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INFLUENCE OF SPATIAL CORRELATION
FOR DIRECTED POLYMERS

BY HUBERT LACOIN1

Università di Roma Tre

In this paper, we study a model of a Brownian polymer in R+ × Rd ,
introduced by Rovira and Tindel [J. Funct. Anal. 222 (2005) 178–201]. Our
investigation focuses mainly on the effect of strong spatial correlation in the
environment in that model in terms of free energy, fluctuation exponent and
volume exponent. In particular, we prove that under some assumptions, very
strong disorder and superdiffusivity hold at all temperatures when d ≥ 3 and
provide a novel approach to Petermann’s superdiffusivity result in dimension
one [Superdiffusivity of directed polymers in random environment (2000)
Ph.D. thesis]. We also derive results for a Brownian model of pinning in a
nonrandom potential with power-law decay at infinity.

1. Introduction.

1.1. Motivation and description of the model. Much progress has been made
lately in the understanding of localization and delocalization phenomena for ran-
dom polymer models and especially for a directed polymer in a random environ-
ment (see [6, 13] for reviews on the subject). The directed polymer in random envi-
ronment was first introduced in a discrete setup, where the polymer is modeled by
the graph of a random walk in Zd and the polymer measure is a modification of the
law of a simple random walk on Zd . Recently, though, there has been much interest
in the corresponding continuous models, involving Brownian motion rather than
simple random walk (see [2, 8, 22, 26]), or semicontinuous models (continuous
time and discrete space [17], discrete time and continuous space [18, 20]).

The advantage of these continuous or semicontinuous models is that they al-
low the use of techniques from stochastic calculus to derive results in a simple
way. Another advantage is that they are a natural framework in which to study the
influence of spatial correlation in the environment. In this paper, we investigate
the influence of slowly vanishing spatial correlation for the directed polymer in
Brownian environment, first introduced by Rovira and Tindel [22], which we now
describe.
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Let (ω(t, x))(t∈R+,x∈Rd ) be a real centered Gaussian field (under the probability
law P) with covariance function

P[ω(t, x)ω(s, y)] =: (t ∧ s)Q(x − y),(1.1)

where Q is a continuous nonnegative covariance function going to zero at infinity
(here, and throughout the paper, P[f (ω)] denotes expectation with respect to P;
analogous notation is used for other probability laws). Informally, the field can
be seen as a summation in time of independent, infinitesimal translation-invariant
fields ω(dt, x) with covariance function Q(x − y)dt . To avoid normalization, we
assume Q(0) = 1. We define the random Hamiltonian formally as

Hω,t (B) = Ht(B) :=
∫ t

0
ω(ds,Bs).

For a more precise definition of Ht , we refer to [2], Section 2, where a rigorous
meaning is given for the above formula. Notice that with this definition, (Ht(B))

is a centered Gaussian field indexed by the continuous function B ∈ C[0, t], with
covariance matrix

P
[
Ht

(
B(1))Ht

(
B(2))] := ∫ t

0
Q
(
B(1)

s − B(2)
s

)
ds.

For most of the purposes of this article, this could be considered as the definition
of Ht .

One defines the (random) polymer measure for inverse temperature β as a trans-
formation of the Wiener measure P as follows:

dμ
β,ω
t (B) := 1

Z
β,ω
t

exp(βHt(B))dP(B),

where Z
β,ω
t is the partition function of the model

Z
β,ω
t := P [exp(βHt)].

The aim of studying a directed polymer is to understand the behavior of
(Bs)s∈[0,t] under μt when t is large for a typical realization of the environment ω.

1.2. Very strong disorder and free energy. To study some characteristic prop-
erties of the system, it is useful to consider the renormalized partition function

W
β,ω
t = Wt := P

[
exp
(∫ t

0
βω(ds,Bs) − β2

2
ds

)]
= Z

β,ω
t

PZ
β,ω
t

.

It can be checked, without much effort, that Wt is a positive martingale with respect
to

Ft := σ {ωs, s ≤ t}.
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Therefore, it converges to a limit W∞. It follows from a standard argument (check-
ing that the event is in the tail σ -algebra) that

P{W∞ := 0} ∈ {0,1}.
Bolthausen first had the idea of studying this martingale for polymers in a discrete
setup [3]. He used it to prove that when the transversal dimension d is larger than 3
and β is small enough, the behavior of the polymer trajectory B is diffusive under
μt . The technique has since been improved by Comets and Yoshida [9] to prove
that whenever W∞ is nondegenerate, diffusivity holds. The argument of [9] can be
adapted to our Brownian case. When P{W∞ := 0} = 0, we say that weak disorder
holds; the situation where P{W∞ := 0} = 1 is referred to as strong disorder.

In the Gaussian setup, a partial annealing argument shows that increasing β

increases the influence of disorder. Indeed, for any t ≥ 0,

W
β+β ′,ω
t = P

[
exp
(∫ t

0
(β + β ′)ω(ds,Bs) − β2 + β ′2

2
ds

)]
(L)= P

[
exp
(∫ t

0
βω(1)(ds,Bs) +

√
β ′2 + 2ββ ′ω(2)(ds,Bs)

− (β + β ′)2

2
ds

)]
=: Ŵ

ω(1),ω(2)

t ,

where the equality holds in law and ω(1), ω(2) are two independent Gaussian fields
distributed like ω (we denote by P(1) ⊗ P(2) the associated probability). This is
also valid for t = ∞. Averaging with respect to ω(2) on the right-hand side gives

P(2)Ŵ
ω(1),ω(2)

t = W
β,ω(1)

t .

Moreover, for a given realization of ω(1), P(2)Ŵω(1),ω(2)

∞ = 0 implies that

Ŵω(1),ω(2)

∞ = 0, P(2)-a.s.

and, therefore,

P{Wβ+β ′,ω∞ = 0} ≥ P(1){P(2)Ŵω(1),ω(2)

∞ = 0
}

= P(1){Wβ,ω(1)

∞ = 0
}= P{Wβ,ω∞ = 0}.

As a consequence, there exists a critical value βc separating the two phases, that
is, there exists βc ∈ [0,∞) such that

β ∈ (0, βc) ⇒ weak disorder holds,

β > βc ⇒ strong disorder holds.

From the physicist’s point of view, it is, however, more natural to have a defini-
tion of strong disorder using free energy. The quantity to consider is the difference
between quenched and annealed free energy.
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PROPOSITION 1.1. The a.s. limit

p(β) := lim
t→∞

1

t
logWt = lim

t→∞
1

t
P[logWt ] =: lim

t→∞pt(β)(1.2)

exists and is almost surely constant. The function β �→ p(β) is nonpositive and
nonincreasing.

We can define

�βc := sup{β > 0 such that p(β) = 0}.
It is obvious from the definitions that βc ≤ �βc.

For a proof of the existence of the limits above and their equality, we refer
to [22], Lemma 2.4, Proposition 2.6. The nonpositivity follows from Jensen’s in-
equality

P[logWt ] ≤ log P[Wt ] = 0.

It can be shown (for results in the discrete setup, see [4, 5]) that an exponential
decay of Wt corresponds to a significant localization property of the trajectories.
More precisely, under this condition, it can be shown that two paths chosen inde-
pendently with law μ

β,ω
t tend to spend a positive fraction of the time in the same

neighborhood. For example, whenever the left-hand side exists [i.e., everywhere
except for perhaps countably many β , as p(β) + β2/2 is a convex function], we
have

∂p

∂β
(β) := − lim

t→∞
1

tβ
P
[
μ⊗2

β,t

(∫ t

0
Q
(
B(1)

s − B(2)
s

))];
see [4], Section 7, where this equality is proved for directed polymers in Z+ × Zd .
It has become customary to refer to this situation as very strong disorder.

It is widely expected that the two notions of strong disorder coincide outside
the critical point and that we have βc = �βc. However, it remains an open and chal-
lenging conjecture. In [7] and [15], it has been shown that for the directed polymer
in Z+ × Zd with d = 1,2 and i.i.d. site disorder, very strong disorder holds at all
temperatures, and it was previously well known that there is a nontrivial phase
transition when d ≥ 3. The same is expected to hold in continuous space and time
if the correlation function Q decays sufficiently fast at infinity.

1.3. Superdiffusivity. Another widely studied issue for directed polymers is
the superdiffusivity phenomenon [1, 2, 14, 18, 20, 21, 24]. As mentioned earlier,
in the weak disorder phase, the trajectory of the polymer conserves all the essential
features of the nondisordered model (i.e., standard Brownian motion). Therefore,
if one looks at a trajectory up to time t , the end position of the chain, the maximal
distance to the origin and the typical distance of a point in the chain to the origin
are all of order t1/2. This is one of the features of a diffusive behavior. It is believed
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that in the strong disorder phase, this property is changed, and that the quantities
mentioned earlier are greater than t1/2 (the chain tends to go farther from the origin
to reach a more favorable environment). Physicists have conjectured that there
exists a positive real number ξ > 1/2 such that, under μt for large t ,

max
s∈[0,t] ‖Bs‖ ≈ t ξ .

We refer to ξ as the volume exponent. It is believed that in the strong disorder
phase, ξ does not depend on the temperature and is equal to the exponent of the
associated oriented last-passage percolation model which corresponds to zero tem-
perature (see [21]). Moreover, the volume exponent should be related to the fluctu-
ation exponent, χ > 0, which describes the fluctuation of logZt around its average
and is defined (in an informal way) by

VarP logZt ≈ t2χ for large t .

The two exponents should satisfy the scaling relation

χ = 2ξ − 1.

