
The Annals of Probability
2011, Vol. 39, No. 1, 327–368
DOI: 10.1214/10-AOP551
© Institute of Mathematical Statistics, 2011

OCCUPATION STATISTICS OF CRITICAL BRANCHING RANDOM
WALKS IN TWO OR HIGHER DIMENSIONS

BY STEVEN P. LALLEY1 AND XINGHUA ZHENG2

University of Chicago and Hong Kong University of Science and Technology

Consider a critical nearest-neighbor branching random walk on the d-
dimensional integer lattice initiated by a single particle at the origin. Let
Gn be the event that the branching random walk survives to generation n.
We obtain the following limit theorems, conditional on the event Gn, for
a variety of occupation statistics: (1) Let Vn be the maximal number of
particles at a single site at time n. If the offspring distribution has finite
αth moment for some integer α ≥ 2, then, in dimensions 3 and higher,
Vn = Op(n1/α). If the offspring distribution has an exponentially decaying
tail, then Vn = Op(logn) in dimensions 3 and higher and Vn = Op((logn)2)

in dimension 2. Furthermore, if the offspring distribution is nondegenerate,
then P(Vn ≥ δ logn | Gn) → 1 for some δ > 0. (2) Let Mn(j) be the number
of multiplicity-j sites in the nth generation, that is, sites occupied by ex-
actly j particles. In dimensions 3 and higher, the random variables Mn(j)/n

converge jointly to multiples of an exponential random variable. (3) In di-
mension 2, the number of particles at a “typical” site (i.e., at the location of a
randomly chosen particle of the nth generation) is of order Op(logn) and the
number of occupied sites is Op(n/ logn). We also show that, in dimension 2,
there is particle clustering around a typical site.

1. Introduction. A nearest-neighbor branching random walk is a discrete-
time particle system on the integer lattice Z

d that evolves according to the follow-
ing rule: at each time n = 0,1,2, . . . , every particle generates a random number
of offspring, with offspring distribution Q = {Ql}l≥0; each of these then moves
to a site randomly chosen from among the 2d + 1 sites at distance ≤ 1 from the
location of the parent.3 We shall consider only the case where the branching ran-
dom walk is critical, that is, where the mean number of offspring per particle is 1,
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and we shall assume throughout that the offspring distribution has finite, positive
variance σ 2.

By a well-known theorem of Kolmogorov [see Athreya and Ney (1972), Chap-
ter 1], if the branching process is initiated by a single particle and if Gn is the event
that the process survives to generation n, then

πn := P(Gn) ∼ 2

nσ 2 .(1.1)

Therefore, if the branching random walk is started with n particles at time 0, then
the number of initial particles whose families survive to time n follows, approx-
imately for large n, a Poisson distribution with mean 2/σ 2 and the number of
particles Zn alive at time n is of order Op(n). In fact, in this case, under suit-
able hypotheses on the initial distribution of particles, the measure-valued process
associated with the branching random walk converges, after rescaling, to the super-
Brownian motion Xt with variance parameter σ 2 [see, e.g., Etheridge (2000)]. In
dimensions 2 and higher, the random measure Xt is, for each t > 0, almost surely
singular with respect to the Lebesgue measure on R

d . When d ≥ 3, the measure
Xt spreads its mass over the support in a fairly uniform manner [Perkins (1988)]
and, in fact, can be recovered from its support [Perkins (1989)]. It is natural to
conjecture that this uniformity also holds, in a suitable sense, for critical branch-
ing random walk and that the maximal number of particles at a single site at time n

does not grow rapidly in n. Our main results show that this is indeed the case. For
ease of exposition, we will state our results as conditional limit theorems, given
the event Gn, of survival to generation n. Corresponding unconditional results for
branching random walks started by n particles could easily be deduced.

We shall assume throughout the paper, unless otherwise specified, that the
branching random walk is initiated by a single particle located at the origin at
time 0. Define

Zn := set of particles in generation n;
Zn := |Zn| = number of particles in generation n;

Un(x) := number of particles at site x in generation n;
(1.2)

�n := number of occupied sites in generation n;
Mn(j) := number of multiplicity-j sites in generation n and

Vn := max
x∈Zd

Un(x).

(A multiplicity-j site is a site with exactly j particles.)

DEFINITION 1. Let Xn be a sequence of random variables, f (n) a sequence of
positive real numbers and Hn a sequence of events of positive probability. We say
that Xn = OP (f (n)) given Hn if the conditional distributions of Xn/f (n) given
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Hn are tight. Similarly, we say that Xn = oP (f (n)) given Hn if the conditional
distributions of Xn/f (n) given Hn converge weakly to the point mass at 0.

THEOREM 2. Assume that the offspring distribution Q has finite αth moment
for some integer α ≥ 2 and that d ≥ 3. Then, conditional on Gn,

Vn = OP (n1/α).(1.3)

In particular, if Q has finite moments of all orders, then Vn = op(nε) for all ε > 0.

THEOREM 3. Assume that the offspring distribution Q has an exponentially
decaying tail, that is, there exists δ > 0 such that

∑
l Ql exp(δl) < ∞. Then, con-

ditional on Gn,

Vn = Op(logn) if d ≥ 3;(1.4)

Vn = Op((logn)2) if d = 2.(1.5)

In fact (see Corollary 16 below), for sufficiently large C > 0, the conditional
probabilities P(Vn ≥ C logn | Gn) in dimensions d ≥ 3 and P(Vn ≥ C(logn)2 |
Gn) in dimension d = 2 decay polynomially in n. For one-dimensional branching
random walk, it is known that Vn is of order

√
n [Theorem 7.10 in Révész (1994)];

stronger results are proved in Lalley (2009).

THEOREM 4. Assume that d ≥ 2. There then exists δ > 0, depending on the
offspring distribution Q, such that

lim
n→∞P(Vn ≥ δ logn | Gn) = 1.(1.6)

Theorems 3 and 4 imply, in dimensions 3 and higher, that if the offspring distri-
bution has an exponentially decaying tail, then Vn is of order logn on the event Gn

of survival to generation n. In particular, the (conditional) distributions of Vn/logn

are tight and any weak limit has support contained in [δ1, δ2] for some δ1, δ2 > 0
(cf. Corollary 16). This partly settles an open question (Question 2, page 79) raised
in Révész (1996).

THEOREM 5. Assume that d ≥ 3. Then, conditional on the event Gn, the joint
distribution of the occupation statistics Mn(j)/n converges as n → ∞. In partic-
ular, for certain constants κj such that

∑∞
j=1 j · κj = 1,

L
(

Zn

n
,

{
Mn(j)

n

}
j≥1

,
�n

n

∣∣∣ Gn

)
	⇒

(
1, {κj }j≥1,

∑
j

κj

)
· Y,(1.7)

where Y is exponentially distributed with mean 2/σ 2.
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This extends the classical theorem of Yaglom, according to which the condi-
tional distribution of Zn/n, given that the branching process survives to genera-
tion n, converges to the exponential law with mean 2/σ 2. See Athreya and Ney
[(1972), Chapter 1] for a discussion of Yaglom’s theorem and related results, and
Geiger (2000) for an interesting probabilistic proof.

Theorem 5 implies, in dimensions 3 and higher, that most occupied sites are
occupied by only O(1) particles. Ultimately, this is a consequence of the transience
of random walk in dimensions d ≥ 3. Since random walk in dimension d = 2 is
recurrent, different behavior should be expected for the occupation statistics of
branching random walk. In the following theorem, and throughout this article, we
shall use the term typical particle to mean a particle chosen randomly from the nth
generation Zn of the branching process (with the choice made independently of
the evolution of the branching random walk up to time n, according to the uniform
distribution on Zn). By a typical site, we mean the location of a typical particle.

THEOREM 6. In dimension d = 2, the number Tn of particles at a typical site
at time n is, conditional on the event Gn, of order Op(logn). Moreover, for some
sufficiently small ε > 0, there exists δ > 0 such that

lim inf
n→∞ P(Tn ≥ ε logn | Gn) ≥ δ.(1.8)

We conjecture that the conditional distributions of Tn/ logn given Gn converge
in distribution as n → ∞. Fleischman (1978) has used the method of moments to
establish a related result for the number of particles at a fixed site at distance O(1)

from the origin. Unfortunately, the calculation of higher moments for the number
of particles at a typical site appears to be considerably more difficult and so the
method of moments does not seem to be a feasible approach to the conjecture.

By Yaglom’s theorem, conditional on the event of survival to generation n, there
are OP (n) particles in total. Theorem 6 implies that at least a fraction δ of these
are located at sites with (roughly) logn other particles. Thus, a substantial fraction
of the particles can be found in just OP (n/ logn) sites. This does not logically
rule out the possibility that many more sites are occupied; however, it does suggest
that the number �n of occupied sites is of order op(n). This is consistent with
the corresponding result for super-Brownian motion Xt , which states that for any
t > 0, the random measure Xt is almost surely singular. The following is a sharp
result concerning the number of occupied sites.

THEOREM 7. For two-dimensional nearest-neighbor branching random walk,
the number �n of occupied sites is Op(n/logn), given the event Gn.

Theorem 6 implies that the number of occupied sites must be of order at least
n/ logn. Combining this with Theorem 7, we see that n/ logn is the true asymp-
totic rate. Révész [(1996), Theorem 3(ii)] asserts that a corresponding result is true
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for branching Brownian motion, but we believe that his proof has a serious flaw;
see Section 7.2 for a detailed discussion of this matter.

The next theorem partially quantifies the degree of particle clustering around a
typical site.

THEOREM 8. Assume that d = 2. Let {	n} be any sequence of real numbers
such that limn 	n = ∞ and limn log	n/ logn = 0. Let Sn be the location of a typi-
cal particle and let B(Sn;	n) be the ball of radius 	n centered at Sn. Then, condi-
tional on Gn:

(A) the number of unoccupied sites in B(Sn;	n) is oP (	2
n);

(B) the number of particles in B(Sn;	n) is of order Op(logn · 	2
n).

Theorems 2 and 3 are proved in Section 2, Theorem 4 in Section 3 and Theo-
rem 5 in Section 4. Theorem 6 is proved in Section 5, Theorem 8 in Section 6 and
Theorem 7 in Section 7. For each of the last three theorems, the calculations re-
quired for the proofs are considerably simpler in the special case of binary fission,
where the offspring distribution Q is double-or-nothing, that is, Q0 = Q2 = 1/2.
In the interests of clarity, we shall give complete arguments only for this special
case. These arguments (as should be evident) can be extended to the general case
of mean 1, finite-variance offspring distributions.

Fundamental to many of our arguments is the following elementary relation
between the expected number of particles at a site x in generation n and the n-step
transition probabilities Pn(x) of the simple random walk:

EUn(x) = Pn(x).(1.9)

This is easily proved by induction on n, by conditioning on the first generation
of the branching random walk. Here, and throughout the paper, the term simple
random walk is used for the symmetric nearest-neighbor random walk on the lat-
tice Z

d with holding probability 1/(2d + 1)—that is, each increment is uniformly
distributed on the set N of 2d + 1 sites at distance ≤ 1 from the origin—and the
notation Pn(x) is reserved for the probability that a simple random walk started at
the origin finds its way to site x in n steps. We use the notation P

n to denote the
n-step transition probability kernel of simple random walk, that is, the nth iterate
of the Markov operator P :	∞(Zd) → 	∞(Zd) associated with the random walk.

