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LARGE GAPS BETWEEN RANDOM EIGENVALUES

BY BENEDEK VALKÓ1 AND BÁLINT VIRÁG2

University of Wisconsin–Madison and University of Toronto

We show that in the point process limit of the bulk eigenvalues of
β-ensembles of random matrices, the probability of having no eigenvalue in
a fixed interval of size λ is given by
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as λ → ∞, where

γβ = 1

4
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β

2
+ 2

β
− 3

)

and κβ is an undetermined positive constant. This is a slightly corrected ver-
sion of a prediction by Dyson [J. Math. Phys. 3 (1962) 157–165]. Our proof
uses the new Brownian carousel representation of the limit process, as well
as the Cameron–Martin–Girsanov transformation in stochastic calculus.

1. Introduction. In the 1950s, Wigner endeavored to set up a probabilistic
model for the repulsion between energy levels in large atomic nuclei. His first
models were random meromorphic functions related to random Schrödinger oper-
ators, see Wigner (1951, 1952). Later, in Wigner (1957), he turned to models of
random matrices that are by now standard, such as the Gaussian orthogonal ensem-
ble (GOE). In this model, one fills an n × n matrix M with independent standard
normal random variables, then symmetrizes it to get

A = M + MT

√
2

.

The Wigner semicircle law is the limit of the empirical distribution of the eigen-
values of the matrix A. However, Wigner’s main interest was the local behavior of
the eigenvalues, in particular the repulsion between them. He examined the asymp-
totic probability of having no eigenvalue in a fixed interval of size λ for n → ∞
while the spectrum is rescaled to have an average eigenvalue spacing 2π . Wigner’s
prediction for this probability was

pλ = exp
(−(

c + o(1)
)
λ2)

,
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where this is a λ → ∞ behavior. This rate of decay is in sharp contrast with the ex-
ponential tail for gaps between Poisson points; it is one manifestation of the more
organized nature of the random eigenvalues. Wigner’s estimate of the constant c,
1/(16π), later turned out to be inaccurate. Dyson (1962) improved this estimate to

pλ = (
κβ + o(1)

)
λγβ exp

(
− β

64
λ2 +

(
β

8
− 1

4

)
λ

)
,(1)

where β is a new parameter introduced by noting that the joint eigenvalue density
of the GOE is the β = 1 case of

1

Zn,β

e−β
∑n

k=1 λ2
k/4

∏
j<k

|λj − λk|β.(2)

The family of distributions defined by the density (2) is called the β-ensemble.
Dyson’s computation of the exponent γβ , namely 1

4(
β
2 + 2

β
+ 6), was shown to

be slightly incorrect. Indeed, des Cloizeaux and Mehta (1973) gave more substan-
tiated predictions that γβ is equal to −1/8,−1/4 and −1/8 for values β = 1,2
and 4, respectively. Mathematically precise proofs for the β = 1,2 and 4 cases
were later given by several authors: Widom (1994) and Deift, Its and Zhou (1997).
Moreover, the value of κβ and higher-order asymptotics were also established for
these specific cases by Krasovsky (2004), Ehrhardt (2006) and Deift et al. (2007).
The problem of determining the asymptotic probability of a large gap naturally
arises in other random matrix models as well. In the physics literature, Chen and
Manning (1996) treat the problem of the β-Laguerre ensemble at the edge.

Our main theorem gives a mathematically rigorous version of Dyson’s predic-
tion for general β with a corrected exponent γβ .

THEOREM 1. The formula (1) holds with a positive κβ and

γβ = 1

4

(
β

2
+ 2

β
− 3

)
.

The proof is based on the Brownian carousel, a geometric representation of the
n → ∞ limit of the eigenvalue process. We first introduce the hyperbolic carousel.
Let:

• b be a path in the hyperbolic plane,
• z be a point on the boundary of the hyperbolic plane and
• f : R+ → R+ be an integrable function.

To these three objects, the hyperbolic carousel associates a multi-set of points on
the real line defined via its counting function N(λ) taking values in Z∪{−∞,∞}.
As time increases from 0 to ∞, the boundary point z is rotated about the center
b(t) at angular speed λf (t). N(λ) is defined as the integer-valued total winding
number of the point about the moving center of rotation.
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FIG. 1. The Brownian carousel and the winding angle αλ.

