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LARGE FACES IN POISSON HYPERPLANE MOSAICS

BY DANIEL HUG AND ROLF SCHNEIDER

Karlsruhe Institute of Technology and Albert–Ludwigs-Universität Freiburg

A generalized version of a well-known problem of D. G. Kendall states
that the zero cell of a stationary Poisson hyperplane tessellation in R

d , under
the condition that it has large volume, approximates with high probability a
certain definite shape, which is determined by the directional distribution of
the underlying hyperplane process. This result is extended here to typical k-
faces of the tessellation, for k ∈ {2, . . . , d − 1}. This requires the additional
condition that the direction of the face be in a sufficiently small neighbour-
hood of a given direction.

1. Introduction. A well-known problem of D. G. Kendall, popularized in the
foreword to the first edition (1987) of the book [17], asked whether the shape of
the zero cell of a stationary, isotropic Poisson line process in the plane, under
the condition that the cell has large area, must be approximately circular, with
high probability. An affirmative answer was given by Kovalenko [11, 12]. Several
higher-dimensional versions and variants of Kendall’s problem were treated in [4,
5, 7–10]. In [4], the subject of investigation was the zero cell of a stationary Pois-
son hyperplane process with a general (nondegenerate) directional distribution in
d-dimensional Euclidean space, under the condition that the cell has large volume.
The asymptotic shape of such cells was found to be that of the so-called Blaschke
body of the hyperplane process. This is (up to a dilatation) the convex body, cen-
trally symmetric with respect to the origin, that has the spherical directional dis-
tribution of the hyperplane process as its surface area measure. Its existence and
uniqueness follow from a celebrated theorem going back to Minkowski.

The purpose of the present paper is an extension of the latter result to k-
dimensional faces, for k ∈ {2, . . . , d − 1}. The natural extension of the zero cell,
which is stochastically equivalent to the volume weighted typical cell, is the no-
tion of the (k-volume-)weighted typical k-face. We consider the weighted typical
k-face under the condition that it has large k-dimensional volume and that its di-
rection space (the translate of its affine hull passing through the origin) is in a small
neighbourhood of a given k-dimensional subspace L∗. We can then again identify
an asymptotic shape, namely that of the Blaschke body of the section process of
the given hyperplane process with the subspace L∗. The main results, whose pre-
cise formulation requires some preparations, are formulated in the theorems at the
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end of the next section. The extension from cells to lower-dimensional faces is not
routine; the proof has become possible through a recently established represen-
tation for the distribution of the weighted typical k-face ([15], Theorem 1) and a
special stability result for the convex bodies obtained from Minkowski’s existence
theorem, which was proved in [6].

Once the result is proved for weighted typical k-faces (Theorem 2.1), it can be
used to derive a variant for typical k-faces (Theorem 2.2). From these theorems,
the existence of limit shapes can be deduced (Theorem 7.1).

2. Preliminaries and main results. Fundamental facts about Poisson hyper-
plane processes and random mosaics, as well as corresponding notions that are
not explained here, can be found in the book [16]. For the employed notions and
results from convex geometry, we refer to [14].

We denote by Rd the d-dimensional Euclidean vector space (assuming d ≥ 3
throughout), with scalar product 〈·, ·〉 and induced norm ‖ · ‖. Its unit ball and
unit sphere are denoted by B

d and S
d−1, respectively. Further, SOd is the rotation

group, G(d, k) is the Grassmannian of k-dimensional linear subspaces of R
d and

A(d, k) is the set of k-flats (k-dimensional affine subspaces) of R
d ; all these sets

are equipped with their standard topologies.
By Hd ⊂ A(d, d − 1), we denote the space of hyperplanes in R

d not passing
through the origin o. Every hyperplane in Hd has a unique representation

H(u, t) = {x ∈ R
d : 〈x,u〉 = t}

with u ∈ S
d−1 and t > 0, and

H−(u, t) = {x ∈ R
d : 〈x,u〉 ≤ t}

is the closed halfspace bounded by it that contains o. We write H− = H−(u, t) if
H = H(u, t).

Let K be the space of convex bodies (nonempty, compact, convex subsets) in
R

d , endowed with the Hausdorff metric δ. For k ∈ {2, . . . , d − 1} and a subspace
L ∈ G(d, k), we denote by K(L) the set of convex bodies K ⊂ L and by K0(L)

the subset of k-dimensional bodies K with o ∈ relintK (where relint denotes the
relative interior).

In the following, measures on a given topological space T , if not further speci-
fied, are always positive measures on the Borel σ -algebra B(T ) of the space.

We turn to hyperplane processes. As usual and convenient in the theory of point
processes, we often identify a simple counting measure η on a topological space
E with its support, so that η({x}) = 1 and x ∈ η are used synonymously, and η(A)

and card(η ∩ A) both denote the number of elements of η in the subset A ⊂ E.
Let X be a stationary Poisson hyperplane process in Rd . We denote the under-

lying probability by P and mathematical expectation by E. The intensity measure
� = EX(·) of X has a representation (equivalent to [16], (4.33))

�(A) = 2γ

∫
Sd−1

∫ ∞
0

1A(H(u, t))dt ϕ(du)
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for A ∈ B(A(d, d − 1)), where γ is the intensity of X and ϕ is its spherical di-
rectional distribution. This is an even probability measure on the unit sphere; we
assume that it is not concentrated on any great subsphere.

Together with the hyperplane process X, the following processes of lower-
dimensional flats derived from it will play an essential role. First, let k ∈
{2, . . . , d − 1} and L ∈ G(d, k). The section process X ∩ L is obtained by tak-
ing all (k − 1)-dimensional intersections of hyperplanes of X with L; see [16],
pages 129 ff. It is a stationary Poisson process of (k − 1)-flats in L. We denote its
intensity by γX∩L and its spherical directional distribution, defined on S

d−1 ∩L, by
ϕX∩L. Second, for k ∈ {0, . . . , d − 1}, the process Xd−k is obtained by intersecting
any d − k hyperplanes of X which are in general position; see [16], Section 4.4.
It is a stationary process of k-flats and is called the intersection process of order
d − k of X. We denote its intensity by γd−k and its directional distribution by
Qd−k . The latter is a probability measure on G(d, k).

The hyperplane process X induces a tessellation X(d) of R
d and with it the

process X(k) of its k-dimensional faces, for k = 0, . . . , d − 1 (for the notation,
note the slight digression from [16], where X and X(d) are denoted by X̂ and X,
resp.). The zero cell of X(d) is the cell (d-face) containing o and thus is the random
polytope given by

Z0 := ⋂
H∈X

H−.

Its counterpart for k-faces can be defined as follows (see [1, 15], e.g.). Let Mk

denote the random measure defined by restricting the k-dimensional Hausdorff
measure to the union of the k-flats of Xd−k . Further, let Ns denote the set of simple
counting measures on A(d, d − 1) and Ns the usual σ -algebra of Ns (see [16],
Section 3.1). Let B ⊂ R

d be a Borel set of Lebesgue measure 1 and let A ∈ Ns .
Then

P0
k(A) := 1

EMk(B)
E

∫
B

1A(X − x)Mk(dx)

defines a probability measure P0
k (a Palm distribution, independent of B) on the

measurable space (Ns, Ns). Let Y be a hyperplane process with distribution P0
k .

Then the weighted typical k-face Z
(k)
0 of X (i.e., of the mosaic induced by X) is

defined as the a.s. unique k-face in Y (k) containing the origin o. The distribution of
the random polytope Z

(k)
0 is uniquely determined and coincides, up to translations,

with that of the typical k-face Z(k) weighted by its k-volume. This is revealed by
the relation

Ef
(
Z

(k)
0

) = 1

EVk(Z(k))
E

[
f

(
Z(k))Vk

(
Z(k))],(2.1)

holding for every translation invariant, nonnegative, measurable function f on the
space of k-dimensional polytopes (see [15], equation (11)). Here, Vk denotes the
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k-dimensional volume, and Z(k) is the typical k-face of the mosaic induced by X,
as defined in [16], page 450. An even more intuitive interpretation of the weighted
typical k-face, up to translations, is the following. Let s denote the Steiner point
(or any other centre function, see [16], page 110), and let W ∈ K be an arbitrary
convex body with positive volume. Then, for every Borel set A in the space of
convex polytopes,

P
{
Z

(k)
0 − s

(
Z

(k)
0

) ∈ A
} = lim

r→∞
E

∑
F∈X(k),F⊂rW 1A(F − s(F ))Vk(F )

E
∑

F∈X(k),F⊂rW Vk(F )
.