Notation. The following is a list of notation, in addition to that already estab-
lished in equations (1.1), (1.2) and (1.9) above, that will be fixed throughout the
paper:

• N = {ej }−d≤j≤d is the set of sites at distance 0 or 1 from the origin in Z
d ;

• Q = {Ql}l≥0 is the offspring distribution and Qi = {Qi
l } its ith convolution

power;
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• Fn is the σ -algebra generated by the random variables {Um(x)}x∈Zd ,m≤n;
• A = 5/(4π) is the constant such that Pn(0) ∼ A/n in dimension 2; see, for

instance, P7.9 on page 75 of Spitzer (1976).

In addition, we will follow the custom of writing f ∼ g to mean that the ra-
tio f/g converges to 1 and f � g to mean that the ratio f/g remains bounded
away from 0 and ∞. Throughout the paper, C,C1,C

′, etc. denote generic con-
stants whose values may change from line to line. Finally, we use a “local scoping
rule” for notation: any notation introduced in a proof is local to the proof, unless
otherwise indicated.

2. Proofs of Theorems 2 and 3.

2.1. The case where the offspring distribution has finite moments. The proof
of Theorem 2 will rely on the following estimates for the moments of the occupa-
tion statistics Un(x).

PROPOSITION 9. Suppose that the offspring distribution Q has finite αth mo-
ment for some integer α ≥ 2.

(i) If d ≥ 3, then

sup
n

∑
x

EUn(x)α < ∞.

(ii) If d = 2, then there exist C1,C2 < ∞ such that for all n,∑
x

EUn(x)α ≤ C1n
C22α

.

PROOF. We will use the following inequality: for all l ≥ 2 and all bi ≥ 0,(
l∑

i=1

bi

)α

≤
α∑

k=2

∑
Pk

(
k∑

	=1

bi	 · 1{bi1>0,...,bik
>0}

)α

,(2.1)

where Pk is the set of k-tuples (i1, . . . , ik) of distinct positive integers no greater
than l. Inequality (2.1) is obviously true for l ≤ α. To see that it holds for l > α,
observe that, by the multinomial expansion, the left-hand side of (2.1) is a sum of
terms of the form t = ( α

j1j2···jl

)
b

j1
1 b

j2
2 · · ·bjl

l , where the exponents ji sum to α. Since
at most α of these can be positive and t vanishes if any of the bi with exponent
ji > 0 is zero, the term t is included in the sum on the right-hand side of (2.1).

Next, by the Hölder inequality, for each integer k ≥ 2 and all real numbers
bi ≥ 0, (

k∑
i=1

bi

)α

≤ kα−1
k∑

i=1

bα
i .(2.2)
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This implies that if k independent branching random walks are started by particles
u1, . . . , uk located at sites x1, . . . , xk , respectively, and if U

ui
n (x) is the number of

the nth generation descendants at site x of the particle ui , then

∑
x

E

(
k∑

i=1

Uui
n (x) · 1{Uu1

n (x)>0,...,U
uk
n (x)>0}

)α

≤ kα−1
k∑

i=1

∑
x

E(Uui
n (x))α · ∏

j =i

P
(
U

uj
n (x) > 0

)
(2.3)

≤ kα
∑
x

EUn(x)α ·
(
C

1√
n

d

)k−1

.

Here, we have used (2.2) in the first inequality; the second inequality follows by
the local central limit theorem and the elementary observation that

P
(
U

uj
n (x) > 0

) ≤ EU
uj
n (x) = Pn(x − xj ).

We are now prepared to estimate
∑

x EUn(x)α . Conditioning on the first gener-
ation, we obtain∑

x

EUn(x)α ≤ ∑
x

EUn−1(x)α

+
α∑

k=2

∑
x

E

[∑
Pk

(
k∑

j=1

U
uj

n−1(x) · 1{Uu1
n−1(x)>0,...,U

uk
n−1(x)>0}

)α]

≤ ∑
x

EUn−1(x)α ·
(

1 +
α∑

k=2

∑
l

Ql

(
l

k

)
kα ·

(
C

1√
n − 1

d

)k−1
)
,

where Pk denotes the set of k-tuples (u1, . . . , uk) of distinct particles in genera-
tion 1 and the first and second inequalities hold by (2.1) and (2.3), respectively.
Therefore, for all n,

∑
x

EUn(x)α ≤
n∏

i=2

(
1 +

α∑
k=2

∑
l

Ql

(
l

k

)
kα ·

(
C

1√
i − 1

d

)k−1
)

· ∑
x

EU1(x)α.

Clearly,
∑

x EU1(x)α ≤ (2d + 1)EZα
1 < ∞. Furthermore, in dimensions d ≥ 3,

n∏
i=2

(
1 +

α∑
k=2

∑
l

Ql

(
l

k

)
kα ·

(
C

1√
i − 1

d

)k−1
)

≤ exp

( ∞∑
i=2

α∑
k=2

∑
l

Ql

(
l

k

)
kα ·

(
C

1√
i − 1

d

)k−1
)

= exp

(
C′

α∑
k=2

∑
l

Ql

(
l

k

)
kα

)
,
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where C′ < ∞ is independent of n, and in dimension d = 2,
n∏

i=2

(
1 +

α∑
k=2

∑
l

Ql

(
l

k

)
kα ·

(
C

i − 1

)k−1
)

≤ exp

(
C

∑
l

Ql

(
l

2

)
2α ·

n∑
i=2

1

i − 1

+ C

α∑
k=3

∑
l

Ql

(
l

k

)
kα ·

∞∑
i=2

(
1

i − 1

)k−1
)

≤ exp(C22α logn + C3),

where C2 is a constant independent of both α and n, and C3 is a constant indepen-
dent of n. �

PROOF OF THEOREM 2. By Kolmogorov’s estimate (1.1), the probability that
the process survives to time n is O(1/n). By the Markov inequality,

P {Vn ≥ Cn1/α} ≤ C−αn−1EV α
n ≤ C−αn−1E

∑
x

Un(x)α

and so the relation (1.3) follows from Proposition 9. �

REMARK 10. Yaglom’s limit theorem implies that, conditional on the event
Gn, the number of particles at time n − 1 is Op(n). For each of these, there is a
small chance that the number of offspring will exceed (2d + 1)n1/(α+ε), in which
case Vn will be at least n1/(α+ε). If the tail of the offspring distribution decays like
m−(α+ε) as m → ∞, then the chance that one of the Op(n) particles in generation
n − 1 will have more than (2d + 1)n1/(α+ε) offspring is of order one. Thus, the
result in Theorem 2 is almost optimal. (This answers a question of Michael Stein.)

2.2. The case where the offspring distribution has an exponentially decay-
ing tail. We begin with a stochastic comparison result for the random variables
Un(x). First, observe that the law of the branching random walk (started by a single
particle located at the origin) is invariant with respect to reflections in the coordi-

nate axes and so Un(x)
D= Un(x

′) for any two sites x, x′ at corresponding positions
of different orthants. Now, define the usual partial order on the positive orthant Z

d+:

x � y if xi ≤ yi for all 1 ≤ i ≤ d.

LEMMA 11. If x � y, then Un(x) stochastically dominates Un(y). In partic-
ular, Un(y) is stochastically dominated by Un(0) for every y ∈ Z

d . Consequently,
if x � y, then for every n ≥ 0,

Pn(x) ≥ Pn(y)(2.4)
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and

un(x) ≥ un(y),(2.5)

where un(x) := P {Un(x) ≥ 1} is the hitting probability function of the branching
random walk.

REMARK 12. The relation (2.4), which follows from the stochastic dom-
inance Un(x) ≥D Un(y) by taking expectations [recall the fundamental rela-
tion (1.9)], also follows more directly by the reflection principle for simple random
walk.

PROOF OF LEMMA 11. Because the law of the branching random walk is
invariant with respect to permutations of the coordinates, we may assume, without
loss of generality, that y = x + e1, where e1 = (1,0, . . . ,0). Denote by L and L′
the hyperplanes

L = {z ∈ R
d : z1 = x1}

and

L′ = {z ∈ R
d : z1 = x1 + 1/2};

observe that y is the reflection of x in L′. We shall define a particle system with
particles of three colors—red, blue and green—in such a way that:

(a) the subpopulation of all red and blue particles follows the law of the branching
random walk started by one (red) particle at the origin;

(b) the subpopulation of all red and green particles follows the same law;
(c) there are no red particles to the right of the hyperplane L′;
(d) at each time, the green and blue particles are paired (bijectively) in such a

way that the green and blue particles in any pair are at symmetric locations on
opposite sides of the hyperplane L′.

This will prove that Un(x) ≥D Un(y) for each n, by the following reasoning: first,
the distribution of Un(x) coincides with the distribution of the total number of red
and blue particles at location x and time n, by (a); second, the number of blue
particles at x equals the number of green particles at y, by (d), since x and y are at
symmetric locations on opposite sides of the hyperplane L′; third, the number of
green particles at y has the same distribution as Un(y), by (b) and (c).

The particle system is constructed as follows. To begin, color the initial particle
at the origin red. Offspring of blue and green particles will always have the same
color as their parents and each blue particle b will always be paired with a green
particle g located at the mirror image (relative to reflection in the hyperplane L′)
of the site of b. Offspring of red particles will be red, except possibly when the
parent red particle is located at a site on the hyperplane L. In this case—say, for



336 S. P. LALLEY AND X. ZHENG

definiteness, that the red parent particle ξ is at site z ∈ L—each offspring particle
ζ first makes a jump according to the law of the nearest-neighbor random walk
and then chooses a color as follows: (a) if the jump is to a site z′ = z to the left of
hyperplane L′, then ζ becomes red; (b) if the jump is either to the same site z as
the parent or to its mirror image z∗ on the right of L′, then ζ chooses randomly
between blue and green. In case (b), the offspring particle ζ generates a doppel-
ganger (mirror particle) ζ ′ of the opposite color at the reflected site on the other
side of L′. Note that the distribution of the position of ζ is the same as that of ζ ′.
The particle ζ generates an offspring branching random walk Gζ with all particles
having the same color as ζ ; the mirror image Gζ ′ of Gζ relative to L′ (with parti-
cles colored oppositely) is attached to ζ ′. Note that Gζ ′ is itself a branching random
walk started at the location of ζ ′, by the symmetry of the nearest-neighbor random
walk.

Properties (a)–(d) above are now readily apparent. Property (c) holds because,
by construction, children of red particles on L that jump across L′ are either
green or blue and offspring of blue and green particles are either blue or green.
Property (d) is inherent in the construction. Finally, (a) and (b) follow from the
blue/green symmetry of the reproduction law for red particles located at sites on L.

