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MARTIN BOUNDARY OF A KILLED RANDOM WALK ON
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A complete representation of the Martin boundary of killed random
walks on the quadrant N

∗ ×N
∗ is obtained. It is proved that the corresponding

full Martin compactification of the quadrant N
∗ ×N

∗ is homeomorphic to the
closure of the set {w = z/(1 + |z|) : z ∈ N

∗ ×N
∗} in R

2. The method is based
on a ratio limit theorem for local processes and large deviation techniques.

1. Introduction. The concept of Martin boundary was first introduced for
Brownian motion by Martin [15] and next extended for countable discrete time
Markov chains by Doob [8] and Hunt [10]. For a Markov chain (Z(t)) on a
countable set E with the Green function G(z, z′), the Martin compactification
EM is the smallest compactification of the set E for which the Martin kernels
K(z, ·) = G(z, ·)/G(z0, ·) extend continuously. See the book of Woess [20] (Chap-
ter IV) or Rogers and Williams [18] (Section III.28), for example. The Mar-
tin boundary for homogeneous random walks in Z

d was obtained by Ney and
Spitzer [16].

We identify the Martin boundary of a killed random walk (Z+(t)) on the posi-
tive quadrant N

∗ × N
∗. Such a random walk has a substochastic transition matrix

(p(z, z′) = μ(z′ − z), z, z′ ∈ N
∗ × N

∗) with some probability measure μ on Z
2, it

is identical to a homogeneous random walk (S(t)) on the two-dimensional lattice
Z

2 before it first exits from the quadrant N
∗ × N

∗ and is killed at the time

τ
.= inf{n ≥ 0 :S(n) /∈ N

∗ × N
∗}.

The random walk (Z+(t)) is therefore not homogeneous: transition probabilities
on the boundary of the quadrant N

∗ × N
∗ are not the same as in the interior. For

nonhomogeneous Markov processes, the problem of Martin boundary identifica-
tion is usually nontrivial and there are few examples where it was resolved.

Cartier [3] described the Martin boundary of random walks on nonhomoge-
neous trees and Doney [7] identified the Martin boundary of a homogeneous ran-
dom walk (Z(n)) on Z killed on the negative half-line {z : z < 0}. Alili and Doney
[1] identified the Martin boundary for space–time random walk S(n) = (Z(n), n)

for a homogeneous random walk Z(n) on Z killed on the negative half-line
{z : z < 0}. All these results were obtained by using a special linear structure of
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the processes. The Martin boundary of Brownian motion on a half-space was ob-
tained in the book of Doob [8] by using an explicit form of the Green function.

In Kurkova and Malyshev [14], the full Martin compactification is obtained by
using methods of complex analysis for nearest neighbors random walks on a half-
plane Z×N and in the quadrant Z

2+ = N×N. In a recent paper of Raschel [17], the
Martin boundary is obtained for nearest neighbor random walks in N × N with an
absorption condition on the boundary also by using methods of complex analysis.
Because of the use of the specific algebraic setting of elliptic curves, these methods
seem to be difficult to apply when the jump sizes are more general.

The results of Kurkova and Malyshev [14] exhibit a formal similarity between
the limiting behavior of the Martin kernel and the optimal large deviation trajecto-
ries obtained by Ignatyuk, Malyshev and Scherbakov [13]. A natural idea is then
to study the Martin compactification by using large deviation methods. The large
deviation approach was first proposed in the papers of Ignatiouk-Robert [11, 12] in
order to identify the Martin boundary for partially homogeneous random walks on
a half-space Z

d−1 ×N. The minimal harmonic functions were determined there by
using the methods of Choquet–Deny theory (see Woess [20]) and then the limiting
behavior of the Martin kernel was obtained by using an explicit representation of
the harmonic functions combined with the large deviation estimates of the Green
function and the ratio limit theorem of Markov-additive processes. Unfortunately,
the methods of Choquet–Deny theory and the ratio limit theorem are valid only for
Markov-additive processes, that is, when transition probabilities are invariant with
respect to the translations on some directions. In the setting of the present paper,
for a random walk in the quadrant N

∗ × N
∗, such an invariance property cannot

hold. Our paper is the first step toward a more ambitious program: to identify the
Martin boundary for general partially homogeneous random walks in N

n.
The main idea of our method is the following: to study the asymptotic behavior

of the Martin kernels K(z, zn) for a sequence of points zn which tends to infin-
ity with limn zn/|zn| = q , one should consider a twisted random walk conditioned
to go to infinity in the direction q . For a nonzero vector q ∈ R

2+, such a twisted
homogeneous random walk will visit at least one of the boundaries (−N) × Z or
Z × (−N) only a finite number of times. If the corresponding boundary {0} × N

(resp., N × {0}) is removed, the resulting process is then identical to the homoge-
neous random walk (S(t)) before the first time when it hits the set Z×(−N) [resp.,
(−N)× Z]. The limiting behavior of the Martin kernel of this process correspond-
ing to the direction q is already known in such a setting. The limiting behavior of
the Martin kernel of the original process (Z+(t)) should be essentially the same
but with a correction given by a potential function. When both coordinates of q are
positive, this idea is transformed into a rigorous proof with the aid of large devia-
tion estimates and a generalization of a ratio limit theorem of the paper [12]. When
one of the coordinates of q is zero, that is, when the process is conditioned to go
to infinity along one of the boundaries, our proof is much more complicated. In
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this case, we combine large deviation techniques and the ratio limit theorem with
delicate estimates obtained from the Harnack inequalities.