Moreover, in dimension 1, an additional hyperscaling relation, ξ = 2χ , should
hold and it is therefore widely believed that ξ = 2/3 and χ = 1/3. In larger di-
mensions, there is no consensus in the physics literature regarding the exponent
values.

Superdiffusivity remains, however, a very challenging issue since, in most cases,
the existence of ξ and χ has not been rigorously established.

However, some mathematical results have been obtained in various contexts
related to directed polymers and can be translated informally as inequalities in-
volving ξ and χ .

• For undirected first-passage percolation, Newman and Piza proved that ξ ≤
3/4 in every dimension [19] and, in collaboration with Licea [16], that ξ ≥ 3/5
in dimension 2 (corresponding to d = 1 for a directed polymer), using geometric
arguments.

• Johansson proved [14] that ξ = 2/3 and χ = 1/3 for last-passage oriented
percolation with i.i.d. exponential variables on N × Z (this corresponds to the dis-
crete directed polymer with β = ∞). The method he employed relies on exact
calculation and it is probably difficult to adapt to other cases.

• For a discrete-time continuous-space directed polymer model, Petermann
[20] proved that for d = 1, ξ ≥ 3/5. Méjane [18] proved for the same model that
ξ ≤ 3/4 in every dimension. The result of Petermann has recently been adapted
for Brownian polymer in Brownian environment by Bezerra, Tindel and Viens [2].

• Very recently, Balazs, Quastel and Seppäläinen [1] computed the scaling ex-
ponent for the Hopf–Cole solution of the KPZ/stochastic Burgers equation, a prob-
lem that can be interpreted as a (1 + 1)-dimensional directed polymer in a random
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environment given by space–time white noise. Their result is coherent with phys-
ical predictions, that is, χ = 1/3 and ξ = 2/3, and may lead to exact results for
other models.

• Seppäläinen [24] proved, for directed polymers with log-gamma distributed
weight, that ξ = 2/3. As in Johansson’s case, his result relies on exact calculations
that are specific to the particular distribution of the environment.

In addition, the following relations linking ξ and χ have been proven to hold in
various contexts:

χ ≥ 2ξ − 1,

χ ≥ 1 − dξ

2
,

χ ≤ 1/2

(see, e.g., [8] in the case of Brownian polymer in Poissonian environment), leading,
for example, to χ ≥ 1/8 in dimension 1 + 1.

1.4. Presentation of the main results. In this paper, we focus (mainly) on the
case where Q has power-law decay [recall (1.1)]. Unless otherwise stated, we will
consider that there exists θ > 0 such that

Q(x) � ‖x‖−θ as ‖x‖ → ∞,(1.3)

where ‖ · ‖ denotes the Euclidean norm in Rd . By f (x) � g(x) as ‖x‖ → ∞, we
mean that there exist positive constants R and c such that

c−1f (x) ≤ g(x) ≤ cf (x) ∀x, ‖x‖ ≥ R.(1.4)

In the sequel, we also write, for functions of one real variable, f (t) � g(t) as
t → ∞ and f (t) � g(t) as t → 0+ [with definitions similar to (1.4)]. In this setup,
we obtain various results concerning free energy, volume exponent and fluctuation
exponent. These results show that when the spatial correlation decays sufficiently
slowly (d ≥ 2, θ ≤ 2 or d = 1, θ < 1), the essential properties of the system are
changed, even in a spectacular way for d ≥ 3, where the weak disorder phase
disappears and we can prove superdiffusivity.

THEOREM 1.2. We have the following characterization of weak/strong disor-
der regimes:

(i) if d ≥ 3 and θ > 2, then �βc ≥ βc > 0;
(ii) if d ≥ 2 and θ < 2, then βc = �βc = 0;

(iii) d = 1, βc = �βc = 0 for any value of θ .

In the cases where �βc = 0, we obtain sharp bounds on both sides for the free
energy.
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THEOREM 1.3. For d ≥ 2, θ < 2 or d = 1, θ < 1, we have

p(β) � −β4/(2−θ).

For d = 1, Q ∈ L1(R) (with no other assumption on the decay), we have

p(β) � −β4.

REMARK 1.4. For d = 1, θ > 1, one can see that Theorem 1.3 is identical
to [15], Theorem 1.5, suggesting that, in this case, the Brownian model is in the
same universality class as the discrete model. One would have the same conclusion
d = 2, θ > 2, suggesting that the system does not feel the correlation if Q is in
L1(Rd).

REMARK 1.5. In the cases we have left unanswered, namely d = 2, θ ≥ 2 and
d = 3, θ = 2, the technique used for the two-dimensional discrete case (see [15])
can be adapted to prove that �βc = 0. Since the method is relatively complicated
and very similar to that which is applied in the discrete case, we do not develop
it here. In these cases, p(β) decays faster than any polynomial around zero. For
d = 2, θ > 2 or d = 3, θ = 2, one would expect to have

p(β) � − exp
(
− c

β2

)
,

while for d = 2, θ = 2, one should have

p(β) � − exp
(
− c

β

)
.

However, in both cases, one cannot get a lower bound and an upper bound that
match.

For d ≥ 3, Theorem 1.2 ensures that diffusivity holds at high temperatures when
θ > 2. We have proved that, on the other hand, superdiffusivity holds (in every
dimension) for θ < 2.

THEOREM 1.6. When d ≥ 2 and θ < 2 or d = 1 and θ < 1, we have

lim
ε→0

lim inf
t→∞ Pμ

β,ω
t

{
sup

0≤s≤t

‖Bs‖ ≥ εt3/(4+θ)
}

= 1.

For d = 1, Q ∈ L1(R), we have

lim
ε→0

lim inf
t→∞ Pμ

β,ω
t

{
sup

0≤s≤t

‖Bs‖ ≥ εt3/5
}

= 1.

In the development, we will not go into the details of the proof of the case
Q ∈ L1(R) as it is very similar to the proofs of the other cases and, furthermore,
because it is just a minor improvement of the result of [2].
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REMARK 1.7. The argument we use for our proof uses change-of-measure
and coupling arguments instead of computation on Gaussian covariance matrices
as introduced by Petermann and later adapted by Bezerra, Tindel and Viens (see
[2, 20]). In our view, this makes the computation much clearer. Besides, our proof
is shorter and goes substantially further.

REMARK 1.8. Another polymer model, namely: Brownian polymer in a Pois-
sonian environment, has been introduced and studied by Comets and Yoshida [8].
We would like to stress that our proofs do not rely on the Gaussian nature of the
environment and that superdiffusivity with exponent 3/5, as well as very strong
disorder in dimension 1 and 2 (in dimension 2 one needs to adapt the method
used in [15]), can also be proven for this model by using methods developed in
the present paper. We focus on Brownian polymer mainly because it is the natural
model to study the effect of long-range spatial memory.

On the other hand, the bound of Méjane also holds for this model and so we
present a short proof for it.

PROPOSITION 1.9. For any values of β , d and arbitrary Q, and any α > 3/4,
we have

lim
t→∞ Pμt

{
max

s∈[0,t] ‖Bs‖ ≥ tα
}

= 0.

REMARK 1.10. The two previous results can be interpreted as

3

4 + (θ ∧ d)
≤ ξ ≤ 3/4.

Taking θ close to zero ensures that the upper bound for ξ is optimal as a bound
which holds for any correlation function Q. To get a better upper bound (e.g.,
ξ ≤ 2/3 in the one-dimensional case), one would have to use explicitly the lack of
correlation in the environment.

Our final result concerns the lower bound on the variance of logZt .

THEOREM 1.11. For any values of β , d and Q such that (1.3) holds, if α is
such that

lim
t→∞ Pμt

{
max

s∈[0,t] ‖Bs‖ ≥ tα
}

= 0,

then there exists a constant c (depending on β , d and Q) such that

VarP logZt ≥ ct1−(θ∧d)α.

In particular, for every ε, one can find c (depending on β , d , Q and ε) such that

VarP logZt ≥ ct(4−3θ)/4−ε.
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The previous result can be informally written as

χ ≥ 1 − (θ ∧ d)ξ

2
.

The paper is organized as follows.

• In Section 2, we study a homogeneous pinning model in order to derive re-
sults that will be of use for the study of p(β).

• In Section 3, we prove all the results concerning weak and strong disorder
and the free energy of the directed polymer, that is, Theorems 1.2 and 1.3.

• In Section 4, we prove all the results concerning volume exponent and fluc-
tuation exponent, that is, Theorem 1.6, Proposition 1.9 and Theorem 1.11.

2. Brownian homogeneous pinning in a power-law tailed potential.

2.1. The model and presentation of the results. In this section, we study a
deterministic Brownian pinning model. Most of the results obtained in this section
will be used as tools to prove lower bounds on the free energy for the directed
polymer model, but they are also of interest in their own right. This pinning model
was recently introduced and studied in a paper by Cranston et al. [10] in the case of
a smooth and compactly supported potential—various results were obtained using
the tools of functional analysis. Our main interest here is in potentials with power-
law decay at infinity.

V is either a bounded continuous nonnegative function of Rd such that V (x)

tends to zero when x goes to infinity or else V (x) = 1{‖x‖≤1}.
We define the energy of a continuous trajectory up to time t , (Bs)s∈R, to be the

Hamiltonian

Gt(B) :=
∫ t

0
V (Bs)ds.

We define ν
(h)
t , the Gibbs measure associated with that Hamiltonian and pinning

parameter (or inverse temperature) h ∈ R to be

dν
(h)
t (B) := exp(hGt(B))

Y
(h)
t

dP(B),

where Y
(h)
t denotes the partition function

Y
(h)
t := P [exp(hGt(B))].