The following integral representation for the distribution of Z
(k)
0 is proved in

[15], Theorem 1. For Borel sets A in the space of convex polytopes,

P
{
Z

(k)
0 ∈ A

} =
∫
G(d,k)

P{Z0 ∩ L ∈ A}Qd−k(dL).(2.2)

Recall ([16], page 162) that the Blaschke body of X is the o-symmetric con-
vex body B(X) with surface area measure Sd−1(B(X), ·) = γ ϕ. To describe the
asymptotic shape of large weighted typical k-faces, we need the Blaschke body
B(X ∩ L) of the section process X ∩ L, for L in the support of the measure Qd−k .
Since only the homothety class of the Blaschke body plays a role in the following,
we may replace it by any dilate. It is convenient here to use the o-symmetric body
BL ⊂ L with surface area measure on S

d−1 ∩ L given by the spherical directional
distribution ϕX∩L of the section process X ∩ L.

We need some particular notions of distance.
For a rotation ρ ∈ SOd , let Mρ be the matrix of ρ with respect to the standard

orthonormal basis of R
d . We define the distance of ρ from the identity by

|ρ| := ‖Mρ − I‖,
where I is the unit matrix and ‖A‖ = (

∑d
i,j=1 a2

ij )
1/2 is the Frobenius norm of the

matrix A = (aij )
d
i,j=1. Note that |ρ| = |ρ−1|, since Mρ−1 − I is the transpose of

Mρ − I , and that for x ∈ R
d we have

‖x − ρx‖ ≤ |ρ|‖x‖.
On G(d, k), we introduce a metric 	 by

	(L,E) := min{|ρ| :ρ ∈ SOd, ρL = E}.
The triangle inequality follows from

‖Mρ1Mρ2 − I‖ ≤ ‖Mρ1Mρ2 − Mρ1‖ + ‖Mρ1 − I‖ = ‖Mρ2 − I‖ + ‖Mρ1 − I‖
for ρ1, ρ2 ∈ SOd . The metric 	 induces the standard topology of G(d, k) and is
particularly convenient for us. For metrics on Grassmannians involving, like this
one, a “direct rotation” between subspaces, we refer to [2], the survey article [13],
and the references given there.
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For θ > 0, the θ -neighbourhood of a subspace L∗ ∈ G(d, k) is defined by

Nθ(L
∗) := {L ∈ G(d, k) :	(L,L∗) < θ}.

For L ∈ G(d, k) and K,M ∈ K0(L) with M = −M , let

ϑ(K,M) := log min{β/α :α,β > 0,∃z ∈ L :αM ⊂ K + z ⊂ βM}.(2.3)

The function ϑ measures the deviation of the homothetic shapes of K and M ; it is
nonnegative, and it vanishes if and only if K and M are homothetic.

For L,E ∈ G(d, k) and convex bodies K ∈ K0(L) and M ∈ K0(E) with M =
−M , let

ϑ(K,M) := min{ϑ(ρK,M) :ρ ∈ SOd, ρL = E, |ρ| = 	(L,E)}.(2.4)

Note that this definition is consistent with (2.3), since |ρ| = 	(L,E) in the case
L = E implies that ρ is the identity. Note also that ϑ(K,M) is symmetric in K

and M if both bodies are o-symmetric.
For a k-dimensional convex body K , we denote by D(K) = lin(K − K) ∈

G(d, k) its direction space; this is the linear subspace parallel to the affine hull
of K .

Throughout the paper, several constants ci will appear, which may depend on
various data. Their possible dependence on the dimension d will not be mentioned,
since we work in a space of fixed dimension.

Now, we can formulate our main result.

THEOREM 2.1. Let X be a stationary Poisson hyperplane process in R
d with

intensity γ and spherical directional distribution ϕ. Let k ∈ {2, . . . , d − 1}, and let
Z

(k)
0 be the weighted typical k-face of the mosaic induced by X. Let Qd−k be the

directional distribution of the intersection process of order d − k of X.
Let ε > 0 be given. Then there exist constants c1, c2 > 0, depending only on

ϕ,γ, ε, and a constant c3 > 0, depending only on ϕ,γ , such that the following is
true. If L∗ ∈ G(d, k) is in the support of the measure Qd−k , then

P
{
ϑ

(
Z

(k)
0 ,BL∗

) ≥ ε|Vk

(
Z

(k)
0

) ≥ a,D
(
Z

(k)
0

) ∈ Nθ(L
∗)

}
≤ c2 exp[−c3ε

k+1a1/k]
for all a ≥ 1 and all 0 < θ ≤ c1.

In other words, if a subspace L∗ in the support of the distribution Qd−k and
a bound ε > 0 are given, then the probability that the weighted typical cell Z

(k)
0

deviates in shape from the (dilated) Blaschke body BL∗ by at least ε, under the
condition that its direction space is contained in a suitable neighbourhood of L∗
and its volume is at least a > 0, becomes exponentially small for large a. From
this, one can deduce that the Blaschke body is the limit shape of Z

(k)
0 if the volume
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of Z
(k)
0 tends to infinity and its direction space tends to L∗ (see Theorem 7.1 for a

precise formulation). The assumptions of Theorem 2.1 are inevitable: the subspace
L∗ must be chosen in the support of the measure Qd−k since, by (2.2), the direc-
tion space of Z

(k)
0 lies almost surely in the support of this measure. (This is also

intuitively obvious: the k-faces of the tessellation X(d) are generated by intersec-
tions of hyperplanes from the process X.) Further, the Blaschke body BL∗ depends
on L∗, hence in general only weighted typical cells with a direction space close to
L∗ can approximate the shape of BL∗ . The admissible size of the neighbourhood
Nθ(L

∗) in Theorem 2.1 depends heavily on Lemma 3.4 below and thus on the un-
derlying stability theorem for Minkowski’s existence theorem. Lemma 3.4 would
yield additional information on the dependence of c1 on ε, but a more explicit spec-
ification of the neighbourhood will only be possible for directional distributions ϕ

where the solutions of Minkowski’s problem are more explicitly accessible.
There are, however, two simple cases which should be mentioned. If the hy-

perplane process X is isotropic, that is, its directional distribution ϕ is invariant
under rotations, then all Blaschke bodies BL∗ are balls, and the condition on the
direction space D(Z

(k)
0 ) can be omitted entirely. In fact, if X is isotropic, then it

can be deduced from (2.2) (see [15]) that there exists a random rotation ρ such that
ρZ

(k)
0 has the same distribution as the zero cell of a stationary isotropic Poisson

(k − 1)-flat process in a fixed k-dimensional subspace of R
d . Therefore, one can

immediately apply the results from [4] in that subspace.
Another simple case is that of a discrete directional distribution. If the direc-

tional distribution ϕ of X is concentrated in finitely many points, then every body
BL∗ is a k-dimensional polytope. The distribution Qd−k is concentrated in finitely
many elements of G(d, k). Hence, there exist only finitely many possibilities for
the direction space of Z

(k)
0 . If L∗ in the support of Qd−k is given, one can then

choose for Nθ(L
∗) in Theorem 2.1 any neighbourhood of L∗ containing no other

element of the support of Qd−k .
The proof of Theorem 2.1 will be given in Section 5. The next section provides

geometric results in preparation for that proof.
The arguments leading to Theorem 2.1 can be modified to yield also a corre-

sponding result for the typical k-face Z(k) of the mosaic induced by X.

THEOREM 2.2. The assertion of Theorem 2.1 remains true if the weighted
typical k-face Z

(k)
0 is replaced by the typical k-face Z(k) of the mosaic induced

by X.

This is in analogy to the corresponding result for the typical cell, Theorem 2
in [4].

We have restricted ourselves here, in agreement with D. G. Kendall’s original
question, to the volume functional. For the zero cell, we have investigated in [9]
asymptotic shapes when the size of the zero cell is measured by various other



1326 D. HUG AND R. SCHNEIDER

functionals. It is a natural question whether such results carry over to k-faces. This
is certainly possible in the isotropic case and for rotation invariant size functionals,
by the remark made above. However, for non-isotropic distributions and general
size functionals, asymptotic shapes are no longer controlled by the Blaschke body,
so that the crucial Lemma 3.4 below must be replaced by a different approach.

