj! j+1

are the moments of a unique probability measure on the set U={z € C:|z| =1}
invariant by the complex conjugation. We denote this probability measure by v;.
The following definition was given by Biane in [4].

DEFINITION 1.13. Let (A, t) be a noncommutative probability space. We
say that a collection (u;);>o of unitary elements of A is a free unitary Brownian
motion if the following conditions hold.

e Foralls, > 0suchthats <, the distribution of u,u; is the probability measure
Vi_g.

e For all positive integer m, for all 0 <t <t <-.- <t,, the elements u;luz"),
UnUy s, U, up  are free.

In the same paper, Biane has proved the following convergence result.

THEOREM 1.14. For each n > 1, let (U ;)i>0 be a Brownian motion on
the unitary group U(n). As n tends to infinity, the collection of random matri-
ces (Uy 1)i>0 converges in noncommutative distribution to a free unitary Brownian
motion.

2. A continuum of notions of independence. In this section, we shall define
a family indexed by a real number ¢ € [0, +00] of relations between two sub-
algebras of a noncommutative probability space which passes from the classical
independence (which is the case t = 0) to freeness (which is the “limit” when ¢
tends to infinity). We start with the definition of the ¢-free product of two noncom-
mutative probability spaces. In a few words, it is the space obtained by conjugating
one of them, in their tensor product, by a free unitary Brownian motion at time ¢,
free with the tensor product.

Fix t € [0, +00] and let (A, ¢ 4) and (B, ¢p) be two noncommutative probabil-
ity spaces. Let (U®, ¢, ) be the noncommutative probability space generated by
a single unitary element u, whose distribution is that of a free unitary Brownian
motion at time ¢ (with the convention that a free unitary Brownian motion at time
400 is a Haar unitary element, that is, a unitary element whose distribution is the
uniform law on the unit circle of C).
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DEFINITION 2.1 (¢-free product). The ¢-free product of (A, ¢ 4) and (B, ¢g),
defined up to an isomorphism of noncommutative probability spaces, is the non-
commutative probability space (C, ¢|c), where C is the subalgebra generated by A
and u,Buj in

(X, 9) = [(A 0.0 ® B, gp)] * (U, gy0)-
A few simple observations are in order.

REMARK 2.2. Both (A, ¢4) and (B, ¢p) can be identified with subalgebras
of the algebra of their ¢-free product [namely with (A, ¢|.4) and (u;Bu;, ¢, 5ur)]-
More specifically, if one defines

Ag i ={a e A;9a(a) =0,¢p4(aa*) =1},
By :={b € B; pp(b) =0, pp(bb*) = 1},

then any element in the algebra of the ¢-free product (A, ¢4) and (B, ¢p) can
be uniquely written as a constant term plus a linear combination of words in the
elements of Ay, U u,Bs;u; where no two consecutive letters both belong to Ay; or
to u;Byuj.

REMARK 2.3. As a consequence, since u; is unitary and (u,, u;) has the same
noncommutative distribution as (u}, u;), the z-free product of (A, ¢ 4) and (B, ¢)
is clearly isomorphic, as a noncommutative probability space, to the ¢-free product
of (B, ¢p) and (A, p4).

REMARK 2.4. Another consequence of Remark 2.2 is that as a unital alge-
bra, the algebra of the 7-free product of (A, ¢ 4) and (B, ¢g) is isomorphic to the
free product of the unital algebras A/ A and B/B, where A (resp., B) is the bi-
lateral ideal of the elements x of A (resp., of B3) such that ¢ 4(xx*) = 0 [resp.,
oB(xx*) = 0]. Thus, if 4 and B are subalgebras of the algebra of a noncommu-
tative probability space (M, ¢), there is a canonical algebra morphism from the
algebra of the ¢-free product of (A, ¢.4) and (B, ¢|5) to M whose restriction to
AU B preserves the expectation.

Now, we can give the definition of 7-freeness. A real t € [0, +o0] is still fixed.
DEFINITION 2.5 (¢-freeness). Let (M, ) be a noncommutative probability

space.

e Two subalgebras A, B of M are said to be ¢-free if the canonical algebra mor-
phism from the algebra of the ¢-free product of (A, ¢4) and (B, ¢g) to M men-
tioned in Remark 2.4 preserves the expectation.
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e Two subsets X, Y of M are said to be ¢-free if the subalgebras they generate are
t-free.

REMARK 2.6. The notion of ¢-freeness is a generalization of the notions of
independence and freeness. Moreover, it appears already implicitly in some works
of Voiculescu about the analogues of entropy and Fisher’s information measure in
free probability theory:

e For t =0, t-freeness is simply the independence, whereas it follows from [8]
that in the case where ¢ = 400, it is the freeness.

e If A, B are independent, then for all # > 0, their images at time ¢ by the
so-called liberation process starting at (A, B), defined by Voiculescu in [12], Sec-
tion 2.1, are t-free.

The following proposition is obvious from the definition of 7-freeness.

PROPOSITION 2.7. Let (M, t) be a noncommutative probability space. Let

{ar,...,an} and {by, ..., by} be two t-free subsets of M. Then the joint noncom-
mutative distribution of the family (ay, ..., an, b1, ..., by) depends only on t and
on the distributions of the families (ay, ...,a,) and (b, ..., by).

PROPOSITION-DEFINITION 2.8 (Additive and multiplicative z-free convolu-
tions). Letus fix t € [0, +00). Let 1, v be compactly supported probability mea-
sures on the real line (resp., on [0, +00), on the unit circle). Let a, b are t-free
self-adjoint elements (resp., positive elements, unitary elements) with distributions
., v. Then the distribution of a + b (resp., of v/ba~/b, of ab) is a compactly sup-
ported probability measure on the real line which depends only on t, u and v, and
which will be denoted by [ *; v (resp., i Oy V).

PROOF. Let us treat the case of the sum of two self-adjoint elements. The other
cases can be treated analogously. From Proposition 2.7, it follows that the moments
of a + b depend only on  and v. To see that these are the moments of a compactly
supported probability measure on the real line, introduce M > 0 such that the
supports of p and v are both contained in [—M, M]. Then for all n > 1, by Holder
inequalities in a noncommutative probability space [9], ¢((a + b)y2y < 22 pp2n
By the remark made after Definition 1.2, the result follows. [

PROPOSITION 2.9 (Matricial model for the z-freeness). For each n > 1, let
M,, and N, be diagonal random matrices whose noncommutative distributions
have limits. Let also, for each n, Sy, be the matrix of a uniform random permutation
of {1,...,n} and U, ; be a random n x n unitary matrix distributed according to
the law of a Brownian motion on the unitary group at time t. Suppose that for each
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n, the sets of random variables {M,, N,}, {Sn}, {Un.+} are independent. Then as n
tends to infinity, the noncommutative distribution of

(Mn: Un,tSnNnS::U:,;)

converges in probability to that of a pair (a, b) of self-adjoint elements of a non-
commutative probability space which are t-free.