As for the Brownian polymer, the aim is to investigate the typical behavior of
the chain under νt for large t . The essential question for this model is whether
or not the pinning potential hV is sufficient to keep the trajectory of the polymer
near the origin, where V takes larger values. It is intuitively clear that for large
h, the potential localizes the polymer near the origin [the distance remains O(1)
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as t grows] and that h ≤ 0 has no chance to localize the polymer. Therefore, one
must determine whether the polymer is in the localized phase for all positive h > 0
or if the phase transition occurs for some critical value of hc > 0. This question
was answered in [10] in the case of compactly supported smooth V , where it was
shown that localization holds for all h > 0 if and only if d ≤ 2 (in fact, this issue
is strongly related to recurrence/transience of the Brownian motion).

Answering this question relies on studying the free energy.

PROPOSITION 2.1. The limit

F(h) := lim
t→∞

1

t
logY

(h)
t

exists and is nonnegative. h �→ F(h) is a nondecreasing, convex function.

We call F(h) the free energy of the model. We define

hc = hc(V ) := inf{h : F(h) > 0} ≥ 0.

The existence of the limit is not straightforward. Cranston et al. proved it in [10],
Section 7, in the case of C∞ compactly supported V ; we will adapt their proof
to our case. To understand why F(h) > 0 corresponds to the localized phase, we
note the following point: convexity allows us to interchange limit and derivative;
therefore, at points where F has a derivative,

∂F

∂h
(h) = lim

t→∞
1

t
νt

[∫ t

0
V (Bs)ds

]
.

Cranston et al. proved that when V is smooth and compactly supported,
hc(V ) = 0 for d = 1,2 and hc(V ) > 0 when d ≥ 3, with some estimate on the
free energy around hc. We want to see how this result can be modified when V has
power-law decay at infinity. To do so, we will use [10], Theorem 6.1, for which
we present a simplified version for V (x) = 1{‖x‖≤1} (which is not smooth, but for
which the result still holds by monotonicity of the free energy).

THEOREM 2.2 (From [10], Theorem 6.1). Let V : Rd → R+ be defined as

V (x) = 1{‖x‖≤1}.

Then, for d = 1, 2, we have hc = 0 and, as h → 0+,

F(h) = 2h2(1 + o(1)
)

for d = 1,
(2.1)

F(h) = exp
(−h−1(1 + o(1)

))
for d = 2.

For d ≥ 3, we have hc > 0.
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REMARK 2.3. Although Theorem 2.2 is completely analogous to results ob-
tained for discrete random walk pinning on a defect line (see [11]), the methods
used to prove it are very different. Indeed, the technique used in the discrete setup
uses discrete renewal theory and cannot be adapted here.

Unless otherwise stated, we assume from now on that V has power-law decay
at infinity, that is, that there exists θ > 0 such that

V (x) � ‖x‖−θ as ‖x‖ → ∞(2.2)

[the notation � was introduced in (1.3)]. We prove that in dimension d ≥ 3,
whether or not hc is equal to zero depends only on the exponent θ . Furthermore,
when the value of θ varies, so does the critical exponent, which can take any value
in (1,∞).

THEOREM 2.4. For d ≥ 3, we have

θ > 2 ⇒ hc(V ) > 0(2.3)

and when h > 0 is small enough, we have

lim
t→∞Y

(h)
t < ∞.

Moreover, when θ < 2,

F(h) � h2/(2−θ) as h → 0+.(2.4)

For the lower-dimensional cases (d = 1,2), it follows from [10], Theorem 6.1,
and monotonicity of F in V that hc = 0 for all θ . However, some of the features of
Theorem 2.4 still hold.

THEOREM 2.5. For d = 2, θ < 2 and d = 1, θ < 1, we have

F(h) � h2/(2−θ) as h → 0+.(2.5)

For the sake of completeness, we also present the result for the case d = 1,
θ > 1. The following is the generalization of a result proved for compactly sup-
ported smooth function in [10], Theorem 6.1.

PROPOSITION 2.6. For d = 1 and V ∈ L1(R) continuous and nonnegative,

F(h) = ‖V ‖2
L1(R)

2
h2(1 + o(1)

)
as h → 0+.(2.6)

In the case d = 2, θ ≥ 2, it can be checked that monotonicity in V of the free
energy and (2.1) together imply that hc > 0 and that F(h) decays faster that any
power of h around h = 0. In the case d = 1, θ = 1, monotonicity again implies
that F(h) behaves like h2+o(1) around 0+.
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REMARK 2.7. In [10], the critical behavior of the free energy is computed
(in a sharp way) for every dimension, even in the case where hc > 0 (d ≥ 3), as
it is done in the discrete case. As will be seen in the proof, the method used to
obtain critical exponents in the present paper fails to give any result when hc > 0.
However, it would be natural to think that for some value of θ > 2, the critical
exponent depends on θ and is different from the one obtained in [10], Theorem 6.1.

2.2. Preparatory proof. In this subsection, we give the proofs of results that
are easy consequences of results in [10]: existence of the free energy and an esti-
mate of the free energy in the case V ∈ L1(R).

PROOF OF PROPOSITION 2.1. Given V and ε, one can find a compactly sup-
ported C∞ function V̌ such that

V̌ ≤ V ≤ V̌ + ε.

We write Y̌
(h)
t for the partition function corresponding to V̌ . Trivially, we have,

for every t ,

1

t
log Y̌

(h)
t ≤ 1

t
logY

(h)
t ≤ 1

t
log Y̌

(h)
t + hε.

As proved in [10], Section 7, log Y̌t converges as t goes to infinity so that

lim sup
1

t
logY

(h)
t − lim inf

1

t
logY

(h)
t ≤ hε.

The proof can also be adapted to prove the existence of the free energy for the
potential

V (x) := 1{‖x‖≤1}.

We omit the details here. �

PROOF OF PROPOSITION 2.6. First, we prove the upper bound. By the occu-
pation times formula (see, e.g., [23], page 224), we have∫ t

0
V (Bs)ds =

∫
R

Lx
t V (x)dx,

where Lx
t is the local time of the Brownian motion in x at time t . By Jensen’s

inequality, we then have

exp
(
h

∫
R

Lt(x)V (x)dx

)
≤
∫

R

V (x)dx

‖V ‖L1(R)

exp
(
h‖V ‖L1(R)L

x
t

)
.
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Moreover, under the Wiener measure with initial condition zero, Lx
t is sto-

chastically bounded (from above) by L0
t for all x so that

Y
(h)
t ≤

∫
R

V (x)dx

‖V ‖L1(R)

P
[
exp
(
h‖V ‖L1(R)L

x
t

)]
(2.7)

≤ P
[
exp
(
h‖V ‖L1(R)L

0
t

)]≤ 2 exp
( th2‖V ‖2

L1(R)

2

)
.

In the last inequality, we have used the fact that L0
t

(L)= √
t |N (0,1)|. Taking the

limit as t tends to infinity gives the upper bound. For the lower bound, the as-
sumption we have on V guarantees that, given ε > 0, we can find V̌ , smooth and
compactly supported, such that

V̌ ≤ V,

‖V̌ ‖L1(R) ≥ ‖V ‖L1(R) − ε.

Let F̌ be the free energy associated with V̌ . By [10], Theorem 6.1, and monotonic-
ity, we have that for h small enough (how small depends on ε),

F(h) ≥ F̌(h) ≥
(‖V̌ ‖2

L1(R)

2
− ε

)
h2.

Since ε was chosen arbitrarily, this gives the lower bound. �

2.3. Proof of upper bound results on the free energy. In this subsection, we
prove the upper bounds corresponding to (2.3), (2.4) and (2.5). We will give a
brief sketch of the proof. To do so, we will repeatedly use the following result.

LEMMA 2.8. Let (an)n∈N be a sequence of positive real numbers and (pn)n∈N
a sequence of strictly positive real numbers satisfying

∑
n∈N pn = 1. We then have∏

n∈N

an ≤ ∑
n∈N

pna
1/pn
n(2.8)

provided the left-hand side is defined. This formula is also valid for a product with
finitely many terms.

PROOF. Let X be the random variable whose distribution P is defined as fol-
lows:

P {X = x} = ∑
{n:(logan)/pn=x}

pn.

The formula considered is just Jensen’s inequality:

exp(P [X]) ≤ P exp(X). �
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We now proceed to the proof of delocalization at high temperature for θ > 2
and d ≥ 3. The strategy is to use Lemma 2.8 to bound the partition function by
a convex combination of countably many partition functions of pinning systems
with compactly supported potential and then to use rescaling of Brownian motion
to get that all of these partition functions are uniformly bounded as t → ∞.

PROOF OF (2.3). Let θ > 2 and ε > 0. We define

�V (x) :=
∞∑

n=0

1{‖x‖≤2n}2−nθ

(2.9)

= 1

1 − 2−θ

[
1{‖x‖≤1} +

∞∑
n=1

1{2n−1<‖x‖≤2n}2−nθ

]
.

Assuming that V > 0, it follows from assumption (2.2) that there exist constants
c1 and C1 such that

c1�V (x) ≤ V (x) ≤ C1�V (x).(2.10)

The proof would also work for V ≥ 0, by defining �V differently, that is, dropping
the 1{‖x‖≤1} term and starting the sum from some large n0 at the left-hand side of
(2.9). We restrict our attention to the case V > 0 here, only for notational reasons:
sums on balls are cleaner (to write) than sums on annuli.

