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EXPONENTIAL TAIL BOUNDS FOR LOOP-ERASED RANDOM
WALK IN TWO DIMENSIONS

BY MARTIN T. BARLOW1,2 AND ROBERT MASSON1

University of British Columbia

Let Mn be the number of steps of the loop-erasure of a simple random
walk on Z2 from the origin to the circle of radius n. We relate the moments
of Mn to Es(n), the probability that a random walk and an independent loop-
erased random walk both started at the origin do not intersect up to leaving
the ball of radius n. This allows us to show that there exists C such that
for all n and all k = 1,2, . . . ,E[Mk

n ] ≤ Ckk!E[Mn]k and hence to establish
exponential moment bounds for Mn. This implies that there exists c > 0 such
that for all n and all λ ≥ 0,

P{Mn > λE[Mn]} ≤ 2e−cλ.

Using similar techniques, we then establish a second moment result for a
specific conditioned random walk which enables us to prove that for any α <

4/5, there exist C and c′ > 0 such that for all n and λ > 0,

P{Mn < λ−1E[Mn]} ≤ Ce−c′λα
.

1. Introduction. The loop-erased random walk (LERW) is a process obtained
by chronologically erasing loops from a random walk on a graph. Since its intro-
duction by Lawler [4], this process has played a prominent role in the statistical
physics literature. It is closely related to other models in statistical physics and,
in particular, to the uniform spanning tree (UST). Pemantle [10] proved that the
unique path between any two vertices u and v on the UST has the same distribution
as a LERW from u to v and Wilson [12] devised a powerful algorithm to construct
the UST using LERWs. The existence of a scaling limit of LERW on Zd is now
known for all d . For d ≥ 4, Lawler [5, 6] showed that LERW scales to Brownian
motion. For d = 2, Lawler, Schramm and Werner [8] proved that LERW has a con-
formally invariant scaling limit, Schramm–Loewner evolution; indeed, LERW was
the prototype for the definition of SLE by Schramm [11]. Most recently, for d = 3,
Kozma [3] proved that the scaling limit exists and is invariant under rotations and
dilations.

Let S[0, σn] be simple random walk on Z2 started at the origin and stopped
at σn, the first time S exits Bn, the ball of radius n with center the origin. Let Mn
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be the number of steps of L(S[0, σn]), the loop-erasure of S[0, σn]. In [2], using
domino tilings, Kenyon proved, for simple random walk on Z2, that

lim
n→∞

log E[Mn]
logn

= 5

4
.(1.1)

Using quite different methods, Masson [9] extended this to irreducible bounded
symmetric random walks on any discrete lattice of R2. The quantity 5/4 is called
the growth exponent for planar loop-erased random walk. We remark that while
SLE2 has Hausdorff dimension 5/4 almost surely (see [1]), there is no direct proof
of (1.1) from this fact; however, unlike the arguments in [2], the approach of [9]
does use the connection between the LERW and SLE2.

In this paper, we will not be concerned with the exact value of E[Mn], but rather
with the obtaining of tail bounds on Mn. Our results hold for more general sets than
balls. Let D be a domain in Z2 with D �= ∅,Z2. Write S[0, σD] for simple random
walk run until its first exit from D, L(S[0, σD]) for its loop erasure and MD for
the number of steps in L(S[0, σD]).

THEOREM 1.1. There exists c0 > 0 such that the following holds. Let D be a
simply connected subset of Z2 containing 0 such that for all z ∈ D, dist(z,Dc) ≤ n.
Then:

1.

E
[
ec0MD/E[Mn]] ≤ 2;(1.2)

2. consequently, for all λ ≥ 0,

P{MD > λE[Mn]} ≤ 2e−c0λ.(1.3)

THEOREM 1.2. For all α < 4/5, there exist C1(α) < ∞, c2(α) > 0 such that
for all λ > 0, all n and all D ⊃ Bn,

P{MD < λ−1E[Mn]} ≤ C1(α) exp(−c2(α)λα).(1.4)

These results are proven in Theorems 5.8 and 6.7, where a slightly more general
situation is considered.

REMARKS 1.3. 1. We expect that these results will hold for irreducible ran-
dom walks with bounded, symmetric increments on any discrete lattice of R2.
Almost all of the proofs in this paper can be extended to this more general case
without any modification. The one exception is Lemma 4.4, where we use the
fact that simple random walk on Z2 is invariant under reflections with respect to
horizontal and vertical lines. Theorem 1.1 does not depend on Lemma 4.4 and
therefore should be valid in this generality. It is likely that an alternative proof of
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Lemma 4.4 could be found, but we do not pursue this point further here, restricting
our attention to simple random walk on Z2.

2. The bound (1.4) for general D ⊃ Bn does not follow immediately from (1.4)
for Bn. The reason is that if Y is L(S[0, σD]) run until its first exit from Bn, then
Y does not, in general, have the same law as L(S[0, σn]). Similar considerations
apply to Theorem 1.1.

3. We also have similar bounds for the infinite loop-erased walk; see Theorems
5.8 and 6.7.

4. One motivation for proving these results for general domains in Z2, rather
than just balls, is to study the uniform spanning tree (UST) via Wilson’s algorithm.
In particular, we are interested in the volume of balls in the intrinsic metric on the
UST and this requires estimating the number of steps of an LERW until it hits the
boundary of a fairly general domain in Z2.

For the remainder of this Introduction, we discuss the case where D = Bn. The
proofs of Theorems 1.1 and 1.2 involve estimates of the higher moments of Mn.
Building on [9], we relate E[Mk

n] to Es(n), the probability that an LERW and an
independent random walk do not intersect up to leaving the ball of radius n. We
show that there exists C < ∞ such that

E[Mk
n] ≤ Ckk!(n2 Es(n))k (Theorem 5.6);(1.5)

E[Mn] ≥ Cn2 Es(n) (Proposition 5.7).(1.6)

It is not surprising that the moments of Mn are related to Es(n). To begin with,

E[Mk
n] = ∑

z1,...,zk∈Bn

P{z1, . . . , zk ∈ L(S[0, σn])}.

Furthemore, for a point z to be on L(S[0, σn]), it must be on the random walk
path S[0, σn] and not be on the loops that get erased. In order for this to occur, the
random walk path after z cannot intersect the loop-erasure of the random walk path
up to z. Therefore, for z to be on L(S[0, σn]), a random walk and an independent
LERW must not intersect in a neighborhood of z. Generalizing this to k points, we
get for each i, a contribution of Es(ri), where ri is chosen small enough to give
“near independence” of events in the balls Bri (zi). Propositions 5.2 and 5.5 make
this approach precise. Summing over the Ckn2k k-tuples of points in Bn and using
facts about Es(·) that we establish in Section 3.2 gives (1.5).

Combining (1.5) and (1.6) yields

E[Mk
n] ≤ Ckk!E[Mn]k (Theorem 5.8),

from which Theorem 1.1 follows easily.
To establish (1.4), we prove a second moment bound for a specific conditioned

random walk and combine this with an iteration argument, as follows. Let Bn(x)

be the ball of radius n centered at x ∈ Z2 and Rn be the square {(x, y) ∈ Z2 :−n ≤
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x, y ≤ n}. Fix a positive integer k and consider L(S[0, σkn]). We first establish an
upper bound for

P{Mkn < E[Mn]}.
Let k′ = k/

√
2 (so that Rk′n ⊂ Bkn). Let γj be the restriction of L(S[0, σkn])

from 0 up to the first exit of Rjn, j = 0, . . . , k′. For j = 0, . . . , k′ −1, let xj ∈ ∂Rjn

be the point where γj hits ∂Rjn and Bj = Bn(xj ). Finally, for j = 1, . . . , k′, let
Nj be the number of steps of γj from xj−1 up to the first time it exits Bj−1; see
Figure 3 in Section 6. We consider squares instead of balls to take advantage of
the symmetry of simple random walk on Z2 with respect to vertical and horizontal
lines, as mentioned above. Clearly,

P{Mkn < E[Mn]} ≤ P

(
k′⋂

j=1

{Nj < E[Mn]}
)

(1.7)

≤
k′∏

j=1

max
γj−1

P{Nj < E[Mn] | γj−1}.

However, by the domain Markov property for LERW (Lemma 3.2), conditioned
on γj−1, the rest of the LERW curve is obtained by running a random walk con-
ditioned to leave Bkn before hitting γj−1 and then erasing loops. For this reason,
we will be interested in the number of steps of the loop-erasure of a random walk
started on the boundary of a square and conditioned to leave some large ball be-
fore hitting a set contained in the square. Formally, we give the following definition
(throughout this paper, we identify R2 with C and use complex notation such as
“arg” and “Re”).

DEFINITION 1.4 (See Figure 1). Suppose that the natural numbers m, n and
N are such that

√
2m+n ≤ N and that K is a subset of the square Rm = [−m,m]2.

Suppose that x = (m,y) with |y| ≤ m is any point on the right-hand side of Rm,
and let X be a random walk started at x, conditioned to leave BN before hit-
ting K . Let α be L(X[0, σN ]) from x up to its first exit time of the ball Bn(x).
We then let MK

m,n,N,x be the number of steps of α in An(x) = {z :n/4 ≤ |z − x| ≤
3n/4, |arg(z − x)| ≤ π/4}. Note that the condition

√
2m + n ≤ N ensures that

Bn(x) is contained in BN .

We look at the number of steps of the LERW in An(x) rather than in Bn(x) since
the expectations of these random variables are comparable and it is convenient not
to have to worry about points that are close to x, K or ∂Bn(x). We are therefore
interested in estimating

P{MK
m,n,N,x < E[Mn]}.
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FIG. 1. Setup for Definition 1.4.

To do this, we first show that (up to a log term) E[MK
m,n,N,x] is comparable to

n2 Es(n) and, therefore, by (1.6), E[MK
m,n,N,x] is comparable to E[Mn] (Propo-

sition 6.2). Next, we prove that E[(MK
m,n,N,x)

2] is comparable to E[MK
m,n,N,x]2

(again up to a log term; see Proposition 6.3). By a standard second moment tech-
nique, this implies that there exist c = c(n,N) > 0 and p = p(n,N) < 1 such
that

P{MK
m,n,N,x < cE[MK

m,n,N,x]} < p.(1.8)

Using the fact that E[Mn] is comparable to E[MK
m,n,N,x], we can then plug this

into (1.7) to conclude that there exists p = p(k) = 1 − c(log k)−8 such that

P{Mkn < E[Mn]} < pk.(1.9)

Finally, to prove (1.4), one makes an appropriate choice of k and relates E[Mkn]
to E[Mn]. Although the logarithmic corrections in Propositions 6.2 and 6.3 mean
that p in (1.8) depends on n and N , and so p in (1.9) depends on k, this correction
is small enough so that (1.9) still gives a useful bound.