PROOF. By Theorem 1.8, the noncommutative distribution of (M, S,N,S;)
converges to the one of a pair (x, y) of independent elements. Moreover, since for
all n, the law of U, is invariant by conjugation, by Theorems 1.8 and 1.14, the
family of sets

({Mn’ SI’anS:;}a {Un,t})

is asymptotically free and the limit distribution of U, ; is that of a free unitary
Brownian motion at time . By definition of 7-freeness, this concludes the proof.
O

In the next result, the convergences in probability of random measures toward
nonrandom limits are understood with respect to the weak topology on the space
of probability measures on the real line.

COROLLARY 2.10. For each n, let M,,, N,, be random n x n diagonal ma-
trices, one of them having a distribution which is invariant under the action of
the symmetric group by conjugation. Suppose that the spectral law of M,, (resp.,
Ny,) converges in probability to some compactly supported probability measure |
(resp., v) on the real line. Then the spectral law of My + Uy Ny U, , converges in
probability to the measure L *; V.

3. Computation rules for ¢-freeness.
3.1. Multivariate free It6 calculus.

3.1.1. Technical preliminaries. In this section, we shall extend some results of
[7] to the multivariate case. Let us first recall basics of free stochastic calculus. For
more involved definitions, the reader should refer to Sections 1 and 2 of [7]. Let
(M, 1) be a faithful' noncommutative probability space endowed with a filtration
(M;)i>0 and an (M;);>o-free additive Brownian motion (X;);>o. Let M be
the opposite algebra of M (it is the same vector space, but it is endowed with the
product a x,, b = ba). We shall denote by # the left actions of the algebra M ®

1A noncommutative probability space (M, 1) is said to be faithful if for all x in M \ {0},
7(xx*) > 0. Any noncommutative probability space can be quotiented by a bilateral ideal into a
faithful space.



FROM CLASSICAL TO FREE INDEPENDENCE 917

M on M and M ® M defined by (¢ ® b)u = aub and (¢ @ b)f(u Qv) =au ®
vb. The algebras M and M ® M°P are endowed with the inner products defined
by (a,b) = t(ab*) and {(a ® b, c @ d) = t(ac*)t(bd*). The Riemann integral of
functions defined on a closed interval with left and right limits at any point with
values in the Hilbert space2 L?(M, 1) is a well-known notion. Now, we shall recall
the definition of the stochastic integral. A simple adapted biprocess is a piecewise
constant map U from [0, +-00) to M ® M°P vanishing for ¢ large enough such
that U; € M; ® M; for all t. The set of simple biprocesses is endowed with the
inner product

o0

(U, v) =/0 (Uy, Vy)dt.

We shall denote by B3 the closure of the set of simple adapted biprocesses with
respect to this inner product. Let U be a simple adapted biprocess. Then there ex-
iststimes 0 =ty <t; <--- <ty suchthat L (resp., U) is constant on each [;, ;1 1)
and vanishes on [f,,, +00). Then we define

m—1

o0
/O UrdX, =Y Upt(Xy,, — X))
i=0

It can be proved (Corollary 3.1.2 of [7]) that the map U +— f0°° U;dX; can be
extended isometrically from 35 to L*(M, 7).

3.1.2. Free It6 processes. We shall call a free It6 process any process

t t
3) At=A0—|—/ Lsds—{—/ UsdXs,
0 0

where Ag € My, L is an adapted process with left and right limit at any point and
U € B5. In this case, we shall denote

4) dA; =L, dt + Ut dX,.

The part U, d X; of this expression is called the martingale part of A. Note that
the process A is determined by Ag and d A;.

We shall use the following lemma, which follows from Proposition 2.2.2 of [7]
and from the linearity of .

LEMMA 3.1. Let A; be as in (3). Then t(A;) = 1(Ag) + fot T(Lg)ds.

2The Hilbert space L2(./\/l, 7) is the completion of M with respect to the inner product (x, y) =
T(xy*).
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3.1.3. Multivariate free It6 calculus. Consider n elements ay, ..., a, € M for
some n > 2. Consider also two elements u =Y ; xk @ yk, v =12 ;21 @t of M ®
MPOP Forall 1 <i < j <n, we define an element of M by setting

«al’ ""ai—l7u7ai+la --',aj—l7 Uaaj+l7 ’an»l,j

=Y ar- a1t (Vi1 A 12041 - ap.
k,l

The following theorem follows from Theorem 4.1.12 and the remark following
in [7].

THEOREM 3.2. Let A, = Ao+ J§ Lyds+ [y Usd X and By = Bo+ [ Ksds +
fot Vs d X5 be two It6 processes with respect to the same free Brownian motion (X;).
Then AB is a free Ito process and with the notations of (4),

d(AB); = A;dB; + (dA)B; + (Uy, Vi)12dt.

In order to prove computation rules for ¢-freeness, we shall need the following
theorem.

THEOREM 3.3. Let Ay, ..., A, be free Ito processes with respect to the same
Brownian motion. For all k, denote Ay = Ak + fot Lisds + fé Uk.sdXs. Then
A1 --- A, is afree Ito process and

n
d(Ar- A=Y Al A1 d A ) Akgrs - A
k=1

+ Z «Al,l""vAkfl,lka,l’

1<k<lI<n

Attt A1, U, Argt ey oo Ane Dk dt.

PROOF. Let us prove this theorem by induction on n. For n = 1, it is obvious.
Let us suppose the result to hold at rank n. Then the martingale part of Aj--- A,
is

n
D A Ak (Ui B d X i) Akgre - An.
k=1

Thus, by Theorem 3.2, A --- A,41 is a free It process and
d(Ar--Apt1)r
= (A1 Ap)dApt1,+ (AL Ap) ) Ansrs

n

+ Y (ALt ooy Akmt Ukt Akgts - Aty Ung i Vi1 dit
k=1
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n+1
=Y A A1 dA ) Ak s Ang
k=1

+ Z «Al,lv"'vAk—l,tka,lv

1<k<l<n

Ayt Al Uy Aigas ooy Anes A1 Dk 1 dt

n
+ Y (A Akmt Uty Akttt -0 At Unt e Vi1 d,
k=1
which concludes the proof. [

3.2. Computation rules for t-freeness.

3.2.1. Main result. In order to do computations with elements which are ¢-
free, we have to find out a formula for the expectation of a product of elements of
the type
(5) XL YU XU YU - - Xy Y]
for {x1,...,x,} independent with {y{, ..., y,} and {x1, y1,..., X, yn} free with
uy, free unitary Brownian motion. Actually, for the result which follows, the inde-
pendence of the x;’s and the y;’s will not be useful, thus we consider a noncom-
mutative probability space (M, ), an integer n > 1, ay, ..., az, € M and a free
unitary Brownian motion (u;) which is free with {ay, ..., a>,}. In order to have
some more concise formulae, it will be useful to multiply the product of (5) by
e"'. So we define

fan(ar, ..., az, t) = " t(arusaruy - - - axp_yura,uy).
We shall use the convention fy(a, t) = t(a) for all a € M.
Since fa,(ay, ..., a2,,0) = t(a;---ax), the following theorem allows us to

deduce all functions f>,(ay, ..., an,t) [thus, the expectation of any product of
the type of (5)] from the joint distribution of the a;’s.