Hence, for any p ∈ (0,1) and h > 0, we have

Y
(h)
t ≤ P

[
exp
(
hC1

∫ t

0
�V (Bs)ds

)]

≤ (1 − p)

∞∑
n=0

pnP

[
exp
(
(1 − p)−1p−nhC1

∫ t

0
1{‖Bs‖≤2n}2−nθ ds

)]

= (1 − p)

∞∑
n=0

pnP

[
exp
(
(1 − p)−1p−n2n(2−θ)hC1

∫ 2−2nt

0
1{‖Bs‖≤1} ds

)]
,

where the second inequality uses Lemma 2.8 with pn := (1 − p)pn and the
last equality is just a rescaling of the Brownian motion. We choose p such that
p2θ−2 = 1. We get

Y
(h)
t ≤ P

[
exp
(
(1 − p)−1hC1

∫ t

0
1{‖Bs‖≤1} ds

)]
.

For h small enough, Theorem 2.2 for d ≥ 3 allows us to conclude. Moreover (see
[8], Proposition 4.2.1), in this case, we have

lim
t→∞Y

(h)
t := Y (h)∞ < ∞. �

To prove an upper bound on the free energy when θ < 2, we start by putting
aside the contribution given by V (x) when x is large. This way, we just have to



INFLUENCE OF SPATIAL CORRELATION FOR DIRECTED POLYMERS 153

estimate the partition function associated with a compactly supported potential. In
dimension d ≥ 3, what was done in the preceding proof will be sufficient to obtain
the result. For d = 1 and d = 2, we will have to make good use of Theorem 2.2.

PROOF OF THE UPPER BOUNDS IN (2.4) AND (2.5). We start with the case
d = 1, θ < 1. From assumption (2.2), there exists a constant C2 such that for any
h ≤ 1,

V (x) ≤ C2h
θ/(2−θ) ∀x, |x| ≥ h−1/(2−θ),

(2.11) ∫
|x|≤h−1/(2−θ)

V (x)dx ≤ C2h
−(1−θ)/(2−θ).

We write V̌ (x) := V (x)1{|x|≤h−1/(2−θ)}. We have

V (Bs) ≤ V̌ (Bs) + C2h
θ/(2−θ)

so that

logY
(h)
t ≤ tC2h

2/(2−θ) + logP

[
exp
(
h

∫ t

0
V̌ (Bs)ds

)]
.

We know from (2.7) and (2.11) that the second term is smaller than

log 2 + t
‖V̌ ‖2

L1(R)

2
≤ log 2 + tC2

2h2/(2−θ),

which is the desired result.
Now, we consider the case d ≥ 2, θ < 2. Define �n = �nh := �| logh|/[(2 −

θ) log 2]� − K for some large integer K . We have

∑
n>�n

2−nθ1{‖Bs‖≤2n} ≤ ∑
n>�n

2−nθ = 2−(�n+1)θ

1 − 2−θ
.

Therefore [using formula (2.10)], we can find a constant C3 (depending on K and
C1) such that

Y
(h)
t ≤ P

[
exp
(
C1h

∫ t

0
�V (Bs)ds

)]

≤ eC3th
2/(2−θ)

P

[
exp

(
C1h

∫ t

0

�n∑
n=0

2−nθ1{‖Bs‖≤2n} ds

)]
,

so

1

t
logY

(h)
t ≤ C3h

2/(2−θ) + 1

t
logP

[
exp

(
C1h

∫ t

0

�n∑
n=0

2−nθ1{‖Bs‖≤2n} ds

)]
.(2.12)
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We now have to check that the second term in (2.12) does not give a contribution
larger than h2/(2−θ). For any p [we choose p = 2(θ/2)−1], as a consequence of
Lemma 2.8, we have

P

[
exp

(
C1h

∫ t

0

�n∑
n=0

2−nθ1{‖Bs‖≤2n} ds

)]

= P

[
exp

(
C1h

∫ t

0

�n∑
n=0

2−(�n−n)θ1{‖Bs‖≤2�n−n} ds

)]

≤
�n∑

n=0

(1 − p)pn

1 − p�n+1 P

[
exp
(
C1h

∫ t

0

p−n(1 − p�n+1)

1 − p
2(n−�n)θ1{‖Bs‖≤2�n−n} ds

)]

=
�n∑

n=0

(1 − p)pn

1 − p�n+1

× P

[
exp
(
C1h

∫ t2−2(�n−n)

0

p−n(1 − p�n+1)

1 − p
2(�n−n)(2−θ)1{‖Bs‖≤1} ds

)]
,

where the last line is obtained simply by rescaling the Brownian motion in the
expectation. Now, observe that for any ε > 0, one can find a value of K such that

C1h ≤ (1 − p)ε2−�n(2−θ),

so

C1h
p−n(1 − p�n+1)

1 − p
2(�n−n)(2−θ) ≤ ε2n((θ/2)−1).

Therefore, we have

P

[
exp

(
C1h

∫ t

0

�n∑
n=0

2−nθ1{‖Bs‖≤2n} ds

)]

≤ max
n∈{0,...,�n}P

[
exp
(∫ t2−2(�n−n)

0
ε2n(θ/2−1)1{‖Bs‖≤1} ds

)]
.

For d ≥ 3, the right-hand side is less than

P

[
exp
(∫ t

0
ε1{‖Bs‖≤1} ds

)]
,

which stays bounded as t goes to infinity. For d = 2, if t is sufficiently large and ε

small enough, then Theorem 2.2 allows us to write, for all n ∈ {0, . . . ,�n},

logP

[
exp
(∫ t2−2(�n−n)

0
ε2n((θ/2)−1)1{‖Bs‖≤1} ds

)]
≤ t2−2�n22n exp

(−2ε−12n(1−θ/2)).
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The maximum over n of the right-hand side is attained for n = 0. Therefore,

logP

[
exp

(
C1h

∫ t

0

�n∑
n=0

2−nθ1{‖Bs‖≤2n} ds

)]
≤ t2−2�n.

Inserting this into (2.12) ends the proof. �

2.4. Proof of lower bounds on the free energy. In this section, we prove the
lower bounds for the asymptotics (2.4) and (2.5). This is substantially easier than
what has been done for upper bounds. Here, one just needs to find a compactly sup-
ported potential which is bounded from above by V and that gives the appropriate
contribution.

For any n ∈ N,

Y
(h)
t ≥ P

[
exp
(
c1h

∫ t

0
�V (Bs)ds

)]
≥ P

[
exp
(
c1h2−nθ

∫ t

0
1{‖Bs‖≤2−n} ds

)]
.

Rescaling the Brownian motion, we get

Y
(h)
t ≥ P

[
exp
(
c1h2n(2−θ)

∫ t2−2n

0
1{‖Bs‖≤1} ds

)]
.

We can choose n = nh = �| logh|/[(2 − θ) log 2]� + K for some integer K . Let
C4 > 0 be such that

lim
t→∞

1

t
logP

[
exp
(∫ t

0
C41{‖Bs‖≤1} ds

)]
≥ 1.

By choosing K large enough, we can get

logY
(h)
t ≥ logP

[
exp
(
C4

∫ t2−2nh

0
1{‖Bs‖≤1} ds

)]
≥ t2−2nh.

From this, we get that hc = 0 and that

F(h) ≥ 2−2(K+1)h2/(2−θ). �

REMARK 2.9. The above proofs indicate that under the measure νt (h), when
t is large and θ < 2, d ≥ 2 or θ < 1, d = 1, the typical distance of the polymer
chain (Bs)s∈[0,t] to the origin is of order h−1/(2−θ).

3. The directed polymer free energy.

3.1. Lower bounds on the free energy, the second moment method and replica
coupling. In this section, we make use of the result obtained for homogeneous
pinning models to get some lower bounds on the free energy and prove the corre-
sponding halves of Theorems 1.2 and 1.3. The partition function of a homogeneous
pinning model appears naturally when one computes the second moment of Wt .
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We start with a short proof of the fact that weak disorder holds for small β if
d ≥ 3, θ > 2.

PROOF. It is sufficient to show that Wt converges in L2 for β sufficiently
small. We have

P[W 2
t ] = P

[
P ⊗2 exp

(∫ t

0

[
βω
(
ds,B(1)

s

)+ βω
(
ds,B(2)

s

)]− β2 ds

)]
= P ⊗2

[
exp
(
β2
∫ t

0
Q
(
B(1)

s − B(2)
s

)
ds

)]
.

The left-hand side is the partition function of the homogeneous pinning model
described in the first section. Therefore, the result is a simple consequence of The-
orem 2.4. �

We now prove the lower bound on the free energy corresponding to Theo-
rem 1.3. We use a method called replica coupling. The idea of using such a method
for directed polymers came in [15] and was inspired by a work on the pinning
model of Toninelli [25].

PROOF. Define, for β > 0, r ∈ [0,1],

�t(r, β) := 1

t
P
[
logP exp

(∫ t

0

√
rβω(ds,Bs) − rβ2/2 ds

)]
and for β > 0, r ∈ [0,1], λ > 0,

�t (r, λ,β) := 1

2t
P
[
logP ⊗2 exp

(∫ t

0

√
rβ
[
ω
(
ds,B(1)

s

)+ ω
(
ds,B(2)

s

)]
+ β2[λQ

(
B(1)

s − B(2)
s

)− r
]
ds

)]
=: 1

2t
P
[
logP ⊗2 exp

(
Ĥt

(
B(1),B(2), r, λ

))]
.

The function r �→ �t(r, β) satisfies [recall the definition of pt in (1.2)]

�t(0, β) = 0 and �t(1, β) = pt(β).