The Brownian carousel is defined as the hyperbolic carousel driven by hyper-
bolic Brownian motion b (see Figure 1). It is connected to random matrices via the
following theorem.

THEOREM 2 [Valkó and Virág (2009)]. Let �n denote the point process given
by (2), and let μn be a sequence so that n1/6(2

√
n − |μn|) → ∞. Then we have

the following convergence in distribution:√
4n − μ2

n(�n − μn) ⇒ Sineβ,(3)

where Sineβ is the discrete point process given by the Brownian carousel with
parameters

f (t) = β

4
e−βt/4(4)

and arbitrary z.

REMARK 3. The semicircle law shows that most points in �n are in the in-
terval [−2

√
n,2

√
n]. The discrete point process �n has two kind of point process

limits, one near the edges of this interval and another in the bulk. The condition on
the parameter μn means that we get a bulk-type scaling limit of �n. The scaling
factor in (3) is the natural choice in view of the Wigner semicircle law in order to
get a point process with average density 1/(2π). The limiting point process for the
edge-scaling case have been obtained by Ramírez, Rider and Virág (2007).

The Brownian carousel description gives a simple way to analyze the limiting
point process. The hyperbolic angle of the rotating boundary point as measured
from b(t) follows the following coupled one-parameter family of stochastic differ-
ential equations

dαλ = λf dt + Re
(
(e−iαλ − 1) dZ

)
, αλ(0) = 0,(5)

driven by a two-dimensional standard Brownian motion and f given in (4). For a
single λ, this reduces to the one-dimensional stochastic differential equation

dαλ = λf dt + 2 sin(αλ/2) dW, αλ(0) = 0,(6)
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which converges as t → ∞ to an integer multiple αλ(∞) of 2π . In particular, the
number of points of the point process Sineβ in [0, λ] has the same distribution as
αλ(∞)/(2π) and pλ is equal to the probability that α converges to 0 as t → ∞.
See Valkó and Virág (2009) for further details.

In the analysis of equation (6), it helps to remove the space dependence from the
diffusion coefficient by a change of variables X(t) = log(tan(α(t)/4)). The diffu-
sion X satisfies the stochastic differential equation

dX = λ

2
f coshX dt + 1

2
tanhX dt + dB, X(0) = −∞.(7)

In Valkó and Virág (2009), equations (6) and (7) were used to identify the leading
term in the asymptotic expansion of pλ in (1). The proof of Theorem 1 requires a
more careful analysis of equation (7).

In Lemma 4, we will show that for any initial condition X(0) = x ∈ [−∞,∞)

there is a unique solution of the equation given in (7) and the desired gap probabil-
ity pλ may be written in terms of a passage probability for this process. Namely,
pλ = pλ(−∞) where

pλ(x) := P
(
X(t) is finite for all t > 0 and

(8)
it does not converge to +∞ as t → ∞)

.

A time shift of equation (7) only changes the parameter λ and the initial condi-
tion. This, together with the Markov property of the diffusion X, shows that with
T = 4

β
logλ we have

pλ = E[1{X(t) is finite for all 0 < t ≤ T } · p1(X(T ))].
Our main tool is the Cameron–Martin–Girsanov formula, which allows one to
compare the measure on paths given by two diffusions. If we knew the condi-
tional distribution of the diffusion X under the event that it does not blow up, then
we could use the Cameron–Martin–Girsanov formula to compute pλ explicitly.
While we cannot do this, the next best option is to find a new diffusion Y which
approximates this conditional distribution. The density (i.e., the Radon–Nikodym
derivative) of the path measures given by Y with respect to the measure given by X

will be close to the right-hand side of (1). Our strategy for finding Y is described
in Section 4. Cameron–Martin–Girsanov techniques have been used to obtain tail
asymptotics for the tail asymptotics of the ground state of the random Hill’s equa-
tion, see Cambronero, Rider and Ramírez (2006).

In Section 5, we will present a coupling of the transformed processes that en-
ables us to show that the asymptotics is precise up to and including the constant
term κβ . The term κβ is then identified as the expectation of a functional of a
certain limiting diffusion.
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Open problem. Give an explicit expression for κβ for general values of β .
The known values of κβ are

κ1 = 213/24e(3/2)ζ ′(−1), κ2 = 27/12e3ζ ′(−1), κ4 = 2−13/12e(3/2)ζ ′(−1),

where ζ ′(−1) is the coefficient of the linear term in the Laurent series of the
Riemann-ζ function at −1.