THEOREM 3.4. Foralln>1andall ay,...,ay, € M free with the process
(uy), the following differential relations are satisfied:

0
Eon(al, .o, Ap, 1)

=-— Z fon—a-ryar, ..., ak, ai41, ..., a0, t) fi—k@r41, ..., a, 1)
1<k<I<2n
k=I mod2

+ ¢ Z fon—a-r-1(an, ..., ak—1, axaj41, ai42, . .., a2y, 1)
1<k<I<2n
k#l mod 2

X fi—k—1(@ag41, g2, ..., a1—1,1).
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PROOF. Let us introduce the process (v;) defined by v; = e'?y, for all ¢. As
explained in the beginning of Section 2.3 of [4], this process can be realized as an
Itd process, with the formula

t
v,=1+i/ dX,vg.
0

Thus, one can realize the family of noncommutative random variables ay, ..., az,,
(v)r=0 in a faithful noncommutative probability space (M, v) endowed with
a filtration (M;);>0 and an additive free Brownian motion (X;);>0 such that
ai,...,az, € Mo and for all ¢, v, =1 +if(; dXvg and vy =1 — ifotv;“dXs.
By definition of f5,(ay, ..., az,t), one has

Sfoan(an, ... am, 1) = t(a1viaav; - - - dzp—1 Va2 V).

Note that since all a;’s belong to My, the processes A1 := (ajv;), Az := (a2v)),
ooy Aoyt 1= (a2n—1v1), A2y 1= (a2,v;)) are all free Ito processes: if one defines
Uk,r = ax ®iv; for k odd and Uy ; = —iaxv; ® 1 for k even, then for all k, d Ay ; =
Ui dX;. Thus, by Theorem 3.3, Ay - - - Ay, is an Itd process such that for all ¢,

t2n

(Ay---Ag)e = (A1 -+ A2n)o +/O D Al Ako1s (Ui s dX o) Aggtys - Aons
k=1

t
+'[) Z «Al,s,---,Ak—l,s, Uk,SsAk-i-l,Ss"'vAl—l,Sa

1<k<I<2n

Uls, Ai+1,s, -+ -5 Ao sNk1ds.
Hence, by Lemma 3.1, for all ¢,
a
5f2n(al, ceesaop, 1)
(6) = > t({Avs..s At Uras
1<k<I<2n
A1ty e vos Al=1,6 Unes Al ey - Aone i) -

Now, fix 1 <k <[ <2n and discuss according to the parity of k and /.

e If k =Imod?2. Suppose, for example, that k, [ are both odd (the other case
can be treated in the same way). Then Uy ; = ax ® iv; and U; ; = a; ® iv;, which
implies that

T((ALes oo Ak=1,6s Ukyts Akg1t o s Al—1,6, Unes Aty - ooy Aoni Vict)
=iT(a10:a20] -+ + Ak—1 V] ARV AL£1 Vs -+ - A2 V) )IT (Va1 V] - - - aj—1 V] ap).

Note that since t is tracial and the joint distribution of ay, ..., az,, (vf)=0 1s
the same as the one of ay, ..., a2, (v});>0, we have T(viak1v) - -a—1vfa;) =
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T(ar+1v; - - - aj—1v:a7v;°). Hence,

(7) T(«Al,l’v ey Ak—],l’ Uk,l’v Ak+1,f7 ey Al—l,t7 Ul,l‘a Al+1,ta ceey AZI’Z,I»k,l)

=—fu—a-i(ar, ..., ax, ajy1, ..., a0, t) fi—k(Qrs1, ..., a;, t).

o If k £ I mod?2. Suppose, for example, k to be odd and / to be even (the other
case can be treated in the same way). Then Uy ; = ax ® iv; and U; ; = —aqjivy ® 1,
which implies that

T((Ares s Ak—1,1 Ukt Akt 1t oo s A=, Unes Alers - oo Ao Diel)
.2
= 1(a1vaxV; - - - a1V araj41v; - - a2 0)) (—i) T(Vrag1 V) - ar—1vapvy).

Note that since v v; = e', T is tracial and the joint distribution of ay, ..., a,,
(vr)s>0 is the same as the one of ay, ..., az,, (v;);>0, we have T(viak41v] -+ X
aj—1viav}’) = e t(ajagy1v; - - - aj—1v)). Hence,

T((A1ey oo Ak—10 Unyts Akt tyes oo s Al—16, Uty Al t oy oo o Ao i Dkl)
(8) =é fon—-t)—1(at, ..., Qk—1, AQ14+1, 142, - - -, Ao, 1)
X fi—k—1(@ar41, g2, ..., a1—1,1).

Equations (6)—(8) together conclude the proof. [J

The following proposition, which we shall use later, is a consequence of the
previous theorem.

PROPOSITION 3.5. In a noncommutative probability space (M, t), consider
two independent normal elements a, b with symmetric compactly supported laws.
Let (u;) be a free unitary Brownian motion which is free with {a, b}. Then the
function

G(t,z)= Z r((au,bu}")Z”)ezmz"

n>1

is the only solution, in a neighborhood of (0, 0) in [0, 400) x C, to the nonlinear,
first-order partial differential equation

G IG
9 — +4zG — =0,
©) ot ‘ 9z
(10) G(0,2)= Y (@)t (™"
n>1

PROOF. Let us define, for all n > 1, g,(¢t) = t((aubuf)")e" . For n = 0, we
set go(¢) = 0. Letus fix n > 1. In order to apply the previous theorem, let us define,
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fori =1,...,2n,a; =aifiisodd and a; = b if i is even. By the previous theorem,
for all » > 1, we have
0
agn(t) =— Z 8n—(—k)/2(1)g1—k)/2(t)
1<k<I<2n
k=I mod2
(11) +e' Y fae--1(a1, . Q1 QR4 A2, - A2, 1)
1<k<I<2n
k=l mod?2
X fi—k—1(@@iy1, kg2, - - ., a1, 1).

Now, note that since for any ¢, ¢’ = =1, the joint distribution of (a, b, u,) is the
same as the one of (¢a, &'b, u;), gp(t) =0 when p is odd. Thus, in the first sum
of (11) only pairs (k, [) such that kK =/mod4 have a nonnull contribution. For the
same reason, all terms in the second sum are null. Indeed, for any 1 <k </ <2n
such that k £ I mod?2, the set {k + 1,k + 2, ...,1}, whose cardinality is odd, has
either an odd number of odd elements or an odd number of even elements. To sum
up, for all n > 1, we have

n—1

0 .

a—gzn(t) =— Z gon—(1—k)2(0)g—k) 2 () = —4 Z(n —1)82n—i)(t)g2i (1)
! 1<k<I<4n i=1

k=I mod4

n—1
=21 gn-i)(1)g2i (D).
i=1

Thus, since go(t) =0 and G(t,2) = 3,51 g0 (17" = 350 20 (1)Z", the last
computation implies

3G 9G?
o ez
which proves (9). The formula (10) is obvious.