In the sequel, we use the following version of the Gaussian integration by parts
formula. The proof is straightforward.

LEMMA 3.1. Let (ω1,ω2) be a centered two-dimensional Gaussian vector. We
have

P[ω1f (ω2)] := P[ω1ω2]P[f ′(ω2)].
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Using this formula we get that

d

dr
�t(r, β) = −β2

2t
P
[(

μ
(
√

rβ)
t

)⊗2
[∫ t

0
Q
(
B(1)

s − B(2)
s

)
ds

]]
.(3.1)

Doing the same for �t , we get

d

dr
�t(r, λ,β)

= β2

2t
P
[
P ⊗2eĤt (B

(1),B(2),r,λ)
∫ t

0 Q(B
(1)
s − B

(2)
s )ds

P ⊗2eĤt (B(1),B(2),r,λ)

]
(3.2)

− β2

t
P
[
P ⊗4eĤt (B

(1),B(2),r,λ)+Ĥt (B
(3),B(4),r,λ)

∫ t
0 Q(B

(1)
s − B

(3)
s )ds

P ⊗4eĤt (B(1),B(2),r,λ)+Ĥt (B(3),B(4),r,λ)

]

≤ β2

2t
P
[
P ⊗2eĤt (B

(1),B(2),r,λ)
∫ t

0 Q(B
(1)
s − B

(2)
s )ds

P ⊗2eĤt (B(1),B(2),r,λ)

]
= d

dλ
�t(r, λ,β).

This implies that for every r ∈ [0,1], we have

�t(r, λ,β) ≤ �(0, λ + r, β).

In view of (3.1) and (3.2), using convexity and monotonicity of �t with respect to
λ and �t(r,0, β) = �t(r, β), we have

− d

dr
�t(r, β) = d

dλ
�t(r, λ,β)

∣∣∣∣
λ=0

≤ �t(r,2 − r, β) − �t(r, β)

2 − r
≤ �t(0,2, β) − �t(r, β),

where the last inequality uses the fact that r ≤ 1. Integrating this inequality be-
tween zero and one, we get

pt(β) ≥ (1 − e)�t(0,2, β),(3.3)

where

�t(0,2, β) = 1

2t
logP ⊗2 exp

[
2β2

∫ t

0
Q
(
B(1)

s − B(2)
s

)
ds

]
= 1

2t
logP

[
exp
(

2β2
∫ t

0
Q
(√

2Bs

)
ds

)]
=: 1

2t
logYt .

Here, Yt is the partition function of a homogeneous pinning model with potential
Q(

√
2·) and pinning parameter 2β2. Therefore, we know from Theorem 2.4 and

Proposition 2.6 that

lim
t→∞

1

t
logYt � β4/(2−θ) or lim

t→∞
1

t
logYt � β4

(where the case to be considered depends on the assumption we have on Q). This,
combined with (3.3), gives the desired bound. This completes the proof. �
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3.2. Proof of upper bounds on the free energy (Theorem 1.3). The technique
of the proof is mainly based on a change-of-measure argument. This method was
developed and first usedt for pinning models [12] and adapted for directed polymer
in [15]. Here, we have to adapt it to the continuous case and take advantage of the
occurrence of spatial memory in the environment. We briefly sketch an outline of
the proof.

• First, we use Jensen’s inequality to reduce the proof to estimating a fractional
moment (a noninteger moment) of Wt .

• We decompose Wt into different contributions corresponding to paths along
a corridor of fixed width.

• For each corridor, we slightly change the measure via a tilting procedure
which lowers the value of ω in the corridor.

• We use the change of measure to estimate the fractional moment of each
contribution.

We start by stating a trivial lemma which will be useful for our proof and for
the next section.

LEMMA 3.2. Let (ωx)x∈X be a Gaussian field indexed by X defined on the
probability space (�,P, F ), closed under linear combination. Define the measure
P̃ as

dP̃

dP
= exp(ωx0 − Varωx0/2).

Then, under P, (ωx)x∈X are still Gaussian variables, their covariance remain un-
changed and their expectation is equal to

P̃[ωx] = P[ωxωx0].

We now proceed to the proof. Set γ ∈ (0,1) (in the sequel we will choose γ =
1/2). We note that

P[logWt ] = 1

γ
P[logW

γ
t ] ≤ 1

γ
log P[Wγ

t ].

For this reason, we have

p(β) ≤ 1

γ
lim inf
t→∞

1

t
log PW

γ
t .(3.4)

Therefore, our aim is to prove that P[Wγ
t ] decays exponentially. Fix T :=

C1β
−4/(2−θ). Choose t := T n (n is meant to tend to infinity). For y = (y1, . . . ,

yd) ∈ Zd , define Iy :=∏d
i=1[yi

√
T , (yi + 1)

√
T ) (where

∏
here denotes interval

product).
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We decompose the partition function Wt into different contributions corre-
sponding to different families of paths. We have

Wt := ∑
y1,...,yn∈Zd

W(y1,...,yn),

where

W(y1,...,yn) := P

[
exp
(∫ t

0
βω(ds,Bs) − β2/2 ds

)
1{BkT ∈Iyk

,∀k=1,...,n}
]
.

We use the inequality (
∑

ai)
γ ≤∑a

γ
i , which holds for an arbitrary collection

of positive numbers, to get

P[Wγ
t ] ≤ ∑

y1,...,yn∈Zd

P
[
W

γ
(y1,...,yn)

]
.(3.5)

In order to bound the right-hand side of (3.5), we use the following change-of-
measure argument: given Y = (y1, . . . , yn), and P̃Y a probability measure on ω,

we have

PW
γ
(y1,...,yn) = P̃Y

[
dP

dP̃Y

W
γ
(y1,...,yn)

]
(3.6)

≤
(

P
[(

dP

dP̃Y

)γ /(1−γ )])1−γ (
P̃Y

[
W(y1,...,yn)

])γ
.

One then needs to find a good change of measure to apply this inequality. Let C2
be a (large) fixed constant. Define the blocks Ak by

Ak := [(k − 1)T , kT ] ×
d∏

i=1

[
yi
k−1 − C2

√
T ,yi

k−1 + C2
√

T
]
,

�Ak :=
d∏

i=1

[
yi
k−1 − C2

√
T ,yi

k−1 + C2
√

T
]
,

JY :=
n⋃

k=1

Ak,

with the convention that y0 = 0. Moreover, we define the random variable

�k :=
∫
Ak

ω(dt, x)dx√
T
∫
�A2

k
Q(x − y)dx dy

,

�Y :=
n∑

k=1

�k.
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Note that, with this definition, (�k)k∈{1,...,n} are standard centered independent
Gaussian variables. Define P̃Y by

dP̃Y

dP
:= exp(−�Y − n/2).

From this definition and using the fact that γ = 1/2, we have(
P
[(

dP

dP̃Y

)γ /(1−γ )])1−γ

= exp(n/2).(3.7)

We also define the measure P̃1 by

dP̃1

dP
:= exp(−�1 − 1/2).

We now consider the expectation of W(y1,...,yn) with respect to P̃Y . As the covari-
ance structure of the Gaussian field remains the same after the change of measure
(cf. Lemma 3.2), we have

P̃Y

[
W(y1,...,yn)

]= P exp
(
βP̃Y

[∫ t

0
ω(ds,Bs)

])
1{BkT ∈Iyk

,∀k=1,...,n}

= P
(0)
O

[
exp
(
βP̃Y

[∫ T

0
ω
(
ds,B(0)

s

)])
1{B(0)

T ∈Iy1 }

× P
(1)
BT

[
exp
(
βP̃Y

[∫ T

0
ω
(
d(s + T ),B(1)

s

)])
× 1{B(1)

T ∈Iy2 } · · ·1{B(n−2)
T ∈Iyn−1 }

× P
(n−1)
BT

[
exp
(
βP̃Y

[∫ T

0
ω
(
d
(
s + (n − 1)T

)
,B(n−1)

s

)])
× 1{B(n−1)

T ∈Iyn }
]
· · ·
]

≤
n∏

k=1

max
x∈Iyk−1

Px

[
exp
(
βP̃Y

[∫ T

0
ω
(
d(s + kT ),Bs

)])
1{BT ∈Iyk

}
]

=
n∏

k=1

max
x∈IO

Px

[
exp
(
βP̃1

[∫ T

0
ω(ds,Bs)

])
1{BT ∈Iyk−yk−1 }

]
.

The first equality is obtained by the use of the Markov property for Brownian

motion: P
(i)

B
(i−1)
T

denotes the Wiener measure for the Brownian motion conditioned

to start at B
(i−1)
T and which, conditionally on B

(i−1)
T , is independent of all the P (k),

k < i; ω(d(s + kT ,Bs) denotes the time increment of the field at (s + KT,Bs).
The inequality is obtained by maximizing over x ∈ Iyk

for intermediate points;
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Px is just the Wiener measure with initial condition x. The last equality just uses
translation invariance. Returning to (3.5), and using (3.6) and (3.7), we get

PW
γ
t ≤ en/2

[∑
y∈Zd

(
max
x∈IO

Px

[
exp
(
βP̃1

[∫ T

0
ω(ds,Bs)

])
1{BT ∈Iy}

)γ ]]n
.(3.8)

We are able to prove that the right-hand side decays exponentially with n if we are
able to show that∑

y∈Zd

(
max
x∈IO

Px

[
exp
(
βP̃1

[∫ T

0
dω(s,Bs)

])
1{BT ∈Iy}

])γ

(3.9)

is small. To do so, we have to estimate the expectation of the Hamiltonian under
P̃1. We use Lemma 3.2 and get

−P̃1

[∫ T

0
ω(ds,Bs)

]
= P

[
�1

∫ T

0
ω(ds,Bs)

]
=

∫
A1

Q(x − Bs)dx ds√
T
∫
�A2

1
Q(x − y)dx dy

.(3.10)

The above quantity is always positive. However, it depends on the trajectory B .
One can check that, when d ≥ 2, θ < 2 or d = 1, θ < 1, the assumption of polyno-
mial decay for Q implies that [we leave the case d = 1, Q ∈ L1(R) to the reader]∫

�A2
1

Q(x − y)dx dy � T d−θ/2.

