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ASYMPTOTIC BEHAVIOR OF THE GYRATION RADIUS FOR
LONG-RANGE SELF-AVOIDING WALK AND LONG-RANGE

ORIENTED PERCOLATION

BY LUNG-CHI CHEN1 AND AKIRA SAKAI2

Fu-Jen Catholic University and Hokkaido University

We consider random walk and self-avoiding walk whose 1-step distribu-
tion is given by D, and oriented percolation whose bond-occupation prob-
ability is proportional to D. Suppose that D(x) decays as |x|−d−α with
α > 0. For random walk in any dimension d and for self-avoiding walk and
critical/subcritical oriented percolation above the common upper-critical di-
mension dc ≡ 2(α ∧ 2), we prove large-t asymptotics of the gyration radius,
which is the average end-to-end distance of random walk/self-avoiding walk
of length t or the average spatial size of an oriented percolation cluster at
time t . This proves the conjecture for long-range self-avoiding walk in [Ann.
Inst. H. Poincaré Probab. Statist. (2010), to appear] and for long-range ori-
ented percolation in [Probab. Theory Related Fields 142 (2008) 151–188]
and [Probab. Theory Related Fields 145 (2009) 435–458].

1. Introduction.

1.1. Motivation. Let ϕRW
t (x) be the t-step transition probability for random

walk on Z
d : ϕRW

0 (x) = δo,x and

ϕRW
t (x) = (ϕRW

t−1 ∗ D)(x) ≡ ∑
y∈Zd

ϕRW
t−1(y)D(x − y) [t ∈ N].(1.1)

Suppose that the 1-step distribution D is Z
d -symmetric. How does the r th moment∑

x |x|rϕRW
t (x) grow as t → ∞, where | · | denotes the Euclidean distance? When

r = 2 and σ 2 ≡ ∑
x |x|2D(x) < ∞, the answer is trivial:

∑
x |x|2ϕRW

t (x) = σ 2t

since the variance of the sum of independent random variables is the sum of their
variances. It is not so hard to see that

∑
x |x|rϕRW

t (x) = O(tr/2) as t → ∞ for
other values of r > 2, as long as

∑
x |x|rD(x) < ∞. Even so, it may not be that

easy to identify the constant C ∈ (0,∞) such that (
∑

x |x|rϕRW
t (x))1/r ∼ C

√
t .

Here, and in the rest of the paper, “f (z) = O(g(z))” means that |f (z)/g(z)| is

Received February 2010; revised April 2010.
1Supported in part by the TJ&MY Foundation and NSC Grant 99-2115-M-030-004-MY3.
2Supported in part by the start-up fund of L-Station at Hokkaido University and JSPS Grant-in-Aid

21740059 for Young Scientists (B).
AMS 2000 subject classifications. Primary 60K35; secondary 82B41, 82B43.
Key words and phrases. Long-range random walk, self-avoiding walk, oriented percolation, gy-

ration radius, lace expansion.

507

http://www.imstat.org/aop/
http://dx.doi.org/10.1214/10-AOP557
http://www.imstat.org
http://www.ams.org/msc/


508 L.-C. CHEN AND A. SAKAI

bounded for all z in some relevant set, while “f (z) ∼ g(z)” means that f (z)/g(z)

tends to 1 in some relevant limit for z.
Let α > 0, L ∈ [1,∞) and suppose that D(x) ≈ |x/L|−d−α for large x such

that its Fourier transform D̂(k) ≡ ∑
x∈Zd eik·xD(x) satisfies

1 − D̂(k) = vα|k|α∧2 ×
⎧⎨
⎩

1 + O((L|k|)ε), α �= 2,

log
1

L|k| + O(1), α = 2(1.2)

for some vα = O(Lα∧2) and ε > 0. If α > 2 (or D is finite-range), then vα ≡
σ 2/(2d). As shown in Appendix A.1, the long-range Kac potential

D(x) = h(y/L)∑
y∈Zd h(y/L)

[x ∈ Z
d ],(1.3)

defined in terms of a rotation-invariant function h satisfying

h(x) = 1 + O((|x| ∨ 1)−ρ)

(|x| ∨ 1)d+α
[x ∈ R

d ]

for some ρ > ε, satisfies the above properties. Notice that
∑

x |x|rD(x) = ∞ for
r ≥ α and, in particular, σ 2 = ∞ if α ≤ 2. This is of interest in investigating the
asymptotic behavior of

∑
x |x|rϕRW

t (x) for all r ∈ (0, α) and understanding its
α-dependence.

In fact, our main interest is in proving sharp asymptotics of the gyration radius
of order r ∈ (0, α), defined as

ξ
(r)
t =

(∑
x∈Zd |x|rϕt (x)∑

x∈Zd ϕt (x)

)1/r

,

where ϕt(x) ≡ ϕSAW
t (x) is the two-point function for t-step self-avoiding walk

whose 1-step distribution is given by D, or ϕt(x) ≡ ϕOP
t (x) is the two-point func-

tion for oriented percolation whose bond-occupation probability for each bond
((u, s), (v, s + 1)) is given by pD(v − u), independently of s ∈ Z+, where p ≥ 0
is the percolation parameter. More precisely,

ϕt (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕRW
t (x) ≡ ∑

ω:o→x
(|ω|=t)

t∏
s=1

D(ωs − ωs−1),

ϕSAW
t (x) ≡ ∑

ω:o→x
(|ω|=t)

t∏
s=1

D(ωs − ωs−1)
∏

0≤i<j≤t

(1 − δωi,ωj
),

ϕOP
t (x) ≡ Pp((o,0) → (x, t)),

(1.4)

where
∏

0≤i<j≤t (1 − δωi,ωj
) is the self-avoiding constraint on ω and {(o,0) →

(x, t)} is the event that either (x, t) = (o,0) or there is a consecutive sequence
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of occupied bonds from (o,0) to (x, t) in the time-increasing direction. The gy-
ration radius ξ

(r)
t represents a typical end-to-end distance of a linear structure of

length t or a typical spatial size of a cluster at time t . It has been expected (and
would certainly be true for random walk in any dimension) that, above the com-
mon upper-critical dimension dc = 2(α ∧ 2) for self-avoiding walk and oriented
percolation, for every r ∈ (0, α),

ξ
(r)
t =

{
O
(
t1/(α∧2)

)
, α �= 2,

O
(√

t log t
)
, α = 2.

(1.5)

Heydenreich [5] proved (1.5) for self-avoiding walk, but only for small r < α ∧ 2.
Nevertheless, this small-r result is enough to prove weak convergence of self-
avoiding walk to an α-stable process/Brownian motion, depending on the value
of α [5].

As stated below in Theorem 1.2, we prove sharp asymptotics (including the
proportionality constant) of

∑
x |x1|rϕt (x)/

∑
x ϕt (x) as t → ∞, where x1 is the

first coordinate of x ≡ (x1, . . . , xd), and show that (1.5) holds for all r ∈ (0, α),
solving the open problems in [3, 5].

1.2. Main results. Let mc ≥ 1 be the model-dependent radius of convergence
for the sequence

∑
x ϕt (x). For random walk, mc = 1 since

∑
x ϕRW

t (x) is always
1. For self-avoiding walk, mc > 1 due to the self-avoiding constraint in (1.4) and,
indeed, mc = 1 + O(L−d) for d > dc and L � 1 [6]. For oriented percolation, mc
depends on the percolation parameter p [i.e., mc = mc(p)] and was denoted by
mp in [2, 3]. It has been proven [2] that mc(p) > 1 for p < pc, and mc(pc) = 1 for
d > dc and L � 1, where pc is the critical point characterized by the divergence
of the susceptibility:

∑∞
t=0

∑
x∈Zd ϕOP

t (x) ↑ ∞ as p ↑ pc. It has also been proven
[2] that pmc = 1 + O(L−d) for all p ≤ pc.

Let CI and CII be the constants in [2, 3, 5] such that, as t → ∞,∑
x∈Zd

ϕt (x) ∼ CIm
−t
c ,

∑
x∈Zd eikt ·xϕt (x)∑

x∈Zd ϕt (x)
∼ e−CII|k|α∧2

,(1.6)

where

kt = k ×
{

(vαt)−1/(α∧2), α �= 2,(
v2t log

√
t
)−1/2

, α = 2.
(1.7)

Because of this scaling, we have CRW
I = CRW

II = 1 for random walk. For self-
avoiding walk and critical/subcritical oriented percolation for d > 2(α ∧ 2) with
L � 1 (depending on the models), it has been proven that the model-dependent
constants CI and CII are both 1 + O(L−d) [2, 5] and that the O(L−d) term in CII
exhibits crossover behavior at α = 2 [3, 5]. We will provide precise expressions
for CI and CII at the end of Section 1.3.

Our first result is the following asymptotic behavior of the generating function
for the sequence

∑
x |x1|rϕt (x).
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THEOREM 1.1. Consider the three aforementioned long-range models. For
random walk in any dimension d with any L, and for self-avoiding walk and criti-
cal/subcritical oriented percolation for d > dc ≡ 2(α ∧ 2) with L � 1 (depending
on the models), the following holds for all r ∈ (0, α): as m ↑ mc,

∞∑
t=0

mt
∑

x∈Zd

|x1|rϕt (x) = 2 sin(rπ/(α ∨ 2))

(α ∧ 2) sin(rπ/α)
�(r + 1)

CI(CIIvα)r/(α∧2)

(1 − m/mc)1+r/(α∧2)

(1.8)

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 + O

((
1 − m

mc

)ε)
, α �= 2,(

log
1√

1 − m/mc

)r/2

+ O(1), α = 2

for some ε > 0 when α �= 2. The O(1) term for α = 2 is independent of m.

It is worth emphasizing that, although CI,CII,mc are model-dependent, the for-
mula (1.8) itself is universal. Expanding (1.8) in powers of m and using (1.6), we
obtain the following theorem.

THEOREM 1.2. Under the same condition as in Theorem 1.1, as t → ∞,∑
x∈Zd |x1|rϕt (x)∑

x∈Zd ϕt (x)
∼ 2 sin(rπ/(α ∨ 2))

(α ∧ 2) sin(rπ/α)

�(r + 1)

�(r/(α ∧ 2) + 1)
(1.9)

×
{(

CIIvαt
)r/(α∧2)

, α �= 2,(
CIIv2t log

√
t
)r/2

, α = 2.

We note that CII is the only model-dependent term in (1.9). As far as we are
aware, the sharp asymptotics (1.8) and (1.9) for all real r ∈ (0, α) are new, even
for random walk.

Although we focus our attention on the long-range models defined by D that
satisfies (1.2), our proof also applies to finite-range models, for which α is consid-
ered to be infinity.

Using |x1|r ≤ |x|r ≤ dr/2 ∑d
j=1 |xj |r and the Z

d -symmetry of the models, we
are finally able to arrive at the following result.

COROLLARY 1.3. Under the same condition as in Theorem 1.1, (1.5) holds
for all r ∈ (0, α). In particular, when r = 2 < α,

ξ
(2)
t ∼

t→∞

√
CIIσ 2t .(1.10)

As mentioned earlier, (1.5) has been proven [5] for self-avoiding walk, but only
for small r < α ∧ 2. The sharp asymptotics (1.10) has been proven [7] for self-
avoiding walk and critical oriented percolation defined by D that has a finite (2 +
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ε)th moment for some ε > 0. Our proof is based on a different method than those
used in [5, 7]. It is closer to the method, explained in the next subsection, used in
[8] for finite-range self-avoiding walk and in [9] for critical/subcritical finite-range
oriented percolation.

We strongly believe that the same method should work for lattice trees. Any two
points in a lattice tree are connected by a unique path, so the number of bonds con-
tained in that path can be considered as time and we can apply the current method
to obtain the same results (with different values for CI,CII). As this suggests, time,
or something equivalent, is important for the current method to work. For unori-
ented percolation, for example, it is not so clear what should be interpreted as time.
However, if D is biased in average in one direction, say, the positive direction of
the first coordinate, then x1 can be treated as time and, after subtracting the effect
of the bias, we may obtain the results even for unoriented percolation.

1.3. Outline and notation. In this subsection, we outline the proof of Theo-
rem 1.1 and introduce some notation which is used in the rest of the paper. We also
refer interested readers to an extended version of this subsection in [11].

One of the key elements for the proof is to represent the left-hand side of (1.8)
in terms of the generating function (i.e., the Fourier–Laplace transform) of the
two-point function. We now explain this representation.