To prove the uniqueness, let H (¢, z) = }_,>0hu (t)z" be another solution of (9)
and (10). By (10), for all n > 0, we have h;(0) = g2,(0) and by (10), for all n > 0,
we have %hn(t) =—-2nY 7 _ohn—m(t)hy(t), which implies that 7o = 0 and that
by induction on n, h, = go,. U

3.2.2. Examples. Let us give examples of applications of the computation
rules that we have just established. The third example below is a rather big formula,
but we shall need it when we study the problem of existence of ¢-free cumulants.
So, let A and B be two independent subalgebras of a noncommutative probability
space (M, ) and (u;) be a free unitary Brownian motion free from .4 U B.

(1)Fora € A, b e B, forall t >0, we have

(12) t(aubu}) = t(a)t(b).
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[In fact, it even follows from Theorem 3.4 that without the assumption that a and b
are independent, for all 7, we have t(au;bu) = e "'t(ab) + (1 — e ")(a)r(h).]
(2)Fora,a’ € A,b,b' € B, for all t > 0, we have

t(aubua'ub'ul)
(13) = (t(@)t(@)T(bb) + t(aa)t(b)r (') — t(a)t(@)T(B)T())(1 — ™)
+ t(aa’)t(bb')e .
(3)Fora,a’,a” € Aand b,b’,b" € B, we have
t(ausbula'ub'ufa" ub"ul)

=1(a)t(@)t@HTB)T(B)T (D)2 — 67 + 473
— (1 =3¢ +2¢7 )t (a)r (@)t (@) T(B)T(B'D")
— (1 =372 4231 (a)t(d)t (@) T (bD)T (")
— (=372 421 (a)t (@)t (@) T (bb")T (D)
— (1 =372 +2¢7 ) (aa )t (@)t (b)T (b)) T (b")
— (1 =3¢ 4+ 2¢7 )t (aa"yr (@)t (b)r (')t (b")
— (1 =372 +2¢7 (@)t (@a”)t(b)r (W) T (")
+ (1 =372 + 23t (a)t(a)T(@")T(bb'D")

(14) + 1(ad’a )t (b))t ()T (b")]
— (e — e[t (aad )t (a")T(bb)T(B") + t(aa’)t(a") T (bb")T (D)
+ t(aa”)t (@)t (b))t (V') + t(aa”)t (@)t (b)T(b'b")
+ (@)t (@ad)T®")T(bb') + (@)t (d'a") T (b)T (')
+ (1 =2e"2 e [t(aad )t (@)t (B'D")T(b)
+ t(aa")t (@)t (bb)T(b")
+1(a)t(d'a”)T(bb")T ()]

+ (e — eVt (a)T(@'d") + t(ad)T (@) + t(aa”)t(d)]
+ (e7 — et (aa'a") [T (b)T(W'b") + T(bb)T(B") + T(bb")T ()]
+e Mt (ad'a")T(bb'D").

It can be verified that the last formula actually corresponds to the formula of
E(aba'b’a”’b") with {a,da’,a”} and {b, b’, b} independent when ¢ = 0, and to the
formula of T (aba’b’a”’b”) with {a,a’,a”} and {b, b’, b"'} free when ¢ tends to in-
finity.
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3.3. Multiplicative and additive t-free convolutions of two symmetric Bernoulli
laws.

3.3.1. Multiplicative case. Here, we shall compute the multiplicative ¢-free
convolution of % (considered as a law on the unit circle) with itself.

THEOREM 3.6. Forallt >0, H_(S‘ Or H_(S‘ is the only law on the unit cir-
cle which is invariant under the symmetrles wzth respect to the real and imaginary
axes and whose push-forward by the map 7 > z* has the law of us,, a free unitary
Brownian motion taken at time 4t.

REMARK 3.7. The moments of u4; have been computed by Biane at Lemma 1
of [4]: foralln > 1,

—2nt n —4 k
oo et

PROOF OF THEOREM 3.6. In a noncommutative probability space (M, 1),
consider two independent normal elements a, b with law 8"+51 . Let (u,) be a free
unitary Brownian motion which is free with {a, b}. Then 1+51 o) 1+8' is the

distribution of the unitary element au ;bu, Since the joint dlstrlbutlon of (a,b, u;)
1+51 Or 1+51

1s invariant under the trans-

= u,bu a has the same d1str1but10n as
5_ +81 @ +51

is the same as the one of (—a, b, u,),
formation z — —z. Moreover, (autbu?‘)*

ausbuj (because 7 is tracial and u, has the same law as u}), hence
1+31 O 1+51

is

is invariant under the transformation z — z. This proves that
invariant under the symmetries with respect to the real and imaglnary axes.

Since any distribution on the unit circle is determined by its moments, to prove
that the push-forward of 8"; UNGY 5"; %1 by the map z > 22 is the law of uy,, it

suffices to prove that for all n > 1,

T ((aubul)™) = T (ul),

that is, to prove that the functions
Fi(t,z)= Z t((au,bu:‘)zn)ezmz” and Fr(t,z2) = Z t(u4t)ez’” n
n>1 n>1

are equal. It follows from Proposition 3.5 that Fj is the only solution, in a neigh-
borhood of (0, 0) in [0, +00) x C, to equation (9) satisfying F1(0, z) = 1 . But it
follows from Lemma 1 of [4] that F> is also a solution of (9) with the same initial
conditions. By uniqueness, it closes the proof. [

Forall ¢ € [0, 1], let us define 8(¢) = 24/t (1 — t) + arccos(1 — 2¢). Then S(¢) is
an increasing function of ¢+ which goes from 0 to = when ¢ goes from O to 1. Biane
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has proved in [5], Proposition 10, that the distribution of u4; is absolutely continu-
ous with respect to the Lebesgue measure on the unit circle, that its support is the
full unit circle for r > 1, and the set {¢/? : 0] < B(t)} for all t € [0, 1]. Moreover,
the density of this distribution with respect to the uniform probability measure on
the unit circle, which we denote by p4;, is positive and analytic on the interior of
its support for all # > 0, except at —1 for t = 1.

REMARK 3.8. Since there is no simple formula for the density of u,, it may be
worth explaining how we were able to produce the picture shown in Figure 2. The
expression of the moments of the distribution of u; given by (15) is numerically
ineffective, because it is an alternated sum of very large numbers. It only allows
one to compute the first few dozens of moments of the distribution. Nevertheless,
this expression of the moments allows one to prove that, for all # > 0, the function
k; defined on the interior of the complex unit disk by the formula

2t o0 4 7 0 do =
ki (2) = _ éN— =1+23 b,
@ = [ Gaeh 3wz

satisfies the equation
(16) @ =1 e
Kki(z2) +1

This fact can be established using the Lagrange inversion formula (see [4]), see
also [5], Section 4.2.2. Now, on one hand, a computer seems to be able to solve

FI1G. 2. The density of the distribution of u; at the point e'? in function of 6 and t. One sees the
support progressively filling the circle when t increases from 0 to 4, and then the distribution rapidly
converging toward the uniform distribution.
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L7
e
e

FI1G. 3. The density of % O —5— at the point e'? in function of 6 and t. The support

progressively fills the circle when t increases from O to 1, and then the distribution converges rapidly
toward the uniform distribution.

§_1+01

this equation more reliably than it computes the moments of the distribution. On
the other hand, «; is the holomorphic function in the unit disk whose real part is
the harmonic extension of the density of the distribution of u;. Thus, we evaluated
pi(€?) by taking the real part of a numerical solution of (16) with z = el?,

From the facts exposed above Remark 3.8, one deduces easily the next result,
illustrated by Figure 3.