A natural generalization of Theorem 1 would be to consider the asymptotic
probability that there are exactly k eigenvalues in a large interval [0, λ]. This prob-
ability is usually denoted by Eβ(k;λ) in the literature. For β = 1,2 and 4 the
following large λ asymptotics was obtained by Basor, Tracy and Widom (1992):

logEβ(k;λ) = logEβ(0;λ) + kβ

4
λ + k

2

(
1 − β

2
− kβ

2

)
logλ + cβ + o(1)

with explicit constants cβ . [See also Tracy and Widom (1993).] We believe that
our methods can be used to extend the previous asymptotics for general values of
β .

The rest of the paper is organized as follows. In the next section, we justify
the pλ = pλ(−∞) and give some preliminary estimates on the probability p1(r)

appearing in (8). Section 3 presents the version of the Cameron–Martin–Girsanov
formula that we need. Section 4 describes the strategy for finding Y and Section 5
builds on these sections to complete the proof of the main theorem.

2. Preliminary results. First, we formally verify the connection between the
gap probability pλ and the diffusion given in (7).

LEMMA 4. The diffusion (7) has a unique solution for any initial condition
X(0) = x ∈ [−∞,∞) and pλ = pλ(−∞).

PROOF. The change of variables function log tan(·/4) is one-to-one on
(0,2π) → R. Therefore, even with −∞ initial condition, the diffusion X is well
defined and has a unique solution until α reaches 2π , when it blows up. We define
X(t) = ∞ after this blowup.

Note that for λ > 0 the solution of equation (6) is always monotone increasing
at multiples of 2π . See Section 2.2 in Valkó and Virág (2009) for more details. So,
if α(t) → 0 as t → ∞ then 0 < α(t) < 2π for all t > 0. This means that X(t) is
finite for all t > 0 and X(t) cannot converge to ∞ which proves pλ = pλ(−∞).

�

Next, we prove a preliminary estimate on the blowup probability of the diffu-
sion (7).
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LEMMA 5. Recall that p1(x) is the probability that the diffusion (7) with
λ = 1 and initial condition X(0) = x does not blow up in finite time and does
not converge to +∞ as t → ∞. We have

0 < p1(x) ≤ cβ exp
(
− β

60
ex

)
.

PROOF. For the upper bound, we first assume that x > 4. Consider the diffu-
sion

dR = β

16
eR−βt/4 dt + dB, R(0) = x.(9)

This has the same noise term as X. The drift term of R is β
16ex−βt/4, which is

dominated by the drift term f (t)
2 cosh(x) of X when x is nonnegative. Thus, while

R stays positive, we have R ≤ X. This means that for every t > 0 we have

p1(x) ≤ P(X does not blow up before time t)
(10)

≤ P
(

min
s∈[0,t]R(s) < 0 or R does not blow up before time t

)
.

The difference Z = R − B satisfies the ODE

e−Z dZ = β

16
eB−β/4t dt, Z(0) = x.(11)

Integration gives

e−x − e−Z(t) = β

16

∫ t

0
eB(s)−β/4s ds.

This shows that Z is increasing in t , in particular Z(t) ≥ x. So if min[0,t] R < 0
then

min[0,t] B < −x.

Furthermore, if

e−x <
β

16

∫ t

0
eB(s)−β/4s ds(12)

then R blows up before time t . This certainly happens if the minimum of B on the
interval [0, t] is not sufficiently small. More precisely, if

e−b

4
(1 − eβt/4) > e−x(13)

and min[0,t] B > −b then (12) follows. So if b < x, and (13) holds, then the right-
hand side of (10) can be bounded above by

P
(
min[0,t] B < −b

)
= P

(|B(t)| > b
) ≤

√
t

b
e−b2/(2t).
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We set

t = 16

β
e2−x, b = 4e√

30
< 2.