3. Auxiliary continuity and stability results. Throughout this paper, X is a
stationary Poisson hyperplane process in R

d , with intensity γ and spherical direc-
tional distribution ϕ. We assume that ϕ is not concentrated on a great subsphere
and, without loss of generality, that it is even (invariant under reflection in o). The
main topic of this section is the dependence of the dilated Blaschke bodies BL ⊂ L,
L ∈ G(d, k), on the probability measure ϕ and on L.

Let L ∈ G(d, k), where k ∈ {2, . . . , d − 1}. The set S
k−1
L := S

d−1 ∩L is the unit
sphere in L. The surface area measure of K ∈ K0(L) is denoted by SL

k−1(K, ·); this

is a measure on S
k−1
L . By definition, the Blaschke body B(X ∩ L) is the unique

convex body in K(L), centrally symmetric with respect to o, for which

SL
k−1

(
B(X ∩ L), ·) = γX∩LϕX∩L,

where γX∩L is the intensity and ϕX∩L is the spherical directional distribution of
the section process X ∩ L. Existence and uniqueness of this body follow from
Minkowski’s theorem (see [14], Section 7.1, e.g.). We work here with a dilate of
the Blaschke body, the o-symmetric body BL defined by

SL
k−1(BL, ·) = ϕX∩L.

The associated zonoid �X of X is the projection body of B(X) and hence has
generating measure 1

2γ ϕ, that is, its support function has the integral representa-
tion

h(�X,u) = Vd−1(B(X)|u⊥) = γ

2

∫
Sd−1

|〈u,v〉|ϕ(dv), u ∈ S
d−1,

where ·|L denotes the orthogonal projection to L and u⊥ is the hyperplane through
o orthogonal to u. In the following, the support function h(K, ·) of a convex body
K is always defined on R

d , also if K ⊂ L, L ∈ G(d, k).
Let L ∈ G(d, k). The associated zonoid of the section process X ∩ L is given

by

�X∩L = �X|L
(see [16], equation (4.61)). From this, we can read off the generating measure of
the zonoid �X∩L and hence the essential parameters of the section process X ∩L.
We define the spherical projection prL : Sd−1 \ L⊥ → S

k−1
L by

prL(u) := u|L
‖u|L‖ for u ∈ S

d−1 \ L⊥.
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Let M(Sd−1) denote the cone of finite Borel measures on S
d−1. The spherical

projection πL : M(Sd−1) → M(Sk−1
L ) is defined by

πLμ(A) =
∫

Sd−1\L⊥
1A(prL(u))‖u|L‖μ(du)(3.1)

for Borel sets A ⊂ S
k−1
L and for μ ∈ M(Sd−1). (More general spherical projec-

tions and their applications are treated in [3].)
For a segment S = conv{−αv, αv} with v ∈ S

d−1 \ L⊥ and α > 0, we have for
u ∈ R

d ,

h(S|L,u) = ∣∣〈v|L,u〉∣∣α = |〈prL(v),u〉| · ‖v|L‖α.

Hence, if Z is a zonoid with generating measure μ, then the zonoid Z|L has gen-
erating measure πLμ. In particular, the generating measure of �X|L is given by
1
2γπLϕ. It follows that the Blaschke body B(X ∩ L) has surface area measure
SL

k−1(B(X ∩ L), ·) = γπLϕ. We conclude that

γX∩LϕX∩L = γπLϕ.(3.2)

This is [16], Theorem 4.4.7, for hyperplane processes and in terms of spherical
directional distributions.

Since the bodies BL are obtained from the (nonconstructive) existence theorem
of Minkowski, it is not trivial that they depend continuously on L. We need a
stronger result, estimating how close BL and BE are in a suitable sense if the
subspaces L,E ∈ G(d, k) are close to each other. Such an estimate (Lemma 3.4)
is obtained from a stability result for Minkowski’s theorem that uses the Prokhorov
metric for measures. (Diskant’s stability result (see [14], Theorem 7.2.), which is in
terms of the total variation norm of the difference, would not be strong enough for
this purpose.) For finite measures μ,ν on S

d−1, the Prokhorov distance dP (μ, ν)

is defined by

dP (μ, ν) = inf{ε > 0 :μ(A) ≤ ν(Aε) + ε and ν(A) ≤ μ(Aε) + ε

for all Borel sets A ⊂ S
d−1},

where

Aε := {y ∈ S
d−1 :‖x − y‖ < ε for some x ∈ A}.

Analogous definitions are used for measures on S
k−1
L . For a rotation ρ and a

measure μ, we denote by ρμ the image measure of μ under ρ, defined by
(ρμ)(A) = μ(ρ−1A) for all A in the domain of μ.

LEMMA 3.1. Let L,E ∈ G(d, k), ρ ∈ SOd and L = ρE. If |ρ| ≤ 1/8, then

dP (πLϕ,ρπEϕ) ≤ 3|ρ|1/3.
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PROOF. Put μ := πLϕ and ν := ρπEϕ, write ε := |ρ|1/3.
We have to show that μ(A) ≤ ν(A3ε) + 3ε and ν(A) ≤ μ(A3ε) + 3ε for all

A ∈ B(Sk−1
L ). Let A ∈ B(Sk−1

L ) be given. The first assertion reads∫
Sd−1\L⊥

1A(prL(u))‖u|L‖ϕ(du)

(3.3)
≤

∫
Sd−1\E⊥

1ρ−1A3ε
(prE(u))‖u|E‖ϕ(du) + 3ε.

Writing

M1 = {u ∈ S
d−1 :‖u|L‖ < ε},

M2 = {u ∈ S
d−1 :‖u|L‖ ≥ ε},

we have ∫
M1\L⊥

1A(prL(u))‖u|L‖ϕ(du) ≤ ε.

Let u,v ∈ S
d−1 and assume that ‖u − v‖ ≤ ε3 and u ∈ M2, hence ‖u|L‖ ≥ ε.

From ∣∣‖u|L‖ − ‖v|L‖∣∣ ≤ ‖(u − v)|L‖ ≤ ‖u − v‖ ≤ ε3

we get ‖v|L‖ ≥ ‖u|L‖ − ε3 ≥ ε − ε3 ≥ ε/2 > 0, hence v ∈ S
d−1 \ L⊥.

There are unique representations

u = tu0 + u1, u0 ∈ L ∩ S
d−1,u1 ∈ L⊥, t > 0,

v = τv0 + v1, v0 ∈ L ∩ S
d−1,v1 ∈ L⊥, τ > 0.

Here, u0 = prL(u) and v0 = prL(v). From |t −τ | = |‖u|L‖−‖v|L‖| ≤ ε3 together
with τ = ‖v|L‖ ≥ ε/2 and t = ‖u|L‖ ≥ ε, we get

‖u0 − v0‖ ≤
∥∥∥∥u

t
− v

τ

∥∥∥∥ =
∥∥∥∥u

t
− v

t
+ v

t
− v

τ

∥∥∥∥
≤ 1

t
‖u − v‖ +

∣∣∣∣1

t
− 1

τ

∣∣∣∣ ≤ ε−1 · ε3(1 + 2/ε) ≤ 3ε.

Now let v := ρu, then ‖u − v‖ ≤ |ρ| = ε3. Hence, we have ‖u0 − v0‖ ≤ 3ε.
Suppose that u ∈ M2 is such that u0 ∈ A. Then prL(ρu) = v0 ∈ A3ε , hence

prE(u) ∈ ρ−1A3ε . From

‖u|L‖ − ‖u|E‖ = ‖u|L‖ − ‖ρu|L‖ = ‖u|L‖ − ‖v|L‖ ≤ ε3
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we see that u /∈ E⊥ and conclude that∫
M2

1A(prL(u))‖u|L‖ϕ(du)

≤
∫

Sd−1\E⊥
1ρ−1A3ε

(prE(u))‖u|L‖ϕ(du)

≤
∫

Sd−1\E⊥
1ρ−1A3ε

(prE(u))‖u|E‖ϕ(du) + ε3.