The paper is organized as follows. In Section 2, we fix notation and recall the
basic properties of random walks that will be needed. In Section 3, we give a
precise definition of the LERW and state some of its properties. Many of these
properties were established in [9]. Indeed, this paper uses similar techniques to
those in [9], most notably, relating the growth exponent to Es(n). It turns out that
the latter quantity is often easier to analyze directly; see Section 3.2.
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Section 4 contains some technical lemmas involving estimates for Green’s func-
tions for random walks in various domains and for the conditioned random walks
X in Definition 1.4. In Section 5, we prove Theorem 1.1 using the approach de-
scribed above. Finally, in Section 6, we use the iteration outlined above to prove
Theorem 1.2.

2. Definitions and background for random walks.

2.1. Notation for random walks and Markov chains. Throughout the paper,
when we say random walk, we will mean simple random walk on Z2. We will
denote a random walk starting at a point z ∈ Z2 by Sz. When z = 0, we will omit
the superscript. If we have two random walks Sz and Sw , starting at two different
points z and w, then we assume that they are independent unless otherwise speci-
fied. We use similar notation for other Markov chains on Z2 (all our Markov chains
are assumed to be time-homogeneous). When there is no possibility of confusion,
we will also use the following standard notation: given an event A that depends on
a Markov chain X, we let Pz(A) denote the probability of A given that X0 = z.

2.2. A note about constants. For the entirety of the paper, we will use the
letters c and C to denote positive constants that will not depend on any variable,
but may change from appearance to appearance. When we wish to fix a constant,
we will number it with a subscript (e.g., c0).

Given two positive functions f (n) and g(n), we write f (n) � g(n) if there
exists C < ∞ such that for all n,

C−1g(n) ≤ f (n) ≤ Cg(n).

We will say that two sequences of events {En} and {Fn} have the same probabil-
ity “up to constants” if P(En) � P(Fn) and are independent “up to constants” if
P(En ∩ Fn) � P(En)P(Fn). We will also use the obvious generalization for two
sequences of random variables to have the same distribution “up to constants” and
to be independent “up to constants.”

2.3. Subsets of Z2. Given two points x, y ∈ Z2, we write x ∼ y if |x − y| = 1.
A sequence of points ω = [ω0, . . . ,ωk] ⊂ Z2 is called a path if ωj−1 ∼ ωj for

j = 1, . . . , k. We let |ω| = k be the length of the path, 	k be the set of paths of
length k and 	 = ⋃

k 	k denote the set of all finite paths. Also, if X is a Markov
chain with transition probabilities pX(·, ·) and ω ∈ 	k , then we define

pX(ω) =
k∏

i=1

pX(ωi−1,ωi).

Thus, if X = S is a simple random walk, pS(ω) = 4−k . A set D ⊂ Z2 is connected
if, for any pair of points x, y ∈ D, there exists a path ω ⊂ D connecting x and y,
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and D is simply connected if it is connected and all connected components of
Z2 \ D are infinite.

Given z ∈ Z2, let

Bn(z) = {x ∈ Z2 : |x − z| ≤ n}
be the ball of radius n centered at z in Z2. We will write Bn for Bn(0) and some-
times write B(z;n) for Bn(z). Also, let Rn denote the square {(x, y) ∈ Z2 :−n ≤
x, y ≤ n}.

The outer boundary of a set D ⊂ Z2 is

∂D = {x ∈ Z2 \ D: there exists y ∈ D such that x ∼ y}
and its inner boundary is

∂iD = {x ∈ D: there exists y ∈ Z2 \ D such that x ∼ y}.
We also write D = D ∪ ∂D.

Given a Markov chain X on Z2 and a set D ⊂ Z2, let

σX
D = min{j ≥ 1 :Xj ∈ Z2 \ D}

be the first exit time of the set D and

ξX
D = min{j ≥ 1 :Xj ∈ D}

be the first hitting time of the set D. We let σX
n = σX

Bn
and use a similar convention

for ξX
n . If X is a random walk Sz starting at z ∈ Z2, then we let σz

D and ξz
D be the

exit and hitting times for Sz. If z = 0, then we will omit the superscripts. We will
also omit superscripts when it is clear what process the stopping times refer to. For
instance, we will write X[0, σn] instead of X[0, σX

n ].

2.4. Basic facts about random walks. For a Markov chain X and x, y ∈ D ⊂
Z2, let

GX
D(x, y) = Ex

[σX
D −1∑
j=0

1{Xj = y}
]

denote Green’s function for X in D. We will sometimes write GX(x, y;D) for
GX

D(x, y). We will write GX
n (x, y) for GX

Bn
(x, y) and when X = S is a random

walk, we will omit the superscript S.
Recall that a function f defined on D ⊂ Z2 is discrete harmonic on D if, for all

z ∈ D,

Lf (z) := −f (z) + 1

4

∑
x∼z

f (x) = 0.
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For any two disjoint subsets K1 and K2 of Z2, it is easy to verify that the function

h(z) = Pz{ξK1 < ξK2}
is discrete harmonic on Z2 \ (K1 ∪ K2). Furthermore, if we let X be a random
walk conditioned to hit K1 before K2, then X is a reversible Markov chain on
Z2 \ (K1 ∪ K2) with transition probabilities

pX(x, y) = 1

4

h(y)

h(x)
.

Therefore, if ω = [ω0, . . . ,ωk] is a path in Z2 \ (K1 ∪ K2), then

pX(ω) = h(ωk)

h(ω0)
4−|ω|.(2.1)

Using this fact, the following lemma follows readily.

LEMMA 2.1. Suppose that X is a random walk conditioned to hit K1 before
K2 and let D be such that D ⊂ Z2 \ (K1 ∪ K2). Then, for any x, y ∈ D,

GX
D(x, y) = h(y)

h(x)
GD(x, y).

In particular, GX
D(x, x) = GD(x, x).

Using a last-exit decomposition, one can also express h(x) in terms of Green’s
functions; see [9], Lemma 3.1.

LEMMA 2.2. Let K1,K2 ⊂ Z2 be disjoint and x ∈ Z2 \ (K1 ∪ K2). Then,

Px{ξK1 < ξK2}

= G(x,x;Z2 \ (K1 ∪ K2))

G(x, x;Z2 \ K1)

∑
y∈∂iK1

Py{ξx < ξK2 | ξx < ξK1}Px{S(ξK1) = y}.

The following proposition was proven in [9] and will be used frequently in the
paper.

PROPOSITION 2.3. There exists c > 0 such that for all n and all K ⊂ {z ∈
Z2 : Re(z) ≤ 0},

P
{

arg(S(σn)) ∈
[
−π

4
,
π

4

] ∣∣∣ σn < ξK

}
≥ c.

We conclude this section with a list of standard potential theory results that will
be used throughout the paper, often without referring back to this proposition. The
proofs of these results can all be found in [7], Chapter 6.
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PROPOSITION 2.4.

1. (Discrete Harnack principle.) Let U be a connected open subset of R2 and A a
compact subset of U . There then exists a constant C(U,A) such that for all n

and all positive harmonic functions f on nU ∩ Z2,

f (x) ≤ C(U,A)f (y)

for all x, y ∈ nA ∩ Z2.
2. There exists c > 0 such that for all n and all paths α connecting Bn to Z2 \B2n,

Pz{ξα < σ2n} ≥ c for all z ∈ Bn,

Pz{ξα < ξn} ≥ c for all z ∈ ∂B2n.

3. If m < |z| < n, then

Pz{ξm < σn} = lnn − ln|z| + O(m−1)

lnn − lnm
.

4. If z ∈ Bn, then

Pz{ξ0 < σn} =
(

1 − ln|z|
lnn

)[
1 + O

(
1

lnn

)]
.

5. If z ∈ Bn \ {0}, then

Gn(0, z) � ln
n

|z| .
6.

Gn(0,0) � lnn.

3. Loop-erased random walks.

3.1. Definition. We now describe the loop-erasing procedure and define the
loop-erased random walk. Given a path λ = [λ0, . . . , λm] in Z2, let L(λ) =
[̂λ0, . . . , λ̂n] denote its chronological loop-erasure. More precisely, we let

s0 = sup{j :λ(j) = λ(0)}
and, for i > 0,

si = sup{j :λ(j) = λ(si−1 + 1)}.
Let

n = inf{i : si = m}.
Then,

L(λ) = [λ(s0), λ(s1), . . . , λ(sn)].



2388 M. T. BARLOW AND R. MASSON

One may obtain a different result if one performs the loop-erasing procedure
backward instead of forward. In other words, if we let λR = [λm, . . . , λ0] be the
time reversal of λ, then, in general,

LR(λ) := (L(λR))R �= L(λ).

However, the following lemma shows that if λ is distributed according to a Markov
chain, then LR(λ) has the same distribution as L(λ). Recall that 	 denotes the set
of all finite paths in Z2.

LEMMA 3.1 (Lawler [5]). There exists a bijection T :	 → 	 such that

LR(λ) = L(T λ).

Furthermore, T λ and λ visit the same edges in Z2 in the same directions with the
same multiplicities so that, for any Markov chain X on Z2, pX(T λ) = pX(λ).

A fundamental fact about LERWs is the following “domain Markov property.”

LEMMA 3.2 (Domain Markov property [5]). Let D ⊂ � and ω = [ω0,ω1, . . . ,

ωk] be a path in D. Let Y be a random walk started at ωk conditioned to exit D

before hitting ω. Suppose that ω′ = [ω′
0, . . . ,ω

′
k′ ] is such that

ω ⊕ ω′ := [ω0, . . . ,ωk,ω
′
0, . . . ,ω

′
k′ ]

is a path from ω0 to ∂D. Then, if we let α be the first k steps of L(S[0, σD]),
P{L(S[0, σD]) = ω ⊕ ω′ | α = ω} = P{L(Y [0, σD]) = ω′}.

Suppose that l is a positive integer and D is a proper subset of Z2 with
Bl ⊂ D. Let �l be the set of paths ω = [0,ω1, . . . ,ωk] ⊂ Z2 such that ωj ∈ Bl ,
j = 1, . . . , k − 1, and ωk ∈ ∂Bl . Define the measure μl,D on �l to be the distribu-
tion on �l obtained by restricting L(S[0, σD]) to the part of the path from 0 to the
first exit of Bl .

Two different sets D1 and D2 will produce different measures. However, the
following proposition [9] shows that as Z2 \ D1 and Z2 \ D2 get farther away
from Bl , the measures μl,D1 and μl,D2 approach each other.