�

PROPOSITION 13. Assume that the offspring distribution Q has a finite mo-
ment generating function in some neighborhood of the origin. Then, in dimensions
d ≥ 3, there exist δd > 0 and C > 0 such that for any θ ∈ [0, δd ], all x ∈ Z

d and
all n ≥ 1,

E exp{θUn(x)} − 1 ≤ CPn(x)θ.(2.6)

In dimension d = 2, there exist δ2 > 0 and C > 0 such that for any θ ∈ [0, δ2], all
x ∈ Z

2 and all n ≥ 1,

E exp{θUn(x)/ logn} − 1 ≤ CPn(x)θ/ logn.(2.7)

PROOF. Let (z) = ∑∞
l=1 Qlz

l be the probability generating function of Q.
By hypothesis, (z) is finite and analytic in a neighborhood of the closed disk
|z| ≤ eδ for some δ > 0 and, since the variance of Q is strictly positive, (z) is
strictly convex on [0, eδ]. Moreover, ′(1) = 1 because the offspring distribution
has mean 1.

Define

Gn(x) = Gn(x; θ) = E exp(θUn(x)) − 1.

Clearly, Gn(x; θ) → 0 as θ → 0. Moreover, by Lemma 11, for each value of θ > 0,
the function Gn(x) is maximal at x = 0. Since the random variables U1(x) are
zero, except for x ∈ N , and have the same distribution for x ∈ N , the function
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G1(x) is, for any fixed θ , a scalar multiple of the uniform distribution P1 on N .
Conditioning on the first generation of the branching random walk shows that

Gn+1(x) + 1 = 
(
PGn(x) + 1

)
,(2.8)

where P is the one-step Markov operator for the simple random walk, that is,
Pf (x) = Ef (x + Y), where Y is uniformly distributed on N . Since (1) = 1 and
(z) is strictly convex for z ∈ [0, eδ], equation (2.8) implies that

Gn+1(x) ≤ PGn(x)′(1 + PGn(x)
)
.(2.9)

Unfortunately, both relations (2.8) and (2.9) are nonlinear in Gn. For this reason,
we introduce dominating functions Hn(x) = Hn(x; θ) that satisfy corresponding
linear relations: set H1(x) = G1(x) and define Hn inductively by

Hn+1(x) = PHn(x)′(1 + Hn(0)
)
.(2.10)

Note that Hn+1 may take the value +∞ if Hn(0) exceeds the radius of convergence
of . Since Gn(x) ≤ Gn(0), the inequality (2.9) implies that H2 ≥ G2 and so, by
induction, that Hn ≥ Gn for all n ≥ 1. Thus, to prove inequalities (2.6) and (2.7),
it suffices to prove analogous inequalities for the functions Hn(x; θ).

The advantage of working with the functions Hn is that the linear relation (2.10)
can be iterated. In general, if functions f and g satisfy g = aPf for some scalar a,
then Pg = aP

2f . Employing this identity in (2.10) and iterating yields

Hn(x) = P
n−1H1(x)

n−1∏
j=1

′(1 + Hj(0)
)
.

Because the function H1 = G1 is itself a scalar multiple of P1, it follows that

Hn(x; θ) = Pn(x)H1(0; θ)(2d + 1)

n−1∏
j=1

′(1 + Hj(0; θ)
)
.(2.11)

Since ′(1) = 1, the factors in the product are well approximated by (1+′′(1)×
Hj(0; θ)), as long as Hj(0; θ) remains small. In particular, for suitable constants
C < ∞ and ε > 0, if Hj(0; θ) < ε for all j ≤ n − 1, then

Hn(x; θ) ≤ (2d + 1)Pn(x)H1(0; θ)

n−1∏
j=1

(
1 + CHj(0; θ)

)
.(2.12)

Taking x = 0 yields

Hn(0; θ)∏n
j=1(1 + CHj(0; θ))

≤ (2d + 1)Pn(0)H1(0; θ).(2.13)

The large-n behavior of the products on the right-hand side of (2.12) will depend
on whether or not the sequence Pn(0) is summable, that is, on whether or not the
simple random walk is transient. There are two cases to consider.
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Dimensions d ≥ 3. In dimensions d ≥ 3, the return probabilities Pn(0) are
summable. Moreover, when θ > 0 is small, the factor (2d + 1)H1(0; θ) on the
right-hand side of (2.13) is also small because H1 = G1 is a continuous function of
θ that takes the value 0 at θ = 0. Hence, by choosing θ small, we can make the sum
over n of the quantities on the right-hand side of inequality (2.13) arbitrarily small.
Now, the fraction on the left-hand side of (2.13) is the nth term of the telescoping
series

C−1
∑(

1∏n−1
j=1(1 + CHj(0; θ))

− 1∏n
j=1(1 + CHj(0; θ))

)
;(2.14)

consequently, (2.13) implies that, for all sufficiently small θ > 0, the products
n∏

j=1

(
1 + CHj(0; θ)

)

remain bounded for large n and, for small θ , remain close to 1. It now follows, by
(2.12), that for a suitable constant C′ < ∞ and all small θ , the functions Hn(x; θ)

are all finite and satisfy

Hn(x; θ) ≤ C′Pn(x)H1(0; θ).

Finally, the differentiability of H1(0; θ) in θ guarantees that H1(0; θ) ≤ Cθ for an
appropriate constant C < ∞ for all small θ . This proves (2.6).

Dimension d = 2. It is still the case that the fraction on the left-hand side of
(2.13) is the nth term of the telescoping series (2.14), but, since

∑
Pn(0) diverges,

this no longer implies that the products on the right-hand side of (2.12) remain
bounded. However, the local central limit theorem gives an explicit estimate for the
partial sums of the return probabilities: in particular, for some C′ ≥ A = 5/(4π),

n∑
j=1

Pj (0) ≤ C logn for all n ≥ 2.

Consequently, substituting θ/ logn for θ in inequality (2.13) and summing gives

1 −
n∏

j=1

(
1 + CHj(0; θ/ logn)

)−1 ≤ C′′θ.

This, in turn, implies that
n∏

j=1

(
1 + CHj(0; θ/ logn)

) ≤ 1/(1 − C′′θ).

Using this upper bound for the product on the right-hand side of (2.12) and using
the bound H1(0; θ/ logn) ≤ Cθ/ logn for small θ yields (2.7). �
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REMARK 14. In dimensions d ≥ 3, the conclusion (2.6) cannot be extended
to all θ > 0, even for the double-or-nothing case. In fact, for sufficiently large θ ,
the sums

∑
x∈Zd (E exp{θUn(x)} − 1) are not bounded in n.

REMARK 15. In dimension d = 2, the relation (2.7) does not hold for large θ ;
see Remark 26 below.

We are now prepared to prove Theorem 3. In fact, we will establish the follow-
ing, stronger, result.

COROLLARY 16. Under the hypotheses of Proposition 13, with the same no-
tation:

(i) if d ≥ 3, then for all θ ≤ δd ,

P

(
Vn ≥ logn

θ

∣∣∣ Gn

)
= O

(
1

nδd/θ−1

)
and, in particular, conditional on Gn, Vn = Op(logn);

(ii) if d = 2, then for all θ ≤ δ2,

P

(
Vn ≥ (logn)2

θ

∣∣∣ Gn

)
= O

(
1

nδ2/θ − 1

)

and, in particular, conditional on Gn, Vn = Op((logn)2).

PROOF. We will prove this only for dimensions d ≥ 3; the dimension d = 2
case can be handled similarly. By Markov’s inequality,

P

(
Vn ≥ logn

θ

∣∣∣ Gn

)
≤ 1

exp(δd/θ · logn)

∑
x

E
(
exp(δdUn(x)) · 1{Un(x)>0} | Gn

)

= O

(
1

nδd/θ − 1
· ∑

x

E
(
exp(δdUn(x)) · 1{Un(x)>0}

))
.

For any random variable X ≥ 0,

E exp(X) = E exp(X) · 1{X>0} + E exp(X) · 1{X=0}
= E exp(X) · 1{X>0} + P(X = 0)

= E exp(X) · 1{X>0} + 1 − P(X > 0).

Hence, ∑
x

E
(
exp(δdUn(x)) · 1{Un(x)>0}

)

= ∑
x

(
E exp(δdUn(x)) − 1

) + ∑
x

P
(
Un(x) > 0

)

≤ ∑
x

(
E exp(δdUn(x)) − 1

) + 1,
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so, by Proposition 13,∑
x

E
(
exp(δdUn(x)) · 1{Un(x)>0}

) ≤ C for all n ≥ 1.

The conclusion then follows. �

3. Proof of Theorem 4. The proof uses the following elementary lemma,
whose proof is left to the reader.

LEMMA 17. Suppose that on some probability space (�, F ,P ), there are two
events E1,E2 of positive probability such that

P(E1�E2)

P (E1)
≤ ε,(3.1)

where E1�E2 is the symmetric difference of E1 and E2. Then,

‖P(·|E1) − P(·|E2)‖TV ≤ 2ε,(3.2)

where P(·|Ei) denotes the conditional probability measure given the event Ei and
‖ · ‖TV denotes the total variation distance.

Lemma 17 will allow us to replace the event of conditioning Gn in Theo-
rems 4 and 5 by asymptotically equivalent events of the form

Hn = {
Zm(n) ≥ nεn

}
.(3.3)

LEMMA 18. Let m(n) < n be integers and εn > 0 real numbers such that
m(n)/n → 1 and εn → 0 as n → ∞. Then,

lim
n→∞

P(Gn�Hn)

P (Gn)
= 0.(3.4)

PROOF. This is an easy consequence of Kolmogorov’s estimate (1.1) and
Yaglom’s theorem for critical Galton–Watson processes. Let Kn = {Zm(n) ≥ 1}.
Clearly, Hn ⊂ Kn and so P(Kn | Hn) = 1. On the other hand, Yaglom’s theorem
implies that P(Hn | Kn) → 1 since m(n)/n → 1. Consequently,

lim
n→∞

P(Hn�Kn)

P (Kn)
= 0.(3.5)

A similar argument shows that the symmetric difference Kn�Gn is an asymp-
totically negligible part of Kn. Obviously, Gn ⊂ Kn, so P(Kn | Gn) = 1. Yaglom’s
theorem implies that for any δ > 0, there exists α > 0 such that

P
(
Zm(n) > αn | Kn

) ≥ 1 − δ.
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However, on the event {Zm(n) > αn}, the event Gn of survival to generation n is
nearly certain for large n because the Zm(n) particles in generation m(n) initiate in-
dependent Galton–Watson processes, each of which survives to generation n with
probability ∼ 2/(n − m(n))σ 2, by Kolmogorov’s estimate (1.1). Hence,

P(Gn | Kn) ≥ 1 − 2δ

for large n. Since δ > 0 is arbitrary, it follows that P(Gn | Kn) → 1. By Lemma 17
and (3.5), we get

P(Gn | Hn) → 1.(3.6)

Furthermore, since Gn ⊂ Kn,

lim
n→∞

P(Gn�Kn)

P (Kn)
= 0.