Altogether, we obtain∫
Sd−1\L⊥

1A(prL(u))‖u|L‖ϕ(du)

≤ ε +
∫

Sd−1\E⊥
1ρ−1A3ε

(prE(u))‖u|E‖ϕ(du) + ε3

and hence (3.3).
Since |ρ| = |ρ−1|, inequality (3.3) remains true if we interchange L with E

and ρ with ρ−1 and then replace A by ρ−1A. The resulting inequality is ν(A) ≤
μ(A3ε) + 3ε, which completes the proof of Lemma 3.1. �

In the following, the dependence of some constants ci on the measure ϕ is only
via the number

m(ϕ) := min
u∈Sd−1

∫
Sd−1

|〈u,v〉|ϕ(dv).

This number, which can be considered as a measure of nondegeneracy, is positive,
since the support of ϕ is not contained in a great subsphere.

LEMMA 3.2. Let B be the o-symmetric convex body with Sd−1(B, ·) = ϕ. The
inradius r and circumradius R of B can be estimated by

c4 ≤ r ≤ R ≤ c5,

where c4, c5 > 0 are constants depending only on m(ϕ) and an upper bound for ϕ.
(Here, ϕ can be any finite even measure on S

d−1 not concentrated on a great
subsphere.)

PROOF. First, we repeat a known argument ([14], page 303). If ϕ(Sd−1) ≤ b,
the isoperimetric inequality gives Vd(B) ≤ c(b), with a constant c(b) depending
only on b (and the dimension, which we do not mention). Let x ∈ B . Then

Vd(B) = 1

d

∫
Sd−1

h(B,v)ϕ(dv) ≥ 1

d

∫
Sd−1

max{〈x,v〉,0}ϕ(dv)

= 1

2d

∫
Sd−1

|〈x,v〉|ϕ(dv) ≥ 1

2d
‖x‖m(ϕ).
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It follows that R ≤ 2dc(b)/m(ϕ).
Second, since B is centrally symmetric, an inball of B is touched by two par-

allel supporting hyperplanes of B . Let u be a unit vector parallel to these hyper-
planes. The projection B|u⊥ lies between two parallel hyperplanes in u⊥ which
are distance 2r apart, and it is contained in RB

d ∩ u⊥. Hence, Vd−1(B|u⊥) ≤
2rVd−2(B

d−2)Rd−2. On the other hand, using [14], (7.4.1),

Vd−1(B|u⊥) = 1

2

∫
Sd−1

|〈u,v〉|Sd−1(B,dv)

= 1

2

∫
Sd−1

|〈u,v〉|ϕ(dv) ≥ 1

2
m(ϕ).

The assertion follows. �

It is technically convenient to consider also the o-symmetric convex body B(L)

in L with surface area measure

SL
k−1(B(L), ·) = πLϕ.

From (3.2), we have

BL =
(

γ

γX∩L

)1/(k−1)

B(L)(3.4)

and
γX∩L

γ
=

∫
Sd−1

‖v|L‖ϕ(dv).(3.5)

LEMMA 3.3. Let k ∈ {2, . . . , d − 1}. Let rL,RL denote the inradius and cir-
cumradius, respectively, of either B(L) or BL, measured in L ∈ G(d, k). There are
constants c6, c7 > 0, depending only on m(ϕ), such that

c6 ≤ rL ≤ RL ≤ c7 for all L ∈ G(d, k).

PROOF. Let L ∈ G(d, k). From (3.1), clearly πLϕ(Sk−1
L ) ≤ ϕ(Sd−1), hence 1

is an upper bound for πLϕ.
Let �ϕ/2 be the zonoid with generating measure ϕ/2. Then �ϕ/2|L has gener-

ating measure πLϕ/2. For u ∈ L, it follows that∫
S

k−1
L

|〈u,v〉|πLϕ(dv) = 2h(�ϕ/2|L,u)

= 2h(�ϕ/2,u) =
∫

Sd−1
|〈u,v〉|ϕ(dv) ≥ m(ϕ).

Now Lemma 3.2, applied in L and to the measure πLϕ, shows that the inradius
and circumradius of B(L) can be estimated from both sides by positive constants
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depending only on m(ϕ). The same fact for BL follows from (3.4), since (3.5)
gives

m(ϕ) ≤ γX∩L/γ ≤ 1.(3.6)

For the left side, note that L contains a unit vector u and that ‖v|L‖ ≥ |〈v,u〉|. �

In the following, we make use of the Hausdorff metric δ and of the deviation
function ϑ defined by (2.3).

LEMMA 3.4. Let k ∈ {2, . . . , d − 1}. There exist constants c8, c9, depending
only on m(ϕ), with the following property. If L,E ∈ G(d, k) and if ρ ∈ SOd is a
rotation with L = ρE and |ρ| ≤ 1/8, then

δ(B(L),ρB(E)) ≤ c8|ρ|1/3k(3.7)

and

ϑ(BL,ρBE) ≤ c9|ρ|1/3k.(3.8)

PROOF. By Lemma 3.3, the inradius and circumradius of B(L′), L′ ∈ G(d, k),
can be bounded from below and from above by positive constants depending only
on m(ϕ). We use the stability result of [6], Theorem 3.1, for the solutions of
Minkowski’s problem and apply it here in the subspace L of the assertion. [Note
that B(L),B(E) are centrally symmetric, hence the translations appearing loc. cit.
can be omitted.] We conclude that

δ(B(L),ρB(E)) ≤ cdP (SL
k−1(B(L), ·), SL

k−1(ρB(E), ·))1/k

= cdP (πLϕ,ρπEϕ)1/k

with a constant c depending only on m(ϕ). By Lemma 3.1,

dP (πLϕ,ρπEϕ) ≤ 3|ρ|1/3,

hence (3.7) follows, with suitable c8.
From (3.7), with λ := c8|ρ|1/3k , we get B(L) ⊂ ρB(E) + λB

k
L, where B

k
L :=

B
d ∩ L is the unit ball in L. Since c6B

k
L ⊂ ρB(E) by Lemma 3.3, we get

B(L) ⊂ (1 + λ/c6)ρB(E).

A similar relation holds with ρB(E) and B(L) interchanged, hence

(1 + λ/c6)
−1ρB(E) ⊂ B(L) ⊂ (1 + λ/c6)ρB(E).

This gives

ϑ(B(L),ρB(E)) ≤ log(1 + λ/c6)
2 ≤ 2λ/c6.

Here, we may replace B(L),B(E) by BL,BE , since ϑ is invariant under dilata-
tions. �

In the following lemma, the deviation function ϑ for convex bodies in different
subspaces, as defined by (2.4), is used.
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LEMMA 3.5. Let k ∈ {2, . . . , d − 1}, let L,L∗ ∈ G(d, k) and ε > 0. If
	(L,L∗) ≤ min{1/8, (ε/c9)

3k}, where c9 is the constant appearing in Lemma 3.4,
then every convex body K ∈ K0(L) with ϑ(K,BL) < ε satisfies ϑ(K,BL∗) < 2ε.

PROOF. Let L,L∗ ∈ G(d, k) and 	(L,L∗) ≤ min{1/8, (ε/c9)
3k}. There ex-

ists a rotation ρ ∈ SOd with ρL = L∗ and |ρ| = 	(L,L∗), hence ρ satisfies
|ρ| ≤ (ε/c9)

3k and |ρ| ≤ 1/8. Lemma 3.4 gives

ϑ(BL∗, ρBL) ≤ ε.(3.9)

Suppose that K ∈ K0(L) and ϑ(K,BL) < ε. The definition of ϑ implies the
triangle inequality

ϑ(ρK,BL∗) ≤ ϑ(ρK,ρBL) + ϑ(ρBL,BL∗).

In fact, if ϑ(ρK,ρBL) =: a1 and ϑ(ρBL,BL∗) =: a2, there are numbers α1, β1,

α2, β2 > 0 with log(β1/α1) = a1, log(β2/α2) = a2 and a vector z ∈ ρL such that

α1ρBL ⊂ ρK + z ⊂ β1ρBL, α2BL∗ ⊂ ρBL ⊂ β2BL∗ .