PROPOSITION 3.3. There exists C < ∞ such that the following holds. Sup-
pose that n ≥ 4, D1 and D2 are such that Bnl ⊂ D1 and Bnl ⊂ D2, and ω ∈ �l .
Then,

1 − C

logn
≤ μl,D1(ω)

μl,D2(ω)
≤ 1 + C

logn
.
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The previous proposition shows that for a fixed l, the sequence μl,n(ω) :=
μl,Bn(ω) is Cauchy. Therefore, there exists a limiting measure μl such that

lim
n→∞μl,n(ω) = μl(ω).

The μl are consistent and therefore there exists a measure μ on infinite self-
avoiding paths. We call the associated process the infinite LERW and denote it
by Ŝ. We denote the exit time of a set D for Ŝ by σ̂D . An immediate corollary of
the previous proposition and the definition of Ŝ is the following.

COROLLARY 3.4. Suppose that B4l ⊂ D and ω ∈ �l . Then,

P{Ŝ[0, σ̂l] = ω} � μl,D(ω).

The following result follows immediately from Corollary 3.4 and [9], Proposi-
tion 4.2.

COROLLARY 3.5. Suppose that B4l ⊂ D1 and B4l ⊂ D2, and let X be a ran-
dom walk conditioned to leave D1 before D2. Let α be L(X[0, σD1]) from 0 up to
its first exit of Bl . Then, for ω ∈ �l ,

P{α = ω} � P{Ŝ[0, σ̂l] = ω}.

We conclude this section with a “separation lemma” for random walks and
LERWs. It states the intuitive fact that, conditioned on the event that a random
walk S and an independent infinite LERW Ŝ do not intersect up to leaving Bn, the
probability that they are farther than some fixed distance apart from each other on
∂Bn is bounded from below by p > 0.

PROPOSITION 3.6 (Separation lemma [9]). There exist c,p > 0 such that for
all n, the following holds. Let S and Ŝ be independent and let

dn = dist(S(σn), Ŝ[0, σ̂n]) ∧ dist(Ŝ(σ̂n), S[0, σn]).
Then,

P{dn ≥ cn | S[1, σn] ∩ Ŝ[0, σ̂n] = ∅} ≥ p.(3.1)

3.2. Escape probabilities for LERW.

DEFINITION 3.7. For a set D containing 0, we let MD be the number of steps
of L(S[0, σD]) and Mn = MBn . We also let M̂D be the number of steps of Ŝ[0, σ̂D]
and M̂n = M̂Bn .

As described in the Introduction, one of the goals of this paper is to relate the
moments of MD and M̂D to escape probabilities, which we now define.
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DEFINITION 3.8. Let S and S′ be two independent random walks started at 0.
For m ≤ n, let L(S′[0, σn]) = η = [0, η1, . . . , ηk], k0 = max{j ≥ 1 :ηj ∈ Bm} and
ηm,n(S

′) = [ηk0, . . . , ηk]. We then define

Es(m,n) = P{S[1, σn] ∩ ηm,n(S
′) = ∅},

Es(n) = P{S[1, σn] ∩ L(S′[0, σn]) = ∅},
Ês(n) = P{S[1, σn] ∩ Ŝ[0, σ̂n] = ∅}.

We also let Es(0) = 1.

Thus, Es(m,n) is the probability that a random walk from the origin to ∂Bn and
the terminal part of an independent LERW from m to n do not intersect. Es(n) is
the probability that a random walk from the origin to ∂Bn and the loop-erasure of
an independent random walk from the origin to ∂Bn do not intersect. Ês(n) is the
corresponding escape probability for an infinite LERW from the origin to ∂Bn.

The following was proven in [9]; see Lemma 5.1, Propositions 5.2, 5.3 and
Theorem 5.6.

THEOREM 3.9. There exists C < ∞ such that the following hold:

1.

C−1 Es(n) ≤ Ês(n) ≤ C Es(n);
2. for all k ≥ 1, there exists N = N(k) such that for n ≥ N ,

C−1k−3/4 ≤ Es(n, kn) ≤ Ck−3/4;
3. for all l ≤ m ≤ n,

C−1 Es(n) ≤ Es(m)Es(m,n) ≤ C Es(n)

and

C−1 Es(l, n) ≤ Es(l,m)Es(m,n) ≤ C Es(l, n).

We conclude this section with some easy consequences of this theorem.

LEMMA 3.10. For all k ≥ 1, there exists c(k) > 0 such that for all n =
1,2, . . . ,

Es(kn) ≥ c(k)Es(n).

PROOF. By parts 2 and 3 of Theorem 3.9, there exists N(k) such that for
n ≥ N(k),

Es(kn) ≥ c Es(n, kn)Es(n) ≥ ck−3/4 Es(n) = c(k)Es(n).

Since there are only finitely many n ≤ N(k), the result holds. �
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LEMMA 3.11. There exists C < ∞ such that for all l ≤ m ≤ n,

Es(n) ≤ C Es(m)(3.2)

and

Es(l, n) ≤ C Es(l,m).(3.3)

PROOF. Using Theorem 3.9, part 3 and the fact that Es(m,n) ≤ 1, one obtains
that

Es(n) ≤ C Es(m)Es(m,n) ≤ C Es(m)

and

Es(l, n) ≤ C Es(l,m)Es(m,n) ≤ C Es(l,m). �

LEMMA 3.12. For all ε > 0, there exist C(ε) < ∞ and N(ε) such that for all
N(ε) ≤ m ≤ n,

C(ε)−1
(

n

m

)−3/4−ε

≤ Es(m,n) ≤ C(ε)

(
n

m

)−3/4+ε

.

PROOF. Fix ε > 0. Let C1 be the largest of the constants in the statements
of Theorem 3.9 and Lemma 3.11 and let j be any integer greater than C

2/ε
1 . By

Theorem 3.9, part 2, there exists N such that for all n ≥ N ,

C−1
1 j−3/4 ≤ Es(n, jn) ≤ C1j

−3/4.

We will show that the conclusion of the lemma holds with this choice of N .
Let m and n be such that N ≤ m ≤ n and let k be the unique integer such that

jk ≤ n

m
< jk+1.

It follows from Theorem 3.9, part 3 and Lemma 3.11 that

Es(m,n) ≤ C Es(m, jkm)

≤ Ck+1
1

k−1∏
i=0

Es(j im, j i+1m)

≤ C2k+1
1 (j−3/4)k

≤ C1j
εkj3/4

(
n

m

)−3/4

≤ C1j
3/4

(
n

m

)ε( n

m

)−3/4

.

This proves the upper bound with C(ε) = C1j
3/4; the lower bound is proved in

exactly the same way. �
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LEMMA 3.13. For all ε > 0, there exists C(ε) < ∞ such that for all m ≤ n,

m3/4+ε Es(m) ≤ C(ε)n3/4+ε Es(n).

PROOF. Fix ε > 0. Applying Lemma 3.12, we get that there exist c > 0 and
N such that for all N ≤ m ≤ n,

Es(m,n) ≥ c

(
n

m

)−3/4−ε

.

Therefore, if N ≤ m ≤ n, then, by Theorem 3.9, part 3,

n3/4+ε Es(n) ≥ cn3/4+ε Es(m)Es(m,n) ≥ cn3/4+ε Es(m)

(
n

m

)−3/4−ε

= cm3/4+ε Es(m).

Since there are only finitely many pairs (m,n) such that m ≤ n ≤ N , there exists
C such that m3/4+ε Es(m) ≤ Cn3/4+ε Es(n) for all such pairs (m,n). Finally, if
m ≤ N ≤ n, then, since m3/4+ε Es(m) ≤ CN3/4+ε Es(N) and N3/4+ε Es(N) ≤
Cn3/4+ε Es(n), the result also holds in this case. �

In Sections 5 and 6, we will have to handle various sums involving Es(n) and
we will use the following result many times.

COROLLARY 3.14. Let γ > 0, β > 0 and 1+α −3γ /4 > 0. There then exists
C < ∞ (depending on α, β , γ ) such that for all n,

n∑
j=1

jα

(
ln

n

j

)β

Es(j)γ ≤ Cnα+1 Es(n)γ .

PROOF. Choose ε > 0 such that 1 + α − 3γ /4 − (β + γ )ε > 0. Then, using
Lemma 3.13,

n∑
j=1

jα

(
ln

n

j

)β

Es(j)γ =
n∑

j=1

jα−3γ /4−γ ε

(
ln

n

j

)β

(j3/4+ε Es(j))γ

≤ C(n3/4+ε Es(n))γ
n∑

j=1

jα−3γ /4−γ ε(n/j)εβ

≤ Cn3γ /4+εγ+εβ Es(n)γ
n∑

j=1

jα−3γ /4−γ ε−βε

≤ Cn1+α Es(n)γ . �
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4. Green’s function estimates.

LEMMA 4.1. There exists C < ∞ such that the following holds. Let D ⊂ Z2

and, for z ∈ D, write dist(z,Dc) for the distance between z and Dc. Let

Dn = {z ∈ D : dist(z,Dc) ≤ n}.
Suppose that for all z ∈ Dn, there exists a path in Dc connecting B(z,n + 1) to
B(z,2n)c. Then, for any w ∈ D,∑

z∈Dn

GD(w, z) ≤ Cn2.(4.1)

In particular, if D is simply connected and dist(z,Dc) ≤ n for all z ∈ D, then, for
all w ∈ D, ∑

z∈D

GD(w, z) ≤ Cn2.

PROOF. Fix n ≥ 1 and define stopping times (Tj ), (Uj ) as follows:

T1 = min{i ≥ 0 :Si ∈ Dn};
Uj = min{i ≥ Tj : |Si − STj

| ≥ 2n};(4.2)

Tj+1 = min{Uj ≤ i < σD :Si ∈ Dn}.
Here, as usual, we take Tj+1 = ∞ if the set in (4.2) is empty. On the event that

Tj < ∞, ESTj [Uj − Tj ] ≤ Cn2 and thus

∑
z∈Dn

GD(w, z) = Ew

[
σD−1∑
j=1

1{Xj ∈ Dn}
]

≤ Ew

[ ∞∑
j=1

(Uj − Tj )

]
(4.3)

≤ Cn2
∞∑

j=1

Pw{Tj < ∞}.

By Proposition 2.4, part 2 and our assumption that for all z ∈ Dn, there is a path
in Dc connecting B(z,n + 1) and B(z,2n)c, there exists p > 0 such that for any
z ∈ Dn,

Pz{σD < σB(z,2n)

}
> p.