By Lemma 17, this implies that conditioning on Gn is asymptotically equivalent
to conditioning on Kn and so the difference P(Hn | Kn)−P(Hn | Gn) → 0. How-
ever, we have seen that P(Hn | Kn) → 1, hence P(Hn | Gn) → 1. This, along
with (3.6), implies that (3.4). �

PROOF OF THEOREM 4. The offspring distribution is nondegenerate, so there
exists l0 > 1 such that Ql0 > 0. Let p = Ql0 · (1/(2d + 1))l0 be the probability that
the initial particle produces l0 offspring and these offspring all stay at the origin.
Then, for all k ∈ N,

P
(
Uk(0) ≥ lk0

) ≥ p · pl0 · pl20 · · ·plk−1
0 ≥ plk0/(l0−1).

Our objective is to show that for some δ > 0, P(Vn ≥ δ logn | Zn > 0) → 1. By
Lemmas 17 and 18, this will follow if we can show that for some m(n) ≤ n with
m(n)/n → 1 and some εn → 0, the probability

P
(
Vn ≥ δ logn | Zm(n) > nεn

) → 1.

To do so, for δ > 0 to be determined later and all n big enough, define k such that
l0δ logn > lk0 ≥ δ logn and m(n) = n − k. Then, m(n)/n → 1. Fixing a sequence
εn = O(1/ logn), we then have

P

(
Vn ≥ δ logn

∣∣∣ Zm(n)

n
≥ εn

)

≥ 1 − (
1 − P

(
Uk(0) ≥ lk0

))εnn

≥ 1 − (
1 − plk0/(l0−1))εnn(3.7)

≥ 1 − exp
(
εnn

(−plk0/(l0−1)))
≥ 1 − exp

(−εnnp
l0δ logn/(l0−1))

= 1 − exp
(−εnn

1+l0δ logp/(l0−1)) → 1,

provided that δ < (l0 − 1)/(−l0 logp). �
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4. Proof of Theorem 5.

4.1. Strategy. By Lemmas 17 and 18, the difference between conditioning on
the event Gn = {Zn > 0} and conditioning on the event Hn := {Zm(n) ≥ nεn} is
asymptotically negligible if m(n)/n → 1 and εn → 0. Thus, it suffices to prove
the weak convergence of the conditional distributions in (1.7) when the condition-
ing event is Hn rather than Gn. The advantage of this is that, conditional on the
state of the branching random walk at time m(n), the next n − m(n) generations
are obtained by running independent branching random walks for time n − m(n),
starting from the locations of the particles in generation m(n). The argument will
hinge on showing that if m(n) < n is chosen appropriately, then these independent
branching random walks will not overlap much at time n and so the total number
Mn(j) of multiplicity-j sites will be, approximately, the sum of Zm(n) independent
copies of Mn−m(n)(j).

4.2. Overlapping.

LEMMA 19. Suppose that a critical branching random walk starts at time 0
with two particles u, v located at sites xu, xv ∈ Z

d , respectively. Let Dn(u, v) be
the number of particles in generation n located at sites with descendants of both u

and v. There then exists C > 0 such that for all generations n ≥ 1,

EDn(u, v) ≤ 2P2n(xv − xu) ≤ C
(
1/

√
n
)d

.(4.1)

PROOF. Denote by U
ζ
n (x) the number of descendants of particle ζ at site x in

generation n. Since the progeny of particles u and v make up mutually independent
branching random walks, the random variables Uu

n (x) and Uv
n (x) are independent.

However,

EDn(u, v) = E
∑

x∈Zd

(
Uu

n (x) + Uv
n (x)

)
1{Uu

n (x)≥1}1{Uv
n (x)≥1}

= 2
∑

x∈Zd

EUu
n (x)1{Uv

n (x)≥1}

≤ 2
∑

x∈Zd

Pn(x − xu)Pn(x − xv)

= 2P2n(xv − xu)

≤ C
(
1/

√
n
)d

. �

COROLLARY 20. Let Yn;m be the number of particles in generation n located
at sites with descendants of at least two distinct particles of generation m < n.
Then,

E(Yn;m | Fm) ≤ CZ2
m/(n − m)d/2.(4.2)
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4.3. Convergence of means.

PROPOSITION 21. In dimensions d ≥ 3,

lim
n

EMn(j) � κj exists for every j ≥ 1(4.3)

and
∞∑

j=1

j · κj = 1.(4.4)

PROOF. The random variable Mn(j) counts the number of multiplicity-j sites
in generation n. The particles at such a site will either all be descendants of a com-
mon first generation particle or not; hence, by conditioning on the first generation
of the branching random walk, we may decompose Mn+1(j) as

Mn+1(j) =
Z1∑
i=1

Mi
n(j) + An+1(j) − Bn+1(j),(4.5)

where: (a) the random variables {Mi
n(j)}i≤Z1 are independent copies of Mn(j);

(b) the error term An+1(j) is the number of multiplicity-j sites at time n + 1
with descendants of different particles in generation 1; (c) the correction Bn+1(j)

equals ∑
x∈Mn+1(j+)

# particles in generation 1

with exactly j descendants at x in generation n + 1,

where Mn+1(j+) is the set of sites with j + 1 or more particles in generation
n + 1. Obviously, An+1(1) = 0 because a site with only one particle cannot have
descendants of distinct first generation particles and so it follows that EMn+1(1) ≤
EMn(1). This implies that limn EMn(1) exists.

To see that limn→∞ EMn(j) exists for j ≥ 2, observe that both An+1(j) and
Bn+1(j) are bounded by the number of (n + 1)th generation particles at sites with
descendants of different particles of generation 1. Hence, by Lemma 19, writing
Z(1) = Z1 for the first generation of the branching process, we have

E
(
An+1(j) + Bn+1(j)

) ≤ 2E
∑

u,v∈Z(1)

Dn(u, v)

≤ 2
∞∑
l=2

Ql

(
l

2

)
Cn−d/2(4.6)

≤ C′n−d/2
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for some C′ < ∞ because the offspring distribution has finite second moment.
Consequently, by (4.5),

|EMn+1(j) − EMn(j)| = O(n−d/2).

Since the sequence n−d/2 is summable for d ≥ 3, the sequence {EMn(j)}n≥1 must
converge. This proves the convergence of means (4.3).

Clearly, for each n ≥ 1, it is the case that
∑

j jEMn(j) = EZn = 1. Hence, to
prove the equation (4.4), it suffices to show that for every ε > 0, there exists an
integer k = k(ε) such that for all n ≥ 1,

EYn(k) ≤ ε where Yn(k) =
∞∑

j=k

j · Mn(j)(4.7)

is the number of particles in generation n located at sites with at least k − 1 other
particles. Since Yn(k) ≤ ZnI {Zn ≥ k} and EZn = 1, it is certainly the case that
for any fixed n ≥ 1 and ε > 0, there exists k = k(n; ε), so inequality (4.7) holds;
the problem is to prove that k(ε) can be chosen independently of n. By the same
reasoning as in relation (4.5) above, for all n, k ≥ 1,

Yn+1(k) = ∑
u∈Z(1)

Y u
n (k) + Cn+1(k),(4.8)

where the random variables Yu
n (k) are independent copies of Yn(k) and the error

term Cn+1(k) is bounded by the total number of particles in generation n + 1 at
sites with descendants of at least two distinct particles in Z(1). Since EZ1 = 1,
the decomposition (4.8) implies that

|EYn+1(k) − EYn(k)| ≤ ECn+1(k).

However, by the same logic as in relation (4.6) above, there exists C′ < ∞, inde-
pendent of k and n, such that ECn+1(k) ≤ C ′n−d/2 for all n, k ≥ 1. It follows that
for sufficiently large n(ε) and all k ≥ 1,

∞∑
n=n(ε)

ECn+1(k) < ε.

Thus, if for some k ≥ 1 and n = n(ε), the inequality (4.7) holds, then EYn(k) < 2ε

for all n ≥ n(ε). This proves (4.4). �

REMARK 22. Since the error term Cn+1(k) in (4.8) is nonnegative, the ex-
pectations EYn(k) are nondecreasing in n. Because the offspring distribution is
nondegenerate, for every k ≥ 1, there exists n ≥ 1 such that Yn(k) ≥ 1 with pos-
itive probability, which forces EYn(k) > 0. Therefore, there are infinitely many
integers j ≥ 1 such that κj > 0.
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4.4. Conditional weak convergence: Proof of Theorem 5. In view of Kol-
mogorov’s estimate (1.1), the inequality (4.7) can be rewritten as

E

(∑
j≥k

jMn(j)
∣∣∣ Gn

)
≤ Cnε

for some constant C < ∞ not depending on n. Since �n = ∑
j Mn(j), it follows

that to prove Theorem 5, it suffices to prove that for any finite k ≥ 1,

L
({

Mn(j)

n

}
1≤j≤k

∣∣∣ Gn

)
	⇒ L({κjY }1≤j≤k),(4.9)

where Y is exponentially distributed with mean 2/σ 2. For this, we will use Ya-
glom’s theorem, the convergence of moments (4.3) and a crude bound on the vari-
ance of Mn(j):

Var(Mn(j)) ≤ EZ2
n = 1 + nσ 2.(4.10)

Fix 1 ≤ m < n and, for each particle u ∈ Zm, let Mu
n−m(j) be the number of

sites that have exactly j descendants of particle u in generation n. The random
variables Mu

n−m(j) are, conditional on Fm, independent copies of Mn−m(j). Now,
Mn(j) decomposes as

Mn(j) = ∑
u∈Z(m)

Mu
n−m(j) + Rn;m � M∗

n;m(j) + Rn;m,(4.11)

where the remainder Rn;m is bounded, in absolute value, by the number of particles
in generation n located at sites with descendants of at least two distinct particles
of generation m < n. By Corollary 20,

E(|Rn;m| | Fm) ≤ CZ2
m/(n − m)d/2.(4.12)

By Yaglom’s theorem, the conditional distribution of Zm/m, given the event Gm

of survival to generation m, converges to the exponential distribution with mean
2/σ 2. Thus, if m = m(n) is chosen so that m/n → 1 and n − m > n2/(d−ε) for
some ε > 0, then the bound in (4.12) will be of order oP (n). In view of (4.11) and
Lemmas 17 and 18, it follows that to prove (4.9), it suffices to prove the corre-
sponding statement in which the random variables Mn(j) are replaced by the ap-
proximations M∗

n;m(j) in (4.11) and the conditioning events Gn are replaced by the
events Hn = {Zm ≥ εnn}. However, this follows routinely by first and second mo-
ment estimates: if the scalars εn are chosen so that εn → 0 but nεn/(n−m) → ∞,
then, by relation (4.3) and the variance bound (4.10), we have

E

(
Z−1

m

∑
u∈Z(m)

Mu
n−m(j)

∣∣∣ Fm

)
1Hn −→ κj 1Hn

and

Var
(
Z−1

m

∑
u∈Z(m)

Mu
n−m(j)

∣∣∣ Fm

)
1Hn ≤ 1Hn

(
1 + (n − m)σ 2)

/Zm −→ 0.
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Chebyshev’s inequality now implies that the conditional distribution of M∗
n;m(j)/

Zm given Hn is concentrated in a vanishingly small neighborhood of κj as n → ∞.
Since the conditional distribution of Zm/n given Hn converges to the exponential
distribution with mean 2/σ 2 by Yaglom’s theorem and Lemmas 17 and 18, the
desired result follows.