In the second case, we have used that, due to the central symmetry of BL and BL∗ ,
the translation vector appearing in the definition of ϑ can be omitted. We deduce
that

α1α2BL∗ ⊂ ρK + z ⊂ β1β2BL∗

and hence ϑ(ρK,BL∗) ≤ log(β1β2/α1α2) = a1 + a2.
From ϑ(ρK,ρBL) = ϑ(K,BL) < ε and ϑ(ρBL,BL∗) = ϑ(BL∗, ρBL) ≤ ε we

get ϑ(ρK,BL∗) < 2ε. Since |ρ| = 	(L,L∗), this yields ϑ(K,BL∗) < 2ε, which
finishes the proof. �

4. Two preparatory probability estimates. The plan is to prove Theo-
rem 2.1 by using (2.2) and applying results for the zero cell Z0 of X, obtained
in [4], to the random polytope Z0 ∩L, for each L ∈ G(d, k). This is possible since
Z0 ∩ L is stochastically equivalent to the zero cell of the section process X ∩ L,
which is a stationary Poisson hyperplane process in L; it has intensity γX∩L and
spherical directional distribution ϕX∩L = (γ /γX∩L)πLϕ, by (3.2). In applying the
results from [4], we have to ensure that the constants appearing there can be chosen
independently of L.

Let L ∈ G(d, k). For u ∈ S
k−1
L and t > 0 we write H−

L (u, t) := H−(u, t) ∩ L.
If u1, . . . ,un ∈ S

k−1
L and t1, . . . , tn > 0, we use the notation

n⋂
i=1

H−
L (ui , ti) =: PL(u1, . . . ,un; t1, . . . , tn).

In the following, we write

τL := kVk(BL)1−1/k.
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LEMMA 4.1. Let β > 0. There are positive constants c10, h0, depending only
on ϕ,γ and β , such that for all L ∈ G(d, k), all a ≥ 1 and 0 < h ≤ h0,

P{Vk(Z0 ∩ L) ∈ a(1,1 + h)} ≥ c10h exp[−2(1 + β)γX∩LτLa1/k].

PROOF. Let β > 0 and a ≥ 1 be given.
First, we consider a fixed L∗ ∈ G(d, k). Then X ∩ L∗ is a stationary Poisson

hyperplane process in L∗ with intensity γX∩L∗ and spherical directional distribu-
tion ϕX∩L∗ . For given β > 0, Lemma 3.1 in [4], applied to the convex body BL∗
in L∗, yields the existence of a number N ∈ N, of unit vectors u0

1, . . . ,u0
N ∈ S

k−1
L∗

in the support of the measure ϕX∩L∗ (which is equal to the support of πL∗ϕ) and
of positive numbers t0

1 , . . . , t0
N , all depending only on ϕ,γ,L∗ and β , such that the

polytope

P 0 := PL∗(u0
1, . . . ,u0

N ; t0
1 , . . . , t0

N)

has N facets (in L∗) and satisfies

P 0 ⊂ (1 + β/4)BL∗ and Vk(P
0) = Vk(BL∗).

Next, we can choose neighbourhoods Ui of u0
i in S

k−1
L∗ and a number α > 0 with

t0
i − α > 0, i = 1, . . . ,N , all depending only on ϕ,γ,L∗ and β , such that, for all

u1, . . . ,uN ∈ S
k−1
L∗ and t1, . . . , tN ∈ R with

ui ∈ Ui, |ti − t0
i | < α, i = 1, . . . ,N,(4.1)

the following condition (i) is satisfied.

(i) P := PL∗(u1, . . . ,uN ; t1, . . . , tN ) is a polytope in L∗ with N facets and
satisfying P ⊂ (1 + β/2)BL∗ .

The set of values

Vk(PL∗(u0
1, . . . ,u0

N ; t0
1 , . . . , t0

N−1, t)) with |t − t0
N | < α

is an interval containing Vk(BL∗) in its interior. Therefore, after decreasing
U1, . . . ,UN,α, if necessary, we can assume that there exists a number b > 0, de-
pending only on ϕ,γ,L∗ and β , with the following property.

(ii) If (4.1) is satisfied, then(
Vk(BL∗) − b,Vk(BL∗) + b

)
⊂ {Vk(PL∗(u1, . . . ,uN ; t1, . . . , tN−1, t)) : |t − t0

N | < α}.
We must extend the preceding to the subspaces L in a suitable neighbourhood

Nθ(L
∗). The numbers θ, η,h0 appearing in the following can be chosen to depend

only on ϕ,γ,L∗ and β . Let θ ∈ (0,1/8]; below it will be specified further. To each
L ∈ Nθ(L

∗), we choose a rotation ρL with L = ρLL∗ and |ρL| ≤ θ .
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We choose a number η > 0 so small that to each i ∈ {1, . . . ,N} there exists a
neighbourhood U ′

i of u0
i in S

k−1
L∗ with (U ′

i )η ⊂ Ui , where for A ⊂ S
k−1
L∗ the set

Aη is defined by Aη = {y ∈ S
k−1
L∗ :‖y − x‖ < η for some x ∈ A}. Decreasing η, if

necessary (without changing the sets U ′
i ), we can also assume that

πL∗ϕ(U ′
i ) ≥ 2η for i = 1, . . . ,N.

This is possible since U ′
i is a neighbourhood of u0

i ∈ suppπL∗ϕ.
By Lemma 3.1, we can further choose θ so small that

dP (πLϕ,ρLπL∗ϕ) ≤ η for L ∈ Nθ(L
∗).

Then,

πLϕ(ρLUi) ≥ πLϕ((ρLU ′
i )η) ≥ (ρLπL∗ϕ)(ρLU ′

i ) − η = πL∗ϕ(U ′
i ) − η ≥ η.

Hence, putting UL
i := ρLUi , we have from (3.2)

ϕX∩L(UL
i ) = γ

γX∩L

πLϕ(UL
i ) ≥ η > 0 for i = 1, . . . ,N.

Due to (3.8), we can decrease θ , if necessary, such that

ρLBL∗ ⊂ 1 + β

1 + β/2
BL for L ∈ Nθ(L

∗).(4.2)

Using (ii) above, (3.7) and the fact that L �→ γX∩L = γπLϕ(Sk−1
L ) is continuous by

Lemma 3.1, we can decrease θ further, if necessary, and choose a number h0 > 0
such that

L ∈ Nθ(L
∗), ui ∈ UL

i , |ti − t0
i | < α, i = 1, . . . ,N,(4.3)

implies

Vk(BL)(1,1 + h0) ⊂ {Vk(PL(u1, . . . ,uN ; t1, . . . , tN−1, t)) : |t − t0
N | < α}.

Here, we have used that

PL(u1, . . . ,uN ; t1, . . . , tN−1, t) = ρLPL∗(ρ−1
L u1, . . . , ρ

−1
L uN ; t1, . . . , tN−1, t).

After these choices, the following is true for all L ∈ Nθ(L
∗). If (4.3) holds, then

(iL) and (iiL) are satisfied:

(iL) P := PL(u1, . . . ,uN ; t1, . . . , tN ) is a polytope with N facets and satisfy-
ing P ⊂ (1 + β)BL.

(iiL)

Vk(BL)(1,1 + h0) ⊂ {Vk(PL(u1, . . . ,uN ; t1, . . . , tN−1, t)) : |t − t0
N | < α}.
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In fact, (iL) follows from (i) and (4.2), since ρ−1
L ui ∈ Ui and therefore

P = ρLPL∗(ρ−1
L u1, . . . , ρ

−1
L uN ; t1, . . . , tN−1, t)

⊂ ρL(1 + β/2)BL∗ ⊂ (1 + β/2)
1 + β

1 + β/2
BL = (1 + β)BL.

We restate what we have found so far, making explicit the dependence on
L∗. For any L∗ ∈ G(d, k), there exist numbers θ(L∗) ∈ (0,1/8], N(L∗) ∈ N,
α(L∗) > 0, t0

1 (L∗), . . . , t0
N(L∗)(L

∗) > α(L∗), h0(L
∗) > 0, η(L∗) > 0, unit vectors

u0
1(L

∗), . . . ,u0
N(L∗)(L

∗) ∈ S
k−1
L∗ and neighbourhoods Ui(L

∗) of u0
i (L

∗) in S
k−1
L∗ ,

i = 1, . . . ,N(L∗), such that for all L ∈ Nθ(L∗)(L∗) and for ui ∈ UL
i (L∗) and

|ti − t0
i (L∗)| < α(L∗), i = 1, . . . ,N(L∗), the following conditions are satisfied:

ϕX∩L(UL
i (L∗)) ≥ η(L∗) > 0, i = 1, . . . ,N(L∗),

(iL) P := PL(u1, . . . ,uN(L∗); t1, . . . , tN(L∗)) is a polytope with N(L∗) facets
and satisfying P ⊂ (1 + β)BL, and

(iiL)

Vk(BL)
(
1,1 + h0(L

∗)
)

⊂ {
Vk

(
PL

(
u1, . . . ,uN(L∗); t1, . . . , tN(L∗)−1, t

))
:
∣∣t − t0

N(L∗)
∣∣ < α(L∗)

}
.