We assume that the probability measure μ on Z
2 satisfies the following condi-

tions:

(H1) The homogeneous random walk S(t) = (S1(t), S2(t)) on Z
2 having transi-

tion probabilities pS(z, z′) = μ(z′ − z) is irreducible and

m
.= ∑

z∈Zd

zμ(z) �= 0.

(H2) The killed random walk (Z+(t)) is irreducible on N
∗ × N

∗.
(H3) The jump generating function

ϕ(a)
.= ∑

z∈Z2

μ(z) exp(a · z)(1.1)

is finite everywhere on R
2.

(H4) (S1(t)) and (S2(t)) are aperiodic random walks on Z.

Under the above assumptions, the set

D
.= {a ∈ R

2 :ϕ(a) ≤ 1}
is compact and strictly convex, the gradient ∇ϕ(a) exists everywhere on R

2 and
does not vanish on the boundary ∂D = {a ∈ R

2 :ϕ(a) = 1}, the mapping

a → q(a)
.= ∇ϕ(a)/|∇ϕ(a)|(1.2)

determines a homeomorphism from ∂D to the unit two-dimensional sphere S 2 =
{q ∈ R

2 : |q| = 1} (see [9]). We denote by q → a(q) the inverse mapping of (1.2)
and we let a(q) = a(q/|q|) for a nonzero q ∈ R

2. According to this notation,
a(q) is the only point in ∂D where the vector q is normal to the convex set D.
Throughout this paper, we denote by N the set of all nonnegative integers and we
let N

∗ = N \ {0}. The set of all nonnegative real numbers is denoted by R+ =
[0,+∞[ and R

∗+ = ]0,+∞[ denotes the set of all strictly positive real numbers.
It is convenient moreover to introduce the following notation: N denotes the set of
all nonnegative integers and N

∗ = N \ {0},
τ

.= inf{n ≥ 0 :S(n) /∈ N
∗ × N

∗}
is the first time when the random walk (S(t)) exits from the quadrant N

∗ × N
∗,

S 2+
.= {q ∈ R

2+ : |q| = 1} and �+ .= {a ∈ ∂D :q(a) ∈ S 2+}.
For a ∈ �+ and z = (x1, x2) ∈ N

∗ × N
∗, we set

ha(z)
.=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1 exp(a · z) − Ez

(
S1(τ ) exp

(
a · S(τ)

)
, τ < ∞)

,

if q(a) = (0,1),

x2 exp(a · z) − Ez

(
S2(τ ) exp

(
a · S(τ)

)
, τ < ∞)

,

if q(a) = (1,0),

exp(a · z) − Ez

(
exp

(
a · S(τ)

)
, τ < ∞)

, otherwise.

(1.3)
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G+(z, z′) denotes the Green function of the process (Z(t)):

G+(z, z′) =
∞∑

n=0

Pz

(
Z+(n) = z′).

The main result of our paper is the following theorem.

THEOREM 1. Under the hypotheses (H1)–(H4), for any q ∈ S 2+ and any se-
quence of points zn ∈ N

∗ × N
∗ with limn |zn| = ∞ and limn zn/|zn| = q ,

lim
n→∞G+(z, zn)/G+(z0, zn) = ha(q)(z)/ha(q)(z0)(1.4)

for all z ∈ N
∗ × N

∗.

Remark that the conditions (H1) and (H2) are essential for our approach, our
method does not work when at least one of them is not satisfied. The hypotheses
(H3) and (H4) are required by the paper [12], we use its results to get (1.4) for
q ∈ {(1,0), (0,1)}. When the coordinates q1 and q2 of the vector q = limn zn/|zn|
are nonzero, the assumption (H4) is not needed and the hypotheses (H3) can be
replaced by a less restrictive condition of Ney and Spitzer [16] where the jump
generating function (1.1) is assumed to be finite only in a neighborhood of the
set D.

Recall that a sequence zn is said to converge to a point on the Martin boundary
∂M(N∗ × N

∗) of N
∗ × N

∗ determined by the Markov process (Z+(t)) if and only
if the sequence of functions z → G+(z, zn)/G+(z0, zn) converges point-wise on
N

∗ ×N
∗. According to this definition, Theorem 1 implies the following statement.

COROLLARY 1.1. Under the hypotheses (H1)–(H4), the following assertions
hold:

(1) A sequence of points zn ∈ N
∗ ×N

∗ with limn |zn| = +∞ converge to a point
of the Martin boundary for the Markov process Z+(t) if and only if zn/|zn| → q

for some point q ∈ S 2+.
(2) The full Martin compactification of the quadrant N

∗ × N
∗ is homeomorphic

to the closure of the set {w = z/(1 + |z|) : z ∈ N
∗ × N

∗} in R
2.

Our paper is organized as follows. In Section 2, the main idea of the proof of our
result is sketched. Section 3 is devoted to the preliminary results. In Section 4, we
prove that the functions ha with a ∈ �+ defined by (1.3) are finite, harmonic for the
Markov process (Z+(t)) and strictly positive. Section 5 is devoted to the large de-
viation results. It is shown that the family of scaled processes Zε+(t) = εZ+([t/ε])
satisfies sample path large deviation principle. The logarithmic estimates of the
Green function are obtained from the corresponding large deviation bounds. In
Section 6, the large deviation estimates are used to decompose the Green func-
tion G+(z, zn) into a main part corresponding to an optimal large deviation way
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to go from z to zn and the negligible part. In Section 7, we generalize the ratio
limit theorem of Ignatiouk-Robert [12]. The decomposition into a main and a neg-
ligible parts of the Green function G+(z, zn) and the ratio limit theorem are next
combined in Section 8 in order to complete the proof of Theorem 1.