5. Typical sites in dimension 2: Proof of Theorem 6.

5.1. Embedded Galton–Watson tree. For simplicity, we shall consider only the
binary fission case, that is, the special case where the offspring distribution is the
double-or-nothing distribution Q0 = Q2 = 1/2. The arguments can all be easily
adapted to the general case, at the expense of notational complexity.

We begin with the simple observation that the branching random walk can be
constructed by first generating a Galton–Watson tree τ according to the given off-
spring distribution, then independently attaching to the edges of this tree random
steps, distributed uniformly on the set N of nearest neighbors of the origin. The
vertices of τ at height n represent the particles of generation n; the location in Z

2

of a particle α of the nth generation is obtained by summing the random steps on
the edges of the path in τ leading from the root to α. Henceforth, we will dis-
tinguish between the underlying Galton–Watson tree τ and the marked tree τ ∗
obtained by attaching step variables to the edges of τ . Observe that the conditional
distribution of the marks of τ ∗ given the tree τ is the product uniform measure on
N E(τ ), where E (τ ) denotes the set of edges of τ .

A typical particle of the nth generation in a branching random walk condi-
tioned to survive to the nth generation can be obtained by first choosing a tree τ

randomly according to the conditional distribution Fn of the Galton–Watson tree
given the event of survival to generation n, then randomly selecting one of the
Zn ≥ 1 vertices at height n. For this random choice, we assume that the underly-
ing probability space supports a Uniform-[0,1] random variable γ independent of
all other random variables used in the construction of the branching random walk.
Since this procedure does not use information about the step variables attached to
the edges of the tree, it follows directly that the trajectory of the typical particle,
conditional on the underlying Galton–Watson tree, is a simple random walk started
at the origin.

5.2. Reduction to the size-biased case. The strategy of the proof of Theorem 6
will be based on a change of measure. Denote by PH = P n

H the probability measure
that is absolutely continuous relative to P with Radon–Nikodym derivative

dPH

dP
= Zn.(5.1)

The measure P n
H thus defined is a probability measure because EZn = 1. We call

it the size-biased measure. In the arguments below, the value of n will be fixed, so
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we will generally omit the dependence of the measure on n and write PH = P n
H .

Because the Radon–Nikodym derivative depends only on the underlying Galton–
Watson tree τ , which, under P , is independent of the marks, it follows that the
conditional distribution under PH of the marks given the tree τ is the same as
under P . Thus, to construct a version of the marked tree τ ∗ under PH , one may first
build a size-biased version of the underlying Galton–Watson tree, then attach edge
marks independently according to the (product) distribution on N . Henceforth, we
will call such a marked tree a size-biased marked tree or a size-biased branching
random walk.

Observe that PH is also absolutely continuous relative to the conditional distrib-
ution P ∗

n of P given the event Gn of survival to generation n; the Radon–Nikodym
derivative is

dPH

dP ∗
n

= Znπn,(5.2)

where πn = P(Gn) ∼ (2/nσ 2). By Yaglom’s theorem, under P ∗
n = P(·|Gn), the

distribution of dP n
H/dP ∗

n converges in law to the unit exponential distribution.
This implies the following.

LEMMA 23. To prove Theorem 6, it suffices to prove the analogous statements
for the measure PH , that is, to prove that: (i) for each ε > 0, there exists K < ∞
such that

PH {Tn ≥ K logn} < ε;(5.3)

and (ii) for all sufficiently small ε > 0, there exists δ > 0 such that for all large n,

PH {Tn ≥ ε logn} ≥ δ.(5.4)

PROOF. This is a direct consequence of the fact that the Radon–Nikodym
derivatives dPH/dP ∗ converge in law under P ∗ as n → ∞ because this implies
that the Radon–Nikodym derivatives dP ∗/dPH converge in law under PH . �

5.3. Structure of the size-biased process. The size-biased measure PH on
marked trees is especially well suited to studying typical points and has been
used by a number of authors [see Lyons, Pemantle and Peres (1995) and the refer-
ences therein] for similar purposes. First, consider the distribution of the unmarked
genealogical tree τ under PH . According to Lyons, Pemantle and Peres (1995),
a version of this random tree can be obtained by running a certain Galton–Watson
process with immigration. In the case of the double-or-nothing offspring distribu-
tion, the nature of this process is especially simple.
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Procedure SB. Each generation j has a single distinguished particle vj which
gives rise to two particles in generation j + 1, one being the distinguished particle
vj+1, the other being an undistinguished particle. All undistinguished particles
reproduce according to the double-or-nothing law. For each n, the distinguished
particle vn is uniformly distributed on the particles in generation n.

Thus, a version of the size-biased branching random walk, together with a ran-
domly chosen point vn of the nth generation, can be built by attaching indepen-
dent step random variables to the edges of the random tree built according to
Recipe SB. Equivalently, this process can be constructed using three indepen-
dent sequences of auxiliary random variables and a Bernoulli random variable
B0 ∼ Bernoulli(1/(2d + 1)):

(Ta) {Sn}n≥0 is a simple random walk in Z
2 with initial point S0 = 0;

(Tb) {ξi}i≥0 are independent and uniformly distributed on N ;
(Tc) {Ui

n(x)}i≥0 are independent copies of the branching random walk {Un(x)}
run according to the law P .

[We emphasize that the auxiliary branching random walks {Ui
n(x)}i≥1 are run ac-

cording to the original probability measure P , not the size-biased measure PH .]
The size-biased branching random walk is obtained by letting the “typical” particle
follow the trajectory Sj , then attaching an additional particle to each point (j, Sj )

visited by the typical particle, letting it make a step to Sj + ξj and then attaching
the j th copy of the branching random walk Uj to this particle.

COROLLARY 24. The distribution of Tn under the size-biased measure PH is
the same as the distribution under P of the random variable

T ∗
n = 1 + B0 +

n−2∑
j=0

U
j
n−j−1(Sn − Sj − ξj ).(5.5)

The Bernoulli random variable B0 accounts for the possibility that the sibling
of the typical particle jumps to the same site as the typical particle.

Reversing the random walk will not affect the distribution of the random vari-
able Tn since the random walk is independent of all other component variables of
the representation (5.5), nor will reversing the indices of the auxiliary branching
random walks Uj . Thus, the following random variable has the same distribution
as that given by (5.5):

T ∗∗
n = 1 + B0 +

n∑
j=2

U
j−1
j−1 (Sj + ξj−1).(5.6)

5.4. Variances of the occupation random variables. Next, we focus on the
distribution of the random variable T ∗∗

n defined by (5.6). To obtain concentration
results for this distribution, we will need bounds on the second moments of the
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random variables Un(x); for this, we use an exact formula for the second moment
of Un(x), valid in all dimensions.

PROPOSITION 25.

EUn(x)2 = Pn(x) + σ 2
n−1∑
i=0

∑
z

Pi(z)P
2
n−i (x − z).(5.7)

PROOF. This is a special case of equation (81) in Lalley (2009), which gives
the mth moment for all integers m ≥ 1. In the case m = 2, a simple proof can be
given by conditioning on the first generation of the branching random walk. Set
fn(x) = EUn(x)2 and gn(x) = Pn(x)2. Conditioning on generation 1 then gives

fn(x) = Pfn−1(x) + σ 2gn(x).

Since the operator P is linear, this relation can be iterated n − 1 times, yielding

fn(x) = P
n−1f1(x) + σ 2

n−2∑
i=0

P
ign−i(x).

This is equivalent to the identity (5.7). �

REMARK 26. If the offspring distribution has an exponentially decaying tail,
then one can deduce from (2.7) that

∑
x EUn(x)2 ≤ C logn/θ . However, formula

(5.7) implies that
∑

x EUn(x)2 grows at rate logn, so (2.7) cannot hold for large θ .

5.5. Mean and variance estimates for T ∗∗
n . The sum in the representation (5.6)

can be decomposed as �n + �n, where

�n :=
n∑

i=2

Pi(Si)(5.8)

and

�n :=
n∑

i=2

Xi−1 with Xi−1 := Ui−1
i−1 (Si + ξi−1) − Pi(Si).(5.9)

LEMMA 27. Let Sn be simple random walk in Z
2 and let �n be defined by

(5.8). Then,

lim
n→∞

E�n

logn
= A

2
(5.10)
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and

lim
n→∞ Var

(
�n

logn

)
= 0.(5.11)

Recall that A = 5/(4π) is the constant such that Pn(0) ∼ A/n.

PROOF OF LEMMA 27. By the symmetry of the simple random walk,
EPi(Si) = P2i (0) ∼ A/(2i) and so the first convergence (5.10) follows routinely.
To estimate the variance, first observe that

E�2
n = 2

∑
i<j

EPi(Si)Pj (Sj ) +
n∑

i=2

EPi(Si)
2

(5.12)
= 2

∑
i<j

EPi(Si)Pj (Sj ) + O(1).

The second equation follows from the local central limit theorem in d = 2, which
guarantees that Pi(z) ≤ C/i for some constant C < ∞ independent of i and z.
Next, observe that for i < j , by the symmetry of the random walk and the fact that
Pi(z) is maximal at z = 0 (Lemma 11),

EPi(Si)Pj (Sj ) = E(E(Pi(Si)Pj (Sj )|Si))

= EPi(Si)
∑
x∈Z2

Pj (Si + x)Pj−i (x)

= EPi(Si)P2j−i (Si)(5.13)

≤ EPi(Si)P2j−i (0)

= P2i (0)P2j−i (0).

Substituting this bound in (5.12) and applying the local central limit theorem [in
the form Pn(0) ∼ A/n] yields

∑
i<j

EPi(Si)Pj (Sj ) ≤
n∑

j=2

∑
i<j

P2i (0)P2j−i (0)

≤ 2
n∑

j=2

∑
i<j

A2/
(
2i(2j − i)

) + error

∼ A2

4
log2 n + error,

where the error is of a smaller order of magnitude. Together with (5.12) and (5.10),
this shows that

Var(�n) = E�2
n − (E�n)

2 = o(logn)2. �
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LEMMA 28. Let Sn, Ui
n(x) and ξi be independent sequences of random vari-

ables satisfying the hypotheses (Ta)–(Tc) of Section 5.3. If �n and Xi are defined
as in (5.9), then

EXi = 0 and EXiXj = 0 for all i = j.(5.14)

Consequently,

E�n = 0 and lim
n→∞ Var

(
�n

logn

)
= A2

8
.(5.15)

PROOF. To show that E�n = 0, it suffices to show that EXi = 0. This follows
from the fundamental relation (1.9) by conditioning on Si+1 and ξi :

EXi = EE
(
Ui

i (Si+1 + ξi) | Si+1, ξi

) − EPi+1(Si+1)

= EPi(Si+1 + ξi) − EPi+1(Si+1) = 0.