Given a function ft (x), where (x, t) ∈ Z
d × Z+, we formally define

f̂ (k,m) =
∞∑
t=0

mt
∑

x∈Zd

ft (x)eik·x [k ∈ [−π,π ]d, m ≥ 0].

We note that ϕ̂(k,m) is well defined when m < mc (recall that mc ≥ 1, as explained
at the beginning of Section 1.2). Let

∇n
1 f̂ (l,m) = ∂nf̂ (k,m)

∂kn
1

∣∣∣∣
k=l

[l ∈ [−π,π ]d, n ∈ Z+].(1.11)

Then, for r = 2j < α (j ∈ N), we obtain the representation
∞∑
t=0

mt
∑

x∈Zd

x
2j
1 ft (x) = (−1)j∇2j

1 f̂ (0,m).

For r ∈ (0, α ∧ 2), we generate the factor |x1|r by using the constant Kr ∈
(0,∞), as follows (see [3]):

Kr ≡
∫ ∞

0

1 − cosv

v1+r
dv = |x1|−r

∫ ∞
0

1 − cos(ux1)

u1+r
du.(1.12)

Suppose, from now on, that ft is Z
d -symmetric. Then,

∞∑
t=0

mt
∑

x∈Zd

|x1|rft (x) = 1

Kr

∫ ∞
0

du

u1+r

∞∑
t=0

mt
∑

x∈Zd

(
1 − cos(ux1)

)
ft (x)

= 1

Kr

∫ ∞
0

du

u1+r

(
f̂ (0,m) − f̂ (�u,m)

)
,
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where �u = (u,0, . . . ,0) ∈ R
d . Let


̄lf̂ (k,m) ≡ f̂ (k,m) − f̂ (k + l,m) + f̂ (k − l,m)

2
(1.13)

=
∞∑
t=0

mt
∑

x∈Zd

(
1 − cos(l · x)

)
ft (x)eik·x.

We note that 
̄lf̂ (k,m) is equivalent to −1
2 
lf̂ (k,m) in the previous papers (e.g.,

[2, 3]). In particular,


̄lf̂ (0,m) = f̂ (0,m) − f̂ (l,m).

Therefore, for r ∈ (0, α ∧ 2),

∞∑
t=0

mt
∑

x∈Zd

|x1|rft (x) = 1

Kr

∫ ∞
0

du

u1+r

̄�uf̂ (0,m).

For r = 2j + q < α [j ∈ N, q ∈ (0,2)], we combine the above representations as

∞∑
t=0

mt
∑

x∈Zd

|x1|2j+qft (x) = 1

Kq

∫ ∞
0

du

u1+q

∞∑
t=0

mt
∑

x∈Zd

(
1 − cos(ux1)

)
x

2j
1 ft (x)

= (−1)j

Kq

∫ ∞
0

du

u1+q

(∇2j
1 f̂ (0,m) − ∇2j

1 f̂ (�u,m)
)

= (−1)j

Kq

∫ ∞
0

du

u1+q

̄�u∇2j

1 f̂ (0,m).

From now on, as long as no confusion arises, we will simply omit m and ab-
breviate f̂ (k,m) to f̂ (k). Then, the above three representations are summarized
as

∞∑
t=0

mt
∑

x∈Zd

|x1|rft (x)

(1.14)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−1)j∇2j
1 f̂ (0) [r = 2j < α, j ∈ N],

(−1)j

Kq

∫ ∞
0

du

u1+q

̄�u∇2j

1 f̂ (0)

[r = 2j + q < α, j ∈ Z+, q ∈ (0,2)].
Also, we will abbreviate f̂ (k,mc) to f̂c(k) whenever it is well defined. Moreover,
we will use the notation

∂mf̂c(k) = ∂f̂ (k,m)

∂m

∣∣∣∣
m↑mc

.
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Another key element for the proof of the main theorem is the lace expansion
(see, e.g., [12], Sections 3 and 13),

ϕt(x) = It (x) +
t∑

s=1

(Js ∗ ϕt−s)(x),(1.15)

where, for t ≥ 0,

It (x) =
{

δx,oδt,0, RW/SAW,
πOP

t (x), OP,(1.16)

and for t ≥ 1,

Jt (x) =
⎧⎨
⎩

D(x)δt,1, RW,
D(x)δt,1 + πSAW

t (x), SAW,
(πOP

t−1 ∗ pD)(x), OP.
(1.17)

Recall (1.1) for random walk. For self-avoiding walk and oriented percolation,
πSAW

t (x) and πOP
t (x) are (alternating sums of) the model-dependent lace expan-

sion coefficients (see, e.g., [12] for their precise definitions). By (1.15), we obtain

ϕ̂(k) = Î (k) + Ĵ (k)ϕ̂(k).(1.18)

From this, we can derive identities for the “derivatives” of ϕ̂ in (1.14). For example,


̄�uϕ̂(0) ≡ ϕ̂(0) − ϕ̂(�u) = Î (0) + Ĵ (0)ϕ̂(0) − (
Î (�u) + Ĵ (�u)ϕ̂(�u)

)
= 
̄�uÎ (0) + Ĵ (0)ϕ̂(0) − Ĵ (�u)ϕ̂(�u)

(1.19)
= 
̄�uÎ (0) + ϕ̂(0)
̄�uĴ (0) + Ĵ (�u)
̄�uϕ̂(0)

= 1

1 − Ĵ (�u)

(

̄�uÎ (0) + ϕ̂(0)
̄�uĴ (0)

)
,

where the last line has been obtained by solving the previous equation for 
̄�uϕ̂(0).
Hence, for r ∈ (0, α ∧ 2),

∞∑
t=0

mt
∑

x∈Zd

|x1|rϕt (x) = ϕ̂(0)

Kr

∫ ∞
0

du

u1+r


̄�uĴ (0)

1 − Ĵ (�u)
(1.20)

+ 1

Kr

∫ ∞
0

du

u1+r


̄�uÎ (0)

1 − Ĵ (�u)
.

It is known [2, 6] that as long as d > dc (and L � 1), it is easier to tame Î and Ĵ ,
up to m = mc, than to tame ϕ̂. We will thus be able to analyze the integrals on the
right-hand side of (1.20) and prove the main theorem.

Before closing this subsection, we provide the following representations for the
constants CI and CII in (1.8) in terms of Îc and Ĵc:

CI = Îc(0)

mc ∂mĴc(0)
, CII = 1

mc ∂mĴc(0)
lim
k→0


̄kĴc(0)


̄kD̂(0)
.(1.21)
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In Section 2, we will explain the heuristics for the derivation of these representa-
tions.

1.4. Organization. In the remainder of the paper, whenever we consider self-
avoiding walk and oriented percolation, we assume d > dc and L � 1, as well as
p ≤ pc for oriented percolation.

The paper is organized as follows. In Section 3, we prove Theorem 1.1 for
r ∈ (0, α ∧ 2) (Section 3.1), for r = 2j < α with j ∈ N (Section 3.2) and for
r = 2j + q < α with j ∈ N and q ∈ (0,2) (Section 3.3) separately, assuming
Propositions 3.1 and 3.2. We prove those key propositions in Section 4.

We strongly believe that the results for self-avoiding walk and oriented percola-
tion are the most important and interesting parts of this work. However, for those
who are more interested in random walk, we make the following suggestion: read
up to Section 3 for the proof of Theorem 1.1, where Propositions 3.1 and 3.2 are
used. However, Proposition 3.1 and a part [i.e., (3.15)] of Proposition 3.2 are trivial
for random walk. The remaining part [i.e., (3.16)] of Proposition 3.2 is the result
of Lemma 4.1, which is proved in Section 4.1.

2. Preliminaries. In this section, we review in outline the derivation in [2, 3,
5] of the constants CI and CII. During the course of this, we summarize the already
known properties of Î and Ĵ and introduce some quantities used in the following
sections.

We begin by solving (1.18) for ϕ̂(k), which yields

ϕ̂(k) = Î (k)

1 − Ĵ (k)
,(2.1)

where, by (1.16) and (1.17),

Î (k) =
{

1, RW/SAW,
π̂OP(k), OP,

(2.2)

Ĵ (k) =
⎧⎨
⎩

mD̂(k), RW,
mD̂(k) + π̂SAW(k), SAW,
π̂OP(k)pmD̂(k), OP.

(2.3)

It is known [2, 6] that

π̂SAW(k) = O(L−d)m2, π̂OP(k) − 1 = O(L−d)(pm)2,(2.4)

where the O(L−d) terms are uniform in k ∈ [−π,π ]d and m ≤ mc. Therefore,
Î (k) and Ĵ (k) are both convergent for all k ∈ [−π,π ]d and m ≤ mc. However,
since ϕ̂(0) diverges as m ↑ mc, we can characterize mc by the equation

1 = Ĵc(0) =
⎧⎨
⎩

mc, RW,
mc + π̂SAW

c (0), SAW,
π̂OP

c (0)pmc, OP.
(2.5)
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Using this identity, we obtain that, as m ↑ mc (see [2, 5] for the precise argument),

ϕ̂(k) = Î (k)

Ĵc(0) − Ĵc(k) + mc((Ĵc(k) − Ĵ (k))/(mc − m))(1 − m/mc)

∼ Îc(k)


̄kĴc(0) + mc ∂mĴc(k)(1 − m/mc)

= Îc(k)


̄kĴc(0) + mc ∂mĴc(k)

∞∑
t=0

(
mc ∂mĴc(k)


̄kĴc(0) + mc ∂mĴc(k)

m

mc

)t

,

hence,

∑
x∈Zd

ϕt (x)eik·x ∼
t→∞

Îc(k)


̄kĴc(0) + mc ∂mĴc(k)
m−t

c

(2.6)

×
(

1 − 
̄kĴc(0)


̄kĴc(0) + mc ∂mĴc(k)

)t

.

In particular, at k = 0,

∑
x∈Zd

ϕt (x) ∼ Îc(0)

mc ∂mĴc(0)
m−t

c ,(2.7)

which yields the representation for CI in (1.21).
In the above computation, we have used the fact that the quantities such as

mc ∂mĴc(0) and 
̄kĴc(0) are all convergent uniformly in k ∈ [−π,π ]d . To see
this, we note that, by (2.3),

mc∂mĴc(k) =
⎧⎪⎨
⎪⎩

mcD̂(k), RW,
mcD̂(k) + mc ∂mπ̂SAW

c (k), SAW,(
π̂OP

c (k) + mc ∂mπ̂OP
c (k)

)
pmcD̂(k), OP,

(2.8)


̄kĴ (0) =
⎧⎪⎨
⎪⎩

m
̄kD̂(0), RW,
m
̄kD̂(0) + 
̄kπ̂

SAW(0), SAW,(
π̂OP(0)
̄kD̂(0) + D̂(k)
̄kπ̂

OP(0)
)
pm, OP.

(2.9)

However, it is known that πSAW and πOP both satisfy

|mc ∂mπ̂c(k)| ≤
∞∑
t=0

tmt
c

∑
x∈Zd

|πt(x)| ≤ O(L−d),(2.10)

|
̄kπ̂(0)| ≤
∞∑
t=0

mt
c

∑
x∈Zd

(
1 − cos(k · x)

)|πt(x)| ≤ O(L−d)
̄kD̂(0)(2.11)

for all k ∈ [−π,π ]d and m ≤ mc for the latter (see [3], Proposition 1, [5], the
paragraph below Theorem 1.2 and [6], Proposition 4.1, with an improvement due
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to monotone convergence). By these bounds and using (2.4) and (2.5) and the fact
that mSAW

c and pmOP
c are both 1 + O(L−d) (see the beginning of Section 1.2), we

conclude that mc ∂mĴc(0) = 1 + O(L−d) and 
̄kĴc(0) = O(
̄kD̂(0)).
Moreover, it has been proven [2, 3, 5] that there exist ε = ε(d,α) > 0 and δ =

δ(d,α), which is zero if α = 2 and > 0 if α �= 2, such that πSAW and πOP both
satisfy

∞∑
t=0

t1+εmt
c

∑
x∈Zd

|πt(x)| < ∞,

∞∑
t=0

mt
c

∑
x∈Zd

|x|α∧2+δ|πt(x)| < ∞.

These bounds imply (see [2], equations (6.13) and (6.14), [3], equations (3.3)–
(3.4), [5], equations (2.25)–(2.28) and (2.64)–(2.70))

Ĵc(0) − Ĵ (0)

1 − m/mc
= mc ∂mĴc(0) + O

((
1 − m

mc

)ε)
,(2.12)


̄kĴ (0)


̄kD̂(0)
= M +

⎧⎨
⎩

O(|k|δ), α �= 2,

O

(
1/ log

1

|k|
)
, α = 2,

(2.13)

where the error terms in (2.13), which are zero for random walk, are uniform in
m ≤ mc and where M ≡ M(m) is defined as

M =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

m, RW,

m + ∇2
1 π̂SAW(0)

−2vα

1{α>2}, SAW,(
π̂OP(0) + ∇2

1 π̂OP(0)

−2vα

1{α>2}
)
pm, OP.