Consequently, Pw{Tj+1 < ∞ | Tj < ∞} < 1 − p and so Pw{Tj < ∞} < (1 −
p)j−1. Therefore, summing the series in (4.3) yields (4.1). �

LEMMA 4.2. There exist C < ∞ and c > 0 such that the following holds.
Suppose that D ⊂ Z2, w ∈ D is such that dist(w,Dc) = n and there exists a path
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in Dc connecting B(w,n + 1) to B(w,2n)c. Then:

1. for all z ∈ Bn/2(w),

Pz{ξw < σD} ≤ CPz{ξw < σD ∧ σB2n(w)

};(4.4)

2. for all z ∈ Bn(w) and l ≤ |z − w|,
Pz{σD < ξBl(w)

} ≥ cPz{σD ∧ σB2n(w) < ξBl(w)

}
.(4.5)

PROOF. We can take w = 0 so that σB2n(w) = σ2n and ξBl(w) = ξl . We begin
with (4.4). Let z0 ∈ ∂Bn/2 be such that

Pz0{ξ0 < σD} = max
z∈∂Bn/2

Pz{ξ0 < σD}.
Then,

Pz0{ξ0 < σD} ≤ Pz0{ξ0 < σD ∧ σ2n}
+ Pz0{σ2n < σD} max

y∈∂B2n

Py{ξ0 < σD}(4.6)

≤ Pz0{ξ0 < σD ∧ σ2n} + Pz0{σ2n < σD}Pz0{ξ0 < σD}.
By our assumption, there exists a path in Dc connecting ∂Bn to ∂B2n and therefore,
by Proposition 2.4, part 2, there exists c > 0 such that

Pz0{σ2n < σD} ≤ 1 − c.

Thus, inserting this in (4.6) yields

Pz0{ξ0 < σD} ≤ CPz0{ξ0 < σD ∧ σ2n}.
Hence, if z is any point in ∂Bn/2, we have

Pz{ξ0 < σD} ≤ Pz0{ξ0 < σD} ≤ CPz0{ξ0 < σD ∧ σ2n}
(4.7)

≤ CPz{ξ0 < σD ∧ σ2n},
where the last inequality follows from the discrete Harnack inequality.

Now, suppose that z is any point in Bn/2. Then, using (4.7), we have

Pz{ξ0 < σD} = Pz{ξ0 < σn/2} + ∑
y∈∂Bn/2

Py{ξ0 < σD}Pz{σn/2 < ξ0;S(σn/2) = y}

≤ Pz{ξ0 < σn/2}
+ C

∑
y∈∂Bn/2

Py{ξ0 < σD ∧ σ2n}Pz{σn/2 < ξ0;S(σn/2) = y}

≤ C

(
Pz{ξ0 < σn/2}

+ ∑
y∈∂Bn/2

Py{ξ0 < σD ∧ σ2n}Pz{σn/2 < ξ0;S(σn/2) = y}
)

= CPz{ξ0 < σD ∧ σ2n}.
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This proves (4.4).
The proof of (4.5) is simpler. By Proposition 2.4, part 2,

Pz{σD < ξl} ≥ Pz{σD < ξl ∧ σ2n} + Pz{σ2n < ξl ∧ σD} min
y∈∂B2n

Py{σD < ξn}

≥ Pz{σD < ξl ∧ σ2n} + cPz{σ2n < ξl ∧ σD}
≥ c(Pz{σD < ξl ∧ σ2n} + Pz{σ2n < ξl ∧ σD})
= cPz{σD ∧ σ2n < ξl}. �

LEMMA 4.3. There exists C < ∞ such that the following holds. Suppose that
D ⊂ Z2, w ∈ D is such that dist(w,Dc) = n and there exists a path in Dc con-
necting B(w,n + 1) to B(w,2n)c. Then, for any z ∈ Bn/2(w),

GD(w, z) ≤ CGB2n(w)∩D(w, z).(4.8)

PROOF. This follows immediately from Lemma 4.2 and the facts that

GD(w, z) = Pz{ξw < σD}Pw{σD < ξw}−1

and

GB2n(w)∩D(w, z) = Pz{ξw < σD ∧ σB2n(w)

}
Pw{

σD ∧ σB2n(w) < ξw

}−1
. �

Given D ⊂ Z2, let D+ = {z ∈ D : Re(z) > 0} and D− = {z ∈ D : Re(z) < 0}. If
z = (z1, z2) ∈ Z2, then we let z = (−z1, z2) be the reflection of z with respect to
the y-axis � and D = {z : z ∈ D} be the reflection of the set D.

LEMMA 4.4 (See Figure 2). Suppose that K ⊂ D ⊂ Z2 are such that D+ ⊂
D− and K+ ⊂ K−. Then, for all z ∈ D−,

Pz{σD < ξK} ≤ Pz{σD < ξK}.

PROOF. The proof uses a simple reflection argument. For a random walk
started at z ∈ D− to escape D before hitting K , either it escapes D before hitting
K while staying to the left of � or it hits � before hitting K and then escapes D

before hitting K . In the first case, the reflected random walk path will be a random
path starting at z, escaping D before hitting K . In the second case, the reflection
of the path up to the first time it hits � will avoid K and hit � at the same point. By
the Markov property, the distribution of the paths after this point will be the same.

More precisely, using the fact that the reflection of a simple random walk across
� is again a simple random walk, it follows that for z ∈ D−,

Pz{σD < ξK} = Pz{σD < ξK}.
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FIG. 2. The setup for Lemma 4.4.

However, since D+ ⊂ D− and K+ ⊂ K−, we have

Pz{σD < ξK} = ∑
x∈∂D+

Px{σD < ξK}Pz{σD+ < ξK− ∧ ξ�;S(σD+) = x}

+ ∑
y∈�

Py{σD < ξK}Pz{ξ� < ξK− ∧ σD+;S(ξ�) = y}

≤ Pz{σD+ < ξK+ ∧ ξ�}
+ ∑

y∈�

Py{σD < ξK}Pz{ξ� < ξK+ ∧ σD+;S(ξ�) = y}

= Pz{σD < ξK}. �

COROLLARY 4.5. There exists C < ∞ such that the following holds. Suppose
that m, n, N , K and x are as in Definition 1.4. Then, for all z ∈ An(x),

max
w∈∂Bn/8(x)

Pw{σN < ξK} ≤ CPz{σN < ξK}.

PROOF. We apply Lemma 4.4 with � = {(m, k) :k ∈ Z} replacing the y-axis
to conclude that

max
w∈∂Bn/8(x)

Pw{σN < ξK} = max
w∈∂Bn/8(x)

Re(w)≥m

Pw{σN < ξK}.

If x = (m,x2), let

Dn(x) = {(w1,w2) ∈ Z2 :n/16 ≤ w1 − m ≤ n/8, |w2 − x2| ≤ n/8}.
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Then, by again applying Lemma 4.4, this time with � = {(m + n/16, k) :k ∈ Z},
max

w∈∂Bn/8(x)

Re(w)≥m

Pw{σN < ξK} ≤ max
w∈Dn(x)

Pw{σN < ξK}.

However, by the discrete Harnack inequality, there exists C < ∞ such that for all
z ∈ An(x) and all w ∈ Dn(x),

Pw{σN < ξK} ≤ CPz{σN < ξK}. �

LEMMA 4.6. There exists C < ∞ such that the following holds. Suppose that
m, n, N , K , x and X are as in Definition 1.4. Then, for any z ∈ An(x),

C−1 ≤ GX
N(x, z) ≤ C ln

N

n
.

PROOF. By Lemma 2.1,

GX
N(x, z) = GBN\K(x, z)

Pz{σN < ξK}
Px{σN < ξK}(4.9)

= GBN\K(z, z)
Px{ξz < σN ∧ ξK}Pz{σN < ξK}

Px{σN < ξK} .

To begin with,

lnn � GBn/8(z)(z, z) ≤ GBN\K(z, z) ≤ GB2N(z)(z, z) � lnN.(4.10)

Next,

Px{ξz < σN ∧ ξK}
= ∑

y∈∂iBn/8(z)

Py{ξz < σN ∧ ξK}Px{
S
(
ξBn/8(z)

) = y; ξBn/8(z) < σN ∧ ξK

}
.

Furthermore, for any y ∈ ∂iBn/8(z),

Py{ξz < σN ∧ ξK} ≤ Py{
ξz < σB2N(z)

} ≤ C
ln(N/n)

lnN

and

Py{ξz < σN ∧ ξK} ≥ Py{
ξz < σBn/4(z)

} ≥ c

lnn
.

Thus,

c

lnn
≤ Px{ξz < σN ∧ ξK}

Px{ξBn/8(z) < σN ∧ ξK} ≤ C
ln(N/n)

lnN
.(4.11)

Next, on the one hand,

Px{σN < ξK} ≥ ∑
y∈∂iBn/8(z)

Py{σN < ξK}Px{
S
(
ξBn/8(z)

) = y; ξBn/8(z) < σN ∧ ξK

}
.
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By the discrete Harnack inequality, there exists C such that for any y ∈ ∂iBn/8(z),

Pz{σN < ξK} ≤ CPy{σN < ξK}.
Therefore,

Px{σN < ξK} ≥ cPz{σN < ξK}Px{
ξBn/8(z) < σN ∧ ξK

}
.

On the other hand,

Px{σN < ξK} = ∑
w∈∂Bn/8(x)

Pw{σN < ξK}Px{
S
(
σBn/8(x)

) = w;σBn/8(x) < ξK

}
.

By Corollary 4.5, for any w ∈ ∂Bn/8(x),

Pw{σN < ξK} ≤ CPz{σN < ξK}.
Therefore,

Px{σN < ξK} ≤ CPz{σN < ξK}Px{
σBn/8(x) < ξK

}
.

Finally, by Proposition 2.3,

Px{
σBn/8(x) < ξK

} ≤ CPx

{
σBn/8(x) < ξK; ∣∣arg

(
S
(
σBn/8(x)

) − x
)∣∣ ≤ π

4

}
≤ CPx{

ξBn/8(z) < σN ∧ ξK

}
.

Thus,

Px{σN < ξK} � Pz{σN < ξK}Px{
ξBn/8(z) < σN ∧ ξK

}
.(4.12)

The result then follows by combining (4.9), (4.10), (4.11) and (4.12). �

5. Exponential moments for MD and ̂MD . To reduce the size of our ex-
pressions, we use the following notation. For this section only, we will use the
symbol ∩/ to denote the disjoint intersection relation. Thus, if K1 and K2 are two
subsets of Z2, we will write K1 ∩/ K2 to mean K1 ∩ K2 = ∅.

DEFINITION 5.1. Suppose that z0, z1, . . . , zk are any distinct points in a do-
main D ⊂ Z2 and that X is a Markov chain on Z2 with Pz0{σX

D < ∞} = 1. We then
let EX

z0,...,zk
be the event that z1, z2, . . . , zk are all visited by the path L(Xz0[0, σD])

in order.