As x > 4, both b < x and (13) are satisfied and we get the upper bound

p1(x) ≤
√

t

b
e−b2/(2t) < cβe−(β/60)ex

with cβ = √
30/β . The upper bound for all values of x now follows by changing

the constant cβ appropriately.
For the lower bound note that since the Sineβ process is discrete and translation

invariant in distribution, there exists ν ∈ (0,1) so that pν = pν(−∞) > 0. By the
Markov property, we have

pν =
∫ ∞
−∞

K0,1(−∞, dx)pνeβ/4(x),

where Ks,t (y, dx) is the transition kernel of the Markov process X with parameter
λ = ν. This implies that for some x0 ∈ R we have

pνeβ/4(x0) > 0.

Consider the process X started at x with parameter λ = 1. The Markov property
applied at time t0 = 1 − 4

β
logν and the monotonicity of pλ(x) in x implies

p1(x) ≥ P
(
X(t0) < x0

)
pνeβ/4(x0) > 0,

since P(X(t) < x) is positive for all x ∈ R and t > 0. �

3. The Cameron–Martin–Girsanov formula. Our main tool will be the fol-
lowing version of the Cameron–Martin–Girsanov formula. Here, we allow diffu-
sions to blow up to +∞ in finite time, in which case they are required to stay there
forever after.

PROPOSITION 6. Consider the following stochastic differential equations:

dX = g(t,X)dt + dB, lim
t→0

X(t) = −∞,(14)

dY = h(t, Y ) dt + dB̃, lim
t→0

Y(t) = −∞(15)

on the interval (0, T ] where B, B̃ are standard Brownian motions. Assume that
(14) has a unique solution X in law taking values in (−∞,∞].

Let

Gs = Gs(X) =
∫ s

0

(
h(t,X) − g(t,X)

)
dX − 1

2

∫ s

0

(
h(t,X)2 − g(t,X)2)

dt(16)

and assume that:
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(A) g2 − h2 and g − h are bounded when x is bounded above. (Then Gs is
almost surely well defined when Xs is finite.)

(B) Gs is bounded above by a deterministic constant.
(C) Gs → −∞ when s ↑ τ if X hits +∞ at time τ . In this case, we define

Gs := −∞ for s ≥ τ .

Consider the process Ỹ whose density with respect to the distribution of the
process X is given by eGT . Then Ỹ satisfies the second SDE (15) and never blows
up to +∞ almost surely. Moreover, for any nonnegative function ϕ of the path of
X that vanishes when X blows up we have

Eϕ(X) = E
[
ϕ(Y )e−GT (Y )].(17)

REMARK 7. There exist several versions of the Cameron–Martin–Girsanov
formula for exploding diffusions [e.g., McKean (2005), Section 3.6]. As we did
not find one in the literature which could be directly applied to our case, we sketch
the proof below.

PROOF OF PROPOSITION 6. We follow the standard proof of the Girsanov
theorem.

First, we show that Gs is well defined for finite Xs . From condition (A), it
follows that the second integral is well defined. The first integral can be written as∫ s

0
(h − g)dB +

∫ s

0
(h − g)g dt

which is well defined since (h − g) and 2(h − g)g = (h2 − g2) − (h − g)2 when
their argument x is bounded above.

Next, we show that Ms = eGs is a bounded martingale. This is clear after the
hitting time τ of X of +∞, if such time exists. Before this time, Gs is a semi-
martingale, and so is Ms . Itô’s formula gives

dM = (h − g)M dB

so that the drift term of M vanishes. So M is a local martingale which is bounded,
so it has to be a martingale.

The rest of the proof is standard and is outlined as follows. Set

B̃s = Xs −
∫ s

0
hdt = Bs −

∫ s

0
(h − g)dt.

It suffices to show that B̃ is a Brownian motion with respect to the new measure
with density MT . This follows from Lévy’s criterion [Karatzas and Shreve (1991),
Theorem 3.3.16] if B̃ and B̃2 − s are local martingales. Since M is a martingale,
it suffices to show that B̃M and (B̃2 − s)M are local martingales with respect to
the old measure, which is just a simple application of Itô’s formula.

The identity (17) is just a version of the change of density formula. �
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4. Construction of the diffusion Y . In this section, we will create a diffusion
which approximates the conditional distribution of the diffusion X under the event
that it does not blow up. We will construct a drift function h(t, x) for which the
diffusion Y

dY = h(t, Y ) dt + dBt , Y (0) = −∞,(18)

is well defined, a.s. finite for t > 0 and the (formal) Radon–Nikodym derivative
eGT with GT defined in (16) is almost equal to the right-hand side of equation (1)
with the appropriate γβ .