Since (G(d, k),	) is compact and {Nθ(L∗)(L∗) : L∗ ∈ G(d, k)} is an open cover
of G(d, k), there are L∗

1, . . . ,L
∗
r ∈ G(d, k) such that {Nθ(L∗

j )(L
∗
j ) : j = 1, . . . , r} is

a finite subcover of G(d, k). We put

η0 := min{η(L∗
j ) : j = 1, . . . , r} > 0,

h0 := min{h0(L
∗
j ) : j = 1, . . . , r} > 0.

Hence, for L ∈ G(d, k) there is some j ∈ {1, . . . , r} such that L ∈ Nθ(L∗
j )(L

∗
j ) and

ϕX∩L(UL
i (L∗

j )) ≥ η(L∗
j ) ≥ η0 > 0.(4.4)

Note that UL
i (L∗

j ) = ρL(L∗
j )Ui(L

∗
j ). For ui ∈ UL

i (L∗
j ) and for |ti − t0

i (L∗
j )| <

α(L∗
j ), i = 1, . . . ,N(L∗

j ), the set

P := PL

(
u1, . . . ,uN(L∗

j ); t1, . . . , tN(L∗
j )

)
is a polytope with N(L∗

j ) facets and satisfying P ⊂ (1 + β)BL, and

Vk(BL)(1,1 + h0)

⊂ {
Vk

(
PL

(
u1, . . . ,uN(L∗

j ); t1, . . . , tN(L∗
j )−1, t

))
:
∣∣t − t0

N(L∗
j )

∣∣ < α(L∗
j )

}
.

We are now in a situation where we can adjust the second part of the proof
of [4], Lemma 3.2, in a fixed linear subspace L ∈ G(d, k). We choose a cor-
responding index j ∈ {1, . . . , r} such that L ∈ Nθ(L∗

j )(L
∗
j ), as described above.
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For the given a ≥ 1, we choose a number � > 0 such that Vk(�BL) = a, that
is, � = a1/kVk(BL)−1/k . Then, for ui ∈ UL

i (L∗
j ) and for |ti − t0

i (L∗
j )| < α(L∗

j ),
i = 1, . . . ,N(L∗

j ),

(i�) P� := PL(u1, . . . ,uN(L∗
j );�t1, . . . , �tN(L∗

j )) is a polytope with N(L∗
j )

facets and satisfying P� ⊂ (1 + β)�BL, and,
(ii�) for 0 < h ≤ h0,

Vk(BL)(1,1 + h) ⊂ {
vL(t) :

∣∣t − �t0
N(L∗

j )(L
∗
j )

∣∣ < �α(L∗
j )

}
with

vL(t) := Vk

(
PL

(
u1, . . . ,uN(L∗

j );�t1, . . . , �tN(L∗
j )−1, t

))
.

Let λ1 denote 1-dimensional Lebesgue measure. The argument on page 1147,
lines −17 to bottom, in [4] now shows that

λ1{
t ∈ R :

∣∣t − �t0
N(L∗

j )(L
∗
j )

∣∣ < �α(L∗
j ), vL(t) ∈ Vk(BL)(1,1 + h)

}
≥ c(β,ϕ)�h,

where c(β,ϕ) is a constant depending only on β and ϕ. Here it is implicitly used
that P� ⊂ (1 + β)�BL, which implies that the (k − 1)-dimensional volume of the
orthogonal projection of P� on to the orthogonal complement of uN(L∗

j ) can be
bounded from above by a constant depending only on β and m(ϕ). Moreover, it is
also used that Vk(BL) can be bounded from below by a constant depending only
on m(ϕ).

Next, we define a sufficiently large set of convex polytopes in L by

PL := {
PL

(
u1, . . . ,uN(L∗

j ); t1, . . . , tN(L∗
j )

)
: ui ∈ UL

i (L∗
j ) and

|ti − �t0
i (L∗

j )| < �α(L∗
j ), for i = 1, . . . ,N(L∗

j ), and

Vk

(
PL

(
u1, . . . ,uN(L∗

j ); t1, . . . , tN(L∗
j )

)) ⊂ Vk(�BL)(1,1 + h)
}
.

Let H(1+β)�BL
:= {H ∈ A(d, k − 1) : (1 + β)�BL ∩ H �= ∅}. For a hyperplane

process Y in L, we write Z0(Y ) for the induced zero cell in L, and “ ” denotes the
restriction of a measure. Subsequently, we adapt the argument from [4], page 1148,
to the present situation. For the first estimate, we use that any polytope in PL is
contained in (1 + β)�BL. Thus, we get

P{Vk(Z0 ∩ L) ∈ Vk(�BL)(1,1 + h)}
≥ P

{
(X ∩ L)

(
H(1+β)�BL

) = N(L∗
j ),Z0

(
(X ∩ L) H(1+β)�BL

) ∈ PL

}

= [2k(1 + β)�Vk(BL)γX∩L]N(L∗
j )

N(L∗
j )!

exp[−2k(1 + β)�Vk(BL)γX∩L]

× P
{
Z0

(
(X ∩ L) H(1+β)�BL

) ∈ PL|(X ∩ L)
(

H(1+β)�BL

) = N(L∗
j )

}
.
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Using a fundamental property of Poisson processes (cf. [16], Theorem 3.2.2(b)),
the relation E[(X ∩L)(H(1+β)�BL

)] = 2γX∩Lk(1 +β)�Vk(BL), and the definition
of the set PL, we obtain

P{Vk(Z0 ∩ L) ∈ a(1,1 + h)}

≥ (2γX∩L)
N(L∗

j )

N(L∗
j )!

exp[−2k(1 + β)�Vk(BL)γX∩L]

×
∫
UL

N(L∗
j
)
(L∗

j )
· · ·

∫
UL

1 (L∗
j )

∫
R

· · ·
∫

R

1
{|ti − �t0

i (L∗
j )| < �α(L∗

j ), for i = 1, . . . ,N(L∗
j ), and

Vk

(
P

(
u1, . . . ,uN(L∗

j ); t1, . . . , tN(L∗
j )

)) ∈ Vk(�BL)(1,1 + h)
}

dt1 · · · dtN(L∗
j ) S

L
k−1(BL,du1) · · ·SL

k−1
(
BL,duN(L∗

j )

)
,

and hence

P{Vk(Z0 ∩ L) ∈ a(1,1 + h)}

≥ (2γX∩L)
N(L∗

j )

N(L∗
j )!

exp[−2(1 + β)γX∩LτLa1/k]

× c(β,ϕ)�h(2�α(L∗
j ))

N(L∗
j )−1

N(L∗
j )∏

i=1

SL
k−1(BL,UL

i (L∗
j )).

Since a ≥ 1, Vk(BL) ≤ ck
7κk and γX∩L ≥ γm(ϕ) [cf. (3.6)], we finally get

P{Vk(Z0 ∩ L) ∈ a(1,1 + h)}

≥ (2a1/kγX∩LVk(BL)−1/k)
N(L∗

j )

N(L∗
j )!