2. Local processes and renewal equations: A sketch of proofs. The main
steps of our method can be summarized as follows:

(1) For a sequence (zn) ∈ N
∗ × N

∗ with limn zn/|zn| = q and limn |zn| = +∞,
the Green function G+(z, zn) of the Markov process (Z+(t)) is represented in
terms of a local random walk which is Markov-additive and has the same transition
probabilities as the original random walk (Z+(t)) in a neighborhood of the point
q|zn|.

(2) Next, large deviation estimates are used to decompose G+(z, zn) into a main
part corresponding to an optimal large deviation way to go from z to zn and the
negligible part. Such a decomposition allows us to get the limit of the Martin kernel

lim
n

G+(z, zn)/G+(z0, zn)

from the limiting behavior and the uniform bounds of the Martin kernel of the
corresponding local process.

When the coordinates of the vector q = (q1, q2) are nonzero, the local Markov-
additive process is simply a homogeneous random walk (S(t)) on Z

2 having tran-
sition probabilities p(z, z′) = μ(z′ − z). This is the simplest case in our proof. The
following renewal equation represents the Green function G+(z, z′) of the Markov
process (Z+(t)) in terms of the Green function G(z, z′) of the random walk (S(t)):

G+(z, z′) = G(z, z′) − Ez

(
G(S(τ), z′), τ < ∞)

.(2.1)

Ney and Spitzer [16] proved that for any q ∈ S 2+ and any sequence of points zn ∈
N

∗ × N
∗ with limn|zn| = ∞ and limn zn/|zn| = q ,

lim
n→∞G(z, zn)/G(0, zn) = exp

(
a(q) · z)(2.2)

for all z ∈ Z
2 (see also Section 7 in [12] for an alternative simple proof of this

result). Using the renewal equation (2.1), one can therefore get the equality

lim
n→∞

G+(z, zn)

G(0, zn)
= exp

(
a(q) · z) − Ez

(
exp

(
a(q) · S(τ)

)
, τ < ∞)

(2.3) .= ha(q)(z),

if one can prove the exchange of limits

lim
n→∞ Ez

(
G(S(τ), zn)

G(0, zn)
, τ < ∞

)
= Ez

(
lim

n→∞
G(S(τ), zn)

G(0, zn)
, τ < ∞

)
.(2.4)

Relation (1.4) will follow finally from the relation (2.3) because the function ha is
strictly positive on N

∗ ×N
∗ (see Proposition 4.1 below). Equality (2.4) is therefore

a key relation for our problem.
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While the above idea seems quite simple, the proof of (2.4) is nontrivial because
the convergence (2.2) is not uniform and the classical convergence theorems are
here difficult to use. With our approach, for a sequence of points zn ∈ N

∗ × N
∗

with limn|zn| = ∞ and limn zn/|zn| = q , we first decompose the right-hand side
of (2.1) into a main part

�
q
δ (z, zn)

.= G(z, zn) − Ez

(
G(S(τ), zn), τ < ∞, |S(τ)| < δ|zn|)

and the corresponding negligible part by using the large deviation estimates of the
Green function G(z, z′) and G+(z, z′). Next, we get the estimates

sup
n

1{|z|<δ|zn|}G(z, zn)/G(z0, zn) ≤ C(z)(2.5)

such that Ez(C(S(τ)), τ < ∞) < ∞ and finally, using the point-wise convergence
(2.2) and dominated convergence theorem we obtain (1.4). The estimates (2.5) are
obtained in Section 7 with a suitable exponential function C(z) by using the ratio
limit theorem applied to the random walk (S(t)).

The case when one of the coordinates of the vector q is equal to zero, that is,
when the sequence (zn) tends to infinity along one of the boundaries of the do-
main, is much more delicate to handle. First of all, we cannot use here the renewal
equation (2.1) because the function exp(a(q) · z) − Ez(exp(a(q) · S(τ)), τ < ∞)

is in this case identical to zero. If q = (1,0), one should consider a Markov-
additive process having the same statistical behavior as the process (Z+(t)) near
the boundary N × {0} and far from the boundary {0} × N. This is a random
walk (Z1+(t)) on Z × N

∗ having a substochastic transition matrix (p1(z, z
′) =

μ(z′ − z), z, z′ ∈ Z × N
∗). It is identical to the random walk (S(t)) before the

time τ2
.= inf{t ≥ 0 :S2(t) ≤ 0} and killed at the time τ2. Our Markov process

(Z+(t)) is therefore identical to (Z1+(t)) before the time τ1
.= inf{t ≥ 0 :S1(t) ≤ 0}.