(2.14)

The crossover terms, which are proportional to 1{α>2}, converge for all m ≤ mc [3,
5]. By (2.6) and (2.7) and (2.13), and using limt→∞ t
̄kt D̂(0) = |k|α∧2, due to the
scaling (1.7), we obtain that, as t → ∞,∑

x∈Zd ϕt (x)eikt ·x∑
x∈Zd ϕt (x)

∼
(

1 − 
̄kt Ĵc(0)


̄kt Ĵc(0) + mc ∂mĴc(kt )

)t

[∵ (2.6)k=kt /(2.7)]

∼ exp
(
− 
̄kt Ĵc(0)

mc ∂mĴc(0)
t

)
[∵ 1 − τ ∼ e−τ as τ → 0]

= exp
(
− 1

mc ∂mĴc(0)


̄kt Ĵc(0)


̄kt D̂(0)
t
̄kt D̂(0)

)

∼ exp
(
− Mc

mc ∂mĴc(0)
|k|α∧2

)
,
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where Mc = M(mc). This yields the representation for CII in (1.21).

REMARK. It is natural for some readers to wonder why we do not directly
prove (1.9) by using the formula (2.6) for

∑
x ϕt (x)eik·x , instead of proving the

asymptotics (1.8) of its generating function and expanding it in powers of m.
In fact, the first-named author was able to derive an asymptotic expression for∑

x |x1|rϕt (x) using (2.6), but the proportionality constant was in a rather com-
plicated sum form. We then concluded that using (2.6) would not be an ideal
method for deriving the simplest possible display of the proportionality constant
and started searching for another method. That turns out to be the use of the gen-
erating function, as explained in this paper. Later, the first-named author proved
that the aforementioned sum form is indeed an expansion of the proportionality
constant in (1.9).

3. Proof of the main results.

3.1. Proof of Theorem 1.1 for r ∈ (0, α ∧2). In this subsection, we prove The-
orem 1.1 for r ∈ (0, α ∧ 2). We will discuss the case for α �= 2 and that for α = 2
simultaneously, until we arrive at the point where we require separate approaches.

First, we recall (1.14) and split
∫∞

0 into
∫ U

0 and
∫∞
U for a given U > 0. Using

(1.19) for the former integral [as in (1.20)] and (1.13) for the latter, we obtain
∞∑
t=0

mt
∑

x∈Zd

|x1|rϕt (x)

= ϕ̂(0)

Kr

∫ U

0

du

u1+r


̄�uĴ (0)

1 − Ĵ (�u)
+ 1

Kr

∫ U

0

du

u1+r


̄�uÎ (0)

1 − Ĵ (�u)
(3.1)

+ 1

Kr

∫ ∞
U

du

u1+r

∞∑
t=0

mt
∑

x∈Zd

(
1 − cos(ux1)

)
ϕt(x).

We note that, by (2.2) and (2.11), 
̄kÎ (0) ≡ 0 for random walk and self-avoiding
walk and 
̄kÎ (0) = O(
̄kD̂(0)) uniformly in m ≤ mc for oriented percolation.
Since 
̄kĴ (0) is also O(
̄kD̂(0)) uniformly in m ≤ mc [see (2.9)], the integrals
in the first two terms of (3.1) are of the same order and therefore the first term
dominates the second term as m ↑ mc, due to the extra factor ϕ̂(0), which exhibits

ϕ̂(0) = Î (0)

Ĵc(0) − Ĵ (0)
= Îc(0) + O(1 − m/mc)

mc ∂mĴc(0)(1 − m/mc) + O((1 − m/mc)1+ε)
(3.2)

= CI

1 − m/mc
+ O

((
1 − m

mc

)−1+ε)
,

where the first equality is due to (2.1) and (2.5), and the second equality is due to
(2.10) and (2.12). These estimates are valid independently of r and thus used in
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the later sections as well. By the fact that 0 ≤ 1 − cos(ux1) ≤ 2, the last term in
(3.1) obeys

0 ≤ 1

Kr

∫ ∞
U

du

u1+r

∞∑
t=0

mt
∑

x∈Zd

(
1 − cos(ux1)

)
ϕt(x)

(3.3)

≤ 2ϕ̂(0)

Kr

∫ ∞
U

du

u1+r
= 2ϕ̂(0)

Krr
U−r .

We will choose U to be relatively small so as to make the first term in (3.1) domi-
nant.

Next, we investigate the integral part of the first term in (3.1),∫ U

0

du

u1+r


̄�uĴ (0)

1 − Ĵ (�u)
=

∫ U

0

du

u1+r


̄�uĴ (0)

Ĵc(0) − Ĵ (0) + 
̄�uĴ (0)
,(3.4)

where we have used (2.5). By (1.2) and (2.13), we have that, for small u,


̄�uĴ (0) = 
̄�uĴ (0)


̄�uD̂(0)

̄�uD̂(0) =

⎧⎨
⎩

Mvαuα∧2 + O(uα∧2+ε), α �= 2,

Mv2u
2 log

1

u
+ O(u2), α = 2

for some ε > 0, where the error terms are uniform in m ≤ mc. Let

μ = Ĵc(0) − Ĵ (0)

Mvα

.(3.5)

Then,


̄�uĴ (0)

Ĵc(0) − Ĵ (0) + 
̄�uĴ (0)
(3.6)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

uα∧2

μ + uα∧2 + O(uα∧2+ε)

μ + uα∧2 , α �= 2,

u2 log 1/u

μ + u2 log 1/u
+ O(u2)

μ + u2 log 1/u
, α = 2.

We now investigate the integral (3.4) for α �= 2 and α = 2 separately, using (3.6)
and the following proposition.

PROPOSITION 3.1. Under the same conditions as in Theorem 1.1,

M = Mc + O

((
1 − m

mc

)ε)
,(3.7)

μ = 1 − m/mc

CIIvα

+ O

((
1 − m

mc

)1+ε)
(3.8)

for some ε > 0, where Mc = M(mc).

The proof is deferred to Section 4. We note that these estimates are trivial for
random walk.
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3.1.1. Proof for α �= 2. We assume that ε < r , without loss of generality.
By (3.4) and (3.6) for α �= 2, we have that, for small U ,∫ U

0

du

u1+r


̄�uĴ (0)

1 − Ĵ (�u)
=

∫ U

0

du

u

(
uα∧2−r

μ + uα∧2 + O(uα∧2−r+ε)

μ + uα∧2

)

=
∫ ∞

0

du

u

uα∧2−r

μ + uα∧2 −
∫ ∞
U

du

u

uα∧2−r

μ + uα∧2

+
∫ U

0

du

u

O(uα∧2+ε−r )

μ + uα∧2

(
1{μ≥uα∧2} + 1{μ<uα∧2}

)

=
∫ ∞

0

du

u

uα∧2−r

μ + uα∧2 + O(U−r ) + O
(
μ−(r−ε)/(α∧2)).

Let U = μ(1−ε/r)/(α∧2), which is indeed small as m ↑ mc, due to Proposition 3.1.
By the change of variables uα∧2 = μz, we obtain∫ μ(1−ε/r)/(α∧2)

0

du

u1+r


̄�uĴ (0)

1 − Ĵ (�u)

=
∫ ∞

0

du

u

uα∧2−r

μ + uα∧2 + O
(
μ−(r−ε)/(α∧2))(3.9)

= μ−r/(α∧2)

α ∧ 2

∫ ∞
0

dz

z

z1−r/(α∧2)

1 + z
+ O

(
μ−(r−ε)/(α∧2)).

However, by the standard Cauchy integral formula, for β ∈ (0,1),∮
γ1

dz

z

z1−β

1 + z
=

∮
γ2

dz

z

z1−β

1 + z
= 2πi(−1)−β = 2πie−πiβ,(3.10)

where, as depicted in Figure 1, the contour γ1 consists of two line segments, an
arc of the circle with smaller radius δ ∈ (0,1) and an arc of the circle with larger
radius R ∈ (1,∞), and the contour γ2 is the circle centered at −1 with radius
smaller than 1. On the other hand, by taking δ → 0 and R → ∞, we obtain

lim
R→∞
δ→0

∮
γ1

dz

z

z1−β

1 + z
= (1 − e−2πiβ)

∫ ∞
0

dz

z

z1−β

1 + z
.

Therefore, ∫ ∞
0

dz

z

z1−β

1 + z
= 2πie−πiβ

1 − e−2πiβ
= π

sin(βπ)
,

which implies that∫ μ(1−ε/r)/(α∧2)

0

du

u1+r


̄�uĴ (0)

1 − Ĵ (�u)
= π

(α ∧ 2) sin(rπ/(α ∧ 2))
μ−r/(α∧2)

+ O
(
μ−(r−ε)/(α∧2)).
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FIG. 1. The contours γ1 and γ2 in the complex plane.

Finally, by substituting (3.9) back into (3.1) and using (3.2) and (3.8), we con-
clude that there is an ε′ ∈ (0,1) such that

∞∑
t=0

mt
∑

x∈Zd

|x1|rϕt (x) = πK−1
r

(α ∧ 2) sin(rπ/(α ∧ 2))

CI(CIIvα)r/(α∧2)

(1 − m/mc)1+r/(α∧2)

(3.11)

+ O

((
1 − m

mc

)−1−r/(α∧2)+ε′)
.

However, since (see Appendix A.2)

πK−1
r = 2�(r + 1) sin

rπ

2
,(3.12)

this completes the proof of Theorem 1.1 for 0 < r < α ∧ 2 with α �= 2.

REMARK. Although the proportionality constant (2 sin rπ
α∨2)/((α ∧ 2) sin rπ

α
)

in (1.8) looks slightly different from the constant (2 sin rπ
2 )/((α ∧ 2) sin rπ

α∧2) de-
rived from (3.11) and (3.12), they are equal when 0 < r < α ∧ 2. The reason why
we have adopted the former in the main theorem is due to its applicability to larger
values of r < α, which the latter lacks (e.g., take r = 3 < α).

3.1.2. Proof for α = 2. The proof for α = 2 is slightly more involved than the
above proof for α �= 2, due to the log corrections in (3.6). By (3.4) and (3.6) for
α = 2, we have that, for small U ,∫ U

0

du

u1+r


̄�uĴ (0)

1 − Ĵ (�u)
=

∫ U

0

du

u

(
u2−r log 1/u

μ + u2 log 1/u
+ O(u2−r )

μ + u2 log 1/u

)

=
∫ U

0

du

u

u2−r log 1/u

μ + u2 log 1/u
+ O(U2−r )

μ
,
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where we have obtained the error term by simply ignoring u2 log 1
u

> 0 in the
denominator. Let U = √

μ, which is small as m ↑ mc, as required, due to Proposi-
tion 3.1. By the change of variables u2 log 1

u
= μz, we obtain

∫ √
μ

0

du

u1+r


̄�uĴ (0)

1 − Ĵ (�u)
=

∫ √
μ

0

du

u

u2−r log 1/u

μ + u2 log 1/u
+ O(μ−r/2)

= μ−r/2

2

∫ log 1/
√

μ

0

dz

z

z1−r/2(log 1/u(z))r/2

1 + z
+ O(μ−r/2).

Note that, by taking the logarithm of u2 log 1/u = μz and using the monotonicity
of (log log 1/u)/ log 1/u in 0 < u <

√
μ � 1, we have

log
1

u(z)
=

(
1 + O

(
log log 1/

√
μ

log 1/μ

))
log

1√
μz

.

Therefore,∫ √
μ

0

du

u1+r


̄�uĴ (0)

1 − Ĵ (�u)

= μ−r/2

2

(
1 + O

(
log log 1/

√
μ

log 1/μ

))∫ log 1/
√

μ

0

dz

z

z1−r/2(log 1/
√

μz)r/2

1 + z

+ O(μ−r/2).