LEMMA 8. For the diffusion (7), λ > 1 and T = 4
β

logλ there exists a function
h(t, x) so that conditions (A)–(C) of Proposition 6 hold, and GT has the following
form:

−GT (X) = − β

64
λ2 +

(
β

8
− 1

4

)
λ + 1

8

(
β + 4

β
− 6

)
logλ

+ β

8
eX(T ) +

(
2 − β

2

)
X(T )+ + ω(X(T ))(19)

+
∫ T

0
φ

(
T − t,X(t)

)
dt.

Here, the function ω is bounded and continuous, φ is continuous and |φ(t, x)| ≤
φ̃(t) with

∫ ∞
0 φ̃(t) dt < ∞. The functions ω and φ, φ̃ may depend on the parame-

ter β , but not on λ.
The function h will have the following form:

h(t, x) = −λ

2
f sinh(x) + h0(t, x),(20)

where |h0(t, x)| < c if 0 ≤ t ≤ T . The constant c depends only on β .

PROOF. Construction of the function h. Given an explicit formula for h it
would not be hard to check that GT has the desired form. However, we would like
to present a way one can find the appropriate drift function. This will provide a
better understanding of the form of the resulting h.

We will use the definition

−Gs(X) =
∫ s

0

(
g(t,X) − h(t,X)

)
dX + 1

2

∫ s

0

(
h2(t,X) − g2(t,X)

)
dt,

where

g = g1 + g2, g1(t, x) = λ

2
f (t) coshx, g2(t, x) = 1

2
tanhx.

Our goal is to find the appropriate drift term h in a way that the diffusion Y will
approximate the conditional distribution of X given that it does not blow up in
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the interval [0, T ]. We will do this term by term, starting with the highest order;
toward this end we write h = h1 + h2 + h3 + h4. We set

h1(t, x) = −λ

2
f (t) sinh(x)(21)

as this yields the nice cancelation

h2
1 − g2

1 = λ2

4
f (t)2 sinh2(X) − λ2

4
f (t)2 cosh2(X) = −λ2

4
f (t)2

in the main terms of h2 − g2. In addition, if the remaining term h2 + h3 + h4 is
bounded, then it will be easy to show that conditions (A)–(C) of Proposition 6 are
satisfied. This will be done at the end of the proof.

The contribution of the drift terms h1 and g1 to the stochastic integral part
of −Gs is given by

λ

2

∫ s

0
f (t)

(
cosh(X) − sinh(X)

)
dX = λ

2

∫ s

0
eXf (t) dX.(22)

Our main tool for evaluating integrals with respect to dX is the following version
of Itô’s formula. Let a, b be continuously differentiable functions and let ã denote
the antiderivative of a. Then

a(t)b(X)dX = d(a(t)b̃(X)) − a′(t)b̃(X)dt − 1
2a(t)b′(X)dt.(23)

Since f ′(t) = −β/4f (t), and X(0) = −∞, this formula gives

λ

2

∫ s

0
f (t)eX dX = λ

2
f (s)eX(s) + λ

2

(
β

4
− 1

2

)∫ s

0
eXf dt.(24)

Next, we would like to choose h2 in (21) so that the integral term in the right-hand
side of (24) simplifies. More precisely, since we expect the diffusion X to be near 0
most of the time, we would like to replace the term eX by 1. The plan is to use the
cross term

∫
h1h2 dt in the 1

2

∫
h2 dt term of G to do this. Namely, we would like

to have

h1h2 = λ

2

(
β

4
− 1

2

)
(1 − ex)f.(25)

The solution for (25) is given by

h2(t, x) =
(

β

4
− 1

2

)(
1 + tanh(x/2)

)
.(26)

We will choose the next term, h3, so that the cross term
∫

h1h3 dt in 1
2

∫
h2 dt

cancels the cross term − ∫
g1g2 in −1

2

∫
g2 dt . This leads to the equation

h1h3 = g1g2 = λ

2
f (t) cosh(x) · 1

2
tanh(x),



LARGE GAPS BETWEEN RANDOM EIGENVALUES 1273

which gives

h3(t, x) = −1
2 .(27)

Collecting all our previous computations, we get

−Gs = λ

2
f (s)eX(s) − λ2

8

∫ s

0
f 2 dt + λ

(
β

8
− 1

4

)∫ s

0
f dt

+ 1

2

∫ s

0
2h1h4 + (h2 + h3 + h4)

2 − g2
2 dt(28)

−
∫ s

0
h4 dX +

∫ s

0
(g2 − h2 − h3) dX.