PROPOSITION 5.2. Suppose that z0, z1, . . . , zk are distinct points in a domain
D ⊂ Z2 and X is a Markov chain on Z2 with Pz0{σX

D < ∞} = 1. Define zk+1 to be
∂D and for i = 0, . . . , k, let Xi be independent versions of X started at zi and Y i

be Xi conditioned on the event {ξXi

zi+1
≤ σXi

D }. Let τ i = max{l ≤ σY i

D :Y i
l = zi+1}.

Then,

P(EX
z0,...,zk

) =
[

k∏
i=1

GX
D(zi−1, zi)

]
P

(
k⋂

i=1

{
L(Y i−1[0, τ i−1]) ∩/

k⋃
j=i

Y j [1, τ j ]
})

.
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PROOF. We will write the exit times σXj

D as σ
j
D and the hitting times ξXj

zi
as

ξ
j
i , i, j = 0, . . . , k. For i, j = 0, . . . , k, we also let

T
j
i =

{
max{l ≤ σ

j
D :Xj

l = zi}, if ξ
j
i < σ

j
D ,

σ
j
D, if σ

j
D ≤ ξ

j
i .

For i = 0, . . . , k − 1, let

Fi = {T i
i+1 < · · · < T i

k < σ i
D},

and for i = 0, . . . , k − 2, let

Gi =
k⋂

j=i+2

{L(Xi[T i
j−1, T

i
j ]) ∩/ Xi(T i

j , σ i
D]}.

Then, by the definition of the loop-erasing procedure,

P(EX
z0,...,zk

) = P{F0;L(X0[0, T 0
1 ]) ∩/ X0(T 0

1 , σ 0
D];G0}.(5.1)

Conditioned on {T 0
1 < σ 0

D}, X0[0, T 0
1 ] and X0[T 0

1 , σ 0
D] are independent.

X0[0, T 0
1 ] has the same distribution as Y 0[0, τ 0] and X0[T 0

1 , σ 0
D] has the same

distribution as X1 conditioned to leave D before returning to z1.
The event {T 0

1 < σ 0
D} is the same as {ξ0

1 < σ 0
D}. Therefore,

P(EX
z0,...,zk

) = P{ξ0
1 < σ 0

D}P{F1;L(Y 0[0, τ 0]) ∩/ X1[1, σ 1
D];

L(X1[0, T 1
2 ]) ∩/ X1(T 1

2 , σ 1
D];G1 | σ 1

D < ξ1
1 }

= P{ξ0
1 < σ 0

D}
P{σ 1

D < ξ1
1 }P{F1;L(Y 0[0, τ 0]) ∩/ X1[1, σ 1

D];

L(X1[0, T 1
2 ]) ∩/ X1(T 1

2 , σ 1
D];G1}

= GX
D(z0, z1)P

{
F1;L(Y 0[0, τ 0]) ∩/ (

X1[1, T 1
2 ] ∪ X1(T 1

2 , σ 1
D]);

L(X1[0, T 1
2 ]) ∩/ X1(T 1

2 , σ 1
D];G1

}
.

By repeating the previous argument k − 1 times with X1, . . . ,Xk−1, we obtain the
desired result. �

Now, suppose that D′ ⊂ D and let β be L(Xz0[0, σD]) from z0 up to the first exit
time of D′. It is possible to generalize the previous formula to the probability that
β hits z1, . . . , zk in order. However, we will only require this for the case where
k = 1 and therefore, to avoid introducing any new notation, we will only state the
result in this case.
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LEMMA 5.3. Suppose that D′ ⊂ D, z and w are distinct points in D′ and X

is a Markov chain started at w. Suppose, further, that Pw{σD < ∞} = 1. Let Y be
X conditioned to hit z before leaving D and let τ be the last time that Y visits z

before leaving D. Then, if β is L(X[0, σD]) from w up to the first exit time of D′,

P{z ∈ β} = GX
D(w, z)P{L(Y [0, τ ]) ∩/ Xz[1, σD];L(Y [0, τ ]) ⊂ D′}.

PROOF. As in the proof of Proposition 5.2, let

Tz =
{

max{l ≤ σX
D :Xl = z}, if ξX

z < σX
D ,

σX
D , if σX

D ≤ ξX
z .

Then,

P{z ∈ β} = P{Tz < σX
D ;L(X[0, Tz]) ∩/ X[Tz + 1, σD];L(X[0, Tz]) ⊂ D′}.

The proof is then identical to that of Proposition 5.2. �

DEFINITION 5.4. Suppose that z0, z1, . . . , zk are any points (not necessarily
distinct) in a domain D � Z2 and let z = (z0, . . . , zk). We then define zk+1 to be
∂D, let d(zi) = dist(zi,D

c) and let

rz
i = d(zi) ∧ |zi − zi−1| ∧ |zi − zi+1|, i = 1,2, . . . , k.

In addition, if π is an element of the symmetric group Sk on {1, . . . , k}, then we
let π(0) = 0 and π(z) = (z0, zπ(1), . . . , zπ(k)).

PROPOSITION 5.5. There exists C < ∞ such that the following holds. Sup-
pose that either:

1. z0, z1, . . . , zk are any points in a domain D � Z2 and X is a random walk S

started at z0; or
2. m, n, N , K , x and X are as in Definition 1.4, z0 = x, D = BN and z1, . . . , zk

are in An(x).

Then, letting z = (z0, . . . , zk) and rz
i be as in Definition 5.4,

P{z1, . . . , zk ∈ L(X[0, σD])} ≤ Ck
∑

π∈Sk

k∏
i=1

GX
D

(
zπ(i−1), zπ(i)

)
Es

(
r
π(z)
π(i)

)
.(5.2)

PROOF. The proofs of the two cases are almost identical and we will prove
them both at the same time.

First, suppose that z0, . . . , zk are distinct. Recall the definition of EX
z0,...,zk

from
Definition 5.1. Then,

P{z1, . . . , zk ∈ L(X[0, σD])} = ∑
π∈Sk

EX
z0,zπ(1),...,zπ(k)

.
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Therefore, if we let Y 0, . . . , Y k be as in Proposition 5.2, then it suffices to show
that

P

(
k⋂

i=1

{
L(Y i−1[0, τ i−1]) ∩/

k⋃
j=i

Y j [1, τ j ]
})

≤ Ck
k∏

i=1

Es(rz
i ).

For i = 1, . . . , k, let Bi = B(zi; rz
i /4). Then,

P

(
k⋂

i=1

{
L(Y i−1[0, τ i−1]) ∩/

k⋃
j=i

Y j [1, τ j ]
})

≤ P

(
k⋂

i=1

{L(Y i−1[0, τ i−1]) ∩/ Y i[1, τ i]}
)
.

Let T :	 → 	 be the bijection given in Lemma 3.1. For all λ ∈ 	, pX(T (λ)) =
pX(λ) and T λ visits the same points as λ. Thus,

P

(
k⋂

i=1

{L(Y i−1[0, τ i−1]) ∩/ Y i[1, τ i]}
)

= P

(
k⋂

i=1

{L(T ◦ Y i−1[0, τ i−1]) ∩/ (T ◦ Y i[1, τ i])}
)

= P

(
k⋂

i=1

{L(Y i−1[0, τ i−1]R) ∩/ Y i[1, τ i]}
)
.

For i = 1, . . . , k, let βi be the restriction of L(Y i−1[0, τ i−1]R) from zi to the
first exit of Bi . Then,

P

(
k⋂

i=1

{L(Y i−1[0, τ i−1]R) ∩/ Y i[1, τ i]}
)

≤ P

(
k⋂

i=1

{βi ∩/ Y i[1, σBi
]}

)
.

Furthermore, by the domain Markov property (Lemma 3.2), conditioned on βi =
[βi

0, . . . , β
i
m], Y i−1[0, τ i−1] is, in case 1, a random walk started at zi−1 and condi-

tioned to hit βi
m before ∂D ∪ {βi

0, . . . , β
i
m−1}; in case 2, it is a random walk started

at zi−1 and conditioned to hit βi
m before K ∪ ∂D ∪ {βi

0, . . . , β
i
m−1}. In either case,

by the Harnack principle, Y i−1[0, σBi−1] and βi are independent “up to constants”
and thus

P

(
k⋂

i=1

{βi ∩/ Y i[1, σBi
]}

)
≤ Ck

k∏
i=1

P{βi ∩/ Y i[1, σBi
]}.

By another application of the Harnack principle, Y i[0, σBi
] has the same distrib-

ution, up to constants, as a random walk started at zi and stopped at its first exit
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of Bi . Furthermore, by Corollary 3.4, βi has the same distribution, up to constants,
as an infinite LERW started at zi and stopped at the first exit of Bi . Therefore, for
i = 1, . . . , k,

P{βi ∩/ Y i[1, σBi
]} ≤ C Ês(rz

i /4).

Finally, by Theorem 3.9, part 1 and Lemma 3.10, Ês(rz
i /4) ≤ C Es(rz

i ).
Now, suppose that z0, . . . , zk are any points in D. Let

p(z) =
k∏

i=1

GX
D(zi−1, zi)Es(rz

i ).

We will establish (5.2) by induction on k. We have already proven that (5.2) holds
for k = 1. Now, suppose that (5.2) holds for k − 1 and suppose that z0, . . . , zk are
not distinct. Since (5.2) involves a sum over all possible permutations of the entries
of z, we may assume without loss of generality that zj = zj+1 for some j . Let z(j)

be z with the j th entry deleted and indexed by {0, . . . , k} \ {j} (so that zi = z
(j)
i

for all i �= j ). Then, since rz(j)

i = rz
i for all i �= j , i �= j + 1,

p(z) = p
(
z(j)) · GX

D(zj , zj )Es(rz
j )Es(rz

j+1)Es
(
rz(j)

j+1
)−1

.

Since zj = zj+1, we have rz
j = rz

j+1 = 0 and, therefore, Es(rz
j ) = Es(rz

j+1) = 1.

Also, GX
D(zj , zj ) ≥ 1. Therefore, p(z) ≥ p(z(j)).

Now, let SA be the symmetric group on the set A = {1, . . . , k} \ {j}. There then
exists an obvious bijection between SA and

B = {π ∈ Sk :π−1(j + 1) = π−1(j) + 1}.
Therefore, by our induction hypothesis,

P{z1, . . . , zk ∈ L(X[0, σD])}
≤ Ck−1

∑
π∈SA

p
(
π

(
z(j))) ≤ Ck

∑
π∈SA

p
(
π

(
z(j)))

≤ Ck
∑
π∈B

p(π(z)) ≤ Ck
∑

π∈Sk

p(π(z)).
�

Recall that if D is a proper subset of Z2, then MD denotes the number of
steps of L(S[0, σD]). Given D′ ⊂ D, we let MD′,D denote the number of steps
of L(S[0, σD]) while it is in D′ or, equivalently, the number of points in D′ that
are on the path L(S[0, σD]).