Suppose that log 1√
μ

� 1. Then, by the Cauchy integral formula (see Figure 1),

∮
γ1

dz

z

z1−r/2(log 1/
√

μz)r/2

1 + z
=

∮
γ2

dz

z

z1−r/2(log 1/
√

μz)r/2

1 + z

= 2πie−πir/2
(

log
1√
μ

− πi

2

)r/2

= 2πie−πir/2
(

log
1√
μ

)r/2

+ O(1),

where, as in (3.10), the contour γ2 is the circle at −1 with radius smaller than 1,
while the contour γ1 contains an arc of the circle with radius δ ∈ (0,1) and an
arc of the circle with radius R ≡ log 1√

μ
. On the other hand, by taking δ → 0, we

obtain

lim
δ→0

∮
γ1

dz

z

z1−r/2(log 1/
√

μz)r/2

1 + z

= (1 − e−πir )

∫ log 1/
√

μ

0

dz

z

z1−r/2(log 1/
√

μz)r/2

1 + z
+ O(1),
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where the error term is independent of μ. Therefore,∫ log 1/
√

μ

0

dz

z

z1−r/2(log 1/
√

μz)r/2

1 + z
= 2πie−πir/2

1 − e−πir

(
log

1√
μ

)r/2

+ O(1)

= π

sin (rπ/2)

(
log

1√
μ

)r/2

+ O(1),

which implies that∫ √
μ

0

du

u1+r


̄�uĴ (0)

1 − Ĵ (�u)
= π

2 sin(rπ/2)
μ−r/2

(
log

1√
μ

)r/2

+ O(μ−r/2),(3.13)

where we have used

O

(
log log 1/

√
μ

log 1/μ

)(
log

1√
μ

)r/2

= o(1) [∵ r < 2].

Finally, by substituting (3.13) back into (3.1) and using (3.3) with U = √
μ, we

obtain
∞∑
t=0

mt
∑

x∈Zd

|x1|rϕt (x) = (
ϕ̂(0) + O(1)

) πK−1
r

2 sin(rπ/2)
μ−r/2

(
log

1√
μ

)r/2

+ ϕ̂(0)O(μ−r/2).

Combining this with (3.2), (3.8) and (3.12) yields (1.8) for α = 2. This completes
the proof of Theorem 1.1 for 0 < r < α = 2.

3.2. Proof of Theorem 1.1 for r = 2j < α [j ∈ N]. In this subsection, we
prove Theorem 1.1 for positive even integers r = 2j < α. First, we recall (1.14)
for r = 2j :

∞∑
t=0

mt
∑

x∈Zd

x
2j
1 ϕt (x) = (−1)j∇2j

1 ϕ̂(0).

Differentiating (1.18) and using the Z
d -symmetry of the models [so that ∇n

1 Ĵ (0)

and ∇n
1 ϕ̂(0) are both zero when n is odd], we have

∇2j
1 ϕ̂(0) = ∇2j

1 Î (0) + Ĵ (0)∇2j
1 ϕ̂(0) +

j∑
l=1

(
2j

2l

)
∇2l

1 Ĵ (0)∇2(j−l)
1 ϕ̂(0).

Solving this equation for ∇2j
1 ϕ̂(0) and using (2.1) for k = 0, we obtain

∇2j
1 ϕ̂(0) = ϕ̂(0)

Î (0)

(
∇2j

1 Î (0) +
j∑

l=1

(
2j

2l

)
∇2l

1 Ĵ (0)∇2(j−l)
1 ϕ̂(0)

)
.(3.14)

To identify the dominant term of the right-hand side, we use the following
proposition.
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PROPOSITION 3.2. Let α > 2 and 〈α〉 = max{j ∈ N : j < α} (note that 〈α〉 =
α − 1 if α ≥ 3 is an integer). Under the same conditions as in Theorem 1.1,

∞∑
t=0

mt
∑

x∈Zd

|x1|ν |It (x)|
∞∑
t=0

mt
∑

x∈Zd

|x1|ν |Jt (x)|

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

≤
⎧⎨
⎩

O(1), 0 ≤ ν ≤ 2,

O

((
1 − m

mc

)1−ν/2+ε)
, 2 < ν < α

(3.15)

for some ε > 0. Moreover,

|∇n
1 ϕ̂(k,meiθ )|

(3.16)

≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

O

((
1 − m

mc
+ |θ | + |k|2

)−1−n/2)
, n = 0,1,2,

O((1 − m/mc)
1−n/2)

(1 − m/mc + |θ | + |k|2)2 , n = 3, . . . , 〈α〉,

where the O((1 − m
mc

)1−n/2) term is uniform in (k, θ) ∈ [−π,π ]d+1.

We will use this proposition again in the next subsection to prove Theorem 1.1
for the remaining case: r = 2j + q , where j ∈ N and q ∈ (0,2). The proof of
Proposition 3.2 is deferred to Section 4. Note that (3.15) is trivial for random walk.

Now we resume the proof of Theorem 1.1 for r = 2j . Notice that

|∇2l
1 Ĵ (0)| ≤

∞∑
t=0

mt
∑

x∈Zd

|x1|2l|Jt (x)|(3.17)

and that a similar bound holds for I . By (3.14)–(3.16), we have the recursion

∇2j
1 ϕ̂(0) = ϕ̂(0)

Î (0)

(
∇2j

1 Î (0) +
(

2j

2

)
∇2

1 Ĵ (0)∇2(j−1)
1 ϕ̂(0)

+
j∑

l=2

(
2j

2l

)
∇2l

1 Ĵ (0)∇2(j−l)
1 ϕ̂(0)

)

=
(

2j

2

) ∇2
1 Ĵ (0)

Î (0)
ϕ̂(0)∇2(j−1)

1 ϕ̂(0) + O

((
1 − m

mc

)−1−j+ε)
,

where the first term is O((1 − m
mc

)−1−j ), which is dominant as m ↑ mc. Repeated
use of this recursion then yields

∇2j
1 ϕ̂(0) =

(
2j

2

)(
2(j − 1)

2

)(∇2
1 Ĵ (0)

Î (0)
ϕ̂(0)

)2

∇2(j−2)
1 ϕ̂(0)

+ O

((
1 − m

mc

)−1−j+ε)
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...

=
j∏

l=2

(
2l

2

)(∇2
1 Ĵ (0)

Î (0)
ϕ̂(0)

)j−1

∇2
1 ϕ̂(0) + O

((
1 − m

mc

)−1−j+ε)

= (2j)!
2j

(∇2
1 Ĵ (0)

Î (0)

)j

ϕ̂(0)j+1 + O

((
1 − m

mc

)−1−j+ε)
.

However, by comparing (1.11) and (1.13), and using (3.7), we have

∇2
1 Ĵ (0) = −2vα lim

k→0


̄kĴ (0)


̄kD̂(0)
= −2vαM

= −2vαMc + O

((
1 − m

mc

)ε)
.

Recall that Î (0) = Îc(0) + O(1 − m
mc

) [cf. the numerator in (3.2)]. Therefore,

∇2
1 Ĵ (0)

Î (0)
= −2vα

Mc

Îc(0)
+ O

((
1 − m

mc

)ε)
(3.18)

= −2vα

CII

CI
+ O

((
1 − m

mc

)ε)
[∵ (1.21) and (2.13)],

hence

∇2j
1 ϕ̂(0) = (2j)!

2j

(
−2vα

CII

CI

)j( CI

1 − m/mc

)j+1

+ O

((
1 − m

mc

)−1−j+ε)

= �(2j + 1)
CI(−CIIvα)j

(1 − m/mc)j+1 + O

((
1 − m

mc

)−1−j+ε)
.

This completes the proof of Theorem 1.1 for positive even integers r = 2j < α.

3.3. Proof of Theorem 1.1 for r = 2j + q < α [j ∈ N, q ∈ (0,2)]. In this
subsection, we prove Theorem 1.1 for the other values of r < α: r = 2j + q with
j ∈ N and q ∈ (0,2). First, we recall (1.14):

∞∑
t=0

mt
∑

x∈Zd

|x1|rϕt (x) = (−1)j

Kq

∫ ∞
0

du

u1+q

̄�u∇2j

1 ϕ̂(0),(3.19)

where, by (1.18),


̄�u∇2j
1 ϕ̂(0) = ∇2j

1 ϕ̂(0) − ∇2j
1 ϕ̂(�u)

= ∇2j
1 Î (0) − ∇2j

1 Î (�u) +
2j∑

n=0

(
2j

n

)(∇n
1 Ĵ (0)∇2j−n

1 ϕ̂(0)

− ∇n
1 Ĵ (�u)∇2j−n

1 ϕ̂(�u)
)
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= 
̄�u∇2j
1 Î (0) +

2j∑
n=0

(
2j

n

)(∇n
1 Ĵ (0) 
̄�u∇2j−n

1 ϕ̂(0)

+ ∇2j−n
1 ϕ̂(�u)
̄�u∇n

1 Ĵ (0)
)
.

Solving this equation for 
̄�u∇2j
1 ϕ̂(0) and using (2.1) for k = 0 and ∇n

1 Ĵ (0) = 0
for odd n, we obtain


̄�u∇2j
1 ϕ̂(0) = ϕ̂(0)

Î (0)

(

̄�u∇2j

1 Î (0) +
j∑

l=1

(
2j

2l

)
∇2l

1 Ĵ (0)
̄�u∇2(j−l)
1 ϕ̂(0)

+
2j∑

n=0

(
2j

n

)
∇2j−n

1 ϕ̂(�u)
̄�u∇n
1 Ĵ (0)

)
.

Substituting this back into (3.19) yields

∞∑
t=0

mt
∑

x∈Zd

|x1|rϕt (x)

(3.20)

= ϕ̂(0)

Î (0)

(
H(1) +

j∑
l=1

(
2j

2l

)
H

(2)
2l +

2j∑
n=0

(
2j

n

)
H(3)

n

)
,

where

H(1) = (−1)j

Kq

∫ ∞
0

du

u1+q

̄�u∇2j

1 Î (0) ≡
∞∑
t=0

mt
∑

x∈Zd

|x1|r It (x),(3.21)

H
(2)
2l = (−1)j

Kq

∫ ∞
0

du

u1+q
∇2l

1 Ĵ (0)
̄�u∇2(j−l)
1 ϕ̂(0)

(3.22)

≡ (−1)l∇2l
1 Ĵ (0)

∞∑
t=0

mt
∑

x∈Zd

|x1|r−2lϕt (x)

and

H(3)
n = (−1)j

Kq

∫ ∞
0

du

u1+q
∇2j−n

1 ϕ̂(�u) 
̄�u∇n
1 Ĵ (0)

≡
∞∑

s,t=0

mt+s
∑

x,y∈Zd

x
2j−n
1 ϕt (x)yn

1 Js(y)(3.23)

× 1

Kq

∫ ∞
0

du

u1+q
×
{

sin(ux1) sin(uy1), odd n,
cos(ux1)

(
1 − cos(uy1)

)
, even n.
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Next, we isolate error terms from (3.20) using Proposition 3.2. First, by (3.15),
we have

∣∣H(1)
∣∣ ≤ ∞∑

t=0

mt
∑

x∈Zd

|x1|r |It (x)| ≤ O

((
1 − m

mc

)−r/2+1+ε)
,(3.24)

which gives rise to an error term.
Next, for H

(2)
2l , where r − 2l = 2j + q − 2l < 2j + 2 − 2l < α, we first apply

Jensen’s inequality and then (3.16) to obtain

∞∑
t=0

mt
∑

x∈Zd

|x1|r−2lϕt (x)

≤
(

1

ϕ̂(0)

∞∑
t=0

mt
∑

x∈Zd

|x1|2j+2−2lϕt (x)

)(r−2l)/(2j+2−2l)

ϕ̂(0)

=
( |∇2j+2−2l

1 ϕ̂(0)|
ϕ̂(0)

)(r−2l)/(2j+2−2l)

ϕ̂(0)(3.25)

≤ O

((
1 − m

mc

)−(2j+2−2l)/2)(r−2l)/(2j+2−2l)

O

((
1 − m

mc

)−1)

= O

((
1 − m

mc

)−1−(r−2l)/2)
.

Combining this with (3.15) and (3.17) yields

∣∣H(2)
2l

∣∣ ≤
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

O

((
1 − m

mc

)−r/2)
, l = 1,

O

((
1 − m

mc

)−r/2+ε)
, l = 2,3, . . . , j .