(2α(L∗
j ))

N(L∗
j )−1

c(β,ϕ)η
N(L∗

j )

0

× h exp[−2(1 + β)γX∩LτLa1/k]
≥ c10h exp[−2(1 + β)γX∩LτLa1/k],

which gives the required estimate. �

LEMMA 4.2. Let 0 < ε < 1 and h ∈ (0,1/2). There are a constant c11 > 0,
depending only on m(ϕ), γ , and ε, and a constant c12 > 0, depending only on
m(ϕ), such that, for L ∈ G(d, k) and a ≥ 1,

P{ϑ(Z0 ∩ L,BL) ≥ ε,Vk(Z0 ∩ L) ∈ a(1,1 + h)}
≤ c11h exp[−2(1 + c12ε

k+1)γX∩LτLa1/k].
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PROOF. The assertion is obtained by applying Proposition 7.1 of [4] in a given
subspace L ∈ G(d, k), again to a stationary Poisson hyperplane process with in-
tensity γX∩L and spherical directional distribution ϕX∩L. The slightly different
definition of the deviation measure rB , as opposed to ϑ in the present paper, is
inessential for the proof. Where a constant in [4] depends on B , it depends now
on BL. Whenever a constant in [4] depends on B , this dependence is via mixed
volumes of B with specific convex bodies, or via the diameter of B , and the con-
stant can, therefore, be estimated from the appropriate side by positive constants
for which the dependence on B is only a dependence on the inradius and circum-
radius of B . Due to the universal bounds for the inradius and circumradius of BL

provided by Lemma 3.3, for the constants appearing in the application of [4] to L,
the dependence on BL is, in fact, a dependence on m(ϕ) only. �

5. Proof of Theorem 2.1. Let L∗ ∈ G(d, k) with L∗ ∈ supp Qd−k be given.
Let N∗ ⊂ G(d, k) be a neighbourhood of L∗. Then

P
{
Vk

(
Z

(k)
0

) ≥ a,D
(
Z

(k)
0

) ∈ N∗}
> 0.

The positivity of this probability follows from (2.2) together with the facts that
Qd−k(N

∗) > 0 and that, for any r > 0,

P{rB
d ⊂ Z0} = P{H ∩ rB

d = ∅ ∀H ∈ X} > 0.

Let ε > 0 and a ≥ 1. We have

P
{
ϑ

(
Z

(k)
0 ,BL∗

) ≥ ε|Vk

(
Z

(k)
0

) ≥ a,D
(
Z

(k)
0

) ∈ N∗}
(5.1)

= P{ϑ(Z
(k)
0 ,BL∗) ≥ ε,Vk(Z

(k)
0 ) ≥ a,D(Z

(k)
0 ) ∈ N∗}

P{Vk(Z
(k)
0 ) ≥ a,D(Z

(k)
0 ) ∈ N∗} .

In order to estimate this ratio, we derive an estimate from above for the numerator
and an estimate from below for the denominator. As in [4], we first consider the
condition Vk(Z

(k)
0 ) ∈ a(1,1 + h) for h > 0, instead of Vk(Z

(k)
0 ) ≥ a.

For the estimate of the numerator of (5.1), we use (2.2) to get

P
{
ϑ

(
Z

(k)
0 ,BL∗

) ≥ ε,Vk

(
Z

(k)
0

) ∈ a(1,1 + h),D
(
Z

(k)
0

) ∈ N∗}
=

∫
G(d,k)

P
{
ϑ(Z0 ∩ L,BL∗) ≥ ε,Vk(Z0 ∩ L) ∈ a(1,1 + h),

D(Z0 ∩ L) ∈ N∗}
Qd−k(dL)

=
∫
N∗

P{ϑ(Z0 ∩ L,BL∗) ≥ ε,Vk(Z0 ∩ L) ∈ a(1,1 + h)}Qd−k(dL).

In contrast to the case of the zero cell Z0 treated in [4], we are here faced with
the problem that the random polytope Z0 ∩ L, for variable L, must be compared
with the fixed Blaschke body BL∗ . This explains the necessity of restricting the
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direction space D(Z
(k)
0 ) to a neighbourhood of L∗ and of establishing the stability

result Lemma 3.4, which allows us the estimate (5.3) and finally (5.4). A similar
remark concerns the estimation of the denominator.

We choose numbers 1/2 ≤ p < 1 and q > 1, depending only on ε and the num-
ber c12 from Lemma 4.2 (but with ε replaced by ε/2), such that

q

p
< 1 + c13

2
εk+1(5.2)

with c13 := c12/2k+1. Then we choose a number θ > 0 satisfying the conditions

θ ≤ min
{

1

8
,

(
ε

2c9

)3k}
,

where c9 is the constant from Lemma 3.4, and

pγX∩L∗τL∗ ≤ γX∩LτL ≤ qγX∩L∗τL∗ if 	(L,L∗) ≤ θ.(5.3)

The latter is possible by (3.5) and Lemma 3.4, since τL = kVk(BL)1−1/k .
If L ∈ G(d, k) and 	(L,L∗) ≤ θ , then every convex body K ∈ K0(L) with

ϑ(K,BL) < ε/2 satisfies ϑ(K,BL∗) < ε, by Lemma 3.5. Now we choose for N∗
the neighbourhood Nθ := Nθ(L

∗). Then

L ∈ Nθ and ϑ(Z0 ∩ L,BL∗) ≥ ε implies ϑ(Z0 ∩ L,BL) ≥ ε/2.

This gives

P
{
ϑ

(
Z

(k)
0 ,BL∗

) ≥ ε,Vk

(
Z

(k)
0

) ∈ a(1,1 + h),D
(
Z

(k)
0

) ∈ Nθ

}
≤

∫
Nθ

P{ϑ(Z0 ∩ L,BL) ≥ ε/2,Vk(Z0 ∩ L) ∈ a(1,1 + h)}Qd−k(dL).

Let h ∈ (0,1/2). By Lemma 4.2 (with ε replaced by ε/2),

P{ϑ(Z0 ∩ L,BL) ≥ ε/2,Vk(Z0 ∩ L) ∈ a(1,1 + h)}
≤ c14h exp[−2(1 + c13ε

k+1)γX∩LτLa1/k]
with a constant c14 depending only on ϕ,γ, ε; here c13 (defined above) depends
only on ϕ.

By (5.3), we can conclude that

P
{
ϑ

(
Z

(k)
0 ,BL∗

) ≥ ε,Vk

(
Z

(k)
0

) ∈ a(1,1 + h),D
(
Z

(k)
0

) ∈ Nθ

}
(5.4)

≤ Qd−k(Nθ)c14h exp[−2(1 + c13ε
k+1)pγX∩L∗τL∗a1/k].

Now the argument in [4], pages 1164–1165 (Case 2), leads from (5.4) to the esti-
mate

P
{
ϑ

(
Z

(k)
0 ,BL∗

) ≥ ε,Vk

(
Z

(k)
0

) ≥ a,D
(
Z

(k)
0

) ∈ Nθ

}
≤ c15Qd−k(Nθ)h exp

[
−2

(
1 + c13

2
εk+1

)
pγX∩L∗τL∗a1/k

]
(5.5)

× exp
[
−c13

2
εk+1pγX∩L∗τL∗a1/k

]
,



1340 D. HUG AND R. SCHNEIDER

where c15 is a positive constant depending only on ϕ,γ, ε. Here, we use that L �→
γX∩L and L �→ τL are continuous and can be estimated from below by a positive
constant independent of L.

For the denominator of (5.1), we obtain similarly

P
{
Vk

(
Z

(k)
0

) ∈ a(1,1 + h),D
(
Z

(k)
0

) ∈ Nθ

}
=

∫
Nθ

P{Vk(Z0 ∩ L) ∈ a(1,1 + h)}Qd−k(dL).

We define the number β , depending only on ϕ and ε, by(
1 + c13

2
εk+1

)
p = (1 + β)q.(5.6)

It follows from (5.2) that β > 0. By Lemma 4.1, there are constants c10, 0 < h0 <

1/2, depending only on ϕ,γ and ε, such that, for L ∈ G(d, k), a ≥ 1 and 0 < h ≤
h0,

P{Vk(Z0 ∩ L) ∈ a(1,1 + h)} ≥ c10h exp[−2(1 + β)γX∩LτLa1/k].
Using (5.3) for L ∈ Nθ , we deduce that

P
{
Vk

(
Z

(k)
0

) ∈ a(1,1 + h),D
(
Z

(k)
0

) ∈ Nθ

}
≥ Qd−k(Nθ)c10h exp[−2(1 + β)qγX∩L∗τL∗a1/k].

With β given by (5.6), this yields

P
{
Vk

(
Z

(k)
0

) ≥ a,D
(
Z

(k)
0

) ∈ Nθ

}
≥ c10Qd−k(Nθ)h exp

[
−2

(
1 + c13

2
εk+1

)
pγX∩L∗τL∗a1/k

]
.