The integrand u = g2 − h2 − h3 in the last integral of (28) has antiderivative

ũ(x) =
(

1 − β

4

)
x +

(
1 − β

2

)
log cosh(x/2) + 1

2
log coshx.(29)

By Itô’s formula,
∫ s

0 u(X)dX − ũ(X)|s0 is given by

−1

2

∫ s

0
u′(X)dt = −1

2

∫ s

0

[
2 − β

8
sech(X/2)2 + 1

2
sech(X)2

]
dt

(30)

= β − 6

16
s +

∫ s

0

[
(2 − β)

16
tanh(X/2)2 + 1

4
tanh(X)2

]
dt.

Note that

lim
x→−∞ ũ(x) = β − 3

2
log 2 = c1.

Substituting this computation for the last integral and expanding (h2 + h3 + h4)
2,

we can rewrite (28) as follows:

−Gs = −λ2

8

∫ s

0
f 2 dt + λ

(
β

8
− 1

4

)∫ s

0
f dt

+
(

1

2

(
β

4
− 1

)2

+ β − 6

16

)
s

+ λ

2
f (s)eX(s) + ũ(X(s)) − c1(31)

+ 1

2

∫ s

0

(
2h1h4 + 2(h2 + h3)h4 + h2

4
)
dt

−
∫ s

0
h4 dX +

∫ s

0
η(X(t)) dt.

The coefficient of s in the first line of (31) comes from the first term on the right-
hand side in (30) and the constant term of (h2 + h3)

2/2. The function η collects
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the terms from the integrand in (30), the terms (h2 +h3)
2/2 with the constant term

(β/4 − 1)2/2 removed, and −g2
2/2. More explicitly, we have

η(x) = (8 − 6β + β2)

32

(
2 tanh(x/2) + tanh(x/2)2) + 1

8
(tanhx)2.

The function η(x) contributes to an error term that needs to be controlled, but
whose precise value does not influence our final result. Now, we are ready to set
the value for h4: we will choose it in a way that the cross term

∫
h1h4 dt in (31)

will cancel the integral
∫

η dt . This gives h4 = −η/h1, that is,

h4 = 2

λf (t)

η(x)

sinh(x)
.(32)

The function h4 is a product of a function of t and a function of x. Itô’s for-
mula (23), with the notation h̃4(t, x) = ∫ x

0 h4(t, y) dy yields the evaluation of the
stochastic integral in (31):

−
∫ s

0
h4 dX = −h̃4(s,X(s)) + β

4

∫ s

0
h̃4 dt + 1

2

∫ s

0
∂xh4 dt.

Plugging this into (31) and simplifying the deterministic terms in the first line
of (31), we arrive at

−Gs = −λ2

8

∫ s

0
f 2 dt + λ

(
β

8
− 1

4

)∫ s

0
f dt + 1

32
(β2 + 12β + 8)s

+ λe−β/4s β

8
eX(s) + ũ(X(s)) − c1 − h̃4(s,X(s))(33)

+
∫ s

0

(
2(h2 + h3)h4 + h2

4 + β

4
h̃4 + 1

2
∂xh4

)
dt.

Note that h2 and h3 do not depend on t and are bounded by an absolute con-
stant. The functions h4, h̃4, ∂xh4 are all bounded by a constant times 1/(λf (t)) =
16
β2 f (T − t), which itself is bounded by a constant not depending on λ as long as

0 ≤ t ≤ T . Thus, we can rewrite the integrand in (33) as∫ s

0
φ

(
T − t,X(t)

)
dt(34)

with a continuous function φ which does not depend on λ and satisfies |φ(t, x)| ≤
φ̃(t) with

∫ ∞
0 φ̃(t) dt < ∞. Using (29) and the fact that log coshx−|x| is bounded,

the terms in the second line of (33) can be written as(
2 − β

2

)
X(s)+ + λe−β/4s β

8
eX(s) + ω0(X(s)) − h̃4(T ,X(T ))(35)

with a bounded and continuous ω0. This concludes the construction of the func-
tion h. In order to get the expression (19) for −GT , we first plug in s = T into (33).
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Then the first line gives

−λ2β

64
(1 − λ−2) + λ

(
β

8
− 1

4

)
(1 − λ−1) + 1

4

(
β

2
+ 2

β
− 3

)
logλ,

and by (35) the second line transforms to(
2 − β

2

)
X(s)+ + β

8
eX(s) + ω0(X(T )) − h̃4(T ,X(T )).