THEOREM 5.6. There exists C < ∞ such that the following hold:
1. if we suppose that D ⊂ Z2 contains 0 and D′ ⊂ D is such that for all z ∈ D′,

there exists a path in Dc connecting B(z,n + 1) and B(z,2n)c, then, for all k =
1,2, . . . ,

E[Mk
D′,D] ≤ Ckk!(n2 Es(n))k;
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2. in particular, if D is simply connected, contains 0 and, for all z ∈ D,
dist(z,Dc) ≤ n, then

E[Mk
D] ≤ Ckk!(n2 Es(n))k.

PROOF. Let Sk denote the symmetric group on k elements and recall the def-
inition of rz

i given in Definition 5.4 (here, z0 = 0). Then, by Proposition 5.5,

E[Mk
D′,D] = E

[( ∑
z∈D′

1{z ∈ L(S[0, σD])}
)k]

= ∑
z1∈D′

· · · ∑
zk∈D′

P{z1, . . . , zk ∈ L(S[0, σD])}

≤ Ck
∑

π∈Sk

∑
z1∈D′

· · · ∑
zk∈D′

k∏
i=1

GD

(
zπ(i−1), zπ(i)

)
Es

(
r
π(z)
π(i)

)

= Ckk! ∑
z1∈D′

· · · ∑
zk∈D′

k∏
i=1

GD(zi−1, zi)Es(rz
i ).

Therefore, it suffices to show that

∑
z1∈D′

· · · ∑
zk∈D′

k∏
i=1

GD(zi−1, zi)Es(rz
i ) ≤ Ck(n2 Es(n))k.(5.3)

Let fi = GD(zi−1, zi)Es(rz
i ) and Fj = ∏j

i=1 fi . Then, if d(z) = dist(z,Dc), we
have

k∏
i=1

GD(zi−1, zi)Es(rz
i ) = Fk−1GD(zk−1, zk)

(
Es

(|zk − zk−1| ∧ d(zk)
))

.(5.4)

Since only the terms fk and fk−1 involve zk , and Es(a ∧ b) ≤ Es(a) + Es(b), we
then have∑

z1∈D′
· · · ∑

zk∈D′

k∏
i=1

GD(zi−1, zi)Es(rz
i )

≤ ∑
z1∈D′

· · · ∑
zk−1∈D′

Fk−2GD(zk−2, zk−1)

× ∑
zk∈D′

GD(zk−1, zk)
(
Es

(|zk−1 − zk−2| ∧ d(zk−1)
)

+ Es(|zk−1 − zk|))
× (

Es(|zk − zk−1|) + Es(d(zk))
)
.
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Multiplying out the final terms in the expression above, we need to bound the
following sums:

S1 = Es
(|zk−1 − zk−2| ∧ d(zk−1)

)∑
zk

GD(zk−1, zk)Es(|zk−1 − zk|),(5.5)

S2 = Es
(|zk−1 − zk−2| ∧ d(zk−1)

)∑
zk

GD(zk−1, zk)Es(d(zk)),(5.6)

S3 = ∑
zk

GD(zk−1, zk)Es(|zk−1 − zk|)2,(5.7)

S4 = ∑
zk

GD(zk−1, zk)Es(|zk−1 − zk|)Es(d(zk)).(5.8)

Since 2ab ≤ a2 + b2, we can bound S4 by

S4 ≤ S3 + ∑
zk

GD(zk−1, zk)Es(d(zk))
2 = S3 + S5.(5.9)

We first consider S3. Let D1 = D ∩ Bn/2(zk−1) and D2 = D′ \ D1. Then,

S3 ≤ ∑
zk∈D1

GD(zk−1, zk)Es(|zk−1 − zk|)2 + ∑
zk∈D2

GD(zk−1, zk)Es(|zk−1 − zk|)2.

However, by our assumptions on D′ and D, and Lemma 4.3, for all zk ∈ D1, we
have

GD(zk−1, zk) ≤ CGB2n(zk−1)(zk−1, zk) ≤ C ln
(

2n

|zk−1 − zk|
)
.

So, ∑
zk∈D1

GD(zk−1, zk)Es(|zk−1 − zk|)2

≤ C
∑

zk∈D1

ln
(

2n

|zk−1 − w|
)

Es(|zk−1 − zk|)2

≤ C
∑

zk∈B2n(zk−1)

ln
(

2n

|zk−1 − zk|
)

Es(|zk−1 − zk|)2

≤ C

2n∑
j=1

j ln
(

2n

j

)
Es(j)2

≤ Cn2 Es(n)2,

where the last inequality is justified by Corollary 3.14. Furthermore, for zk ∈ D2,
Es(|zk−1 − zk|)2 ≤ C Es(n)2. Therefore, by Lemma 4.1,∑
zk∈D2

GD(zk−1, zk)Es(|zk−1−zk|)2 ≤ C Es(n)2
∑

zk∈D′
GD(zk−1, zk) ≤ Cn2 Es(n)2.
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Therefore, S3 ≤ Cn2 Es(n)2. Similarly, we obtain

S1 ≤ C Es
(|zk−1 − zk−2| ∧ d(zk−1)

)
n2 Es(n).(5.10)

Let Dj = {z ∈ D :d(z) ≤ j} be as in Lemma 4.1. By first applying Lemma 4.1
and then Lemma 3.13, we then have

S5 ≤
�log2 n�∑

j=0

∑
zk∈D2j \D2j−1

GD(zk−1, zk)Es(d(zk))
2

≤ C

�log2 n�∑
j=0

Es(2j )2
∑

zk∈D2j \D2j−1

GD(zk−1, zk)

≤ C

�log2 n�∑
j=0

Es(2j )2
∑

zk∈D2j

GD(zk−1, zk)

≤ C

�log2 n�∑
j=0

22j Es(2j )2

≤ C

�log2 n�∑
j=0

((2j )3/4+ε Es(2j ))2(2j )1/2−2ε

≤ C(n3/4+ε Es(n))2
�log2 n�∑

j=1

(2j )1/2−2ε

≤ Cn2 Es(n)2.

A similar calculation gives

S2 ≤ C Es
(|zk−1 − zk−2| ∧ d(zk−1)

)
n2 Es(n).(5.11)

Combining these bounds gives

∑
z1∈D′

· · · ∑
zk∈D′

k∏
i=1

GD(zi−1, zi)Es(rz
i )

≤ Cn2 Es(n)
∑

z1∈D′
· · · ∑

zk−1∈D′
Fk−2GD(zk−2, zk−1)

× (
Es

(|zk−1 − zk−2| ∧ d(zk−1)
) + Es(n)

)
≤ Cn2 Es(n)

∑
z1∈D′

· · · ∑
zk−1∈D′

Fk−2GD(zk−2, zk−1)

× (
Es

(|zk−1 − zk−2| ∧ d(zk−1)
))

.
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Since this is of the same form as (5.4), except with only k − 1 terms, iterating this
argument gives (5.3). �

PROPOSITION 5.7. There exists c > 0 such that for all n and all simply con-
nected D ⊃ Bn,

E[MD] ≥ cn2 Es(n).

PROOF. By Lemma 3.13, n2 Es(n) is increasing (up to a constant). Therefore,
we may assume that n is the largest integer such that Bn ⊂ D. Let An = {z :n/4 ≤
|z| ≤ 3n/4, |arg z| ≤ π/4} be as in Definition 1.4. Then, since there are on the order
of n2 points in An, it suffices to show that for all z ∈ An,

P{z ∈ L(S[0, σD])} ≥ c Es(n).(5.12)

By Proposition 5.2,

P{z ∈ L(S[0, σD])} = GD(0, z)P{L(Y [0, τ ]) ∩ Sz[1, σD] = ∅},(5.13)

where Y is a random walk started at 0, conditioned to hit z before leaving D and
τ = max{k < σD :Yk = z}. By Lemma 3.1, L(Y [0, τ ]) has the same distribution as
L(Y [0, τ ]R). Furthermore, if we let Z be a random walk started at z, conditioned
to hit 0 before leaving D, then Y [0, τ ]R has the same distribution as Z[0, ξ0].
Therefore,

P{L(Y [0, τ ]) ∩ Sz[1, σD] = ∅} = P{L(Z[0, ξ0]) ∩ Sz[1, σD] = ∅}.
Furthermore,

GD(0, z) ≥ Gn(0, z) ≥ c.

Therefore, in order to show (5.12), it is sufficient to prove that

P{L(Z[0, ξ0]) ∩ Sz[1, σD] = ∅} ≥ c Es(n).(5.14)

Let B = B(z;n/8) and let β be the restriction of L(Z[0, ξ0]) from z up to the
first time it leaves the ball B . Then,

P{L(Z[0, ξ0]) ∩ Sz[1, σD] = ∅}
= P{L(Z[0, ξ0]) ∩ Sz[1, σD] = ∅ | β ∩ Sz[1, σB] = ∅}

× P{β ∩ Sz[1, σB] = ∅}.
By Corollary 3.4, β has the same distribution “up to constants” as an infinite
LERW started at z and stopped at the first exit of B . Therefore, by Theorem 3.9,
part 1 and Lemma 3.11,

P{β ∩ Sz[1, σB] = ∅} ≥ c Ês(n/8) ≥ c Es(n/8) ≥ c Es(n).
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By the domain Markov property (Lemma 3.2), if we condition on β , the rest of
L(Z[0, ξ0]) is obtained by running a random walk conditioned to hit 0 before β ∪
∂D and then loop-erasing. Therefore, by the separation lemma (Proposition 3.6)
and Proposition 2.3, there is a probability greater than c > 0 that this conditioned
random walk reaches ∂Bn/16 without hitting Sz[1, σn] or leaving B7n/8.

Therefore, it remains to show that for all v ∈ ∂Bn/16,

Pv{ξ0 < σBn/8 | ξ0 < σD} ≥ c(5.15)

and for all w ∈ ∂Bn,

Pw{σD < ξB7n/8} ≥ c.(5.16)

By Lemma 4.2,

Pv{ξ0 < σD} ≤ CPv{ξ0 < σ2n}
and

Pw{σD < ξ7n/8} ≥ cPw{σ2n < ξ7n/8}.
By Proposition 2.4, these imply (5.15) and (5.16). �

Recall the definitions of MD and MD′,D given before Theorem 5.6 and recall
that M̂n denotes the number of steps of Ŝ[0, σ̂n].