To control the numerator on the right-hand side of (3.10), we need an assumption
on the trajectory. We control the value for trajectories that stay within A1. For all
trajectories (s,Bs)s∈[0,T ] that stay in A1, we trivially have∫ T

0

∫
[−C2

√
T ,C2

√
T ]d

Q(x − Bs)dx ds

≥ T min
y∈[−C2

√
T ,C2

√
T ]d

∫
[−C2

√
T ,C2

√
T ]d

Q(x − y)dx

and the right-hand side is asymptotically equivalent to T 1+(d−θ)/2.
Altogether, we get that there exists a constant C3 (depending on C2) such that,

uniformly on trajectories staying in A1,

P̃1

[∫ T

0
ω(ds,Bs)

]
≤ −C3T

(2−θ)/4.(3.11)

The distribution of the Brownian motion allows us to find, for any ε > 0, R = Rε

such that ∑
‖y‖≥R

(
max
x∈IO

Px

[
exp
(
βP̃1

[∫ T

0
ω(ds,Bs)

])
1{BT ∈Iy}

])γ

≤ ∑
‖y‖≥R

(
max
x∈IO

Px{BT ∈ Iy}
)γ ≤ ε,
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where the first inequality simply uses the fact that P̃1(· · ·) is negative. For the terms
corresponding to ‖y‖ < R, we use the rough bound

∑
‖y‖<R

(
max
x∈IO

Px

[
exp
(
βP̃1

[∫ T

0
ω(ds,Bs)

])
1{BT ∈Iy}

])γ

≤ (2R)d
(

max
x∈IO

Px

[
exp
(
βP̃1

[∫ T

0
ω(ds,Bs)

])]γ)
.

Set δ := (ε/(2R)d)1/γ . The remaining task in order to find a good bound on (3.9)
is to show that

max
x∈IO

Px exp
(
βP̃1

[∫ T

0
ω(ds,Bs)

])
≤ δ.

To get the above inequality, we separate the right-hand side into two contributions:
trajectories that stay within A1 and trajectories that go out of A1. Bounding these
contributions gives

max
x∈IO

Px

[
exp
(
βP̃1

[∫ T

0
ω(ds,Bs)

])]
≤ P

{
max

s∈[0,T ] |Bs | ≥ |C2 − 1|√T
}

+ max
x∈IO

Px

[
exp
(
βP̃1

[∫ T

0
ω(ds,Bs)

])
1{(s,Bs):s∈[0,T ]⊂A1}

]
,

where the first term in the right-hand side is an upper bound for

max
x∈IO

Px

[
exp
(
βP̃1

[∫ T

0
ω(ds,Bs)

])
1{(s,Bs):s∈[0,T ]�A1}

]
.

We can fix C2 so that the first term is less that δ/2. Equation (3.11) guaranties
that the second term is less than

exp
(−βC3T

(2−θ)/4)= exp
(−C3C

(2−θ)/4
1

)≤ δ/2,

where the last inequality is obtained by choosing C1 sufficiently large. We have
thus shown that (3.9) is less than 2ε. Combining this result with (3.8) and (3.4)
implies (for ε small enough) that

p(β) ≤ − 1

T
,

which is the desired result. �
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4. Fluctuation exponent and volume exponent. In this section, we prove
Theorem 1.6, Proposition 1.9 and Theorem 1.11. We give a sketch of our proof
for the superdiffusivity result in dimension one. The idea is to compare the energy
gain and the entropy cost for going to a distance tα away from the origin.

We look at the weight under μt of the trajectories (Bs)s∈[0,t] that stay within a
box of width tα centered on the origin for s ∈ [t/2, t] (box B1) and compare this
with the weight of the trajectories that spend all the time s ∈ [t/2, t] in another box
of the same width (see Figure 1, trajectories a and b). The entropic cost for one
trajectory to reach the box B2 and stay there is equal to logP {B stays in B2} ∼
t2α−1.

In order to estimate the energy variation between the two boxes, we look at �i,

the sum of all the increments of ω in the box Bi (i = 1,2):

�i :=
∫
Bi

ω(ds, x)dx.

The �i are Gaussian variables that are identically distributed, with variance ≈
tα(2−θ)+1. Therefore, in each box, the empirical mean of the increment of ω by
a unit of time in Bi (�i/|Bi|) is Gaussian with variance ≈ t−αθ−1 [the typical
fluctuations are of order t (−αθ−1)/2]. Multiplying this by the length of the box
(t/2), we get that the empirical mean of the energy for paths in a given box has
typical fluctuations of order t (1−αθ)/2.

FIG. 1. A representation of the two events for which we want to compare weights, and two typical
trajectories for each event (a and b).
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Therefore, if α < 3
4−θ

, with positive probability, the energy gain for going into
the box B2 is at least t (1−α)/2 and is bigger than the entropy cost t2α−1, so the
trajectory is less likely to stay in the box B1 than in the box B2.

To make this argument rigorous, we have to:

• use Girsanov path transforms to make the argument about the entropy work;
• use a measure coupling argument to make the energy comparison rigorous;
• make the comparison with more than two boxes.

In this section, for practical reasons, we work with ‖ · ‖∞, the l∞-norm in Rd ,
and not with the Euclidean norm.

4.1. Proof of Theorem 1.6. Let N be some even integer, α := 3
4+θ

. For k ∈ N,

define

�k := [t/2, t] ×
[
(2k − 1)tα

N2 ,
(2k + 1)tα

N2

]
×
[
− tα

N2 ,
tα

N2

]d−1

.

Define

Z
(k)
t := P

[
exp
(
β

∫ t

0
ω(ds,Bs)

)
1{(s,Bs)∈�k,∀s∈[t/2,t]}

]
.

The proof can be decomposed in two steps. The first step (the next lemma) has been
strongly inspired by the work of Petermann [20], Lemma 2, and gives a rigorous
method to bound from above the entropic cost for reaching a region tα away from
the origin.

LEMMA 4.1. With probability greater than 1 − 1/N , we have∑
k∈{−N,...,N}\{0}

Z
(k)
t ≥ exp

(
− 8

N2 t2α−1
)
Z

(0)
t .

PROOF. We use the transformation hk : R+ × Rd → Rd which transforms a
path contributing to Z

(0)
t into a path contributing to Z

(k)
t .

hk : (s, x) �→ x + ((2s/t) ∧ 1
) 2k

N2 tαe1,

where e1 is the vector (1,0, . . . ,0) in Rd, and we define

�Z(k)
t := P exp

(
β

∫ t

0
ω(ds, hk(s,Bs))

)
1{(s,Bs)∈A0,∀s∈[t/2,t]}.

One can check that (�Z(k)
t )k∈{−N/2,...,N/2} is a family of identically distributed ran-

dom variables. Moreover, elementary reasoning gives us that there exists an integer
k0, with |k0| ≤ N/2, such that

Q
{�Z(k0)

t = max
k∈{−N/2,...,N/2}

�Z(k)
t

}
≤ 1

N + 1
.
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From this, one infers, by translation invariance of the environment, that

Q
{�Z(0)

t ≥ max
k∈{−N/2−k0,...,N/2−k0}

�Z(k)
t

}
≤ 1

N + 1
.

The final step to get the result is to compare �Z(k)
t with Z

(k)
t . This can be done by

using a Girsanov path transform:

Z
(k)
t = P exp

(
− 4k

N2 tα−1B
(1)
t/2 − 4k2

N4 t2α−1 + β

∫ t

0
ω(ds, hk(s,Bs))

)
× 1{(s,Bs)∈A0,∀s∈[t/2,t]}

≥ exp
(
−4(k2 + |k|)

N4 t2α−1
)
�Z(k)

t ≥ exp
(
− 8

N2 t2α−1
)
�Z(k)

t ,

where B(1) is the first coordinate of the Brownian motion. �

REMARK 4.2. If one chooses α = 1/2, this lemma shows that in any dimen-
sion, for any correlation function Q, the directed polymer is at least diffusive, that
is, that the typical distance to the origin is of order at least

√
N .

For the rest of the proof, the idea which is used differs substantially from the one
used in [20] and then adapted in [2]. Instead of using purely Gaussian tools and
working with covariance matrices, we use changes of measure that are similar to
those used in the previous section. This shortens the proof considerably and makes
it less technical and more intuitive. Moreover, it highlights the fact that the proof
could be adapted to a non-Gaussian context, for example, the model of Brownian
polymer in a Poissonian environment studied by Comets and Yoshida [8].

We set T := tαN−3 and define

� :=
∫
[−T ,T ]d

∫ t
t/2 ω(ds, x)dx√

t/2
∫
[−T ,T ]d×[−T ,T ]d Q(x − y)dx dy

,

which is a standard centered Gaussian variable. We define the probability measure
P0 on the environment by its Radon–Nikodym derivative with respect to P:

dP0

dP
(ω) := exp(−� − 1/2).