COROLLARY 3.9. For all t > 0, the measure 5’124_5' Or 5’1;_5' has a density
with respect to the uniform probability measure on the unit circle, which we shall
denote by o; and which is given by the formula o,(2) = pas (z3) for all z in the
unit circle. In particular, the support of this measure is the full unit circle for t > 1
and the set {€'?: 10| < %ﬁ(r) or|m —0| < %ﬁ(t)}fort € [0, 1]. The density o; is
positive and analytic on the interior of its support for all t > 0, except at *i for
t=1.

3.3.2. Additive case. Here, we shall compute the additive ¢-free convolution
of % (considered as a law on the real line) with itself (see also Figure 4).

THEOREM 3.10. Forallt >0, # *; # is the only symmetric law on

the real line whose push-forward by the map x — x* has the law of 2 4+ v + v*,

with v unitary element distributed according to 5“;81 Or 8‘1;”31 )
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FI1G. 4. The density of % %y # at the point x in function of x and t. The support fills

progressively the interval [—2, 2] when t increases from O to 1, and then the distribution converges
rapidly toward the arcsine distribution.

PROOF. In a noncommutative probability space (M, t), consider two inde-

pendents normal elements a, b with law # Let (u;) be a free unitary Brown-

ian motion which is free with {a, b}. Then 5’1; O 4, 5’12+ % is the distribution

of a + u;buj. Since the joint distribution of (a, b, u;) is the same as the one of
(—a, —b,u;), 8“;3‘ *; 5‘1;51 is symmetric. Note that since a” and b? have 8; for
distribution, one can suppose that a> = b> = 1. In this case,

(@ + ubu?)? =2 4 aubu’ + ubuta =2 4 aubu’ + (aubu’)*,

and the result is obvious by definition of ©®;. [

From the last result and Corollary 3.9, we deduce the following.

COROLLARY 3.11. Forall t > 0, the measure % *; % has a density

with respect to the Lebesgue measure on [—2, 2], which we shall denote by n; and
which is given by the formula
1

N4 —x2
The support of this measure is the interval [—2, 2] for t > 1, and the set

t t t t
[—2, —2cos &] U [—2 sin &, 2sin &} U [2 cos &, 2]
4 4 4 4
for t €10, 1]. The density n; is positive and analytic on the interior of its support

forall t >0, except at £+/2 fort = 1.

Vre[=2,2]  mi(x) = pu (¥ oS (x/2)
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4. The lack of cumulants. In this section, we investigate the existence of an
analogue of classical and free cumulants in the context of 7-freeness. Informally,
the problem is to find multilinear forms defined on any noncommutative probabil-
ity space which vanish when evaluated on a family of elements which can be split
into two nonempty subfamilies which are z-free.

More precisely, given a noncommutative probability space (M, ¢), we would
like to know if there exists a family (kj),>2 of multilinear forms on M, with &,
an n-linear form for all n > 2, such that, for all n > 2, all ny, np > 0 such that n; +
ny =n, all my,...,m, in M such that {m1,...,m,,} and {m,, +1,..., My 4n,}
are t-free, and finally for all 0 € &,,, one has k, (ms (1), ..., Mmg@n)) =0.

Our main result is negative: there does not exist in general such a family of
multilinear forms, at least in a large class which we describe now.

DEFINITION 4.1. Let (M, ¢) be a noncommutative probability space. Let
n > 1 be an integer. Let o be an element of G,,. We define the n-linear form ¢, on
M as follows:

VYmi,...,m, € M YoMy, ...,my) = H o(mj, ---m;).
c cycle of o

c=(i1--+ir)

Using only the algebra structure of M and the linear form ¢, a linear combi-
nation of the forms {¢, : 0 € G,} seems to be the most general n-linear form that
one can construct on M. We seek cumulants within this wide class of n-linear
forms. Our definition does not require that the vanishing of cumulants characterize
t-freeness. We only insist that mixed cumulants of ¢-free variable vanish.

DEFINITION 4.2. Let n > 2 be an integer. Let t > 0 be a real number. A ¢-
free cumulant of order n is a collection (c(0))seg, of complex numbers such that
2 on-cycle €(0) # 0 and the following property holds for every noncommutative
probability space (M, ¢): for any pair (A, B) of sub-algebras of M which are

t-free with respect to ¢, for any family (m1, ..., m,) of elements of .4 U 3, which
do not all belong to .4, and not all to 3, we have
(17) > c@)p(my, ..., my)=0.

ge6,

Let us emphasize that what we call cumulant is not a specific multilinear form,
but rather a collection of coefficients which allows one to define a multilinear form
on any noncommutative probability space.

If (c(0))oes, 1s a t-free cumulant of order n and my, ..., m, are elements of
a noncommutative probability space (M, ¢), at least one of which is equal to 1,
then

(18) > c(@)ps(mi, ..., my) =0.

oeb,
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Indeed, the subalgebra C.1 of M is t-free with any subalgebra of M.

We extend the previous definition by including the free case t = +0o0. We will
mainly consider collections (c(0))se@, With the property that c(pap_l) =c(o)
for all o, p € G,,. We call such collections conjugation-invariant. They are in fact
indexed by conjugacy classes of &, that is, integer partitions of n. Thus, we write
use as well the notation (c) )+, for a conjugation-invariant collection.

Our main results are the following.

THEOREM 4.3. Forallt € [0,4+o0] and all n € {2, 3,4, 5, 6}, there exists, up
to scaling, a unique conjugation-invariant t-free cumulant of order n.

THEOREM 4.4. There exists a t-free cumulant of order 7 if and only if t =0
ort =+400.

Let us start by proving that we lose nothing by focusing on conjugation-
invariant ¢-free cumulants.

LEMMA 4.5. If for some t and some n there exists a t-free cumulant of or-
der n, then there exists such a cumulant (c(0))sce, such that moreover c(o) =
c(pop™) forallo, pe&,.

PROOF. The point is that the order of the arguments is arbitrary in (17). Hence,
if (17) is satisfied, then for all p € G,

0= Z C(O’)g{)g(mp—](l),...,mp—l(n)): Z c(@)Py-16p(m1, ..., my)

oG, ced,

= Z C(pO'p_l)Qﬂa(ml, D) mn)-

oeB,

Hence, if (¢(0))see, 1s a t-free cumulant, then so is (c(,oa,ofl))gegn. By averag-
ing over p, we get a conjugation-invariant cuamulant. [

Observe that the assumption made in the definition of a cumulant that the sum of
c(o) when o spans the n-cycles is nonzero implies that ¢, # 0 for any conjugation-
invariant cumulant.