(3.26)

Finally, for H
(3)
n with n ≥ 2 (H(3)

0 and H
(3)
1 will be investigated in detail later),

we use ∫ ∞
0

du

u1+q
| sin(ux1) sin(uy1)| ≤

∫ ∞
0

du

u1+q
(|u2x1y1| ∧ 1)

(3.27)
= O(|x1y1|q/2),∫ ∞

0

du

u1+q

∣∣cos(ux1)
(
1 − cos(uy1)

)∣∣ ≤ ∫ ∞
0

du

u1+q

(
u2y2

1

2
∧ 2

)
(3.28)

= O(|y1|q),
which are due to the naive bounds | sinw| ≤ |w|∧1, | cosw| ≤ 1 and |1−cosw| ≤
w2

2 ∧ 2. By (3.27) and (3.28) and using Jensen’s inequality for odd n, as in (3.25),
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we obtain

∣∣H(3)
n

∣∣ ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( |∇2j−n+1
1 ϕ̂(0)|

ϕ̂(0)

)(2j−n+q/2)/(2j−n+1)

ϕ̂(0)

×
∞∑

s=0

ms
∑

y∈Zd

|y1|n+q/2|Js(y)|, odd n,

|∇2j−n
1 ϕ̂(0)|

∞∑
s=0

ms
∑

y∈Zd

|y1|n+q |Js(y)|, even n.

Then, by Proposition 3.2 and using 2j + q = r , we obtain

∣∣H(3)
n

∣∣ ≤ O

((
1 − m

mc

)−r/2+ε)
[n = 2,3, . . . ,2j ].(3.29)

Now, by (3.20), (3.24), (3.26) and (3.29), we arrive at
∞∑
t=0

mt
∑

x∈Zd

|x1|rϕt (x) = ϕ̂(0)

Î (0)

((
2j

2

)
H

(2)
2 + H

(3)
0 +

(
2j

1

)
H

(3)
1

)
(3.30)

+ O

((
1 − m

mc

)−1−r/2+ε)
.

Finally, we reorganize the main term of (3.30) and complete the proof of Theo-
rem 1.1. First, we note that

sin(ux1) sin(uy1) = cos(u(x1 − y1)) − cos(u(x1 + y1))

2

= 1 − cos(u(x1 + y1)) − (1 − cos(u(x1 − y1)))

2
,

cos(ux1)
(
1 − cos(uy1)

) = cos(ux1) − cos(u(x1 + y1)) + cos(u(x1 − y1))

2

= (1 − cos(u(x1 + y1))) + (1 − cos(u(x1 − y1)))

2

− (
1 − cos(ux1)

)
.

Then, by (1.12), we have the identities

1

Kq

∫ ∞
0

du

u1+q
sin(ux1) sin(uy1) = |x1 + y1|q − |x1 − y1|q

2
,

1

Kq

∫ ∞
0

du

u1+q
cos(ux1)

(
1 − cos(uy1)

) = |x1 + y1|q + |x1 − y1|q − 2|x1|q
2

.

By these identities and the fact that r = 2j + q , we obtain(
2j

2

)
H

(2)
2 + H

(3)
0 +

(
2j

1

)
H

(3)
1 =

∞∑
s,t=0

mt+s
∑

x,y∈Zd

x
2j−2
1 ϕt(x)Js(y)H(x1, y1),
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where

H(x1, y1) =
(

2j

2

)
|x1|qy2

1 + x2
1
|x1 + y1|q + |x1 − y1|q − 2|x1|q

2

+
(

2j

1

)
x1y1

|x1 + y1|q − |x1 − y1|q
2

.

In fact, due to the symmetry H(x1, y1) = H(x1,−y1) = H(−x1, y1) = H(−x1,

−y1) for any x1, y1 ∈ Z, the above identity is equivalent to(
2j

2

)
H

(2)
2 + H

(3)
0 +

(
2j

1

)
H

(3)
1

= 4
∞∑

s,t=0

mt+s
∑

x,y∈Zd

(x1,y1>0)

x
2j−2
1 ϕt(x)Js(y)H(x1, y1).

Using the Taylor expansion of |x1 ± y1|q ≡ x
q
1 (1 ± y1

x1
)q if x1 > y1 > 0 and the

expansion of |x1 ± y1|q ≡ y
q
1 (1 ± x1

y1
)q if y1 > x1 > 0, we have

H(x1, y1)
(3.31)

=

⎧⎪⎪⎨
⎪⎪⎩
((

2j

2

)
+
(

q

2

)
+
(

2j

1

)
q

)
x

q
1 y2

1 + O(x
q−1
1 y3

1),

x1 > y1 > 0,

O(y
2+q
1 ), y1 ≥ x1 > 0.

Notice that(
2j

2

)
+
(

q

2

)
+
(

2j

1

)
q = j (2j − 1) + q

2
(q − 1) + 2jq

=
(
j + q

2

)
(2j + q) − j − q

2
= r

2
r − r

2
=

(
r

2

)
.

We also notice that, as long as q ∈ (0,1], we have

x
q−1
1 y3

1 =
(

y1

x1

)1−q

y
2+q
1 ≤ y

2+q
1 [x1 > y1 > 0].

Therefore, by Proposition 3.2, we obtain that, for q ≡ r − 2j ∈ (0,1],(
2j

2

)
H

(2)
2 + H

(3)
0 +

(
2j

1

)
H

(3)
1

= 4
(

r

2

) ∞∑
s,t=0

mt+s
∑

x,y∈Zd

(x1,y1>0)

x
2j+q−2
1 ϕt(x)y2

1Js(y)

+
∞∑

s,t=0

mt+s
∑

x,y∈Zd

x
2j−2
1 ϕt(x)O(|y1|2+q)Js(y)(3.32)
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=
(

r

2

)
(−∇2

1 Ĵ (0))

∞∑
t=0

mt
∑

x∈Zd

|x1|r−2ϕt(x)

+ |∇2j−2
1 ϕ̂(0)|

∞∑
s=0

ms
∑

y∈Zd

O(|y1|2+q)Js(y)

︸ ︷︷ ︸
O((1−m/mc)−r/2+ε)

.

For q ∈ (1,2), we have to deal with the contribution from O(x
q−1
1 y3

1) in (3.31).
However, by Jensen’s inequality and Proposition 3.2, we have

∞∑
s,t=0

mt+s
∑

x,y∈Zd

(x1>y1>0)

x
2j+q−3
1 ϕt (x)y3

1 |Js(y)|

≤
( |∇2j−1

1 ϕ̂(0)|
ϕ̂(0)

)(2j+q−3)/(2j−1)

ϕ̂(0)

∞∑
s=0

ms
∑

y∈Zd

|y1|3|Js(y)|

≤ O

((
1 − m

mc

)−r/2+ε)

and thus (3.32) is valid for any q ∈ (0,2).
Now, by substituting (3.32) back into (3.30), we obtain the recursion

∞∑
t=0

mt
∑

x∈Zd

|x1|rϕt (x) =
(

r

2

) −∇2
1 Ĵ (0)

Î (0)
ϕ̂(0)

∞∑
t=0

mt
∑

x∈Zd

|x1|r−2ϕt(x)

+ O

((
1 − m

mc

)−1−r/2+ε)
.

Repeatedly using this recursion j times and recalling r − 2j = q , we obtain

∞∑
t=0

mt
∑

x∈Zd

|x1|rϕt (x) =
j−1∏
i=0

(
r − 2i

2

)(−∇2
1 Ĵ (0)

Î (0)
ϕ̂(0)

)j

×
∞∑
t=0

mt
∑

x∈Zd

|x1|r−2jϕt (x) + O

((
1 − m

mc

)−1−r/2+ε)

= �(r + 1)

2j�(r − 2j + 1)

(−∇2
1 Ĵ (0)

Î (0)
ϕ̂(0)

)j

×
∞∑
t=0

mt
∑

x∈Zd

|x1|qϕt (x) + O

((
1 − m

mc

)−1−r/2+ε)
.
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Notice that, by (3.2) and (3.18),

−∇2
1 Ĵ (0)

Î (0)
ϕ̂(0) = 2CIIvα

1 − m/mc
+ O

((
1 − m

mc

)−1+ε)
and that, by (3.11) for α > 2 and (3.12),
∞∑
t=0

mt
∑

x∈Zd

|x1|qϕt (x) = �(q + 1)
CI(CIIvα)q/2

(1 − m/mc)1+q/2 + O

((
1 − m

mc

)−1−q/2+ε)
.

Therefore, we arrive at
∞∑
t=0

mt
∑

x∈Zd

|x1|rϕt (x)

= �(r + 1)

2j�(q + 1)

(
2CIIvα

1 − m/mc

)j

�(q + 1)
CI(CIIvα)q/2

(1 − m/mc)1+q/2

+ O

((
1 − m

mc

)−1−r/2+ε)

= �(r + 1)
CI(CIIvα)r/2

(1 − m/mc)1+r/2 + O

((
1 − m

mc

)−1−r/2+ε)
.

This completes the proof of Theorem 1.1.

3.4. Proof of Theorem 1.2. It is very easy to identify the main term for α �= 2.
First, by the binomial expansion of the main term in (1.8),(

1 − m

mc

)−1−r/(α∧2)

=
∞∑
t=0

(−r/(α ∧ 2) − 1)(−r/(α ∧ 2) − 2) · · · (−r/(α ∧ 2) − t)

t !

×
(
− m

mc

)t

(3.33)

=
∞∑
t=0

�(r/(α ∧ 2) + t + 1)

t !�(r/(α ∧ 2) + 1)

(
m

mc

)t

= 1

�(r/(α ∧ 2) + 1)

∞∑
t=0

(
m

mc

)t 1

t !
∫ ∞

0
xt+r/(α∧2)e−x dx.

Then, by the steepest descent method, we obtain that, for every β ∈ R,∫ ∞
0

xt+βe−x dx ∼
√

2π(t + β)

(
t + β

e

)t+β

as t → ∞.
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Using this for β = 0, r
α∧2 , we conclude that, as t → ∞,

1

t !
∫ ∞

0
xt+r/(α∧2)e−x dx ∼

(
t + r/(α ∧ 2)

t

)t+1/2( t + r/(α ∧ 2)

e

)r/(α∧2)

∼ t r/(α∧2),

which implies that the large-t asymptotic expression for the coefficient of mt

in (3.33) is m−t
c t r/(α∧2)/�( r

α∧2 +1), hence the expression for the constant in (1.9)
for α �= 2.

There are many other ways to derive the above asymptotic expression. One of
them is to notice that xte−x/t ! in (3.33) is the probability density for the sum
of independent mean-one exponential random variables. Then, we use Jensen’s
inequality and apply the law of large numbers if r

α∧2 ≤ 1, or exactly compute
integer-power moments for the exponential random variables if r

α∧2 > 1. We omit
the details.

To identify the main term for α = 2 in (1.9), as well as to obtain the error
estimates for all α > 0, we simply use [4], Theorems 3A and 4. For convenience,
we summarize a slightly simplified version of these results as follows.

THEOREM 3.3 ([4], Theorems 3A and 4). (i) Let

f (z) = (1 − z)−1−β

(
log

1

1 − z

)γ

,

where β /∈ −N ≡ Z \ Z+ and γ /∈ Z+ are real or complex numbers. Then, the
coefficient ft of f (z) = ∑

t ft z
t satisfies

ft ∼ tβ(log t)γ

�(1 + β)
as t → ∞.

(ii) Let f (z) be analytic in |z| < 1 and

f (z) = O(|1 − z|−1−β) as z → 1

for some real number β > 0. Then, the coefficient ft of f (z) = ∑
t ft z

t satisfies

ft = O(tβ) as t → ∞.

The main term for α = 2 in (1.9) is obtained by setting β = γ = r
2 in Theo-

rem 3.3(i). For the error estimates, we use Theorem 3.3(ii) with β = r
2 for α = 2

and β = r
α∧2 − ε > 0 for α �= 2. This completes the proof of Theorem 1.2.

4. Proof of the key propositions. In this section, we prove Propositions 3.1
and 3.2, these being key propositions used in the previous section to prove the
main theorem. In Section 4.1, we first prove Proposition 3.2. Then, in Section 4.2,
we use (3.16) in Proposition 3.2 to show Proposition 3.1 for α > 2.
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4.1. Proof of Proposition 3.2. Below, we prove Proposition 3.2 by using the
results already obtained in [2, 3, 5, 6] and alternately applying the following two
lemmas.

LEMMA 4.1. Let α > 2, l ∈ {1,2, . . . , 〈α〉} and suppose that (3.15) holds for
any ν ∈ {0,1, . . . , l ∨ 2} and (3.16) holds for any n ∈ {0, . . . , l − 1}. Then, (3.16)
holds for n = l.

LEMMA 4.2. Let α > 2 and suppose that (3.16) holds for n = 2l, where l ∈
{1, . . . , 〈α

2 〉} (note that α−2 ≤ 2〈α
2 〉 < α). Then, (3.15) holds for any ν ∈ (n,n+2]

if n + 2 < α, or for any ν ∈ (n,α) if α ≤ n + 2.