Since clearly τ = min{τ1, τ2}, the Green function G+(z, z′) of the Markov process
(Z+(t)) is related to the Green function G1+(z, z′) of the process (Z1+(t)) as fol-
lows:

G+(z, z′) = G1+(z, z′) − Ez

(
G1+(S(τ ), z′), τ = τ1 < τ2

)
.(2.6)

Theorem 1 of [12] proves that for any sequence of points zn ∈ N
∗ × N

∗ with
limn|zn| = ∞ and limn zn/|zn| = q = (1,0),

lim
n→∞G1+(z, zn)/G1+(z0, zn) = h1

a(q),+(z)/h1
a(q),+(z0) ∀z ∈ Z × N

∗,(2.7)

with a strictly positive function h1
a(q),+ on Z × N

∗ defined by

h1
a(q),+(z) = x2 exp

(
a(q) · z) − Ez

(
S2(τ2) exp

(
a(q) · S(τ2)

)
, τ2 < ∞)

.

Similarly to the previous case, we decompose the right-hand side of the renewal
equation (2.6) into a main part

G1+(z, zn) − Ez

(
G1+(S(τ ), zn), τ = τ1 < τ2, |S(τ)| < δ|zn|)
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and the corresponding negligible part by using the large deviation estimates of
the Green functions G+(z, z′) and G1+(z, z′) and we show there are δ > 0 and a
function C1+(z) with

Ez

(
C1+(S(τ )), τ = τ1 < τ2

)
< ∞

such that

sup
n

1{|z|<δ|zn|}G1+(z, zn)/G1+(z0, zn) ≤ C1+(z).(2.8)

The proof of these estimates is the most delicate part of our work.

3. Preliminary results. For a given a ∈ D
.= {a ∈ R

2 :ϕ(a) ≤ 1}, let us con-
sider a new twisted homogeneous random walk (Sa(t)) on Z

2 having transition
probabilities

pa(z, z
′) = μ(z′ − z) exp

(
a · (z′ − z)

)
.(3.1)

According to the definition of the set D, the transition matrix of such a random
walk is substochastic. Recall that

τ = τ1 ∧ τ2,

where τ1
.= inf{n ≥ 0 :S(n) /∈ N

∗ × Z} and τ2
.= inf{n ≥ 0 :S(n) /∈ Z × N

∗}.

PROPOSITION 3.1. For every a ∈ D, the quantity Ez(exp(a · (S(τ )− z)), τ <

∞) is equal to the probability that the twisted random walk (Sa(t)) starting at the
point z ever exits from the positive quadrant N

∗ × N
∗.

PROOF. Indeed, let τa denote the first time when the twisted random walk
(Sa(t)) exits from the quadrant N

∗ × N
∗. Then for any t ∈ N,

Pz

(
Sa(t) = z′, τ = t

) = exp
(
a · (z′ − z)

)
Pz

(
S(t) = z′, τ = t

) ∀z, z′ ∈ Z
2

and consequently, Pz(τ
a < ∞) = Ez(exp(a · (S(τ ) − z)), τ < ∞). �

The set �+ = {a ∈ ∂D :q(a) ∈ S 2+} endowed with a topology induced by the
usual topology of R

2 is homeomorphic to a segment with the end points in a(1,0)

and a(0,1). The points a(1,0) and a(0,1) are said to be critical.

PROPOSITION 3.2. Every noncritical point of �+ has a neighborhood where
the functions a → Ez(exp(a · S(τ)), τ < ∞) are finite for all z ∈ N

∗ × N
∗.

PROOF. By Proposition 3.1, the function a → Ez(exp(a · S(τ)), τ < ∞) is
finite on D

.= {a ∈ R
2 :ϕ(a) ≤ 1}. Furthermore, let us consider the critical points

a(1,0) = (a′
1, a

′
2) and a(0,1) = (a′′

1 , a′′
2 ). Recall that under the hypotheses (H1)



MARTIN BOUNDARY OF A KILLED RANDOM WALK ON A QUADRANT 1113

FIG. 1.

and (H3) the set D is compact and strictly convex, and according to the definition
of the mapping q → a(q),

∇ϕ(a′
1, a

′
2) = |∇ϕ(a′

1, a
′
2)|(1,0) and ∇ϕ(a′′

1 , a′′
2 ) = |∇ϕ(a′′

1 , a′′
2 )|(0,1).

Every noncritical point of �+ has therefore a neighborhood where for any point
a = (a1, a2) /∈ D there exist two points â = (â1, â2) and ã = (ã1, ã2) on the
boundary of the set D with â1 = a1, â2 < a2 and ã1 < a1, ã2 = a2 (see Fig-
ure 1). Since S1(τ ) ≤ 0 on the event {τ = τ1 < +∞}, and S2(τ ) ≤ 0 on the event
{τ = τ2 < +∞}, from this it follows that

Ez

(
exp

(
a · S(τ)

)
, τ < +∞)

≤ Ez

(
exp

(
a · S(τ)

)
, τ = τ1 < +∞) + Ez

(
exp

(
a · S(τ)

)
, τ = τ2 < +∞)

≤ Ez

(
exp

(
ã · S(τ)

)
, τ = τ1 < +∞) + Ez

(
exp

(
â · S(τ)

)
, τ = τ2 < +∞)

≤ Ez

(
exp

(
ã · S(τ)

)
, τ < +∞) + Ez

(
exp

(
â · S(τ)

)
, τ < +∞)

< +∞. �

PROPOSITION 3.3. The critical point a(1,0) = (a′
1, a

′
2) has a neighbor-

hood where the functions a → Ez(exp(a · S(τ)), τ = τ1 < τ2) are finite for all
z ∈ N

∗ × N
∗. Moreover, for any δ > 0 small enough there is a point â = (â1, â2) ∈

∂D with â1 < a′
1 and â2 = a′

2 + δ such that

Ez

(
exp

(
a(1,0) · S(τ) + δS2(τ )

)
, τ = τ1 < τ2

) ≤ exp(â · z)(3.2)

for all z ∈ N
∗ × N

∗.