Let us introduce some notation. Given a permutation o of {1, ..., n}, we denote
by {{o}} the partition of {1, ..., n} whose blocks are the sets underlying the cycles
of 0. Let P(n) denote the set of partitions of the set {1,...,n}. Let (A, ¢) be a
commutative noncommutative probability space. For each partition & € P(n), we
define an n-linear form ¢, on A by setting ¢, = ¢, where o is any permutation
of {1,...,n} such that {{o}} = 7. Since A is commutative, this definition does not
depend on the choice of o. Finally, when o is a permutation of {1, ..., n}, we say
that i, j € {1, ..., n} are consecutive in a cycle of o if 0(i) = j or o (j) =i. We
will use repeatedly the following fact, which is a consequence of Proposition 2.7
and Proposition 1 of [6].
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LEMMA 4.6. Choose two integers k,l >0 ,t >0, and setn =k + [.

(1) There exists universal coefficients (C(o, 7, 7)) ses, . xeP@k).x'eP (), de-
pending on t, such that the following property holds:

Let A and B be two commutative sub-algebras of some noncommutative prob-
ability space (M, @) which are t-free with respect to ¢. Consider o € &,,. For all
ai,...,ar € Aandall by, ..., b € B,

(pU(a19""ak9b17"'7bl)

= > C(o,m, "oz (ar,...,aR) g (b1, ..., by).
mePk), 7w’ eP()

(19)

(2) The coefficient C(o, 7, ") can be nonzero only if every block of 7 is con-
tained in a block of {{o}}.

(3) If two elements i and j of {1,...,k} are consecutive in a cycle of o, then
C(o, 7, 7") can be nonzero only if i and j are in the same block of 7.

(4) The parts (2) and (3) of this lemma are also valid for ' (modulo a
translation of k of the indices, since ©’ is a partition of {1, ...,1l} and not of
(k+1,....k+1}).

With the notation of the lemma above, we associate to every collection
(c(0))ses, the following family of coefficients:

(20) Vo e Pk), 7' € P() D.(m, ') = Z c(0)C(o,m, '),

oel,

which will play an important role in the proofs of Theorems 4.4 and 4.3.

PROOF OF THEOREM 4.4. Let us choose ¢ > 0 a positive real. We prove by
contradiction that there exists no ¢-free cumulant of order 7. So, let us assume
that there exists one and let (c¢(0))scs, be one of them, which we choose to be
conjugation-invariant thanks to Lemma 4.5. Thus, we denote it also by (c))r7.
Since c7 # 0, we may and will assume that ¢; = 1. Then, we proceed as follows.

Let us consider a noncommutative probability space (M, ¢) and two commu-
tative sub-algebras A and B of M which are ¢-free with respect to ¢. Let us
choose ay,az,a3 € A and by, by, b3, bg, b5 € 1B, which we assume to be all cen-
tered. Set k7 =, c@, ¢(0)@s. By using the ¢-freeness of A and B, we will ex-
press k7(ay, az, b1, ba, b3, ba, bs) and ky(ay, az, as, by, ba, bz, by) in terms of the
coefficients (c;)ar7, the joint moments of ap, az, az, and the joint moments of
b1, by, b3, ba, bs. By the assumption that k7 is a t-free camulant, the two expres-
sions that we get must vanish. Since the joint distributions of the a’s and of the b’s
are both arbitrary among those of families of centered elements, every coefficient
of a given product of moments of the a’s and b’s must vanish. This gives us linear
relations on the coefficients (c; )7, which will turn out to be incompatible.
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Let us start with k7(ay, a2, by, by, b3, bs, bs). By Lemma 4.6, this quantity can
be written as

> c(0)C (o, 7, ") px (a1, a2)ps (b1, b2, b3, bs, bs)
ceS7,meP2),7'eP(5)

= Z DC(T[’ﬂ/)(pﬂ(alaaZ)(pH’(bl’szb3ab4’b5)-
neP(2),n'eP(5)

21

We are thus interested in computing, for each pair (7,7n’), the coefficient
D.(m, 7). Tt turns out to be convenient to think of by, ..., bs as occupying the
slots 3 to 7 rather than 1 to 5 and to see 7’ as a partition of the set {3,...,7}
accordingly. We hope that no ambiguity will result from this change in our con-
ventions.

Since we have chosen to consider elements which are centered, the sum (21)
can be restricted to pairs of partitions without singletons. This leaves us with the
following pairs (r, ') : ({1, 2}}, {{3.4,5,6,7}}), ({{1, 2}}, {{3,4},{5,6,7}}) and
those which are deduced from the latter by permuting 3, 4,5, 6, 7.

Let us compute D.({{1,2}},{{3,4,5,6,7}}). By the second assertion of
Lemma 4.6, the permutations o which contribute to this term must have 1,2 on
one hand, and 3,4, 5, 6, 7 on the other hand, in the same cycle. This can occur if
o is either a 7-cycle or the product of a 2-cycle and a 5-cycle.

Let us first compute the contribution of 7-cycles. The coefficient C(o, {1, 2},
{3,4,5,6,7}) is not the same for all 7-cycles 0. We must distinguish between
those in which 1 and 2 are consecutive and those in which they are not. There
are 2!5! 7-cycles in which 1 and 2 are consecutive. For each such cycle o,
C(o,{1,2},{3,4,5,6,7}) = 1, thanks to (12). In a cycle where 1 and 2 are not
consecutive, there may be one, two, three or four elements of {3,4,5, 6,7} be-
tween 1 and 2. In each case, there are 5! cycles, each contributing a factor e =%,
thanks to (13).

Let us now compute the contribution of products of a transposition and a 5-
cycle. There are 1!4! permutations with two cycles, one which contains 1,2 and
the other 3, 4, 5, 6, 7. Each such permutation contributes a factor cs».

Altogether, we have found that

22) D.({{1,2}}, {{3.4.5.,6,7}}) = 24(cs; + 10(1 +2¢72)).

Let us now compute D.({{1, 2}}, {{3, 4}, {5, 6,7}}). By the second assertion of
Lemma 4.6, there are five possibilities for the partition {{o}} underlying a permu-
tation o which contributes to this coefficient. We study them one after the other.

o{{o}} =1{{1,2,3,4,5,6,7}}. Since, by the third assertion of Lemma 4.6, any
two elements of {3, 4, 5, 6, 7} which are consecutive in o must be in the same block
of " ={{3, 4}, {5, 6, 7}}, no element of {3, 4} can be consecutive to an element of
{5,6,7} in o. Since there are only two a’s, the only possibility is that 3 and 4 on
one hand, and 5, 6, and 7 on the other hand, are consecutive in ¢ and separated by
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1 and 2. There are 2!2!3! 7-cycles with this property. Each of them contributes to
the sum with a factor 1 — e~ %, according to (13).

of{c}} ={{1,2},{3,4,5,6,7}}. By the third assertion of Lemma 4.6, these per-
mutations do not contribute.

of{o}} ={{1,2,3,4},{5,6,7}}. There are two possible structures for the 4-
cycle of o in this case. Either the a’s and the b’s are consecutive, or they are
intertwined. In the first situation, there are 2!2!2! permutations, each of which con-
tributes c43, thanks to (12). In the second situation, there are 2!2! permutations,
because of a higher symmetry, each of which contributes e~ ¢c43, thanks to (13).

of{o}} ={{1,2,5,6,7}, {3, 4}}. Again, there are two possible structures for the
5-cycle of o, depending on whether the a’s are consecutive or not. There are 2!3!
permutations where they are, and each contributes cs;. There are also 2!3! permu-
tations where they are not, each contributing e 2 cs).

of{c}} ={{1, 2}, {3, 4}, {5, 6, 7}}. This is the simplest situation. There are 2 per-
mutations with this cycle structure and each contributes c32;.