We will prove these lemmas after completing the proof of Proposition 3.2. For
random walk, (3.15) always holds as mentioned earlier and we therefore only need
Lemma 4.1.

We now begin by proving Proposition 3.2. First, we note that (3.15) for ν ∈
[0,2] and (3.16) for n = 0 have been proven in the current setting [2, 3, 5, 6];
the result in [6] for self-avoiding walk is only valid at θ = 0. However, it is not
hard to extend the result to nonzero θ by splitting the denominator in (2.1) into
1− Ĵ (k,m) and Ĵ (k,m)− Ĵ (k,meiθ ), and estimating the latter as mt − (meiθ )t =
mt(1 − eiθ )

∑t−1
s=0 eiθs [which equals O(θ)tmt for |θ | � 1]. We omit the details.

Then, by Lemma 4.1 with l = 1, we obtain (3.16) for n = 1. With this conclu-
sion and again using Lemma 4.1, but now with l = 2, we obtain (3.16) for n = 2.
With this conclusion and using Lemma 4.2, we further obtain (3.15) for ν ∈ (2,4]
or ν ∈ (2, α), depending on whether α > 4 or α ≤ 4. We can repeat this, using
Lemmas 4.1 and 4.2 alternately, until n reaches 〈α〉. Let l̃ = 〈α

2 〉. We see that

(3.15)ν∈[0,2]
(3.16)n=0

}
Lemma 4.1�⇒ (3.16)n=1,2

Lemma 4.2�⇒ (3.15)ν∈(2,4]
Lemma 4.1�⇒ · · ·

Lemma 4.1�⇒ (3.16)
n=2l̃−1,2l̃

Lemma 4.2�⇒ (3.15)
ν∈(2l̃,α)

(Lemma 4.1�⇒
if α>2l̃+1

(3.16)
n=2l̃+1

)
.

This completes the proof of Proposition 3.2.

PROOF OF LEMMA 4.1. First, by using (3.15) for ν = 2 and (3.16) for n = 0,
we prove |∇1Î (k)| ≤ O(|ϕ̂(k)|−1/2); the proof of |∇1Ĵ (k)| ≤ O(|ϕ̂(k)|−1/2) is
almost identical and thus we omit it. By the Z

d -symmetry of the models and using
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| sin(k1x1)| ≤ |k1x1| and (3.15) for ν = 2, we obtain

|∇1Î (k)| =
∣∣∣∣∣

∞∑
t=0

mt
∑

x∈Zd

x1 sin(k1x1)It (x)ei(k2x2+···+kdxd)

∣∣∣∣∣
≤ |k1|

∞∑
t=0

mt
∑

x∈Zd

x2
1 |It (x)| ≤ O(|k1|).

However, by (3.16) for n = 0, we have |ϕ̂(k)| ≤ O(|k|−2), which implies that
|k1| ≤ |k| ≤ O(|ϕ̂(k)|−1/2), as required.

We now use this bound to complete the proof of Lemma 4.1. First, by differ-
entiating (1.18) and solving the resulting equation for ∇ l

1ϕ̂(k), we have that, for
l ∈ N,

∇ l
1ϕ̂(k) = ∇ l

1Î (k) +
l∑

j=0

(
l

j

)
∇j

1 Ĵ (k)∇ l−j
1 ϕ̂(k)

= 1

1 − Ĵ (k)

(
∇ l

1Î (k) +
l∑

j=1

(
l

j

)
∇j

1 Ĵ (k)∇ l−j
1 ϕ̂(k)

)
.

By (2.1), (2.2) and (2.4), we have |1 − Ĵ (k)|−1 = O(|ϕ̂(k)|). By (3.15) for ν ≥ 2
or using |∇1Î (k)| ≤ O(|ϕ̂(k)|−1/2), we obtain∣∣∣∣ ∇ l

1Î (k)

1 − Ĵ (k)

∣∣∣∣ ≤ O(|ϕ̂(k)|) ×
⎧⎪⎨
⎪⎩

|ϕ̂(k)|−1/2, l = 1,(
1 − m

mc

)1−l/2+ε

, l = 2, . . . , 〈α〉,
which, by (3.16) for n = 0, is smaller than the bound in (3.16) for n = l, yielding
an error term. For j = 1,2, we also use (3.16) for n ≤ l − 1 to obtain∣∣∣∣ ∇j

1 Ĵ (k)

1 − Ĵ (k)
∇ l−j

1 ϕ̂(k)

∣∣∣∣
≤ O(|ϕ̂(k)|j/2)

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1 − m

mc
+ |θ | + |k|2

)−1−(l−j)/2

, l = j, j + 1,

(1 − m/mc)
1−(l−j)/2

(1 − m/mc + |θ | + |k|2)2 , l = j + 2, . . . , 〈α〉,
which, again by (3.16) for n = 0, obeys the required bound in (3.16) for n = l.
Finally, for j ≥ 3 (hence for l ≥ 3),∣∣∣∣ ∇j

1 Ĵ (k)

1 − Ĵ (k)
∇ l−j

1 ϕ̂(k)

∣∣∣∣
≤ O((1 − m/mc)

1−j/2+ε)

1 − m/mc + |θ | + |k|2
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×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1 − m

mc
+ |θ | + |k|2

)−1−(l−j)/2

[l = j, j + 1],
(1 − m/mc)

1−(l−j)/2

(1 − m/mc + |θ | + |k|2)2 [l = j + 2, . . . , 〈α〉]

≤ O((1 − m/mc)
1−l/2+ε)

(1 − m/mc + |θ | + |k|2)2 ,

which is smaller [by the factor (1 − m
mc

)ε] than the bound in (3.16), yielding an
error term. This completes the proof of Lemma 4.1. �

PROOF OF LEMMA 4.2. First, we recall (1.16) and (1.17). Since∑
x |x1|νD(x) < ∞ provided that ν < α, (3.15) always holds for random walk.

Moreover, for oriented percolation, there is a constant Cν < ∞ such that

∞∑
t=0

mt
∑

x∈Zd

|x1|ν |J OP
t (x)| ≤ p

∞∑
t=1

mt
∑

x,y∈Zd

|y1 + x1 − y1|ν |πOP
t−1(y)|D(x − y)

≤ Cνpm

∞∑
t=1

mt−1
∑

y∈Zd

(|y1|ν + 1)|πOP
t−1(y)|,

where we have used the fact that, for any a1, . . . , an ∈ R,∣∣∣∣∣
n∑

j=1

aj

∣∣∣∣∣
ν

≤
(
n max

1≤j≤n
|aj |

)ν = nν max
1≤j≤n

|aj |ν ≤ nν
n∑

j=1

|aj |ν.(4.1)

Since
∑∞

s=0 ms ∑
y∈Zd |πOP

s (y)| = O(1) uniformly in m ≤ mc [2], it suffices to
show that, for self-avoiding walk and oriented percolation, (3.16) for n = 2l, where
l ∈ {1, . . . , 〈α

2 〉} implies that

∞∑
t=0

mt
∑

x∈Zd

|x1|2l+q |πt(x)| ≤ O

((
1 − m

mc

)1−(2l+q)/2+ε)
(4.2)

for any q ∈ (0,2] if 2l + 2 < α, or for any q ∈ (0, α − 2l) if α ≤ 2l + 2.
As we mentioned earlier, πt(x) is an alternating sum of the lace expansion co-

efficients. More precisely,

πt(x) =
∞∑

N=0

(−1)Nπ
(N)
t (x),

where π
(N)
t (x) ≥ 0 is the model-dependent N th expansion coefficient (see, e.g.,

[2, 12] for the precise definitions of the expansion coefficients). Due to the subad-
ditivity argument for self-avoiding walk and by the BK inequality [1] for percola-
tion, it is known that the expansion coefficients satisfy the following diagrammatic
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bounds, in which each line corresponds to a 2-point function. For self-avoiding
walk,

π
(0)
t (x) ≡ 0, π

(1)
t (x) ≤ ,

(4.3)

π
(2)
t (x) ≤ , π

(3)
t (x) ≤ ,

where the bounding diagram for π
(1)
t (x) is the t-step self-avoiding loop at x = o,

hence proportional to δx,o, and the diagram for π
(2)
t (x) is the product of three 2-

point functions ϕSAW
s (x)ϕSAW

s′ (x)ϕSAW
s′′ (x) summed over all possible combinations

of s, s′, s′′ ∈ N satisfying s + s′ + s′′ = t , and so on. The unlabeled vertices in the
diagrams for π

(3)
t (x) and the higher order expansion coefficients are summed over

Z
d . For oriented percolation,

π
(0)
t (x) ≤ , π

(1)
t (x) ≤ , π

(2)
t (x) ≤ + ,(4.4)

where the bounding diagram for π
(0)
t (x) is ϕOP

t (x)2 and that for π
(1)
t (x) is the

product of five 2-point functions concatenated in the depicted way, and so on. The
upward direction of the diagrams is the time-increasing direction and the unlabeled
vertices are summed over space–time Z

d × Z+. For more details, we refer to [10].
First, we prove (4.2) for self-avoiding walk. Since π

(0)
t (x) ≡ 0 and π

(1)
t (x) ∝

δx,o, it suffices to investigate the contributions from π
(N)
t (x) for N ≥ 2. For

π
(2)
t (x), since

π
(2)
t (x) ≤ ∑

s,s′,s′′∈N

(s+s′+s′′=t)

ϕSAW
s (x)ϕSAW

s′ (x)ϕSAW
s′′ (x),(4.5)

we obtain

∞∑
t=0

mt
∑

x∈Zd

|x1|2l+qπ
(2)
t (x) ≤

( ∑
x∈Zd

|x1|q
∑

s,s′∈N

ms+s′
ϕSAW

s (x)ϕSAW
s′ (x)

)

×
(

sup
x∈Zd

|x1|2l
∑
s′′∈N

ms′′
ϕSAW

s′′ (x)

)

≤ B(q)W(2l),
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where

B(ν) = sup
y∈Zd

∑
x∈Zd

|x1|ν
∑
t∈N

mtϕSAW
t (x)

∞∑
s=0

msϕSAW
s (y − x),

W(ν) = sup
x∈Zd

|x1|ν
∑
t∈N

mtϕSAW
t (x).

Similarly to the above and the derivation of [5], formula (2.42), by using (4.1) and
diagrammatic bounds of the form (4.3), we can show that

∞∑
t=0

mt
∑

x∈Zd

|x1|2l+qπ
(N)
t (x)

(4.6)
≤ N2l+q+2(B(0))N−2

B(q)W(2l) [N ≥ 2].
It is immediate from the definition (1.4) that ϕSAW

t (x) ≤ δx,oδt,0 + (D ∗ϕSAW
t−1 )(x).

By this, we have

B(0) ≤ sup
y∈Zd

∑
x∈Zd

∑
t∈N

mtϕSAW
t (x)

(
δx,y + ∑

s∈N

ms(D ∗ ϕSAW
s−1 )(y − x)

)

≤ W(0) + sup
y∈Zd

∑
x∈Zd

∑
t∈N

mt(D ∗ ϕSAW
t−1 )(x)

∑
s∈N

ms(D ∗ ϕSAW
s−1 )(y − x)(4.7)

≤ W(0) + m2
∫
[−π,π ]d

ddk

(2π)d
D̂(k)2|ϕ̂SAW(k,m)|2

and

W(0) ≤ sup
x∈Zd

∑
t∈N

mt(D ∗ ϕSAW
t−1 )(x)

≤ m‖D‖∞ + sup
x∈Zd

∞∑
t=2

mt(D ∗ D ∗ ϕSAW
t−2 )(x)(4.8)

≤ m‖D‖∞ + m2
∫
[−π,π ]d

ddk

(2π)d
D̂(k)2|ϕ̂SAW(k,m)|.

By (3.16) for n = 0 and ‖D‖∞ = O(L−d), we can show that B(0) = O(L−d)

uniformly in m ≤ mc if d > 4, hence the summability of (4.6) over N ≥ 2 when
L � 1. Moreover, by (3.16) for n = 2l,

W(2l) ≤
∫
[−π,π ]d

ddk

(2π)d
|∇2l

1 ϕ̂SAW(k,m)|

≤ O

((
1 − m

mc

)1−l)∫
[−π,π ]d

ddk

|k|4(4.9)

d>4= O

((
1 − m

mc

)1−l)
.
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Therefore,
∞∑

N=2

∞∑
t=0

mt
∑

x∈Zd

|x1|2l+qπ
(N)
t (x) ≤ O

((
1 − m

mc

)1−l)
B(q).