THEOREM 5.8. There exist C0,C1 < ∞ and c0, c1 > 0 such that the following
holds. Suppose that D ⊂ Z2 contains 0 and D′ ⊂ D is such that for all z ∈ D′,
there exists a path in Dc connecting B(z,n + 1) and B(z,2n)c. Then:

1. for all k = 1,2, . . . ,

E[Mk
D′,D] ≤ (C0)

kk!(E[Mn])k;(5.17)

2. there exists c0 > 0 such that

E
[
exp{c0MD′,D/E[Mn]}] ≤ 2;(5.18)

3. for all λ ≥ 0,

P{MD′,D > λE[Mn]} ≤ 2e−c0λ;(5.19)

4. for all n and all λ ≥ 0,

P{M̂n > λE[M̂n]} ≤ C1e
−c1λ.(5.20)

In particular, if D is a simply connected set containing 0 and for all z ∈ D,
dist(z,Dc) ≤ n, then one can replace MD′,D with MD in (5.17), (5.18) and (5.19).
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PROOF. The first part follows immediately from Propositions 5.6 and 5.7.
To prove the second part, let c0 = 1/(2C0). Then,

E
[
exp{c0MD′,D/E[Mn]}] =

∞∑
k=0

(c0)
kE[Mk

D′,D]
k!E[Mn]k ≤

∞∑
k=0

2−k = 2.

The third part is then immediate by Markov’s inequality.
To prove the last part, we first note that, by Corollary 3.4,

P{M̂n > λE[M̂n]} ≤ CP{M4n > λE[M̂n]}.
By Proposition 6.2 (even though it appears later in this paper, its proof does not
rely on this theorem), E[M̂n] � n2 Es(n). Using Lemma 3.13 and Proposition 5.7,
this implies that E[M̂n] � E[M4n] and, therefore,

P{M4n > λE[M̂n]} ≤ CP{M4n > cλE[M4n]} ≤ Ce−c·c0λ = C1e
−c1λ. �

6. Estimating the lower tail of MD and ̂MD .

LEMMA 6.1. There exists c > 0 such that the following holds. Suppose that
m, n, N , K , x, X and α are as in Definition 1.4. Then, for any z ∈ An(x),

P{z ∈ α} ≥ c

(
ln

N

n

)−3

Es(n).

PROOF. By Lemma 5.3, if Y is a random walk started at x conditioned to hit z

before hitting K or leaving BN and τ is the last visit of z before leaving BN , then

P{z ∈ α} = GX
N(x, z)P{L(Y [0, τ ]) ∩ Xz[1, σN ] = ∅;L(Y [0, τ ]) ⊂ Bn(x)}.

By Lemma 4.6, GX
N(x, z) ≥ c. Therefore, if we imitate the proof of Proposition 5.7

up to (5.15), it is sufficient to prove that for all v ∈ ∂B(x;n/16), |arg(v − x)| ≤
π/3,

Pv{
ξx < σB(x;n/8) | ξx < ξK ∧ σN

} ≥ c

(
ln

N

n

)−2

(6.1)

and for all w ∈ ∂Bn(x), |arg(w − x)| ≤ π/3,

Pw{
σN < ξB(x;7n/8) | σN < ξK

} ≥ c

(
ln

N

n

)−1

.(6.2)

We first establish (6.1):

Pv{
ξx < σB(x;n/8) | ξx < ξK ∧ σN

} = Pv{ξx < σB(x;n/8) ∧ ξK}
Pv{ξx < ξK ∧ σN } .

Let K ′ = K ∪ {x}. By Lemma 2.2,

Pv{
ξx < σB(x,n/8) ∧ ξK

} = G(v, v;B(x;n/8) \ K ′)
G(v, v;Z2 \ {x})

Px{ξv < ξK ′ ∧ σB(x;n/8)}
Px{ξv < ξx}
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and

Pv{ξx < ξK ∧ σN } = G(v, v;BN \ K ′)
G(v, v;Z2 \ {x})

Px{ξv < ξK ′ ∧ σN }
Px{ξv < ξx} .

Therefore,

Pv{
ξx < σB(x;n/8) | ξx < ξK ∧ σN

}
= G(v, v;B(x;n/8) \ K ′)

G(v, v;BN \ K ′)
Px{ξv < ξK ′ ∧ σB(x;n/8)}

Px{ξv < ξK ′ ∧ σN } .

Since |v − x| = n/16,

G
(
v, v;B(x;n/8) \ K ′) ≥ G

(
v, v;B(v;n/16)

) ≥ c lnn.

Also,

G(v, v;BN \ K ′) ≤ G(v, v;B(v;2N)) ≤ C lnN.

Therefore,

G(v, v;B(x;n/8) \ K ′)
G(v, v;BN \ K ′)

≥ c
lnn

lnN
≥ c

(
ln

N

n

)−1

.

To prove (6.1), it therefore suffices to show that

Px{ξv < ξK ′ ∧ σN } ≤ C ln
N

n
Px{

ξv < ξK ′ ∧ σB(x;n/8)

}
.

Indeed,

Px{ξv < ξK ′ ∧ σN }
= Px{

ξv < ξK ′ ∧ σB(x;n/8)

}
+ ∑

y∈∂B(x;n/8)

Py{ξv < ξK ′ ∧ σN }

× Px{
S
(
σB(x;n/8)

) = y;σB(x;n/8) < ξK ′ ∧ ξv

}
≤ Px{

ξv < ξK ′ ∧ σB(x;n/8)

}
+ ∑

y∈∂B(x;n/8)

Py{
ξv < σB(v;2N)

}
Px{

S
(
σB(x;n/8)

) = y;σB(x;n/8) < ξK ′
}
.

For all y ∈ ∂B(x;n/8), |y − v| > n/16 and, thus,

Py{
ξv < σB(v;2N)

} ≤ C
ln(N/n)

lnN
.

Therefore,

Px{ξv < ξK ′ ∧ σN } ≤ Px{
ξv < ξK ′ ∧ σB(x;n/8)

} + C
ln(N/n)

lnN
Px{

σB(x;n/8) < ξK ′
}
.
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However, by Proposition 2.3,

Px{
σB(x;n/8) < ξK ′

} ≤ Px{
σB(x;n/16) < ξK ′

}
≤ CPx

{
σB(x;n/16) < ξK ′ ; ∣∣arg

(
S
(
σB(x;n/16)

) − x
)∣∣ ≤ π

4

}
≤ C lnnPx{

ξv < σB(x;n/8) ∧ ξK ′
}
.

Thus,

Px{ξv < ξK ′ ∧ σN } ≤
(

1 + C
ln(N/n) lnn

lnN

)
Px{

ξv < ξK ′ ∧ σB(x;n/8)

}
≤ C ln

N

n
Px{

ξv < ξK ′ ∧ σB(x;n/8)

}
.

We now prove (6.2):

Pw{
σN < ξB(x;7n/8) | σN < ξK

} = Pw{σN < ξK ∧ ξB(x;7n/8)}
Pw{σN < ξK} .

Let y0 ∈ ∂Bn(x) be such that

Py0{σN < ξK} = max
y∈∂Bn(x)

Py{σN < ξK}.

Then,

Py0{σN < ξK}
= Py0

{
σN < ξK ∧ ξB(x;7n/8)

}
+ ∑

u∈∂iB(x;7n/8)

Pu{σN < ξK}Py0
{
S
(
ξB(x;7n/8)

) = u; ξB(x;7n/8) < ξK ∧ σN

}
≤ Py0

{
σN < ξK ∧ ξB(x;7n/8)

} + Py0{σN < ξK}Py0
{
ξB(x;7n/8) < ξK ∧ σN

}
≤ Py0

{
σN < ξK ∧ ξB(x;7n/8)

} + Py0{σN < ξK}Py0
{
ξB(x;7n/8) < σB(x;2N)

}
.

However, by Proposition 2.4,

Py0
{
ξB(x;7n/8) < σB(x;2N)

} ≤ 1 − c

ln(N/n)

and, therefore,

Py0{σN < ξK} ≤ C ln
N

n
Py0

{
σN < ξK ∧ ξB(x;7n/8)

}
.

This establishes (6.2) for the special case where w = y0. However, we can apply
Lemma 4.4 twice, as in Corollary 4.5, to conclude that

Pw{
σN < ξK ∧ ξB(x;7n/8)

} ≥ c max
y∈∂Bn(x)

Py{
σN < ξK ∧ ξB(x;7n/8)

}
.
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Therefore,

Pw{σN < ξK ∧ ξB(x;7n/8)}
Pw{σN < ξK} ≥ c

Py0{σN < ξK ∧ ξB(x;7n/8)}
Py0{σN < ξK} ≥ c

(
ln

N

n

)−1

. �

PROPOSITION 6.2.

1. There exists C < ∞ such that for any m, n, N , K and x as in Definition 1.4,

C−1
(

ln
N

n

)−3

n2 Es(n) ≤ E[MK
m,n,N,x] ≤ C

(
ln

N

n

)
n2 Es(n).

2.

E[Mn] � E[M̂n] � n2 Es(n).

PROOF. We first prove part 1. Let α be as in Definition 1.4. Then, by Lem-
ma 6.1,

E[MK
m,n,N,x] = ∑

z∈An(x)

P{z ∈ α} ≥ ∑
z∈An(x)

c

(
ln

N

n

)−3

Es(n)

≥ c

(
ln

N

n

)−3

n2 Es(n).

To prove the other direction, note that by Proposition 5.5, with k = 1, for any z ∈ α,

P{z ∈ α} ≤ P{z ∈ L(X[0, σN ])} ≤ CGX
N(x, z)Es(n).

By Lemma 4.6, GX
N(x, z) ≤ C ln(N/n) and, therefore,

E[MK
m,n,N,x] = ∑

z∈An(x)

P{z ∈ α} ≤ C

(
ln

N

n

)
n2 Es(n).

We now prove part 2. The fact that E[Mn] � n2 Es(n) follows immediately from
Theorem 5.6 and Proposition 5.7.

In order to show that E[M̂n] � n2 Es(n), let β be L(S[0, σ4n]) from 0 up to its
first exit from the ball Bn. By Corollary 3.4, β has the same distribution, up to
constants, as Ŝ[0, σ̂n] and thus it suffices to show that∑

z∈Bn

P{z ∈ β} � n2 Es(n).

To begin with,∑
z∈Bn

P{z ∈ β} ≤ ∑
z∈B4n

P{z ∈ L(S[0, σ4n])} � n2 Es(4n).

By Lemma 3.11, the latter is less than a constant times n2 Es(n).
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To prove the other direction, the number of steps of β is strictly larger than
MK

n,m,N,x , where m = 0, N = 4n, x = 0 and K = ∅. Therefore, by part 1 and
Lemma 3.10, we have∑

z∈Bn

P{z ∈ β} ≥ E[M∅
n,0,4n,0] ≥ cn2 Es(4n) ≥ cn2 Es(n).

�

PROPOSITION 6.3. There exists C < ∞ such that if m, n, N , K and x are as
in Definition 1.4, then

E[(MK
m,n,N,x)

2] ≤ C

(
ln

N

n

)2

n4 Es(n)2.