Finally,

D.({{1,2}},{{3,4},{5,.6,7}})
=2(c3m +2Q+e Mgz +6(1 + e Fesy + 12(1 — e ).
Let us perform the same kind of computations on

ki(ai,az, a3, by, b, b3, bs)

= Z DC(JT»n/)(pﬂ(alsa27a3)(pﬂ/(bl7b2sb3ab4)-
nmeP({1,2,3}),7'eP({4,5,6,7})

Since our variables are centered, the only pairs of partitions which occur in the
sum are ({{1, 2, 3}}, {{4,5,6,7}}), ({{1, 2, 3}}, {{4, 5}, {6, 7}}) and those which are
deduced from the latter by permuting 4, 5, 6, 7.

Let us compute D.({{1, 2, 3}}, {{4, 5, 6, 7}}). We shall again use formulae (12)—
(14) several times, without citing them every time. The permutations which con-
tribute to this coefficient are 7-cycles and products of a 3-cycle and a 4-cycle. As
before, all 7-cycles do not contribute in the same way. If the a’s are consecutive,
which is the case for 3!4! 7-cycles, the contribution is simply 1. If two a’s are
consecutive and the third is on its own, the 7-cycle contributes e~ In this case,
there can be one, two or three b’s between the isolated a and the pair of consecu-
tive a’s, in the cyclic order. In each case, there are 3!4! possible 7-cycles. Finally,
the three a’s can be isolated. This happens in 3!4! 7-cycles, and each contributes
e=3!, thanks to (14). So far, we have a contribution of 144(1 + 3¢~ + ¢=3"). The
contribution of products of a 3-cycle and a 4-cycle is much simpler to compute: it
1s 2!3!c43. We find

24)  D.({{1,2,3}}, {{4,5,6, 7)) = 12(ca3 4+ 12(1 + 372 4 ¢73)).
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Let us finally compute D.({{1, 2, 3}}, {{4, 5}, {6, 7}}). Again, by Lemma 4.6,
there are five possibilities for the partition {{o'}}, which we examine one after the
other.

of{c}} ={{1,2,3,4,5,6,7}}. No element of {4, 5} can be consecutive with an
element of {6,7} in o. Still, there are several possibilities. Let us first consider
the 7-cycles where 4,5 on one hand and 6, 7 on the other hand are consecutive.
These two groups must be separated by a’s. There are 2!2!2!3! such 7-cycles, and
each contributes for 1 — e~ %, according to (13). Since there are only three a’s,
one at least of the two pairs {4, 5} and {6, 7} must be consecutive. However, it can
happen that one is not. This happens in 2!212!3! 7-cycles, and according to (14),
each contributes for e =% — ¢,

o{{o}} ={{1,2,3},{4,5,6,7}}. These permutations do not contribute.

o{{o}} ={{1,2,3,4,5}, {6,7}}. As usual by now, there are two possibilities in
the 5-cycle of o. Either the two b’s are consecutive, which happens in 2!3! cases
with the contribution cs;, or they are not. This happens in 2!3! cases, and each case
contributes for e =% 5.

o{{o}} ={{1,2,3,6,7}, {4, 5}}. By symmetry, this contribution is equal to the
one above.

o{{o}} = {{1, 2,3}, {4,5},{6,7}}. There are 2 permutations, each contributing
for C322.

Finally,

(25) DC({{l’ 2” 3}}v {{4’ 5}7 {65 7}}) = 2(C322+ 12(1 —{—6_2[)6'52 +24(1 _e_3t))'

Let us summarize our results. We have proved that, if there exists a ¢-free cu-
mulant of order 7, whose associated 7-linear form is denoted by k7, then for all
centered a1, ap, a3 € Aand by, ..., bs € B, the following equalities hold:

ki(ay,az, by, ba, b3, by, bs)
= 24(cs2 + 10(1 +2¢ ")) @(a1a2)@(b1bab3babs)
+2(c322 +2Q2 + e a3
+6(1 + e )esy + 12(1 — 7)) g(ara2)@(b162) @ (b3babs)
+2(c3 +2Q2 4+ ¢ e
+6(1+e *)esy + 12(1 — e 2))p(araz) p(b1b3)@(bababs) + -+ -,
where all partitions of {b1, b2, b3, b4, bs} into a pair and a triple appear, and
k7(ay,az, a3, by, ba, bz, by)
= 12(cq3 4+ 12(1 + 3¢ + 7)) p(arazaz) (b1 bab3bs)
+2(can + 12(1 + e *)esy +24(1 — e 7)) p(a1a2a3)p(b1b2) g (b3bs)
+2(can2 + 12(1 + ¢ )esy + 24(1 — e7))g(a1a2a3)9(b1b3) @ (babs)
+2(c3m + 121 + e )esy +24(1 — 7)) p(araza3) @ (b1b4) ¢ (bab3).
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Since k7 is a t-free cumulant, these two expressions must be zero for all choices of
a’s and b’s. Since the joint distributions of the a’s and of the b’s are both arbitrary
among those of families of centered elements, this implies that the coefficients
which appear in these equalities in front of the various products of moments of a’s
and b’s must vanish. This implies the following relations:

cso = —10(1 +2¢72),

cp3=—12(1 4372 4730,
i =—2Q24e¢ ey —6(1+e M esy — 12(1 — ™),
e300 = —12(1 + e H)esy —24(1 — e 3.

It does not take a long computation to see that the two expressions of c3,; are
different, since the first involves e >, whereas the second does not. We leave it
to the reader to check that the difference between the two values of c¢3p, that we
have obtained is equal to 24e =3 (1 — e~")?. This quantity vanishes only for = 0
ort=+o0. 0O

In order to prove that ¢-free cumulants of order at most 6 exist, we are going
to construct them. We prove first a lemma which settles the problem of the coeffi-
cients c,, for the partitions A whose smallest part is 1.

Let us introduce some notation. Let u = (i1 > - -- > u;) be a partition of some
integer n. We denote by £(u) the number of nonzero parts of i and we write u H-n
if we() > 2, thatis, if u has no part equal to 1. Let i > 1 an integer. We denote by
W + 8; the partition of n + 1 whose parts are oy, ..., hi—1, i + 1, hit1, -y Urs
rearranged in nonincreasing order. If i > £(u), then o + §; is simply the partition
W to which a part equal to 1 has been appended.

PROPOSITION 4.7.  Letn > 2 be an integer. Choose t € [0, +00]. A collection
(c))nkn is a t-free cumulant if and only if the following two conditions hold:

(1) The relation (17) is satisfied for all m1, ..., m, which are centered.
2) Forallubn—1,

£(w)
(26) Cutdey+r = — Z HiCp+s;-
i=1

Moreover, a collection of complex numbers (c;)—n Which satisfies (17) for all
my, ..., my, which are centered can be extended in a unique way into a t-free
cumulant of order n.