To complete the proof of (4.2) for self-avoiding walk, it suffices to show that
there is an ε > 0 such that B(q) = O((1 − m

mc
)−q/2+ε). For q = 2, we use (3.16)

for n = 2 and take an arbitrary ε ∈ (0,1 ∧ d−4
2 ) to obtain

B(2) ≤
∫
[−π,π ]d

ddk

(2π)d
|ϕ̂SAW(k,m)∇2

1 ϕ̂SAW(k,m)|

≤ O

((
1 − m

mc

)−1+ε)∫
[−π,π ]d

ddk

|k|2(2+ε)
≤ O

((
1 − m

mc

)−1+ε)
.

For q ∈ (0,2), we first note that

B(q) ≤ 1

Kq

∫ ∞
0

du

u1+q

∫
[−π,π ]d

ddk

(2π)d
|ϕ̂SAW(k,m)
̄�uϕ̂SAW(k,m)|.(4.10)

It is known that, by [6], Proposition 2.6, with an improvement due to the same
argument as in [3], Proposition 2.1,

|
̄�uϕ̂SAW(k,m)|

≤ ∑
(j,j ′)=(0,±1),(1,−1)

O(1 − D̂(�u))

1 − m/mc + 1 − D̂(k + j �u)

× 1

1 − m/mc + 1 − D̂(k + j ′ �u)

holds in the current setting, where the O(1 − D̂(�u)) term is uniform in k ∈
[−π,π ]d and m ≤ mc. Substituting this, and (3.16) for n = 0, into (4.10), and
using the translation invariance and the Z

d -symmetry of D and the Schwarz in-
equality (see [3], formulas (4.27)–(4.29)), we end up with

B(q) ≤
∫ ∞

0

du

u1+q

∫
[−π,π ]d

ddk

(2π)d

O(1 − D̂(�u))

(1 − m/mc + 1 − D̂(k))2

× 1

1 − m/mc + 1 − D̂(k − �u)

≤
∫ ∞

0
du

1 − D̂(�u)

u1+q

∫
[−π,π ]d

ddk

(2π)d

O((1 − m/mc)
−q/2+ε)

(1 − D̂(k))2−q/2+ε(1 − D̂(k − �u))

for any ε ∈ (0,
q
2 ). However, by following the proof of [3], formula (4.30), we can

show that∫
[−π,π ]d

ddk

(2π)d

1

(1 − D̂(k))2−q/2+ε(1 − D̂(k − �u))
≤ O

(
u(d−6+q−2ε)∧0),
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hence

B(q) ≤ O

((
1 − m

mc

)−q/2+ε)(∫ 1

0

du

u
u(d−4−2ε)∧(2−q) +

∫ ∞
1

du

u1+q

)
(4.11)

= O

((
1 − m

mc

)−q/2+ε)
if ε < d−4

2 . This completes the proof of (4.2) for self-avoiding walk.
For oriented percolation, similarly to the proof of [3], Lemma 3, by using (4.1)

and diagrammatic bounds of the form (4.4), we can show that, for N ≥ 0,
∞∑
t=0

mt
∑

x∈Zd

|x1|2l+qπ
(N)
t (x)

≤ (N + 1)2l+q(T (0))N−2((
N
(
1 + T (0))+ T (0))T (0)V (q)(4.12)

+ N
(
(N − 1)

(
1 + T (0))+ 3T (0))T (q)V (0)),

where

V (ν) = sup
(x,t)∈Zd+1

∑
(y,s)∈Zd+1

|y1|2l(mD ∗ ϕOP
s )(y)ms |y1 − x1|ν

× (D ∗ ϕOP
s−t )(y − x),

T (ν) = sup
(x,t)∈Zd+1

∑
(y,s),(y′,s′)∈Zd+1

(mD ∗ ϕOP
s )(y)ms |y1 − x1|ν

× (D ∗ ϕOP
s′−t )(y

′ − x)

× (
ϕOP

s−s′(y − y′) + ϕOP
s′−s(y

′ − y)
)
.

Notice that

T (0) ≤ 2m

∫
[−π,π ]d

ddk

(2π)d
D̂(k)2

∫ π

−π

dθ

2π
|ϕ̂OP(k,meiθ )||ϕ̂OP(k, eiθ )|2.(4.13)

Using (3.16) for n = 0 and ‖D‖∞ = O(L−d), we can show that T (0) = O(L−d)

uniformly in m ≤ mc if d > 4 and L � 1, hence the summability of (4.12) over
N ≥ 0. Moreover, by (3.16) for n = 0,2l and using |D̂(k)| ≤ 1, we have

V (0) ≤ 22lm

(∫
[−π,π ]d

ddk

(2π)d

∫ π

−π

dθ

2π
|∇2l

1 ϕ̂OP(k,meiθ )||ϕ̂OP(k, eiθ )|

+ ∑
x∈Zd

|x1|2lD(x)

∫
[−π,π ]d

ddk

(2π)d

∫ π

−π

dθ

2π
|ϕ̂OP(k,meiθ )|(4.14)

× |ϕ̂OP(k, eiθ )|
)

d>4= O

((
1 − m

mc

)1−l)
.
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To complete the proof of (4.2), it thus suffices to show that there is an ε > 0 such
that

T (q) = O

((
1 − m

mc

)−q/2+ε)
, V (q) = O

((
1 − m

mc

)1−l−q/2+ε)
.

Here, we only explain the proof of the bound on V (2); the bound on T (2) can
be proven quite similarly and the bounds on T (q) and V (q) for q ∈ (0,2) can be
proven by following a similar line of argument from (4.10) through to (4.11). To
prove the bound on V (2), we first note that

V (2) ≤ 22l+2m

(∫
[−π,π ]d

ddk

(2π)d

∫ π

−π

dθ

2π
|∇2l

1 ϕ̂OP(k,meiθ )||∇2
1 ϕ̂OP(k, eiθ )|

+ σ 2
∫
[−π,π ]d

ddk

(2π)d

∫ π

−π

dθ

2π
|∇2l

1 ϕ̂OP(k,meiθ )||ϕ̂OP(k, eiθ )|

+ ∑
x∈Zd

x2l
1 D(x)

∫
[−π,π ]d

ddk

(2π)d

∫ π

−π

dθ

2π
|ϕ̂OP(k,meiθ )|

(4.15)
× |∇2

1 ϕ̂OP(k, eiθ )|

+ σ 2
∑

x∈Zd

x2l
1 D(x)

∫
[−π,π ]d

ddk

(2π)d

∫ π

−π

dθ

2π
|ϕ̂OP(k,meiθ )|

× |ϕ̂OP(k, eiθ )|
)
.

It is immediate from (3.16) for n = 0,2 that the last two lines are both O(1) for
d > 4. Moreover, by (4.14), the second line is O((1 − m

mc
)1−l) for d > 4. For the

first line, we use the following bounds due to (3.16) for n = 2,2l: for any ε ∈ (0,1),

|∇2l
1 ϕ̂OP(k,meiθ )| ≤ O((1 − m/mc)

−l+ε)

(|θ | + |k|2)1+ε
, |∇2

1 ϕ̂OP(k, eiθ )| ≤ O(|k|−4),

where the O((1 − m
mc

)−l+ε) term is uniform in (k, θ) ∈ [−π,π ]d+1 and the

O(|k|−4) term is uniform in θ ∈ [−π,π ]. We then obtain that

the first line of (4.15)

≤
∫
[−π,π ]d

ddk

|k|4
∫ π

−π

dθ

2π

O((1 − m/mc)
−l+ε)

(|θ | + |k|2)1+ε

≤ O

((
1 − m

mc

)−l+ε)∫
[−π,π ]d

ddk

|k|4+2ε
= O

((
1 − m

mc

)−l+ε)

if ε < d−4
2 . This completes the proof of (4.2) for oriented percolation. This com-

pletes the proof of Lemma 4.2. �
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4.2. Proof of Proposition 3.1. First, we note that (3.7) implies (3.8). To see
this, we first substitute (2.12) and (3.7) into (3.5) and then use (1.21) [see (2.13)]
to obtain

μ = mc ∂mĴmc(0)(1 − m/mc) + O((1 − m/mc)
1+ε)

Mcvα + O((1 − m/mc)ε)

= 1 − m/mc

CIIvα

+ O

((
1 − m

mc

)1+ε)
.

Therefore, to complete the proof of Proposition 3.1, it suffices to show (3.7).
It is easier to prove (3.7) for α ≤ 2. In this case, M in (2.14) is reduced to

M =
{

m, RW/SAW,
π̂OP(0)pm, OP.

Therefore, (3.7) is trivial for random walk and self-avoiding walk. For oriented
percolation, we use (2.5) and (2.10) to obtain

Mc − M = π̂OP
c (0)p(mc − m) + (

π̂OP
c (0) − π̂OP(0)

)
pm

= 1 − m

mc
+ O(L−d)

(
1 − m

mc

)
,

where the O(L−d) term is uniform in m ≤ mc. This implies (3.7).
It remains to prove (3.7) for α > 2. In fact, we only need investigate the

crossover terms in (2.14) that are proportional to 1{α>2} and show that

|∇2
1 π̂c(0) − ∇2

1 π̂(0)| ≤ O

((
1 − m

mc

)ε)
(4.16)

since the above proof for α ≤ 2 directly applies to the noncrossover terms. Notice
that, for ε ∈ (0,1),

0 ≤ mt
c − mt ≤ mt

c

(
1 −

(
m

mc

)t)1−ε(1 − (m/mc)
t

1 − m/mc

)ε(
1 − m

mc

)ε

≤ mt
ct

ε

(
1 − m

mc

)ε

so that

|∇2
1 π̂c(0) − ∇2

1 π̂(0)| ≤ ∑
t∈N

(mt
c − mt)

∑
x∈Zd

x2
1 |πt(x)|

≤
(

1 − m

mc

)ε ∑
t∈N

tεmt
c

∑
x∈Zd

x2
1 |πt(x)|.

Moreover, since

tε = t

t1−ε
= t

�(1 − ε)

∫ ∞
0

�−εe−�t d�,
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we have

|∇2
1 π̂c(0) − ∇2

1 π̂(0)|
(4.17)

≤ (1 − m/mc)
ε

�(1 − ε)

∫ ∞
0

d�

�ε

∑
t∈N

t (mce
−�)t

∑
x∈Zd

x2
1 |πt(x)|.

To show (4.16), it thus suffices to prove that the above integral with respect to � is
O(1) for sufficiently small ε.

First, we consider self-avoiding walk. By the diagrammatic bound on π
(2)
t (x)

in (4.3) [see (4.5)], we readily obtain∑
t∈N

tmt
∑

x∈Zd

x2
1π

(2)
t (x) ≤ ∑

s,s′,s′′∈N

(s + s′ + s′′)ms+s′+s′′

× ∑
x∈Zd

x2
1ϕSAW

s (x)ϕSAW
s′ (x)ϕSAW

s′′ (x)

≤ 3W(2)
∑

x∈Zd

∑
s,s′∈N

sms+s′
ϕSAW

s (x)ϕSAW
s′ (x)

≤ 3B ′W(2),

where

B ′ ≡ B ′(m) = sup
y∈Zd

∑
x∈Zd

∑
t∈N

tmtϕSAW
t (x)

∞∑
s=0

msϕSAW
s (y − x).(4.18)

Similarly to the above and the derivation of (4.6), we can show that, by (4.3)
and (4.1),∑

t∈N

tmt
∑

x∈Zd

x2
1π

(N)
t (x) ≤ N4(B(0))N−2

B ′W(2) [N ≥ 2].

Since B(0) = O(L−d) and W(2) = O(1) uniformly in m ≤ mc if d > 4 [see formu-
las (4.7)–(4.9)], we obtain that, for L � 1,∫ ∞

0

d�

�ε

∑
t∈N

t (mce
−�)t

∑
x∈Zd

x2
1 |πt(x)|

(4.19)

≤
∞∑

N=2

O(N4)O(L−d)N−2

︸ ︷︷ ︸
O(1)

∫ ∞
0

d�

�ε
B ′(mce

−�).