The probability P0 has two very important characteristics. It is not very different
from P (see the next lemma) and it makes the environment less favorable in the
box [−t/2, t] × [−T ,T ]d so that, under P0, the trajectory will be less likely to
stay in that box.

LEMMA 4.3. Letting A be any event, we have

P(A) ≤√eP0(A).
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PROOF. This is a simple application of the Hölder inequality:

P(A) = P0

[
dP
dP0

1A

]
≤
√

P
[

dP
dP0

]√
P0(A). �

Now, our aim is to show that under P0, the probability that the walk stays in
[−tα/N3, tα/N3]d is small and then to use the above lemma to conclude. We use
Lemma 3.2 to define, on the same space, two environments with laws P and P0.
Indeed, if ω has distribution P, then ω̂ defined by

ω̂(0, x) := 0 ∀x ∈ Rd,

ω̂(ds, x) := ω(ds, x) − P[�ω(ds, x)](4.1)

= ω(ds, x) − 1s∈[t/2,t]
∫
[−T ,T ]d Q(x − y)dy√

t/2
∫
[−T ,T ]d×[−T ,T ]d Q(x − y)dx dy

ds

has distribution P0. We define

Xt := P

[
exp
(
β

∫ t

0
ω(ds,Bs)

)
1{Bs∈[−T ,T ]d ,∀s∈[t/2,t]}

]
,

X̂t := P

[
exp
(
β

∫ t

0
ω̂(ds,Bs)

)
1{Bs∈[−T ,T ]d ,∀s∈[t/2,t]}

]
,

Ẑ
(k)
t := P

[
exp
(
β

∫ t

0
ω̂(ds,Bs)

)
1{(s,Bs)∈�k,∀s∈[t/2,t]}

]
.

From this definition

μ
β,ω
t

{
max

s∈[0,t] ‖Bs‖∞ ≤ tα/N3
}

≤ Xt∑
k∈{−N,...,N}\{0} Z

(k)
t

.(4.2)

And, for any x,

P0

[
μ

β,ω
t

{
max

s∈[0,t] ‖Bs‖∞ ≤ tα/N3
}

≤ x
]

= P
[
μ

β,ω̂
t

{
max

s∈[0,t] ‖Bs‖∞ ≤ tα/N3
}

≤ x
]

(4.3)

≤ P
[

X̂t∑
k∈{−N,...,N}\{0} Ẑ

(k)
t

≤ x

]
.

We will now use measure coupling to bound the right-hand side of the above.

LEMMA 4.4. For N large enough and t � N3/α , we have

X̂t∑
k∈{−N,...,N}\{0} Ẑ

(k)
t

≤ Xt∑
k∈{−N,...,N}\{0} Z

(k)
t

exp(−C4t
1/2T −θ/2).



INFLUENCE OF SPATIAL CORRELATION FOR DIRECTED POLYMERS 167

PROOF. From the definition of Xt and X̂t , we have

log(X̂t/Xt ) ≤ β sup
{B:‖Bs‖∞≤T ,∀s∈[t/2,t]}

∫ t

0

(
ω̂(ds,Bs) − ω(ds,Bs)

)
,

where the “sup” is to be understood as the essential supremum under the Wiener
measure P . It follows from the coupling construction (4.1) that for the trajectories
staying within [−T ,T ]d in the time interval [t/2, t], we have∫ t

0

(
ω̂(ds,Bs) − ω(ds,Bs)

)= −P
[∫ t

t/2
ω(ds,Bs)�

]

= − 1[−T ,T ]d
∫ t
t/2 Q(Bs − y)ds dy√

t/2
∫
[−T ,T ]d×[−T ,T ]d Q(x − y)dx dy

dt

≤ −
√

t/2 infx∈[−T ,T ]d
∫
[−T ,T ]d Q(x − y)dy√∫

[−T ,T ]d×[−T ,T ]d Q(x − y)dx dy

so that

log(X̂t/Xt) ≤ −β
√

t/2 infx∈[−T ,T ]d
∫
[−T ,T ]d Q(x − y)dy∫

[−T ,T ]d×[−T ,T ]d Q(x − y)dx dy
.(4.4)

Performing a similar computation, one gets that

log

∑
k∈{−N,...,N}\{0} Z

(k)
t∑

k∈{−N,...,N}\{0} Ẑ
(k)
t

(4.5)

≤ β
√

t/2 max‖x‖∞≥tα/N2
∫
[−T ,T ]d Q(x − y)dy√∫

[−T ,T ]d×[−T ,T ]d Q(x − y)dx dy
.

It remains to give an estimate for the right-hand sides of (4.4) and (4.5).
First, we remark that∫

[−T ,T ]d×[−T ,T ]d
Q(x − y)dx dy � T 2d−θ .(4.6)

For (4.4), we note that one can find a constant C5 such that for all x, y ∈ [−T ,T ]d ,
Q(x − y) ≥ C5T

−θ , so that

inf
x∈[−T ,T ]d

∫
[−T ,T ]d

Q(x − y)dy ≥ C5T
d−θ .(4.7)

For (4.5), we note that one can find a constant C6 such that for all y ∈ [−T ,T ]d ,
‖x‖∞ ≥ tα/N2, Q(x − y) ≤ C6(t

α/N2)−θ = C6(NT )−θ , so that

max
‖x‖∞≥tα/N2

∫
[−T ,T ]d

Q(x − y)dy ≤ C6N
−θT d−θ .(4.8)
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For N large enough, the term above will be dominated by C5T
d−θ so that, com-

bining (4.6), (4.7) and (4.8), one gets that there exists C4 such that

log
X̂t

∑
k∈{−N,...,N}\{0} Z

(k)
t

Xt

∑
k∈{−N,...,N}\{0} Ẑ

(k)
t

≤ −C4t
1/2T −θ/2.

�

Now, the preceding result, together with Lemma 4.1, ensures that, with proba-
bility larger than 1 − 1/N, we have

X̂t∑
k∈{−N,...,N}\{0} Ẑ

(k)
t

≤ Z
(0)
t∑

k∈{−N,...,N}\{0} Z
(k)
t

exp(−t1/2T −θ/2)

(4.9)

≤ exp
(

8

N2 t2α−1 − C4t
1/2T −θ/2

)
.

We can bound the term in the exponential on the right-hand side when t is large
enough:

8

N2 t2α−1 − C4t
1/2T −θ/2 =

[
8

N2 − C4N
3θ/2

]
t (2−θ)/(4+θ)

(4.10)
≤ −t (2−θ)/(4+θ).

We now combine all of the elements of our reasoning. Equations (4.9) and (4.10)
combined with (4.3) give us

P0

{
μ

β,ω
t

{
max

0≤s≤t
‖Bs‖∞ ≤ tα/N3

}
≥ exp

(−t (2−θ)/(4+θ))}≤ 1

N
.

Lemma 4.3 allows us to get from this

P
{
μ

β,ω
t

{
max

0≤s≤t
‖Bs‖∞ ≤ tα/N3

}
≥ exp

(−t (2−θ)/(4+θ))}≤√e/N

so that

Pμ
β,ω
t {max‖Bs‖∞ ≤ tα/N3} ≤ exp

(−t (2−θ)/(4+θ))+√e/N.

We obtain the desired result by choosing N large enough. �

REMARK 4.5. The above proof is valid for θ < 2, d ≥ 2 and also for
θ < 1, d = 1. For the case d = 1, θ > 1 [or, more generally, for d = 1, Q ≥ 0,∫
R Q(x)dx < ∞], one has to choose α = 3/5 and replace (4.6) by∫

[−T ,T ]×[−T ,T ]
Q(x − y)dx dy � T

and (4.7), (4.8) by

inf
x∈[−T ,T ]

∫
[−T ,T ]

Q(x − y)dy ≥ C5,

max
x≥T α/N2

∫
[−T ,T ]

Q(x − y)dy ≤ C5/2.
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4.2. Proof of Theorem 1.11. Let α be as in the assumption of the theorem. We
define T := tα and

Žt := P
[
exp(βHt(B))1{maxs∈[0,t] ‖Bs‖∞≤tα}

]
.

We will show that the typical fluctuations of log Žt are large and then that those of
logZt are also large because Zt and Žt are close to each other with large probabil-
ity (in this respect, we need to do more than simply bound the variance of log Žt ).
Define � by

� :=
∫
[0,t]×[−T ,T ]d ω(ds, x)dx√
t
∫
[−T ,T ]2d Q(x − y)dx dy

.

Under P, � is a standard Gaussian. We define the probability P0 by

dP0 := exp(� − 1/2)dP.

It follows from its definition that the distribution of log Žt under P has no atom, so
one can define x0 (depending on β and t) such that

P[log Žt ≤ x0] = e−2.

We use Lemma 3.2 to perform a measure coupling as before: if ω has distribu-
tion P, then ω̂ defined by

ω̂(0, x) := 0 ∀x ∈ Rd,

ω̂(ds, x) := ω(ds, x) + P[�ω(ds, x)]

= ω(ds, x) +
∫
[−T ,T ]d Q(x − y)dy√

t
∫
[−T ,T ]2d Q(x − y)dx dy

ds

has distribution P0.
One defines

Ẑt := P

[
exp
(
β

∫ t

0
ω̂(ds,Bs)

)
1{maxs∈[0,t] ‖Bs‖∞≤T }

]
.

For all paths B such that maxs∈[0,t] ‖Bs‖∞ ≤ T , we have∫ t

0
ω̂(ds,Bs) −

∫ t

0
ω(ds,Bs) =

∫ t

0

∫
[−T ,T ]d Q(Bs − y)dy√

t
∫
[−T ,T ]2d Q(x − y)dx dy

ds

≥ √
t
min‖x‖∞≤T

∫
[−T ,T ]d Q(x − y)dy√∫

[−T ,T ]2d Q(x − y)dx dy
.