Now, consider the covariances EXiXj . To compute these expectations for i < j ,
condition on the random variables Si+1, Sj+1, {Ui

i (x)}x∈Z2 and ξi (but not ξj ) and
use the fundamental identity (1.9). This implies that EUj(x + ξj ) = Pj+1(x) for
each x ∈ Z

2 and so

EXiXj = EE(XiXj |·)
= EXiE

(
U

j
j (Sj+1 + ξj ) − Pj+1(Sj+1)|·)

= EXi · 0 = 0.

It follows that the variance of the sum �n is the sum of the variances of the incre-
ments Xi and so

Var(�n) =
n∑

i=2

EX2
i−1 =

n∑
i=2

EX2
i−1

=
n∑

i=2

(
EUi−1

i−1 (Si + ξi−1)
2 − EPi(Si)

2)

=
n∑

i=2

EUi−1
i−1 (Si + ξi−1)

2 + O(1).

Now, by the second moment formula (5.7),

EUi−1
i−1 (Si + ξi−1)

2

= E

(
Pi−1(Si + ξi−1) +

i−1∑
j=1

∑
z

Pj (z)
2Pi−j−1(Si + ξi−1 − z)

)
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= EPi(Si) +
i−1∑
j=1

∑
z

Pj (z)
2 · EPi−j (Si − z)

= P2i (0) +
i−1∑
j=1

∑
z

Pj (z)
2 · P2i−j (z).

The first term is of order O(1/i). To estimate the second, observe that by the local
central limit theorem, for large j ,

Pj (z)
2 ∼ A

2j
P[j/2](z),

where [·] denotes integer part and the relation holds uniformly for |z| ≤ C
√

j .
Consequently, for large i,

i−1∑
j=1

∑
z

Pj (z)
2 · P2i−j (z) ∼

i−1∑
j=1

A

2j

∑
z

P[j/2](z)P2i−j (z)

=
i−1∑
j=1

A

2j
P2i−j+[j/2](0)

∼
i−1∑
j=1

A

2j

A

2i − j/2

∼ A2 log i

4i
.

Summing from i = 1 to n shows that Var(�n) ∼ (A2/8) log2 n. This proves (5.15).
�

5.6. Proof of Theorem 6: Binary fission case. By Lemma 23, it suffices to
prove assertions (5.3) and (5.4). By Corollary 24, the distribution of Tn under
the size-biased measure PH is identical to the distribution of the random variable
T ∗∗

n := 1+B0 + T̃n under P , where T ∗∗
n is defined by (5.6). Finally, by Lemmas 27

and 28 (note that E�n�n = 0),

ET ∗∗
n ∼ A

2
logn and Var(T ∗∗

n ) ∼ A2

8
log2 n.

The first of these implies, by the Markov inequality, that T ∗∗
n = OP (logn). This

proves assertion (i) of Lemma 23. Assertion (ii) is a consequence of the following
elementary lemma [see, e.g., Lawler and Limic (2010), Lemma 12.6.1].

LEMMA 29. If X is a nonnegative random variable with positive, finite second
moment, then for any α ∈ [0,1],

P {X ≥ αEX} ≥ (1 − α)2(EX)2/EX2.(5.16)
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6. Clustering in dimension 2: Proof of Theorem 8.

6.1. Occupied sites in the ball B(Sn;	n). We consider only the case of binary
fission. The proof of Theorem 8 in this case, like that of Theorem 6, is based
on the change-of-measure strategy outlined in Section 5.2. In particular, we shall
prove the assertions corresponding to statements (A) and (B) of Theorem 8 for the
size-biased process of Section 5.3. Thus, assume throughout this section that the
random variables Sj , U

j
k and ξj are as in (Ta), (Tb), (Tc) of Section 5.3. Recall

that the size-biased branching random walk is obtained by letting the “typical”
particle follow the trajectory Sj , then attaching an additional particle to each point
(j, Sj ) visited by the typical particle, letting it make a step to Sj + ξj and then
attaching the j th copy of the branching random walk Uj to this particle. To prove
Theorem 8, it suffices to prove the following proposition.

PROPOSITION 30. Let {	n} be any sequence of real numbers such that
limn 	n = ∞ and limn log	n/ logn = 0. Let B(Sn;	n) be the ball of radius 	n

centered at Sn. Then, for the size-biased branching random walk:

(A) the number of unoccupied sites in B(Sn;	n) is oP (	2
n);

(B) the number of particles in B(Sn;	n) is of order Op(logn · 	2
n).

The construction of Section 5.3 shows [cf. formulas (5.5) and (5.6)] that the
number of particles at location Sn + x in the nth generation of the size-biased
branching random walk is distributed as

U∗∗
n (Sn + x) := δ0(x) + B0 · 1{|x|≤1} +

n−1∑
j=1

U
j
j (Sj+1 + x + ξj ).(6.1)

6.2. Vacant sites: Proof of Theorem 8(A). The representation (6.1) implies
that the probability that the site x +Sn is unoccupied, that is, that U∗∗

n (x +Sn) = 0,
is equal to the probability that none of the branching random walks Ui

i succeeds
in placing a particle at location x at time n. Since the attached branching random
walks are independent of the random walk trajectory {Si}i≤n and the displacement
random variables ξi , this probability is

P {site(Sn + x)vacant} = ∏
i

(
1 − ui(x + Si+1 + ξi)

)
,(6.2)

where un is the hitting probability function

un(x) := P {Un(x) ≥ 1}.(6.3)

PROPOSITION 31. There exists C > 0 such that for all n ≥ 1 and all sites
x ∈ Z

2,

un(x) ≥ Pn(x)

C + A logn
.(6.4)
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PROOF. By the fundamental identity, EUn(x) = Pn(x). By the second mo-
ment formula (5.7) of Proposition 25,

EUn(x)2 = Pn(x) +
n−1∑
i=0

∑
z

Pi(z)P
2
n−i (x − z)

≤ Pn(x) +
n−1∑
i=0

∑
z

Pi(z)Pn−i(x − z)Pn−i(0)

(6.5)

= Pn(x) + Pn(x)

n−1∑
i=0

Pn−i(0)

≤ Pn(x)(C + A logn).

Here, we have used the fact (Lemma 11) that Pn−i(x) is maximal at the origin
x = 0, together with a strong form of the local central limit theorem [specifi-
cally, the fact that the error in the local limit approximation is of order O(n−2),
which is summable]. The result (6.4) now follows immediately from the Cauchy–
Schwarz inequality P {X > 0} ≥ (EX)2/EX2, valid for any nonnegative random
variable X. �

The lower bound (6.4) leads easily to a useful upper bound for the probability
that site x is vacant. Partition the indices i ≤ n into two sets, the good and the
bad indices, as follows: fix a large constant κ < ∞ and say that index i is good if
|Si+1 + ξi | ≤ κ

√
i and that i is bad otherwise. By the local central limit theorem,

there is a constant C′ > 0, not depending on κ , such that for every good index
i ≥ |x|2,

Pi(x + Si+1 + ξi) ≥ C ′e−2κ2
/i.(6.6)

Thus, relations (6.2)–(6.4) and the concavity of the logarithm function imply that
for a suitable constant C ′′ > 0 not depending on κ ,

P {site (Sn + x) vacant} ≤ exp
{
−C′′e−2κ2 ∑

i good, |x|2≤i≤n

1

i log i

}
.(6.7)

LEMMA 32. Let {	n} be any sequence of real numbers such that limn 	n = ∞
and limn log	n/ logn = 0. Then, for every b > 0 and every ε > 0, there exists κ

sufficiently large such that

lim sup
n

P

{ ∑
i good, 	2

n≤i≤n

e−2κ2

i log i
≤ b

}
< ε.(6.8)
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PROOF. The hypotheses regarding the growth of 	n ensure that

Ln :=
n∑

i=	2
n

1/(i log i) −→ ∞.

Hence, it suffices to show that for some 0 < � < 1, if κ is sufficiently large, then

P

{ ∑
i bad, 	2

n≤i≤n

1

i log i
≥ �Ln

}
< ε(6.9)

for all large n. Recall that an index i is bad if |Si+1 + ξi | > κ
√

i. Chebyshev’s
inequality implies that for any ε > 0, if κ is sufficiently large, then P {|Si+1 + ξi | >
κ
√

i} < ε3. Hence, for large n,

E
∑

	2
n≤i≤n

1{|Si+1+ξi |>κ
√

i}
i log i

≤ ε3Ln.

It now follows, by the Markov inequality, that

P

{ ∑
	2
n≤i≤n

1{|Si+1+ξi |>κ
√

i}
i log i

≥ εLn

}
≤ ε2.(6.10)

The relations (6.10) clearly imply (6.9) and therefore prove (6.8). �

PROOF OF PROPOSITION 30(A). For any ε > 0, inequality (6.7) and Lem-
ma 32 together imply that for all large n, for any displacement x of magnitude
≤	n, the probability that site (x + Sn) is vacant is less than 2ε. Therefore, the
expected number of vacant sites in the ball B(Sn;	n) given the event Gn is, for
large n, no larger than 4πε	2

n. Assertion (A) of Theorem 8 follows directly, by the
Markov inequality. �

6.3. Proof of Proposition 30(B). Assertion (B) of Proposition 30 can be
proven in virtually the same manner as Theorem 6. The following is a brief sketch.
Define

Wn := # particles of generation n within distance 	n of Sn
(6.11)

in the size-biased branching random walk.

By representation (6.1),

Wn = 2 +
n−1∑
i=1

∑
|x|≤	n

Ui
i (x + Si+1 + ξi),(6.12)
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where Ui
j (x), Sn and ξi satisfy conditions (Ta)–(Tc) of Section 5.3. The distribu-

tion of the sum on the right-hand side is analyzed by decomposing it as �n + �n,
where, now,

�n :=
n∑

i=2

∑
|x|≤	n

Pi(x + Si) and

(6.13)

�n :=
n∑

i=2

( ∑
|x|≤	n

(
Ui−1

i−1 (x + Si + ξi−1) − Pi(x + Si)
))

.

By calculations similar to those used in proving Lemma 27, one shows that

lim
n→∞E�n/(π	2

n logn) = A/2;
lim

n→∞ Var(�n)/(π	2
n logn) = 0;

(6.14)
lim

n→∞ Var(�n)/(π	2
n logn) ≤ A2/8;

E�n = 0 for all n ≥ 1.

Given these estimates, one now obtains the desired conclusion, that Wn is of order
OP (	2

n logn), by the same simple argument as in Section 5.6.