We now show that the integral of B ′(mce
−�)/�ε is uniformly bounded if

ε < d−4
2 . First, we replace tϕSAW

t (x) in (4.18) by the following bound due to sub-
additivity:

tϕSAW
t (x) =

t∑
s=1

ϕSAW
t (x) ≤

t∑
s=1

(ϕSAW
s−1 ∗ D ∗ ϕSAW

t−s )(x).
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Then, by using |D̂(k)| ≤ 1 and (3.16) for n = 0, we obtain

B ′(mce
−�) ≤ mce

−�
∫
[−π,π ]d

ddk

(2π)d
|ϕ̂SAW(k,mce

−�)|3
(4.20)

≤ O(1)

∫
[−π,π ]d

ddk

|k|4
e−�

1 − e−� + |k|2 ,

where the O(1) term is independent of �. However, for ε ∈ (0,1),

∫ ∞
0

d�

�ε

e−�

1 − e−� + |k|2 ≤ 1

1 − e−1

(∫ 1

0

d�

�ε

1

� + |k|2 +
∫ ∞

1

d�

�ε
e−�

)

≤ 1

1 − e−1

(∫ |k|2

0

d�

�ε

1

|k|2 +
∫ 1

|k|2
d�

�1+ε
+ 1

)

= O(|k|−2ε).

Therefore, if ε < d−4
2 , then we obtain

∫ ∞
0

d�

�ε
B ′(mce

−�) ≤ O(1)

∫
[−π,π ]d

ddk

|k|4+2ε
= O(1).(4.21)

Combining (4.17), (4.19) and (4.21), we complete the proof of (4.16) for self-
avoiding walk.

For oriented percolation, similarly to the derivation of (4.12), we can show that,
for N ≥ 0,∑

t∈N

tmt
∑

x∈Zd

x2
1π

(N)
t (x)

≤ (N + 1)2(T (0))N−2((
N
(
1 + T (0))+ T (0))T (0)V ′

+ N
(
(N − 1)

(
1 + T (0))+ 3T (0))T ′V (0)),

where

V ′ ≡ V ′(m) = sup
(x,t)∈Zd+1

∑
(y,s)∈Zd+1

|y1|2(mD ∗ ϕOP
s )(y)ms |s − t + 1|

× (D ∗ ϕOP
s−t )(y − x),

T ′ ≡ T ′(m) = sup
(x,t)∈Zd+1

∑
(y,s),(y′,s′)∈Zd+1

(mD ∗ ϕOP
s )(y)ms |s′ − t + 1|

× (D ∗ ϕOP
s′−t )(y

′ − x)

× (
ϕOP

s−s′(y − y′) + ϕOP
s′−s(y

′ − y)
)
.
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Since T (0) = O(L−d) and V (0)|l=1 = O(1) uniformly in m ≤ mc if d > 4 and
p ≤ pc [see formulas (4.13) and (4.14)], we obtain that, for L � 1,∫ ∞

0

d�

�ε

∑
t∈N

t (mce
−�)t

∑
x∈Zd

x2
1 |πt(x)|

(4.22)

≤ O(1)

∫ ∞
0

d�

�ε

(
V ′(mce

−�) + T ′(mce
−�)

)
.

However, by the Markov property,

(t + 1)(D ∗ ϕOP
t )(x) =

t∑
s=0

(D ∗ ϕOP
t )(x) ≤

t∑
s=0

(ϕOP
s ∗ D ∗ ϕOP

t−s)(x).

Applying this bound to the definitions of V ′ and T ′ and then using |D̂(k)| ≤ 1 and
(3.16) for n = 0,2, we obtain

V ′(mce
−�)

T ′(mce
−�)

}
≤ O(1)

∫
[−π,π ]d

ddk

|k|4
e−�

1 − e−� + |k|2 .

Recalling (4.20) and (4.21), we conclude that (4.22) is uniformly bounded. This
completes the proof of (4.16) for oriented percolation. We have thus completed the
proof of Proposition 3.1.

APPENDIX

A.1. Asymptotics of 1 − D̂(k) for small k. In this appendix, we will use the
following notation for convenience:

|‖x‖|� = |x| ∨ � [� > 0].
LEMMA A.1. Let α,ρ > 0 and

h(x) = 1 + O(|‖x|‖−ρ
1 )

|‖x|‖d+α
1

[x ∈ R
d ].

Suppose that h is a rotation-invariant function. Then, there exist ε > 0 and vα =
O(Lα∧2) such that, for |k| < 1/L, the 1-step distribution D in (1.3) satisfies

1 − D̂(k) = vα|k|α∧2 ×
⎧⎨
⎩

1 + O((L|k|)ε), α �= 2,

log
1

L|k| + O(1), α = 2.(A.1)

PROOF. The case for α > 2 is easy. By the Taylor expansion of 1 − cos(k · x)

and using the Z
d -symmetry of D,

1 − D̂(k) = ∑
x∈Zd

(
1 − cos(k · x)

)
D(x) = |k|2

2d

∑
x∈Zd

|x|2D(x) + O((L|k|)2+ε)
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holds provided that 0 < ε < 2 ∧ (α − 2). This proves (A.1) with vα ≡ σ 2/(2d) =
O(L2).

It remains to prove (A.1) for α ≤ 2. First, we note that, by definition,

D(x) = ch

Ld
h(x/L) [x ∈ Z

d ],
where

ch =
(

1

Ld

∑
y∈Zd/L

h(y)

)−1

=
∫

Rd
h(y)ddy + O(L−1).

Taking the Fourier transform yields

1 − D̂(k) = ch

Ld

∑
x∈Zd

(
1 − cos(k · x)

)
h

(
x

L

)

= ch

(L|k|)d
(
|k|d ∑

y∈|k|Zd

(
1 − cos(ek · y)

)
h

(
y

L|k|
))

,

where ek = k/|k|. By the Riemann sum approximation for small k and the rota-
tional invariance of h, we obtain

1 − D̂(k) = ch(1 + O(|k|))
(L|k|)d

∫
|y|≥|k|

(
1 − cos(ek · y)

)
h

(
y

L|k|
)

ddy

= ch(1 + O(|k|))
(L|k|)d

∫
|y|≥|k|

(1 − cosy1)h

(
y

L|k|
)

ddy

= ch(L|k|)α(1 + O(|k|))
×
∫
|y|≥|k|

(1 − cosy1)

(
1

|‖y|‖d+α
L|k|

+ O((L|k|)ρ)

|‖y|‖d+α+ρ
L|k|

)
ddy.

This is the starting point of the analysis for α ≤ 2.
For α < 2, we note that∫

|y|≥|k|
1 − cosy1

|‖y|‖d+α
L|k|

ddy =
∫
|y|≥L|k|

1 − cosy1

|y|d+α
ddy

+
∫
|k|≤|y|<L|k|

1 − cosy1

(L|k|)d+α
ddy︸ ︷︷ ︸

O((L|k|)2−α)

=
∫

Rd

1 − cosy1

|y|d+α
ddy −

∫
|y|<L|k|

1 − cosy1

|y|d+α
ddy︸ ︷︷ ︸

O((L|k|)2−α)

+ O((L|k|)2−α),
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where we have used L|k| < 1 to estimate the error terms. Moreover,∫
|y|≥|k|

1 − cosy1

|‖y|‖d+α+ρ
L|k|

ddy =
∫
|y|≥1

1 − cosy1

|y|d+α+ρ
ddy︸ ︷︷ ︸

O(1)

+
∫
L|k|≤|y|<1

1 − cosy1

|y|d+α+ρ
ddy

+
∫
|k|≤|y|<L|k|

1 − cosy1

(L|k|)d+α+ρ
ddy︸ ︷︷ ︸

O((L|k|)2−α−ρ)

,

where

∫
L|k|≤|y|<1

1 − cosy1

|y|d+α+ρ
ddy =

⎧⎪⎪⎨
⎪⎪⎩

O(1), ρ < 2 − α,

O

(
log

1

L|k|
)
, ρ = 2 − α,

O((L|k|)2−α−ρ), ρ > 2 − α.

This proves (A.1) with 0 < ε < 1 ∧ (2 − α) ∧ ρ and

vα = chL
α
∫

Rd

1 − cosy1

|y|d+α
ddy.

For α = 2, we note that∫
|y|≥|k|

1 − cosy1

|‖y|‖d+2
L|k|

ddy =
∫
|y|≥1

1 − cosy1

|y|d+2 ddy︸ ︷︷ ︸
O(1)

+
∫
L|k|≤|y|<1

1 − cosy1

|y|d+2 ddy

+
∫
|k|≤|y|<L|k|

1 − cosy1

(L|k|)d+2 ddy︸ ︷︷ ︸
O(1)

.

By the Taylor expansion of 1 − cosy1 and using |y|2 = ∑d
j=1 y2

j , we obtain∫
L|k|≤|y|<1

1 − cosy1

|y|d+2 ddy = 1

2

∫
L|k|≤|y|<1

y2
1

|y|d+2 ddy + O(1)

= 1

2d

∫
L|k|≤|y|<1

1

|y|d ddy + O(1)

= ωd

2d
log

1

L|k| + O(1),

where ωd ≡ 2πd/2/�(d/2) is the surface area of the unit d-sphere. Moreover,∫
|y|≥|k|

1 − cosy1

|‖y|‖d+2+ρ
L|k|

ddy =
∫
|y|≥L|k|

1 − cosy1

|y|d+2+ρ
ddy︸ ︷︷ ︸

O((L|k|)−ρ)

+
∫
|k|≤|y|<L|k|

1 − cosy1

(L|k|)d+2+ρ
ddy︸ ︷︷ ︸

O((L|k|)−ρ)

.
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This proves (A.1) with v2 = chL
2ωd/(2d). �

A.2. Identity for the constant Kr .

LEMMA A.2. For r ∈ (0,2),

Kr ≡
∫ ∞

0

1 − cosv

v1+r
dv = π

2�(r + 1) sin(rπ/2)
.(A.2)

PROOF. Below, we prove (A.2) only for r ∈ (0,1]. Since the definition of Kr

and the rightmost expression in (A.2) are both analytic in r ∈ C with 0 < �(r) < 2,
we can extend (A.2) to r ∈ (1,2) using analytic continuation.

First, we rewrite Kr as

Kr =
∫ ∞

0

du

u1+r

∫ u

0
sinv dv = 1

r

∫ ∞
0

sinv

vr
dv

(A.3)

= lim
R→∞
δ→0

1

2ir

∫ R

δ

eiv − e−iv

vr
dv.

For a > 0, we let

γ ±
a =

{
z = ae±iθ : θ increases from 0 to

π

2

}
,

η± = {z = ±iv :v increases from δ to R}.
Then, by the Cauchy integral formula,∫ R

δ

eiv

vr
dv =

∫
γ +
δ

eiz

zr
dz +

∫
η+

eiz

zr
dz −

∫
γ +
R

eiz

zr
dz

= i

∫ π/2

0

eiδeiθ

(δeiθ )r−1 dθ + i1−r
∫ R

δ

e−v

vr
dv − i

∫ π/2

0

eiReiθ

(Reiθ )r−1 dθ︸ ︷︷ ︸
O(R−r )

.

Similarly,∫ R

δ

e−iv

vr
dv =

∫
γ −
δ

e−iz

zr
dz +

∫
η−

e−iz

zr
dz −

∫
γ −
R

e−iz

zr
dz

= −i

∫ π/2

0

e−iδe−iθ

(δe−iθ )r−1 dθ + (−i)1−r
∫ R

δ

e−v

vr
dv + O(R−r ).

Substituting these expressions back into (A.3) yields

Kr = lim
R→∞
δ→0

(
δ1−r

2r

∫ π/2

0

(
eiδeiθ

eiθ(r−1)
+ e−iδe−iθ

e−iθ(r−1)

)
dθ

(A.4)

+ i−r 1 + (−1)−r

2r

∫ R

δ

e−v

vr
dv

)
.
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If r = 1, then the second term is absent due to the cancelation 1 + (−1) = 0. By
dominated convergence, we obtain

K1 = lim
δ→0

1

2

∫ π/2

0
(eiδeiθ + e−iδe−iθ

)dθ =
∫ π/2

0
dθ = π

2
.(A.5)

If r ∈ (0,1), on the other hand, the first term in (A.4) is O(δ1−r ) and therefore
goes to zero as δ → 0. Since (−1)−r = (−1)r = i2r and ir + i−r = 2 cos rπ

2 , we
obtain

Kr = cos(rπ/2)

r

∫ ∞
0

e−v

vr
dv = cos(rπ/2)

r
�(1 − r).

Using the well-known relations �(1− r)�(r) = π/ sin(rπ) and r�(r) = �(r +1),
we finally arrive at

Kr = cos(rπ/2)

r�(r)

π

sin(rπ)
= π

2�(r + 1) sin(rπ/2)
.

This is also valid for r = 1, due to (A.5). This completes the proof of Lem-
ma A.2. �
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