Note that the expression h̃4(T , x) does not depend on T and is bounded. This
proves that −GT is in the desired from (19).

Now, we are ready to check that the proposed choice of h satisfies all the needed
conditions (A)–(C).

Condition (A). As x → −∞, we have

g(t, x) = 1
4λf e−x − 1

2 + ĝ(t, x), h(t, x) = 1
4λf e−x − 1

2 + ĥ(t, x),

where |ĝ| < cex and |ĥ| < c′ex with constants that only depend on β if 0 ≤ t ≤ T .
From this, it follows that g −h and g2 −h2 are both bounded if x is bounded from
above.

Condition (B). We need that (33) is bounded from below if 0 ≤ s ≤ T . The in-
tegrals in the first line are bounded by a constant depending on λ and β only.
The same is true for the integral in the last line, see (34) and the discussion around
it. Thus, we only need to deal with the evaluation terms of the second line. By (35),
we just need to show that(

2 − β

2

)
X(s)+ + λe−β/4s β

8
eX(s)(36)

is bounded from below. Since s ≤ T = 4
β

logλ, we get that (36) is bounded from
below by (

2 − β

2

)
X(s)+ + β

8
eX(s)

which in turn is bounded from below by a constant depending only on β .
Condition (C). This follows the same way: one only needs to check the behavior

of (36) as s converges to the hitting time of ∞. This expression converges to ∞ as
X(s) → ∞ which means that Gs → −∞. �

5. The proof of the main theorem. We are ready to prove Theorem 1.

PROOF OF THEOREM 1. Lemma 4 gives pλ = pλ(−∞), where

pλ(x) = P
(
X(t) is finite for all t > 0 and

does not go to ∞ as t → ∞)
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with X(0) = x, as defined in (8). Note that a time shift of equation (7) only changes
λ and the initial condition. With

T = Tλ = 4

β
logλ(37)

the diffusion τ �→ X(τ + T ) satisfies (7) with λ = 1 and with initial condition
−∞ at τ = −T . This suggests that the dependence on λ for the probability on
the right-hand side of (8) comes mainly from the interval [0, T ]. Because of this
we take conditional expectations in (8) with respect to the σ -algebra generated by
(X(t), t ∈ [0, T ]). Using the Markov property of X, we obtain

pλ = E
(
1{X(t) is finite for all 0 < t ≤ T } · p1(X(T ))

)
.(38)

The first term in the expectation is a function of the path X(t) on the time interval
[0, T ]. Consider a diffusion Y given by the SDE (18) with a drift function h(t, x)

given by Lemma 8. With the notation of Lemma 8, we set

ψ(Y ) =
(

2 − β

2

)
Y(T )+ + β

8
eY(T ) + ω(Y (T )) +

∫ T

0
φ

(
T − t, Y (t)

)
dt.(39)

We apply the Girsanov transformation of Proposition 6 together with equation (19)
of Lemma 8 to get

pλ = λγβ e−(β/64)λ2+(β/8−1/4)λE[p1(Y (Tλ)) exp{ψ(Y )}],
where γβ = 1

4(
β
2 + 2

β
− 3). In order to prove the theorem, it suffices to show that

the limit

lim
λ→∞ E[p1(Y (Tλ)) exp{ψ(Y )}](40)

exists, and is finite and positive. This limit then equals the constant κβ of the as-
ymptotics. Recall that in (39) the function ω is continuous and bounded and φ(t, y)

can be dominated by a function φ̃(y) which has a finite integral in [0,∞).
We will run the process Yλ(t) with a shifted time, τ = t − T = t − 4

β
logλ; that

is, let

ỸT (τ ) := Yλ(τ + T ).