7. Occupied sites in dimension 2.

7.1. Hitting probability function. For simplicity, we consider in this section
only the binary fission case; the case of a general offspring distribution with mean
1 and finite variance can be handled similarly. The proof of Theorem 7 will be
based on careful analysis of the hitting probability function un(x) defined by (6.3)
above. The connection with the total number �n of occupied sites at time n is
obvious: E�n = ∑

x un(x). Thus, our goal will be to bound the function un from
above. (A good lower bound has already been obtained in Proposition 31.) Our
main result is the following proposition.

PROPOSITION 33. There exist constants C1,C2 < ∞ such that for all n ≥ 2
and all sites x ∈ Z

2,

un(x) ≤ C1

n logn
exp

(
−C2

|x|2
n

)
(7.1)

and, hence, for some C > 0, we have that

E�n = ∑
x

un(x) ≤ C

logn
.(7.2)
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Theorem 7 follows as a direct consequence of (7.2) and Kolmogorov’s estimate
(1.1).

To obtain upper bounds on the function un(x), we will exploit the fact that
it satisfies a parabolic nonlinear partial difference equation. Recall that P is the
Markov operator for the simple random walk, that is, for any bounded function
w : Z2 → R,

Pw(x) = 1

5

∑
z−x∈N

w(z).

LEMMA 34. Assume that the offspring distribution is double-or-nothing.
Then, for each n ≥ 0 and each x ∈ Z

d ,

un+1(x) = Pun(x) − 1
2(Pun(x))2.(7.3)

PROOF. The event {Un+1(x) > 0} can only occur if the first generation is non-
empty and hence consists of two particles with locations in N . This happens with
probability 1/2. One or both of these particles must then engender a descendant
branching random walk that places a particle at site x in its nth generation. Since
the two descendant branching random walks are independent, with starting points
randomly chosen from N , this happens with probability 2p(1 − p) + p2, where
p = Pun(x). �

To extract information from the nonlinear difference equation (7.3), we will use
the following standard comparison principle. [Compare, e.g., Proposition 2.1 of
Aronson and Weinberger (1975).]

LEMMA 35. Let un(x) and vn(x) be functions taking values between 0 and 1
that satisfy the conditions

un+1(x) = Pun(x) − 1
2(Pun(x))2(7.4)

and

vn+1(x) ≥ Pvn(x) − 1
2(Pvn(x))2.(7.5)

If v0(x) ≥ u0(x) for all x, then

vn(x) ≥ un(x) for all n ≥ 0 and x ∈ Z
2.(7.6)

PROOF. Define �n(x) = vn(x) − un(x). Then, by the hypotheses (7.4) and
(7.5),

�n+1(x) ≥ P�n(x) − 1
2

(
Pun(x) + Pvn(x)

)
P�n(x).(7.7)
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Since un and vn take values between 0 and 1, so does the average (Pun + Pvn)/2.
Therefore, (7.7) and the induction hypothesis imply that

�n+1(x) ≥ P�n(x)
(
1 − 1

2

(
Pun(x) + Pvn(x)

)) ≥ 0. �

The trick is to find a function vn that satisfies inequality (7.5) and dominates u0.
To this end, fix κ > 0 and define

vn(x) = κ

n logn
exp

(
−βn|x|2

2n

)
,(7.8)

where

βn = β

(
1 − 1

logn

)
and β = 5/2.

LEMMA 36. There exist N0 ∈ N and κ0 independent of N0 such that for all
κ ≥ κ0 and n ≥ N0,

vn+1(x) ≥ Pvn(x)
(
1 − 1

2Pvn(x)
)
.(7.9)

The (rather technical) proof is deferred to Section 7.3 below. [See Bramson,
Cox and Greven (1993) for a similar argument in the context of the KPP equation.]
Given Lemma 36, Proposition 33 is an easy consequence.

COROLLARY 37. There exist N1 ∈ N and κ > 0 such that for all n ≥ 0,

un(x) ≤ vN1+n(x) ≤ 1.(7.10)

PROOF. Choose N1 ≥ N0 such that κ := N1 logN1 ≥ κ0. For such a choice of
(N1, κ) we have

u0(x) = 1{x=0} ≤ vN1(x) ≤ 1.

Moreover, by Lemma 36, the function ṽn(x) := vn+N1(x) satisfies (7.9). The con-
clusion now follows from the comparison Lemma 35. �

7.2. Representation of the conditional distribution. Révész (1996) considers
a branching random walk on R

d that is identical to the branching random walk we
have studied, except that the particle motion is by Gaussian N(0, I ) increments
rather than Uniform-N increments. One of the main results of Révész’s article
asserts that, conditional on the event that there is at least one particle of the nth
generation in the ball B of radius � = π−1/2 centered at the origin, the expected
total number of such particles is of order �(logn). His argument seems to rest on
the (unproved) assertion (see the first two sentences of his Proof of Theorem 3)
that, conditional on the event that a region C is occupied by at least one particle at
time t , the branching random walk consists of a single pinned random walk from
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which independent branching random walks are thrown. There is no proof of this
assertion (in fact, it is not even stated clearly, as far as we can see).

We believe that Révész’s assertion is false. The purpose of this section is to give
a representation related to that of Révész’s for the conditional law of the occupation
random variable Un(x) given the event

Gn,x := {Un(x) > 0}.
This representation is similar to Révész’s in that it consists of independent branch-
ing random walks thrown from a random path from (0,0) to (n, x); however, the
distribution of the random path is not that of a pinned simple random walk, but
rather that of a u-transformed simple random walk. This is defined as follows.

DEFINITION 38. For each site x and integer n ≥ 1 such that un(x) > 0,
the u-transformed simple random walk with endpoint (n, x) is the n-step, time-
inhomogeneous Markov chain {Xm}0≤m≤n on Z

d with initial point 0 and transition
probabilities

qm(z, y) := P(Xm = y | Xm−1 = z) = P1(y − z)
un−m(x − y)

Pun−m(x − z)
.(7.11)

REMARK 39. Except in the trivial case n = 1, a u-transformed random walk is
not a Doob h-process because the hitting probability function un(x) is not space–
time harmonic for the simple random walk, by (7.3) above. However, a pinned
random walk is an h-process; in particular, the one-step transition probabilities of
a pinned random walk conditioned to end at xn are given by

q∗
m(z, y) = P1(y − z)

Pn−m(xn − y)

Pn−m+1(xn − z)
.(7.12)

Since the function Pn−m(z, xn) is space–time harmonic, the transition probabilities
q∗ are not the same as those of the u-transformed random walk.

LEMMA 40. If un(x) > 0, then the u-transformed simple random walk with
endpoint (n, x) is well defined and, with probability 1, ends at Xn = x.

PROOF. What must be shown is that the Markov chain with transition proba-
bilities (7.11) will visit no states (m, z) at which the denominator Pun−m(x − z)

is zero. This is accomplished by noting that as long as Xm−1 is at a site z such
that un−m+1(x − z) > 0, then, by Lemma 34, the denominator Pun−m(x − z) > 0
and so there is at least one site y among the nearest neighbors of z such that
un−m(x −y) > 0. By (7.11), the next state Xm will then be chosen from among the
nearest neighbors such that un−m(x −y) > 0. This proves that the Markov chain is
well defined. The path ends at Xn = x because 0 is the only site at which u0 > 0.

�
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Our representation of the conditional distribution of the random variable Un(x)

given the event Gn,x requires four mutually independent sequences of random
variables:

(Ua) {Xm}0≤m≤n is a u-transformed simple random walk with endpoint (n, x);
(Ub) {Bm(w)}0≤m<n;w∈Zd are independent Bernoulli(βm(w)) random variables;
(Uc) {Ui

m(y)}i≥0 are independent copies of the branching random walk {Um(y)};
(Ud ) {ξi}i≥0 are independent and uniformly distributed on N .

The Bernoulli parameters are

βm(w) = 1

2 − Pun−m−1(x − w)
;(7.13)

note that for large values of n − m, the parameters βm(w) are uniformly close to
1/2 because un−m(x −w) is bounded by the probability that the branching random
walk will survive for n − m generations.

PROPOSITION 41. Assume that the offspring distribution is double-or-nothing
and let x be a site for which un(x) > 0. Then,

L
(
Un(x) | Un(x) ≥ 1

)
(7.14)

= L
(

1 +
n−1∑
m=0

Bm(Xm)Um
n−m−1(x − Xm − ξm+1)

)
.

PROOF. The assertion (7.14) is equivalent to the assertion (Claim 42 below)
that the conditional distribution can be simulated by the following Method A:
(1) let a particle ζ execute a u-transformed simple random walk {Xm}m≤n with
endpoint (n, x); (2) at each location (m,Xm) where 0 ≤ m < n, toss a βm(Xm)-
coin to determine whether or not to attach a descendant branching random walk;
(3) on the event that the coin toss is a head, create a new particle ζm, let it make
one jump ξm+1 to a neighboring site and then attach an independent branching ran-
dom walk starting from this new location; (4) count the total number of particles,
including ζ , that land at site x at time n.

CLAIM 42. This simulates the conditional distribution of the total number of
particles at site x in generation n given the event {Un(x) ≥ 1}.

This claim is proved by induction on n. The case n = 1 is routine, but for the
reader’s convenience we shall present the argument in detail. First, the only sites x

such that u1(x) > 0 are the nearest neighbors of the origin, so we assume that x is
one of these five points. Since u0 = δ0 is the Kronecker delta function, Pu0(x) =
1/5 and so β0(0) = 1/(2 − 1/5) = 5/9. Now, consider the first generation Z1 of
the branching random walk: this will be empty unless the initial particle fissions,
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in which case the two offspring are located at randomly chosen nearest neighbors
of the origin. Consequently, the unconditional distribution of U1(x) is

P {U1(x) = 0} = 1
2 + 1

2 × 4
5 × 4

5 ,

P {U1(x) = 1} = 1
2 × 2 × 4

5 × 1
5 ,

P {U1(x) = 2} = 1
2 × 1

5 × 1
5 .

It follows that the conditional distribution of U1(x) given the event {U1(x) > 0}
is that of 1 plus a Bernoulli(1/9) random variable. This coincides with the dis-
tribution of the random variable produced by Method A because B0(0) = 1 with
probability β0(0) = 5/9 and, on this event, the particle jumps to x with probability
1/5, leaving a second particle at x.

Next, consider the branching random walk conditioned to have at least one parti-
cle at site x in generation n ≥ 2. The first generation must consist of two particles,
at least one of which produces a descendant branching random walk that places
particles at x in its (n − 1)th generation. Conditional on the event that two parti-
cles are produced by the initial particle (i.e., the event {Z1 = 2}), each will have
chance p := Pun−1(x) of producing a descendant at site x in generation n; con-
sequently, the conditional probability that both particles will do so, given that at
least one does, is

p2

p2 + 2p(1 − p)
= pβn−1(0).

Moreover, given that either one of the particles produces a particle at site x in
generation n, the conditional probability that its first jump is to site y ∈ N is

P1(y)
un−1(x − y)

Pun−1(x)
;(7.15)

this is the distribution of the first step of a u-transformed random walk with
endpoint (n, x). Thus, a version of the random variable Un(x), conditional on
{Un(x) ≥ 1}, can be produced by the following two-step procedure.