When o is a permutation of {1, ..., n}, let us denote by [o] the partition of the
integer n given by the lengths of the cycles of .
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PROOF OF PROPOSITION 4.7. Let ¢ be a ¢t-free cumulant of order n. In order

to check that (26) is satisfied, let us choose my,...,m,_; in some probability
space (M, ¢) and write the fact that k,, (m1, ..., m,—1, 1) =0. We find
27) Yo D elmi,...,mu_1, 1) =0.
Aen eSS,
[o]=A

Let r,: 6, — &,_1 denote the following function: for all o € G,, r,(o) is
the permutation of {1,...,n — 1} obtained by removing n from the cycle of
o which contains it. For each o, we have the equality ¢, (m1,...,my—1,1) =
@r,(o)(m1,...,my_1). Now a permutation T € &,,_ has exactly n preimages by
rn. Moreover, if [t] = pu = (1 = --- > o) > 0) = n — 1, then all preimages of
7 belong to one of the conjugacy classes u + §; fori =1, ..., €(n) + 1. Finally,
r, L(t) contains exactly one element of pt + 8¢(,)+1 and p; elements of u + §; for
i=1,...,2(uw). We can thus rewrite (27) as follows:

2(p)
28 > (Zﬂicu+6i+cu+8m)+l> > @elmi, ... mu_1)=0.

ukFn—1\i=1 €6,
[tl=p
Since the distribution of (my,...,m,_1) is arbitrary, all the coefficients between

the brackets must vanish. It follows that (26) is satisfied.

Conversely, let (c(0))sce, be a collection which satisfies (17) for centered el-
ements and (26). Then, by the computation that we have just done, this collection
satisfies (18) and hence, by multilinearity, (17) for arbitrary elements.

Let us prove the last assertion. For any A |- n with at least one part equal to 1, the
relation (26) expresses the value of ¢, in terms of c;; for partitions A" of n which
have strictly less parts equal to 1 than A. The collection (c; ), is thus completely
and uniquely determined by (c; ). The fact that the resulting collection is a
t-free cumulant is granted by the first part of the proposition. [

The last result simplifies greatly the search for t-free cumulants, since it allows
one to restrict to centered elements and partitions in parts at least equal to 2. We
apply it to find cumulants of order less than 6. These provide a partial obstruction
to the ¢-freeness of two random variables.

PROOF OF THEOREM 4.3. Let us prove that there exist 7-free cumulants up
to order 6. We proceed by first establishing enough conditions that their coeffi-
cients must satisfy, in order to determine these coefficients. Then, we check that
we actually have a 7-free cumulant.

We will always normalize our cumulants by the condition ¢, = 1.

en = 2. By Proposition 4.7, the condition ¢; = 1 suffices to determine the whole
cumulant, and c;; = —1. The relation (12) implies that we have indeed got a ¢-free
cumulant.
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en = 3. Again, the condition c3 = 1 determines completely the cumulant. Us-
ing (26), we find co; = —2 and cy11 = 4. The relation (12) implies again that the
collection thus obtained is a ¢-free cumulant. Indeed, by (12), the product of any
three centered elements, one being #-free with the two others, is centered. Hence,
our collection satisfies (17) on centered elements.

eonn = 4. This is the first case where the relation ¢4 = 1 does not suffice to deter-
mine the cumulant. Indeed, we must compute cp;. For this, let us choose in some
probability space elements ay, as, ... and by, by, ..., such that {aj,a>,...} and
{b1, by, ...} are t-free. We will use this notation again in this proof without redefin-
ing it. Let us assume that a #-free cumulant ¢ of order 4 is given and let us compute
D.({{1,2}}, {{3,4}}) [see (20)]. Again, we shall use formulae (12) and (13) sev-
eral times, without citing them every time. There are 4-cycles which contribute to
this coefficient. In 2!2! of them, 1 and 2 are consecutive and they contribute for 1
each. In 2! others, 1 and 2 are not consecutive and each such cycle contributes for
e~? . There is also one product of two 2-cycles, which contributes for c¢2,. Finally,
D({{1,2}}, {{3,4}}) = c22 + 2(2 + e~ ?"). The nullity of this coefficient implies
cn=-22+e ). Using (26), we determine the remaining coefficients, and find

C4 = 1, C3] :—3, 022:—2(24-3_2’)’
ca11 =205 +e ), e = —6(+ e~ ).

Now let us check that the collection thus defined satisfies (17) for centered el-
ements. Set ka =), c(0)¢y. If we expand ka(ay, by, by, b3) according to (19),
then all terms involve ¢(a;) and vanish. Now k4(ay, az, by, by) also vanishes, be-
cause this is how we have chosen the value of c¢y;. Finally, we do have a ¢-free
cumulant of order 4.

en =5. Let ¢ be a ¢-free cumulant of order 5. Let us compute c3p by writing the
nullity of D.({{1, 2, 3}}, {{4, 5}}) and using formulae (12) and (13). There are 3!2!
5-cycles in which 4 and 5 are consecutive, and they contribute for 1 each. There
are also 3!2! 5-cycles in which they are not consecutive, and each contributes for
e~? . There are finally 2! products of a 3-cycle and a 2-cycle, which contribute for
32 each. Hence, we must have ¢33 = —6(1 + e~ %). Using as usual (26), we find
that the other values of ¢ must be

cs =1, cy1 = —4, c3=—6(1+e7%), 311 =63 +e ),
cnr =120+ %),  cun=—12G+2¢7%), i1 =485+ 2e7).

The fact that k5 D, c(0)@s is a cumulant is checked just as in the case n = 4: the
identity ks(ay, b1, b2, b3, bs) = 0 is granted by (19) and ks(ay, az, b1, by, b3) =0
by the choice of ¢3;.

eonn = 6. Let ¢ be a t-free cumulant of order 5. The value of ¢4, deduced as
usual from the nullity of D.({{1,2, 3,4}}, {5, 6}}), is c4p = —4(2 + 3¢~ %'). Simi-
larly, D.({{1,2,3}}, {{4, 5, 6}}) = 0 gives us ¢33 = —3(3 + 6~ + ¢~3'). Finally,
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D.({{1,2}}, {{3, 4}, {5, 6}}) = 0 implies c220 = 8(7 + 17¢~% + 6¢~*). The other
coefficients follow as usual from (26) and we find

c6 =1, cs1 = —5, cap = —4(2 43¢ ), coti = 4(T 4 3¢,
i =-33+6e7" +e ), 31 = 6(7T + e +12¢72),
et = —12(14 4 157 + ™), 200 =8(7T 4 17e % + 6¢=4),
11 = —8(28 4+ 53¢ + 373 + 6eH),
Co1111 = 4821 + 34e ™ 4 2¢73 437,
Ciii1l = —240(21 + 34e™ 2 4 2¢73 4 374,

Letus set kg = Y, c(0)@s. The nullity of ke(ay, b1, ..., bs) follows as usual from
(19). That of kg(ay, az, by, by, b3, by) results from the choices of ¢4 and cp2.
Finally, k¢ (a1, az, as, by, by, b3) = 0 is granted by the choice of ¢33.

Nowhere there has been any freedom in the definition of the cumulants. This
shows the uniqueness of conjugation-invariant ¢-free cumulants of order at most
than 6. [J
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