PROOF. The proof of this proposition uses essentially the same arguments as
the proof of Proposition 3.2. For a ∈ D,

Ez

(
exp

(
a · S(τ)

)
, τ = τ1 < τ2

) ≤ exp(a · z) ∀z ∈ N
∗ × N

∗,
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FIG. 2.

because the quantity Ez(exp(a ·(S(τ )−z)), τ = τ1 < τ2) is equal to the probability
that the twisted substochastic homogeneous random walk (Sa(t)) starting at z hits
the set (−N) × Z before hitting the set Z × (−N). This proves that the functions
a → Ez(exp(a · S(τ)), τ = τ1 < τ2) are finite on D for all z ∈ N

∗ × N
∗. More-

over, let us consider the points a(0,1) = (a′′
1 , a′′

2 ) and a(0,−1) = (a′′′
1 , a′′′

2 ) on the
boundary ∂D of D. Then the set 	

.= {a = (a1, a2) ∈ R
2 :a1 > max{a′′

1 , a′′′
1 }, a′′′

2 <

a2 < a′′
2 } is an open neighborhood of the point a(1,0) and for any a = (a1, a2) ∈

	 \ D there is a point â = (â1, â2) on the boundary of the set D with â2 = a2 and
â1 < a1 (see Figure 2). Since on the event {τ = τ1 < τ2}, S1(τ ) ≤ 0 we conclude
that for any z ∈ N

∗ × N
∗,

Ez

(
exp

(
a · S(τ)

)
, τ = τ1 < τ2

) ≤ Ez

(
exp

(
â · S(τ)

)
, τ = τ1 < τ2

) ≤ exp(â · z).
The functions a → Ez(exp(a · S(τ)), τ = τ1 < τ2) are therefore finite on 	 for all
z ∈ N

∗ × N
∗. Finally, for δ > 0 small enough, a = a(1,0) + (0, δ) ∈ 	 and hence,

the last inequality proves also (3.2). �

A straightforward consequence of Proposition 3.3 is the following statement.

COROLLARY 3.1. For a = a(1,0), the function

z → Ez

(|S2(τ )| exp
(
a · S(τ)

)
, τ = τ1 < τ2

)
(3.3)

is finite on N
∗ × N

∗.
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PROOF. Indeed, on the event τ = τ1 < τ2, for any δ > 0, one has

0 < S2(τ ) ≤ 1

δ
exp(δS2(τ ))

and consequently, for a = a(1,0),

Ez

(|S2(τ )| exp
(
a · S(τ)

)
, τ = τ1 < τ2

)
= Ez

(
S2(τ ) exp

(
a · S(τ)

)
, τ = τ1 < τ2

)
≤ 1

δ
Ez

(
exp

(
a · S(τ) + δS2(τ )

)
, τ = τ1 < τ2

)
.

Since by Proposition 3.3, the right-hand side of the last relation is finite for all
z ∈ N

∗ × N
∗ and δ > 0 small enough, we conclude that the function (3.3) is finite

on N
∗ × N

∗. �

To show that the functions (1.3) are well defined, we will need, moreover, the
following statement.

LEMMA 3.1. For a random walk (ξ(t)) on Z having zero mean and transition
probabilities P(x, x′) = P(0, x′ − x) such that for some δ > 0,∑

x

e−δxP (0, x) < ∞ and
∑
x

|x|P(0, x) < ∞,

the function f (x) = Ex(|ξ(T0)|) with T0 = inf{t ≥ 0 : ξ(t) ≤ 0} is finite everywhere
on N

∗.

This elementary lemma has been proved in the proof of Lemma 5.3 in Igna-
tiouk [12]. A more general related result can also be found in Chow [4]. Corol-
lary 3.1 combined with Lemma 3.1 implies the following proposition.

PROPOSITION 3.4. The function z → Ez(|S2(τ )| exp(a(1,0) · S(τ)), τ < ∞)

is finite on N
∗ × N

∗.

PROOF. To prove this proposition, let us first notice that

Ez

(|S2(τ )| exp
(
a · S(τ)

)
, τ < ∞)

= Ez

(|S2(τ )| exp
(
a · S(τ)

)
, τ = τ1 < τ2

)
+ Ez

(|S2(τ )| exp
(
a · S(τ)

)
, τ = τ2 < ∞)

,

where for a = a(1,0), by Corollary 3.1,

Ez

(|S2(τ )| exp
(
a(1,0) · S(τ)

)
, τ = τ1 < τ2

)
< ∞ ∀z ∈ N

∗ × N
∗.
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To prove that the function z → Ez(|S2(τ )| exp(a(1,0) · S(τ)), τ < ∞) is finite on
N

∗ × N
∗ it is therefore sufficient to show that

Ez

(|S2(τ )| exp
(
a(1,0) · S(τ)

)
, τ = τ2 < ∞)

< ∞ ∀z ∈ N
∗ × N

∗.(3.4)

Next, we consider a twisted random walk (Sa(t)) on Z
2 with transition probabili-

ties pa(z, z
′) = μ(z′ − z) exp(a · (z′ − z)) for a = a(1,0). The second coordinate