Here and in (5.5), we choose the same number h ∈ (0, h0]. Then division gives
the assertion of Theorem 2.1, since p ≥ 1/2 and we can estimate γX∩L∗τL∗ from
below by a constant depending only on ϕ and γ .

6. Proof of Theorem 2.2. The proof of Theorem 2.2 is based on (2.1), which
is applied with different functions f , and on the relation

EVk

(
Z(k)) = d

(k)
k

γ (k)
= Vd−k(�X)(

d
k

)
Vd(�X)

=: c16,

which follows from [16], equation (10.3) and Theorem 10.3.3, with c16 depending
only on ϕ and γ .

We use definitions and results from the preceding proof of Theorem 2.1. In
particular, β is defined by (5.6). Then there are positive constants c17, θ1 and h1 <
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1/2, depending only on ϕ,γ and ε, such that, for a ≥ 1, 0 < θ ≤ θ1 and 0 < h ≤
h1,

P
{
Vk

(
Z

(k)
0

) ∈ a(1,1 + h),D
(
Z

(k)
0

) ∈ Nθ

}
≥ Qd−k(Nθ)c17h exp

[
−2

(
1 + β

2

)
qγX∩L∗τL∗a1/k

]
.

For a polytope K ⊂ R
d , we now define

f (K) := 1{Vk(K) ∈ a(1,1 + h),D(K) ∈ Nθ }Vk(K)−1,

if K is k-dimensional, and f (K) := 0 otherwise. Clearly, f is translation invariant,
and for a ≥ 1 and 0 < h ≤ h1, (2.1) gives

P
{
Vk

(
Z(k)) ∈ a(1,1 + h),D

(
Z(k)) ∈ Nθ

}
= EVk

(
Z(k))E[

1
{
Vk

(
Z

(k)
0

) ∈ a(1,1 + h),D
(
Z

(k)
0

) ∈ Nθ

}
Vk

(
Z

(k)
0

)−1]
≥ c16

1

1 + h1

1

a
P

{
Vk

(
Z

(k)
0

) ∈ a(1,1 + h),D
(
Z

(k)
0

) ∈ Nθ

}

≥ c18Qd−k(Nθ)
1

a
h exp

[
−2

(
1 + β

2

)
qγX∩L∗τL∗a1/k

]

≥ c19Qd−k(Nθ)h exp[−2(1 + β)qγX∩L∗τL∗a1/k],
since γX∩L∗τL∗ ≥ c20 > 0. Here, c18 and c19 depend only on ϕ,γ, ε, and c20 de-
pends only on ϕ,γ . In particular, recalling the definition of β from (5.6),

P
{
Vk

(
Z(k)) ≥ a,D

(
Z(k)) ∈ Nθ

}
(6.1)

≥ c19Qd−k(Nθ)h1 exp
[
−2

(
1 + c13

2
εk+1

)
pγX∩L∗τL∗a1/k

]
.

For the upper bound, we put

f (K) := 1{ϑ(K,BL∗) ≥ ε,Vk(K) ≥ a,D(K) ∈ Nθ }Vk(K)−1,

if K is a k-dimensional polytope, and f (K) := 0 otherwise, where 0 < θ ≤ θ1,
with θ1 sufficiently small, and a ≥ 1. Using again (2.1), we obtain

P
{
ϑ

(
Z(k),BL∗

) ≥ ε,Vk

(
Z(k)) ≥ a,D

(
Z(k)) ∈ Nθ

}
= c16E

[
1
{
ϑ

(
Z

(k)
0 ,BL∗

) ≥ ε,Vk

(
Z

(k)
0

) ≥ a,D
(
Z

(k)
0

) ∈ Nθ

}
Vk

(
Z

(k)
0

)−1]
(6.2)

≤ c21Qd−k(Nθ)h1 exp
[
−2

(
1 + c13

2
εk+1

)
pγX∩L∗τL∗a1/k

]

× exp
[
−c13

2
εk+1pγX∩L∗τL∗a1/k

]
,

where (5.5) was used in the last estimate and c21 depends only on ϕ,γ, ε.
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From (6.1) and (6.2), we conclude that

P
{
ϑ

(
Z(k),BL∗

) ≥ ε|Vk

(
Z(k)) ≥ a,D

(
Z(k)) ∈ Nθ

}
≤ c22 exp

[
−c13

2
εk+1pγX∩L∗τL∗a1/k

]

≤ c22 exp[−c23ε
k+1a1/k],

where c22 depends only on ϕ,γ, ε and c23 depends only on ϕ and γ .

7. Limit shapes. Similarly as in [9], Section 4, but with an additional limit
procedure referring to direction spaces, we can establish the existence of limit
shapes.

For a convex body K ⊂ R
d , we denote by sH(K) the equivalence class of all

convex bodies homothetic to K ; this is the (homothetic) shape of K . Let SH denote
the space of all shapes, equipped with the quotient topology.

Let the assumptions of Theorem 2.2 be satisfied; in particular, L∗ ∈ G(d, k) is
contained in the support of the measure Qd−k .

The conditional law of the shape of Z
(k)
0 , given the lower bound a for its k-

volume and the upper bound θ for the distance of its direction space from L∗, is
defined by

μa,θ (A) := P
{
sH

(
Z

(k)
0

) ∈ A|Vk

(
Z

(k)
0

) ≥ a,	
(
D

(
Z

(k)
0

)
,L∗)

< θ
}

for A ∈ B(SH).

THEOREM 7.1. The shape sH(BL∗) is the limit shape of the weighted typical
cell Z

(k)
0 with respect to Vk and 	(D(·),L∗), in the sense that

lim
a→∞
θ→0

μa,θ = δsH(BL∗ ) weakly,

where δsH(BL∗ ) denotes the Dirac measure concentrated at sH(BL∗).

PROOF. Let C ⊂ SH be closed. It suffices to show that

lim sup
a→∞
θ→0

μa,θ (C) ≤ δsH(BL∗ )(C).(7.1)

We assume that sH(BL∗) /∈ C and that C contains the shape of at least one k-
dimensional body, since otherwise (7.1) holds trivially. For K ∈ K with dimK = k,
we put f (K) := ϑ(K,BL∗) + 	(D(K),L∗). Let

K∗ := {K ∈ K : dimK = k, sH(K) ∈ C,BD(K) ⊂ K},
α := inf

K∈K∗ f (K),
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and choose c > α. There exists R > 0 such that every K ∈ K∗ with f (K) ≤ c has
a homothetic copy that is contained in RB

d . Hence, if we put

K∗
c := {K ∈ K∗ :f (K) ≤ c,K ⊂ RB

d},
then α = infK∈K∗

c
f (K). The function f is continuous and the set K∗

c is compact
(note that the condition BD(K) ⊂ K in the definition of K∗ ensures that limits of
bodies in K∗ still have dimension k). Therefore, the infimum α is attained, say
at K0. If α = 0, then K0 is homothetic to BL∗ , hence sH(BL∗) = sH(K0) ∈ C , a
contradiction. It follows that α > 0.

Put ε := α/2. To this ε, we can choose constants c1, c2, c3 according to Theo-
rem 2.1, such that

P
{
ϑ

(
Z

(k)
0 ,BL∗

) ≥ ε|Vk

(
Z

(k)
0

) ≥ a,D
(
Z

(k)
0

) ∈ Nθ(L
∗)

}
≤ c2 exp[−c3ε

k+1a1/k]
for a ≥ 1 and 0 < θ ≤ c1.

Every k-dimensional convex body K ∈ s−1
H (C) with 	(D(K),L∗) ≤ α/2 satis-

fies ϑ(K,BL∗) ≥ ε. Hence, for 0 < θ ≤ min{c1, α/2} we have

μa,θ (C) = P
{
sH

(
Z

(k)
0

) ∈ C|Vk

(
Z

(k)
0

) ≥ a,D
(
Z

(k)
0

) ∈ Nθ(L
∗)

}
≤ P

{
ϑ

(
Z

(k)
0 ,BL∗

) ≥ ε|Vk

(
Z

(k)
0

) ≥ a,D
(
Z

(k)
0

) ∈ Nθ(L
∗)

}
≤ c2 exp[−c3ε

k+1a1/k].
For a → ∞ this tends to zero, hence (7.1) follows. �

Theorem 2.2 yields a completely analogous result for the typical cell.
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