(1) Place a particle η at a randomly chosen neighbor y of 0 according to the
distribution (7.15) and attach to it a branching random walk conditioned to produce
at least one descendant at site x − y in its (n − 1)th generation. By the induction
hypothesis, the contribution of offspring of η to site x in generation n will be

1 +
n−1∑
m=1

Bm(Xm)Um
n−m−1(x − Xm − ξm+1).(7.16)

(2) With probability pβn−1(0), do the same with a second particle τ . Observe
that, conditional on the event that this second particle τ is attached, the contribution
to site x in the nth generation will have distribution

L
(
Un−1(x − X1) | Un−1(x − X1) > 0

)
.
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Since the particle τ is attached with probability pβn−1(0), where p is the probabil-
ity that a particle born at time 0 will put a descendant at site x in generation n, step
(2) has the same effect as the following alternative: (2′) with probability βn−1(0),
place a second particle τ at a randomly chosen (i.e., uniformly distributed) neigh-
bor y of 0 and attach an independent copy of the branching random walk. This,
together with the representation (7.16) of the number of offspring of η at x in
generation n, shows that the total number of particles at x in generation n will be

1 +
n−1∑
m=0

Bm(Xm)Um
n−m−1(x − Xm − ξm+1)(7.17)

as desired. This completes the induction argument and thus proves (7.14). �

7.3. Proof of Lemma 36. Let x = (x1, x2). Then,

Pvn(x) = vn(x) · e−βn/(2n) · 1
5wn(x),

where

wn(x) = (
eβn/(2n) + e−βnx1/n + eβnx1/n + e−βnx2/n + eβnx2/n)

.

Then,

vn+1(x) − Pvn(x) + 1

2
(Pvn(x))2

= vn(x)e−βn/(2n) 1

5

(
5eβn/(2n) n logn

(n + 1) log(n + 1)
exp

(
θn|x|2

2

)

− wn(x) + e−βn/(2n)

10
vn(x)wn(x)2

)
,

where

θn = βn

n
− βn+1

n + 1
.

Therefore, it suffices to show that there exist N0 and κ0, independent of N0, such
that for all κ ≥ κ0 and all n ≥ N0, the following holds:

5eβn/(2n) n logn

(n + 1) log(n + 1)
exp

(
θn|x|2

2

)
− wn(x)

(7.18)

+ e−βn/(2n)

10
vn(x)wn(x)2 ≥ 0 for all x ∈ Z

2.
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(a) Estimate of eβn/(2n) n logn
(n+1) log(n+1)

. First, we have

n logn

(n + 1) log(n + 1)
= 1 − (n + 1) log(n + 1) − n logn

(n + 1) log(n + 1)

= 1 − 1

n + 1
− n log(1 + 1/n)

(n + 1) log(n + 1)

= 1 − 1

n + 1
− 1

(n + 1) log(n + 1)
+ o

(
1

n2

)

= 1 − 1

n
− 1

n logn
+ 1

n2 + o

(
1

n2

)
.

Therefore, recalling that βn = β(1 − 1/ logn), we have

eβn/(2n) n logn

(n + 1) log(n + 1)

=
(

1 + β

2n
− β

2n logn
+ β2

n

8n2 + O

(
1

n3

))

×
(

1 − 1

n
− 1

n logn
+ 1

n2 + o

(
1

n2

))

= 1 + (β − 2)

2n
− β + 2

2n logn
+ β2

n − 4β + 8

8n2 + o

(
1

n2

)
.

Since βn → β = 5/2, there exists N0 ∈ N such that for all n ≥ N0,

eβn/(2n) n logn

(n + 1) log(n + 1)
≥ 1 + β − 2

2n
− β + 2

2n logn
+ 2

8n2 ≥ 1.(7.19)

(b) Estimate of θn. Since βn = β(1 − 1/ logn), we have

θn = β

(
1 − 1/ logn

n
− 1 − 1/ log(n + 1)

n + 1

)

= β
1 − (n + 1)/ logn + n/ log(n + 1)

n(n + 1)
.

However,
n + 1

logn
− n

log(n + 1)
= log(n + 1) + n log(1 + 1/n)

logn log(n + 1)

= 1

logn
+ O

(
1

logn log(n + 1)

)
,

so it follows that

θn = β
1 − 1/ logn + O(1/(logn log(n + 1)))

n(n + 1)
.(7.20)
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CLAIM 43. Enlarging N0 if necessary, we have that for all n ≥ N0,

βθn − β2
n

n2 ≥ 1

n2 logn
.(7.21)

PROOF. Since βn = β(1 − 1/ logn),

n2 ·
(
βθn − β2

n

n2

)

= β2
{(

1 − 1

n + 1

)(
1 − 1

logn
+ O

(
1

logn log(n + 1)

))

−
(

1 − 2

logn
+ 1

(logn)2

)}

= β2
(

1

logn
+ o

(
1

logn

))
.

The relation (7.21) follows since β = 5/2 > 1. �

(c) Proof of (7.18) for |x| ≥ 3n. Equation (7.21) implies, enlarging N0 if nec-
essary, that for all n ≥ N0, θn ≥ 2/n2. Hence, when |x| ≥ 3n,

θn|x|2/2 ≥ βn|xi |/n, i = 1,2,

and

5 exp
(

θn|x|2
2

)
≥ wn(x).

The relation (7.18) follows by noting (7.19).

(d) Estimate of wn(x). For |x|/n sufficiently small, a Taylor expansion yields

wn(x) = eβn/(2n) + (e−βnx1/n + eβnx1/n) + (e−βnx2/n + eβnx2/n)

= 1 + β

2n
− β

2n logn
+ β2

n

8n2 + O

(
1

n3

)

+ 2 + β2
nx2

1

n2 + β4
nx4

1

12n4 + O

((
x1

n

)6)
(7.22)

+ 2 + β2
nx2

2

n2 + β4
nx4

2

12n4 + O

((
x2

n

)6)

= 5 +
[

β

2n
− β

2n logn

]
+

[
β2

n

8n2 + O

(
1

n3

)]

+ β2
n|x|2
n2 +

[
β4

n(x4
1 + x4

2)

12n4 + O

( |x|6
n6

)]
.
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(e) Estimate of eβn/(2n) · n logn
(n+1) log(n+1)

· exp(θn|x|2/2). By (7.19), for all n ≥
N0,

eβn/(2n) · n logn

(n + 1) log(n + 1)
· exp

(
θn|x|2

2

)

≥
(

1 + β − 2

2n
− β + 2

2n logn
+ 2

8n2

)
·
(

1 + θn|x|2
2

+ θ2
n |x|4

8

)
(7.23)

≥ 1 +
[
β − 2

2n
− β + 2

2n logn

]
+ 2

8n2 + θn|x|2
2

+ θ2
n |x|4

8
.

(f) Their difference. By (7.23) and (7.22),

5eβn/(2n) · n logn

(n + 1) log(n + 1)
· exp

(
θn|x|2

2

)
− wn(x)

≥ 5
[
β − 2

2n
− β + 2

2n logn

]
−

[
β

2n
− β

2n logn

]

+ 10

8n2 − β2
n

8n2 + O

(
1

n3

)
(7.24)

+
(
βθn − β2

n

n2

)
|x|2

+ 5θ2
n |x|4
8

− β4
n(x4

1 + x4
2)

12n4 + O

( |x|6
n6

)
.

Since β = 5/2,

5
(

β − 2

2n
− β + 2

2n logn

)
−

(
β

2n
− β

2n logn

)
= − 10

n logn
(7.25)

and, enlarging N0 if necessary, we can assume that for all n ≥ N0,

10

8n2 − β2
n

8n2 + O

(
1

n3

)
≥ 0.(7.26)

Moreover, θn ∼ β/n2 and it follows that for all n sufficiently large,

5θ2
n |x|4
8

− β4
n(x4

1 + x4
2)

12n4 ≥
(

5θ2
n

8
− β4

n

12n4

)
· |x|4 >

|x|4
2n4 .(7.27)

(g) Proof of (7.18) for δn ≥ |x| > √
10n, where δ > 0 is sufficiently small. By

(7.21), when |x| > √
10n, (

βθn − β2
n

n2

)
|x|2 ≥ 10

n logn
.
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Hence, by (7.24), (7.25), (7.26) and (7.27), the relation (7.18) holds for x such that
|x| > √

10n and |x|/n is sufficiently small.

(h) Proof of (7.18) for 3n ≥ |x| ≥ δn. By (7.21), for all n ≥ N0,

θn ≥ β2
n

n2β
− 1

βn2 logn
.

Hence, when |x| ≤ 3n,

exp
(

θn|x|2
2

)
≥ exp(β2

n|x|2/(5n2))

exp(|x|2/(5n2 logn))
≥ exp

(
− 2

logn

)
· exp

(
β2

n|x|2
5n2

)
.

By (7.19), to show (7.18), it is sufficient to show that for all n sufficiently large,(
eβn/(2n) + e−βnx1/n + eβnx1/n + e−βnx2/n + eβnx2/n)

≤ 5 exp
(
− 2

logn

)
· exp

(
β2

n|x|2
5n2

)
.

Since |x| ≤ 3n, (
1 − exp

(
− 2

logn

))
· exp

(
β2

n|x|2
5n2

)

≤
(

1 − exp
(
− 2

logn

))
exp

(
9β2

n

5

)
= o(1).

Hence, it suffices to show that

lim inf
n

inf
3n≥|x|≥δn

{
5 exp

(
β2

n|x|2
5n2

)
− (1 + e−βnx1/n + eβnx1/n

(7.28)

+ e−βnx2/n + eβnx2/n)

}
> 0.

By elementary calculus,

e−βnx1/n + eβnx1/n + e−βnx2/n + eβnx2/n ≤ 2 + e−βn|x|/n + eβn|x|/n

and thus

5 exp
(

β2
n|x|2
5n2

)
− (1 + e−βnx1/n + eβnx1/n + e−βnx2/n + eβnx2/n)

≥ 5 exp
(

β2
n|x|2
5n2

)
− 3 − e−βn|x|/n − eβn|x|/n.

Relation (7.28) now follows from the simple fact that

f (x) := 5ex2/5 − 3 − ex − e−x

is strictly increasing for x ≥ 0 and equals 0 only when x = 0.
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(i) Proof of (7.18) when |x| ≤ √
10n. Since |x| ≤ √

10n = o(n), by relations
(7.21), (7.24), (7.25), (7.26) and (7.27), we need only show that there exists κ0
such that if κ ≥ κ0 and n ≥ N0, then

e−βn/(2n)

10
vn(x)wn(x)2 ≥ 10

n logn
.

Since wn(x) ≥ 5, when |x| ≤ √
10n,

e−βn/(2n)

10
vn(x)wn(x)2 ≥ 25κ

10n logn
exp(−6β),

so κ0 can be chosen as 4 exp(6β), which is independent of N0.
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