(Sa
2 (t)) of (Sa(t)) is a random walk on Z having a mean

E0(S
a
2 (1)) = ∂

∂a2
ϕ(a1, a2)

∣∣∣∣
(a1,a2)=a(1,0)

= 0

and satisfying the conditions of Lemma 3.1. This lemma applied with ξ(t) = Sa
2 (t)

and T0 = τa
2

.= inf{n ≥ 0 :Sa
2 (n) ≤ 0} proves that the function Ex(|Sa

2 (τ a
2 )|) is finite

on N
∗. Since for any z = (x1, x2) ∈ N

∗ × N
∗,

Ez

(|S2(τ2)| exp
(
a(1,0) · S(τ2)

)
, τ2 < ∞) = Ex2(|Sa

2 (τ a
2 )|)

we conclude that (3.4) holds. Proposition 3.4 is therefore proved. �

4. Harmonic functions. The main result of this section is the following
proposition.

PROPOSITION 4.1. For every a ∈ �+, the functions ha defined by (1.3) is
finite, strictly positive on N

∗ × N
∗ and harmonic for the Markov process (Z+(t)).

Before proving this proposition, we consider the following lemmas.

LEMMA 4.1. For a ∈ �+, the function z → 1 − Ez(exp(a · (S(τ ) − z)), τ <

∞) is strictly positive on N
∗ × N

∗ when q(a) /∈ {(1,0), (0,1)} and is identically
zero when q(a) ∈ {(1,0), (0,1)}.

PROOF. Indeed, for any a ∈ �+, the twisted random walk Sa(t) = (Sa
1 (t),

S2
2(t)) has a stochastic transition matrix (pa(z, z

′) = exp(a · (z′ − z))μ(z′ − z),

z, z′ ∈ Z
2), a nonzero mean

m(a) = ∑
z∈Z2

z exp(a · z)μ(z) = ∇ϕ(a) = |∇ϕ(a)|q(a)

and a finite variance. If q(a) = (0,1), the first coordinate Sa
1 (t) of Sa(t) is therefore

a recurrent random walk on Z, the first time when Sa
1 (t) becomes negative or zero

is almost surely finite for any starting point Sa(0) = z ∈ N
∗ ×N

∗ and consequently,
the twisted random walk (Sa(t)) almost surely exits from the quadrant N

∗ × N
∗.

By Proposition 3.1, from this it follows that

1 − Ez

(
exp

(
a · (

S(τ) − z
))

, τ < ∞) = Pz(τ
a = ∞) = 0 ∀z ∈ N

∗ × N
∗.
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The same arguments but with a recurrent random walk (Sa
2 (t)) prove this equality

when q(a) = (1,0).
Suppose now that q(a) /∈ {(1,0), (0,1)}. Then by the strong law of large num-

bers, Sa(t)/t → m(a) almost surely as t → ∞ for any initial state Sa(0) = z. From
this, it follows that for any Sa(0) = z and ε > 0 there is an almost surely finite pos-
itive random variable Nz,ε such that |Sa(t) − m(a)t | < εt for all t ≥ Nz,ε . Since
q(a) /∈ {(1,0), (0,1)}, the both coordinates of the mean vector m(a) are positive
and nonzero and consequently, there exist N > 0 and ε̂ > 0 for which the set

{z ∈ Z
2 : |z − m(a)t | < ε̂t for some t ≥ N}

is included to the quadrant N
∗ × N

∗. For the initial state Sa(0) = 0, from this it
follows that almost surely Sa(t) ∈ N

∗ × N
∗ for all t ≥ N̂

.= max{N0,ε̂,N}. The
minimums

min
t∈N

Sa
1 (t) and min

t∈N

Sa
2 (t)

are therefore almost surely finite and consequently, for some ẑ = (x̂, ŷ) ∈ N
∗ ×N

∗,

Pẑ(τ
a = +∞) = P0

(
min
t∈N

Sa
1 (t) > −x̂ and min

t∈N

Sa
2 (t) > −ŷ

)
> 0.

The last inequality combined with Proposition 3.1 shows that

1 − Eẑ

(
exp

(
a · (

S(τ) − ẑ
))

, τ < ∞) = Pẑ(τ
a = +∞) > 0

for some ẑ = (x̂, ŷ) ∈ N
∗ × N

∗. To complete our proof, it is now sufficient to
notice that under the hypotheses (H2), for any z ∈ N

∗ × N
∗, the probability that

the random walk (Sa(t)) starting at z hits the point ẑ before the first exit from the
quadrant N

∗ × N
∗ is nonzero and consequently, for some t = t (z, ẑ) ∈ N,

1 − Ez

(
exp

(
a · (

S(τ) − z
))

, τ < ∞)
= Pz(τ

a = +∞)

≥ Pz

(
Sa(t) = ẑ, τ a > t

)
Pẑ(τ

a = +∞) > 0.

Lemma 4.1 is therefore proved. �

LEMMA 4.2. The function

z = (x1, x2) → x2 exp
(
a(1,0) · z) − Ez

(
S2(τ ) exp

(
a(1,0) · S(τ)

)
, τ < ∞)

(4.1)

is well defined and nonnegative on N
∗ × N

∗.