The advantage of this shifted time is that the diffusions ỸT (τ ) for different λ satisfy
the same SDE except they evolve on nested time intervals:

dỸT (τ ) = h̃(τ, Ỹ ) dτ + dB, τ > −T , ỸT (−T ) = −∞,(41)

where the drift term is given by

h̃(τ, y) = h(T + τ, y) = −β

8
e−βτ/4 sinh(y) + h0(T + τ, y).(42)
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In this new time-frame, we need to show that the limit

lim
T →∞ Ep1(ỸT (0)) exp{ψ̃(ỸT )}(43)

exists, is positive and finite, where

ψ̃(Ỹ ) =
(

2 − β

2

)
Ỹ (0)+ + β

8
eỸ (0) + ω(Ỹ (0)) +

∫ T

0
φ(t, Ỹ (−t)) dt.(44)

We will drive the diffusions (41) with the same Brownian motion B(t). Then for
T1 > T2 we have YT1(τ ) > YT2(τ ) for τ ∈ [T2,∞) as this holds for τ = −T2 and
the domination is preserved by the evolution.

We also consider a nonnegative-valued diffusion Z(t) given by the SDE

dZ = r(Z)dt + dB

which is reflected at 0 and whose drift term is equal to

r(y) = − β

16
ey + c1.(45)

We will use the stationary version of Z to dominate the diffusions ỸT .
By Lemma 8, the term h0(y, T + τ) in (42) is bounded if −T ≤ τ ≤ 0. Thus,

we can choose the constant c1 in (45) so that

r(z) ≥ sup
{τ<0,0≤y≤z}

h(τ, y).(46)

Since Z and Ỹ are driven by the same Brownian motion, if Z, Ỹ > 0 then Z − Ỹ

evolves according to

d(Z − Ỹ ) = [r(Z) − f (t, Y )]dt.

By (46), this means that if Z(τ0) ≥ Ỹ (τ0) for a τ0 < 0 then this ordering is pre-
served by the coupling until time 0.

Consider the process Z in its stationary distribution. Then Z(−T ) >

ỸT (−T ) = −∞ therefore Z dominates ỸT on [−T ,0]. For every fixed τ ≤ 0,
the random variables ỸT (τ ) are increasing in T and bounded by Z(τ) so

Ỹ∞(τ ) = lim
T →∞ ỸT (τ )

exists and is dominated by Z(τ). The function p1(x) is continuous so p1(ỸT ) →
p1(Ỹ∞). By (44), we have

ψ̃(ỸT ) = a(ỸT (0)) +
∫ T

0
φ(t, Ỹ (−t)) dt,

where a is continuous and φ(t, y) can be dominated by a function φ̃(y) which has
a finite integral in [0,∞). Hence, ψ̃(ỸT ) → ψ̃(Ỹ∞) and

qT = eψ̃(ỸT )p1(ỸT ) → q∞ = eψ̃(Ỹ∞)p1(Ỹ∞) as T → ∞.
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Using Lemma 5 to estimate p1(y), we get

qT ≤ c exp
{
(2 − β/2)ỸT (0)+ + β

8
eỸT (0) − β

60
eỸT (0)

}
≤ c′χ(ỸT (0)),

where χ(y) = exp{(β
8 − β

61)ey}. If we prove that Eχ(Z(0)) < ∞, then the domi-
nated convergence theorem will imply

EqT → Eq∞ < ∞,(47)

and the existence of the limiting constant κβ will be established.
The generator of the reflected diffusion Z is given by

Lf = 1
2f ′′ + f ′r

for functions f defined on [0,∞) with f ′(0+) = 0 [Revuz and Yor (1999), Chap-
ter VII, Section 3]. Partial integration shows that if (logg)′ = 2r and f ′(0+) = 0
then

∫ ∞
0 Lf (x)g(x) dx = 0 which means that

g(z) = c exp(−β/8ez + 2c1z)

gives a stationary density. Since
∫ ∞

0 χ(z)g(z) dz = Eχ(Z(0)) < ∞, the conver-
gence (47) follows. This shows that

κβ = Eq∞ = E
[
eψ(Ỹ∞)p1(Ỹ∞(0))

]
< ∞.

The only thing left to prove is that κβ = Eq∞ is not zero. The definitions of q

and ψ yield

q∞ ≥ cp1(Ỹ∞(0))e(2−β/2)Y∞(0)+ .

By Lemma 5, the function p1(·) is positive. Since Ỹ∞(0) is a.s. finite and we get
that Eq∞ > 0 which completes the proof of Theorem 1. �
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