PROOF. Let α be as in Definition 1.4. Then, by Proposition 5.5,

E[(MK
m,n,N,x)

2] = E
[( ∑

z∈An(x)

1{z∈α}
)2]

= ∑
z,w∈An(x)

P(z,w ∈ α)

≤ C
∑

z,w∈An(x)

GX
N(x, z)GX

N(z,w)Es(rz)Es(rw),

where rz = dist(z, ∂BN)∧|z−x|∧ |z−w| and rw = dist(z, ∂BN)∧|z−w|. How-
ever, since z and w are in An(x), rz and rw are comparable to |z − w|. Therefore,
by Lemmas 4.6, 3.10 and the fact that

GX
N(z,w) = GBN\K(z,w)

Pw{σN < ξK}
Pz{σN < ξK} ≤ CGB2N(z)(z,w) ≤ C ln

2N

|z − w| ,
we have

E[(MK
m,n,N,x)

2] ≤ C ln
N

n

∑
z,w∈An(x)

ln
2N

|z − w| Es(|z − w|)2

≤ C ln
N

n

∑
z∈An(x)

∑
w∈Bn(z)

ln
2N

|z − w| Es(|z − w|)2

≤ C ln
N

n

∑
z∈An(x)

n∑
k=1

k ln
N

k
Es(k)2

≤ C ln
N

n
n2

(
n∑

k=1

k ln
n

k
Es(k)2 +

n∑
k=1

k ln
N

n
Es(k)2

)
.

By Corollary 3.14, both of the sums above are bounded by C ln(N/n)n2 Es(n)2

which completes the proof. �
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COROLLARY 6.4. There exist C < ∞ and c2, c3 > 0 such that if m, n, N , K

and x are as in Definition 1.4, then:

1.

E[(MK
m,n,N,x)

2] ≤ C

(
ln

N

n

)8

E[(MK
m,n,N,x)]2;

2.

P
{
MK

m,n,N,x ≤ c2

(
ln

N

n

)−3

E[Mn]
}

≤ 1 − c3

(
ln

N

n

)−8

.

PROOF. The first part follows immediately from Propositions 6.2 and 6.3.
To prove the second part, by a standard second moment result (see, e.g., [7],

Lemma 12.6.1), for any 0 < r < 1,

P{MK
m,n,N,x ≤ rE[MK

m,n,N,x]} ≤ 1 − (1 − r)2E[MK
m,n,N,x]2

E[(MK
m,n,N,x)

2] .

Letting r = 1/2 and using part 1, one obtains that

P
{
MK

m,n,N,x ≤ 1

2
E[MK

m,n,N,x]
}

≤ 1 − c3

(
ln

N

n

)−8

.

Finally, by again using Proposition 6.2, we have

E[MK
m,n,N,x] ≥ c

(
ln

N

n

)−3

E[Mn]. �

LEMMA 6.5. For all ε > 0, there exist C(ε) < ∞ and N(ε) < ∞ such that
for all n ≥ N(ε) and k ≥ 1,

E[Mkn] ≤ C(ε)k5/4+εE[Mn]
and

E[M̂kn] ≤ C(ε)k5/4+εE[M̂n].
REMARK. It is possible to take ε = 0 in the inequality above, but, in that case,

N has to depend on k.

PROOF OF LEMMA 6.5. The second statement follows immediately from the
first, by Proposition 6.2.

By Proposition 6.2 and Theorem 3.9, part 3, we have

E[Mkn] ≤ C(kn)2 Es(kn) ≤ C(kn)2 Es(n)Es(n, kn).

By Lemma 3.12, there exist C(ε) < ∞ and N(ε) such that for all n ≥ N(ε),

Es(n, kn) ≤ C(ε)k−3/4+ε.
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FIG. 3. The setup for Proposition 6.6.

Therefore,

E[Mkn] ≤ C(ε)k5/4+εn2 Es(n).

Finally, by a second application of Proposition 6.2, we obtain

n2 Es(n) ≤ CE[Mn]. �

PROPOSITION 6.6 (See Figure 3).

1. Let c2 be as in Corollary 6.4. There then exists c4 > 0 such that for all n and
all k ≥ 2,

P{Mkn ≤ c2(lnk)−3E[Mn]} ≤ e−c4k(lnk)−8
.

2. There exist c5, c6 > 0 and C < ∞ such that for all n and k ≥ 2,

P{M̂kn ≤ c5(lnk)−3E[M̂n]} ≤ Ce−c6k(lnk)−8
.

PROOF. We first prove part 1.
Let k′ = �k/

√
2�. Then, Rk′n ⊂ Bkn. We view the loop-erased random walk

L(S[0, σkn]) as a distribution on the set �kn of self-avoiding paths γ from the ori-
gin to ∂Bkn. Given such a γ , let γj be its restriction from 0 to the first exit of Rjn,
j = 0, . . . , k′. Let Fj be the σ -algebra generated by the γj . For j = 0, . . . , k′ − 1,
let xj (γ ) ∈ ∂Rjn be the point where γ first exits Rjn and Bj = Bn(xj ). Finally, for
j = 1, . . . , k′, let αj (γ ) be γ from xj−1 up to the first exit of Bj−1 and let Nj(γ )
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be the number of steps of αj in An(xj−1) [where An(x) is as in Definition 1.4].
Note that Nj ∈ Fj .

Then,

P{Mkn ≤ c2(lnk)−3E[Mn]}

≤ P

{
k′∑

j=1

Nj ≤ c2(lnk)−3E[Mn]
}

≤ P

(
k′⋂

j=1

{Nj ≤ c2(lnk)−3E[Mn]}
)

= E

[(
k′−1∏
j=1

1{Nj≤c2(lnk)−3E[Mn]}

)
P{Nk′ ≤ c2(lnk)−3E[Mn] | Fk′−1}

]
.

However, by the domain Markov property, for all j = 1, . . . , k′,

P{Nj ≤ c2(lnk)−3E[Mn] | Fj−1}(γ ) = P
{
M

γj

jn,n,kn,xj (γ ) ≤ c2(lnk)−3E[Mn]}.
Furthermore, by Corollary 6.4,

P
{
M

γj

jn,n,kn,xj (γ ) ≤ c2(ln k)−3E[Mn]} ≤ 1 − c3(lnk)−8.

Therefore, by applying the above inequality k′ times, we obtain

P{Mkn ≤ c2(ln k)−3E[Mn]} ≤ (
1 − c3(lnk)−8)k′ ≤ e−c3(lnk)−8k′

.

The proof of part 2 is analogous. By Proposition 6.2, it suffices to show that

P{M̂kn ≤ c2(lnk)−3E[Mn]} ≤ e−c6k(lnk)−8
.

However, by Corollary 3.4, Ŝ[0, σ̂kn] has the same distribution, up to constants, as
L(S[0, σ4kn]) from 0 up to its first exit of the ball Bkn. Therefore, we can apply the
previous iteration argument to obtain that

P{M̂kn ≤ c2(lnk)−3E[Mn]} ≤ C
(
1 − c3(ln 4k)−8)k′ ≤ Ce−c6k(lnk)−8

. �

THEOREM 6.7. For all ε > 0, there exist C2(ε) < ∞, C3(ε) < ∞, c7(ε) > 0
and c8(ε) > 0 such that for all λ > 0 and all n:

1.

P{M̂n < λ−1E[M̂n]} ≤ C2(ε)e
−c7(ε)λ

4/5−ε;
2. for all D ⊃ Bn, λ > 0,

P{MD < λ−1E[Mn]} ≤ C3(ε)e
−c8(ε)λ

4/5−ε

.
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PROOF. The second part follows from the first since, by Corollary 3.4, Propo-
sition 6.2 and Lemma 6.5, we have

P{MD < λ−1E[Mn]} ≤ CP{M̂n/4 < λ−1E[Mn]}
≤ CP{M̂n/4 < Cλ−1E[M̂n]}
≤ CP{M̂n/4 < Cλ−1E[M̂n/4]}.

We now prove the first part. We will prove the result for all ε such that 0 < ε <

7/40 and note that for such ε,

5

4
+ ε ≤ 1

4/5 − ε
≤ 5

4
+ 2ε.

Clearly, this will imply that the result holds for all ε > 0.
Fix such an ε > 0. We will show that there exist C < ∞, c7 > 0, λ0 and N such

that, for λ > λ0 and n ≥ N ,

P{M̂n < λ−1E[M̂n]} ≤ Ce−c7λ
4/5−ε

.(6.3)

We claim that this implies the statement of the theorem with

C2 = C ∨ e4c7(λ0∨N)4/5−ε

.

To see this, if λ < λ0, then, for any n,

P{M̂n < λ−1E[M̂n]} ≤ 1 ≤ C2e
−c7λ

4/5−ε

.

Next, if n ≤ N , then, for any λ,

P{M̂n < λ−1E[M̂n]} ≤ P{M̂n < 4λ−1n2}
since E[M̂n] ≤ |Bn| < 4n2. If λ > 4n, then the above probability is 0 since P{M̂n ≥
n} = 1. If λ < 4n ≤ 4N , then

C2e
−c7λ

4/5−ε ≥ e4c7N
4/5−ε

e−4c7N
4/5−ε = 1.

We now prove (6.3). Let c5 be as in Proposition 6.6, and C∗ = C(ε/2) and
N0 = N(ε/2) be as in Lemma 6.5. Let

k = c5(C
∗)−1λ4/5−ε/2.

We choose λ0 so that for all λ > λ0, k ≥ 2, kε/2 > (lnk)3 and k(ln k)−8 ≥ λ4/5−ε .
We also choose N = 4N5

0 . Then, for all n ≥ N and λ > λ0,

E[M̂kn] ≤ C∗k5/4+ε/2E[M̂n] ≤ c5k
−ε/2λE[M̂n].(6.4)

First, suppose that n/k ≤ N0. Then,

λ−1 ≤ k−5/4 ≤ (N0n
−1)5/4 ≤ 1/(4n)
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and so λ−1E[M̂n] ≤ n. Hence, since M̂n ≥ n almost surely,

P{M̂n < λ−1E[M̂n]} ≤ P{M̂n < n} = 0.

If n/k ≥ N0, then, by (6.4) and Proposition 6.6,

P{M̂n < λ−1E[M̂n]} = P
{
M̂k(n/k) < λ−1E

[
M̂k(n/k)

]}
≤ P

{
M̂k(n/k) < c5k

−ε/2E[M̂n/k]}
≤ P

{
M̂k(n/k) < c5(ln k)−3E[M̂n/k]}

≤ Ce−c6k(lnk)−8

≤ Ce−c7λ
4/5−ε

. �
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