PROOF. Indeed, Proposition 3.4 proves that the function (4.1) is well defined.
To prove that this function is nonnegative on N

∗ × N
∗, let us notice that by domi-

nated convergence theorem from Proposition 3.4 it follows that

Ez

(
S2(τ ) exp

(
a · S(τ)

)
, τ < ∞) = lim

n→∞ Ez

(
S2(τ ) exp

(
a · S(τ)

)
, τ ≤ n

)
.(4.2)
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Moreover, the function z = (x1, x2) → x2 exp(a(1,0) · z) is harmonic for the ran-
dom walk S(t) because according to the definition of the point a(1,0), for any
z = (x1, x2),

Ez

(
S2(1) exp

(
a(1,0) · S(1)

)) − x2 exp
(
a(1,0) · z) = ∂ϕ(a1, a2)

∂a2

∣∣∣∣
(a1,a2)=a(1,0)

= 0.

Hence, for a = a(1,0), the sequence S2(n) exp(a · S(n)) is a martingale relative
to the natural filtration of (S(n)) and by the stopping-time theorem, for any z =
(x1, x2) ∈ N

∗ × N
∗,

Ez

(
S2(τ ) exp

(
a · S(τ)

)
, τ ≤ n

)
= Ez

(
S2(τ ∧ n) exp

(
a · S(τ ∧ n)

)) − Ez

(
S2(n) exp

(
a · S(n)

)
, τ > n

)
= x2 exp(a · z) − Ez

(
S2(n) exp

(
a · S(n)

)
, τ > n

) ≤ x2 exp(a · z),
where the last relation holds because on the event {τ > n} one has S2(n) > 0. The
last inequality combined with (4.2) proves that the function (4.1) is nonnegative
on N

∗ × N
∗. �

PROOF OF PROPOSITION 4.1. Suppose first that a /∈ {a(1,0), a(0,1)}. Then
by Lemma 4.1, the function ha(z) = exp(a ·z)−Ez(exp(a ·S(τ)), τ < ∞) is finite
and strictly positive on N

∗ ×N
∗. For the homogeneous random walk (S(t)) on Z

2,
the exponential function z → exp(a · z) is harmonic and the function

f (z) = Ez

(
exp

(
a · S(τ)

)
, τ < ∞)

satisfies the equality Ez(f (S(1)) = f (z) for all z ∈ N
∗ ×N

∗. The function ha(z) =
exp(a · z) − f (z) satisfies therefore the equality

Ez(ha(S(1))) = ha(z)

for all z ∈ N
∗ × N

∗. Moreover, for z ∈ Z × Z \ (N∗ × N
∗), Pz-almost surely, τ = 0

and S(τ) = z from which it follows that

ha(z) = exp(a · z) − Ez

(
exp

(
a · S(τ)

)
, τ < ∞) = 0 ∀z ∈ Z × Z \ (N∗ × N

∗).

Since Z+(t) is killed at the first time τ when S(t) exits from N
∗ × N

∗ and is iden-
tical to S(t) for t ≤ τ , we conclude that the function ha is harmonic for the random
walk (Z+(t)). For a /∈ {a(1,0), a(0,1)}, Proposition 4.1 is therefore proved.

Consider now the case when a = a(1,0) = (a′
1, a

′
2). Then by Lemma 4.2, the

function ha(z) = x2 exp(a ·z)−Ez(S2(τ ) exp(a ·S(τ)), τ < ∞) is well defined and
nonnegative on N

∗ × N
∗. To prove that this function is harmonic for the Markov

process (Z+(t)) it is sufficient to notice that

Ez(ha(Z+(1))) = Ez

(
ha(S(1)), τ > 1

)
= Ez(ha(S(1))) = ha(z) ∀z ∈ N

∗ × N
∗,
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because ha(z) = 0 for all z ∈ Z × Z \ (N∗ × N
∗) and Z+(1) = S(1) whenever

τ > 1. To prove that the function ha is strictly positive, we first notice that

ha(z) exp(−a · z) = x2 − Ez

(
S2(τ ) exp

(
a · (

S(τ) − z
))

, τ = τ2 < ∞)
− Ez

(
S2(τ ) exp

(
a · (

S(τ) − z
))

, τ = τ1 < τ2 ≤ ∞)
,

where

x2 − Ez

(
S2(τ ) exp

(
a · (S(τ )z)

)
, τ = τ2 < ∞) ≥ x2 > 0,

because on the event {τ = τ2} one has S2(τ ) = S2(τ2) ≤ 0. Moreover, by Propo-
sition 3.3, for a = a(1,0) = (a′

1, a
′
2) and any δ > 0 small enough there is a point

â = (â1, â2) ∈ ∂D with â1 < a′
1 and â2 = a′

2 + δ such that

Ez

(
S2(τ ) exp

(
a · (

S(τ) − z
))

, τ = τ1 < τ2 ≤ ∞)
≤ 1

δ
Ez

(
exp

(
a · (

S(τ) − z
) + δS2(τ )

)
, τ = τ1 < τ2 ≤ ∞)

≤ 1

δ
exp

(
(â − a) · z) = 1

δ
exp

(−(a′
1 − â1)x1 + δx2

)
.

Since the right-hand side of the last inequality tends to zero as x1 → ∞, this proves
that ha(z) > 0 for z = (x1, x2) ∈ N

∗ × N
∗ with x2 = 1 and x1 > 0 large enough.