One can check that there exists a constant c depending only on Q such that for
all t ,

min‖x‖∞≤T

∫
[−T ,T ]d Q(x − y)dy√∫

[−T ,T ]2d Q(x − y)dx dy
≥ cT −(θ∧d)/2.
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Therefore, one has P almost surely

log Ẑt ≥ log Žt + cβt(1−α(θ∧d))/2.

We use Lemma 4.3 (which is still valid in our case, even if the change of measure
is different) to see that

P
{
log Žt ≤ x0 + cβt(1−α(θ∧d))/2}≤

√
eP0

{
log Žt ≤ x0 + cβt(1−α(θ∧d))/2

}
.

Moreover,

P0
{
log Žt ≤ x0 + cβt(1−α(θ∧d))/2}= P

{
log Ẑt ≤ x0 + cβt(1−α(θ∧d))/2}

≤ P{log Žt ≤ x0} = e−2.

The inequality is given by (4.2). So, combining everything, we have

P
{
log Žt ≥ x0 + cβt(1−α(θ∧d))/2} ≥ 1 − e−1/2,

(4.11)
P{log Žt ≤ x0} = e−2.

It is enough to prove that the variance of log Žt diverges with the correct rate.
Slightly more work is required to prove the same for log Žt . Recall that

μ
β,ω
t

{
max

s∈[0,t] ‖Bs‖∞ ≤ T
}

= Žt /Zt .

The assumption on α gives that, for t large enough,

P{(Žt/Zt ) ≤ 1/2} ≤ 1/100.

By a union bound, we have

P{log Žt ≤ x0} ≤ P{logZt ≤ x0 + log 2} + P{Žt ≤ Zt/2}.
Combining this with (4.11) (and the trivial bound Zt ≥ Žt ) gives that for t large

enough,

P
{
logZt ≥ x0 + cβt(1−α(θ∧d))/2}≥ 1 − e−1/2,

P
{
logZt ≤ x0 + log 2

}≥ e−2 − 1/100.

This implies that

Var logZt ≥ (e−2 − 1/100)(1 − e−1/2)
(
cβt(1−α(θ∧d))/2 − log 2

)2
. �
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4.3. Proof of Proposition 1.9. To prove this result, we will follow the method
of Méjane [18]. First, we need to use a concentration result. We prove it using
stochastic calculus.

LEMMA 4.6. Let f be a nonnegative function on Rd and r ∈ [0, t]. We define
Z̃t := P [f (Br) exp(β

∫ t
0 ω(ds,Bs))]. Then, for all x > 0,

P
{| log Z̃t − P[log Z̃t ]| ≥ x

√
t
}≤ 2 exp

(
− x2

2β2

)
.

PROOF. Let F = (Ft )t≥0 := (σ {ω(s, x), s ∈ [0, t], x ∈ Rd})t≥0 be the natural
filtration associated with the environment. We consider the following continuous
martingale with respect to the filtration F :

(Mu := P[log Z̃t

∣∣Fu] − P[log Z̃t ])u∈[0,t].(4.12)

We have M0 = 0 and the result to prove becomes

P
{|Mt | ≥ x

√
t
}≤ 2 exp

(
− x2

2β2

)
.

The proof uses a classical result on concentration for martingales.

LEMMA 4.7. If (Mu)u≥0 is a continuous martingale (with associated law P)
starting from 0 with finite exponential moments of all orders, then, for all (x, y) ∈
R2+ and u ≥ 0, we have

P{Mu ≥ x 〈M〉u + y} ≤ exp(−2xy).

PROOF. We have

P{Mu ≥ x 〈M〉u + y} = P{exp(2xMu − 2x2 〈M〉u − 2xy) ≥ 1}
≤ P[exp(2xMu − 2x2 〈M〉u − 2xy)] = exp(−2xy),

where we have just used the fact that for any given x, exp(xMu − 2x2 〈M〉u) is a
martingale. �

To use the previous lemma, we have to compute the bracket of the martingale M

defined in (4.12). One can compute it explicitly, but the form of the result is rather
complicated so that we have to introduce several items of notation before giving
a formula. One defines the probability measure (μ̃t ) (depending on ω, β , t and r)
by giving its Radon–Nikodym derivative with respect to the Wiener measure:

dμ̃t (dx)

dP
(B) := 1

Z̃t

f (Br) exp
(
β

∫ t

0
ω(ds,Bs)

)
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[it is the polymer measure where the paths have been reweighted by f (Br)]. One
defines νt,u to be the (random) probability measure on R defined by

νt,u(dx) := P[μ̃t (Bu ∈ dx)|Fu].
For the martingale M defined by (4.12), we have

〈M〉t = β2
∫ t

0

∫
R2

ν⊗2
t,u (dx dy)Q(x − y).(4.13)

An easy consequence of this is that

〈M〉t ≤ β2t almost surely.

From this, we infer that

P
{
Mt ≥ x

√
t
}≤ P

{
Mt ≥ x

2β2
√

t
〈M〉t +

√
tx

2

}
≤ exp(−x2β−2/2),

where the last inequality is obtained by applying Lemma 4.7. Carrying out the
same computation for the martingale −M gives the desired result. �

We now turn to the proof of the result. Let α > 3/4 be fixed. Let B
(1)
t be the

first coordinate of Bt in Rd . By the Markov inequality, we have, for every λ > 0,

μt

{
B(1)

r ≥ a
}≤ e−λa+rλ2/2μt

(
exp
(
λB(1)

r − rλ2/2
))

.(4.14)

We use Girsanov’s formula:

μt

(
exp
(−λB(1)

r − rλ2/2
))= P [exp(λB

(1)
r − rλ2/2 + β

∫ t
0 ω(ds,Bs))]

P [exp(β
∫ t

0 ω(ds,Bs))]
(4.15)

= P [exp(β
∫ t

0 ω(ds, hλ,r (s,Bs)))]
P [exp(β

∫ t
0 ω(ds,Bs))] ,

where hλ,r is the function from R+ × Rd to Rd defined by

hλ,r (s, x) := x + λ(r ∧ s)e1

and e1 is the vector (1,0, . . . ,0) in Rd . By translation invariance, the environment
(ω(s, hλ,r (s, x)))s∈[0,t],x∈Rd has the same law as (ω(s, x))s∈[0,t],x∈Rd and, there-
fore, we get, from the last line of (4.15), that

P
[
logμt

(
exp
(−λB(1)

r − rλ2/2
))]= 0.

Substituting this into (4.14), we get

P logμt

{
B(1)

r ≥ a
}≤ −λa + rλ2/2.
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As λ is arbitrary, we can take the minimum over λ for the right-hand side to get
−a2

2r
. We use the result for a = tα to get

P logμt

{
B(1)

r ≥ tα
}≤ −t2α/2r.

Using Lemma 4.6 with f (y) := 1{y≥a} and f ≡ 1, for x = tε with ε < 4α − 3, one
gets

P
{

logμt

{
B(1)

r ≥ tα
}≤ − t2α

2r
+ 2t (1+2ε)/2

}
≤ 4 exp

(
− t2ε

2β2

)
.

For t sufficiently large, we have, for all r ≤ t ,

− t2α

2r
+ 2t (1+2ε)/2 ≤ −t1/2.

We can get this inequality for B(i) and −B(i) for any i ∈ {1, . . . , d}. Combining
all of these results, we get

P
{
μt {‖Br‖∞ ≥ tα} ≤ 2d exp(−t1/2)

}≤ 8d exp
(
− t2ε

2β2

)
.

Using the above inequality for all r ∈ {1,2, . . . , �t�}, we obtain that

P
{
μt

{
max

r∈{1,2,...,�t�} ‖Br‖∞ ≥ tα
}

≤ 2dt exp(−t1/2)
}

(4.16)

≤ 8dt exp
(
− t2ε

2β2

)
.

To complete the proof, we need to control the term

Pμt

{
max

s∈[n,n+1]
n∈{0,...,�t�}

‖Bs − Bn‖∞ ≥ tα
}
.

One computes that

P
[
Wtμt

{
max

s∈[n,n+1]
n∈{0,...,�t�}

‖Bs − Bn‖∞ ≥ tα
}]

(4.17)
= P

{
max

s∈[n,n+1]
n∈{0,...,�t�}

‖Bs − Bn‖∞ ≥ tα
}

≤ 4d(t + 1) exp(−t2α/2).

Lemma 4.6 applied to f ≡ 1 and x = β
√

t gives us that

P
{
Wt ≤ exp

(
t
(
p(β) − β

))}≤ exp(−t/2).(4.18)

If A is an event and x > 0 are given, then

P[μt(A)] = P
[
μt(A)1{Wt≤x}

]+ P
[
μt(A)1{Wt>x}

]
≤ P{Wt ≤ x} + x−1P[Wtμt(A)].
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Therefore, we have, from (4.18) and (4.17), that

Pμt

{
max

s∈[n,n+1]
n∈{0,...,�t�}

‖Bs − Bn‖∞ ≥ tα
}

≤ e−t/2 + 4d(t + 1)et (β−p(β))−t2α/2

(4.19)
≤ 2e−t/2.

Combining (4.16) and (4.19), we get (for t large enough)

Pμt

{
max

s∈[0,t] ‖Bs‖∞ ≤ 2tα
}

≤ 2 exp(−t/2) + 8dt exp(−t2ε/β2)

≤ exp(−tε). �
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