Since by the Harnack inequality,

ha(z
′) ≥ ha(z)Pz′

(
Z+(n) = z for some n ∈ N

) ≥ 0 ∀z, z′ ∈ N
∗ × N

∗,

using (H2), we conclude that ha(z
′) > 0 for all z′ ∈ N

∗ × N
∗. Proposition 4.1 is

therefore proved. �

5. Large deviation results. In this section, we obtain large deviation re-
sults for the family of scaled processes and we deduce from them the logarith-
mic asymptotics of the Green function. To get the large deviation results for
scaled processes (εZ+([t/ε]), we need to show that the original nonscaled process
(Z+(t)) satisfies the following communication condition.

5.1. Communication condition.

DEFINITION 5.1. A discrete time Markov chain (Z(t)) on a countable state
space E ⊂ Z

d is said to satisfy the communication condition on E0 ⊂ E if there
exist θ > 0 and C > 0 such that for any z �= z′, z, z′ ∈ E0 there is a sequence of
points z0, z1, . . . , zn ∈ E0 with z0 = z, zn = z′ and n ≤ C|z′ − z| such that

|zi − zi−1| ≤ C and Pzi−1

(
Z(1) = zi

) ≥ θ ∀i = 1, . . . , n.

PROPOSITION 5.1. Under the hypotheses (H2), the random walk (Z+(t)) sat-
isfies the communication condition on the hole space N

∗ × N
∗.
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PROOF. Indeed, under the hypotheses (H2), for x̂ = (1,1) and any unit vec-
tor e ∈ {(1,0), (0,1)} there is ne ∈ N such that Px̂ (Z+(ne) = x̂ + e) > 0. Hence,
there are ue

1, . . . , u
e
ne

∈ Z
2 with ue

1 + · · · + ue
ne

= e such that μ(ue
k) > 0 and

x̂ + ue
1 + · · · + ue

k ∈ N
∗ × N

∗ for all k ∈ {1, . . . , ne}. Similarly, for any unit vector
e ∈ {(−1,0), (0,−1)} there is ne ∈ N such that Px̂−e(Z+(ne) = x̂) > 0 and con-
sequently, there are ue

1, . . . , u
e
ne

∈ Z
2 with ue

1 + · · · + ue
ne

= e such that μ(ue
k) > 0

and x̂ − e + ue
1 + · · · + ue

k ∈ N
∗ × N

∗ for all k ∈ {1, . . . , ne}. This proves that for
any z, z′ ∈ N

∗ × N
∗ with |z′ − z| = 1 there are ne ∈ N

∗ and ue
1, . . . , u

e
ne

∈ Z
2 with

z+ue
1 +· · ·+ue

ne
= z′ such that μ(ue

k) > 0 and z+ue
1 +· · ·+ue

k ∈ N
∗ ×N

∗ for all
k ∈ {1, . . . , ne} and consequently, the communication condition is satisfied with

θ = min
e

min
i=1,...,ne

μ(ue
i ) > 0 and C = max

e

{
ne, max

i=1,...,ne

|ue
i |

}
. �

5.2. Large deviation properties of scaled processes. Before formulating our
large deviations results, we recall the definition of the sample path large deviation
principle.

Let D([0, T ],R
2) denote the set of all right continuous functions with left limits

from [0, T ] to R
2 endowed with Skorohod metric (see Billingsley [2]).

DEFINITION 5.2. (1) A mapping I[0,T ] :D([0, T ],R
2) → [0,+∞] is a good

rate function on D([0, T ],R
2) if for any c ≥ 0 and any compact set V ⊂ R

2, the
set {

φ ∈ D([0, T ],R
2) :φ(0) ∈ V and I[0,T ](φ) ≤ c

}
is compact in D([0, T ],R

2). According to this definition, a good rate function is
lower semi-continuous.

(2) Let (Z(t)) be a Markov process on E ⊂ Z
2 and let Zε(t) = εZ([t/ε])

for ε > 0. When ε → 0, the family of scaled processes (Zε(t) = εZ([t/ε]), t ∈
[0, T ]), is said to satisfy a sample path large deviation principle with a rate func-
tion I[0,T ] on D([0, T ],R

2) if for any T > 0 and z ∈ R
2

lim
δ→0

lim inf
ε→0

inf
z′∈εE : |z′−z|<δ

ε log P[z′/ε]
(
Zε(·) ∈ O

) ≥ − inf
φ∈O : φ(0)=z

I[0,T ](φ)(5.1)

for every open set O ⊂ D([0, T ],R
2), and

lim
δ→0

lim sup
ε→0

sup
z′∈εE : |z′−z|<δ

ε log P[z′/ε]
(
Zε(·) ∈ F

) ≤ − inf
φ∈F : φ(0)=z

I[0,T ](φ)(5.2)

for every closed set F ⊂ D([0, T ],R
2).

P[z/ε] denotes here the distribution of the Markov process (Z(t)) corresponding
to the initial state Z(0) = [z/ε] where [z/ε] is the nearest lattice point to z/ε in E.
For t ∈ N and ε > 0, we denote by [t/ε] the integer part of t/ε.
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By Mogulskii’s theorem (see [5]), under the hypotheses (H1)–(H3), the family
of scaled random walks Sε(t) = εS([t/ε]) satisfies the sample path large deviation
principle with a good rate function

I[0,T ](φ) =
⎧⎨
⎩

∫ T

0
(logϕ)∗(φ̇(t)) dt, if φ is absolutely continuous,

+∞, otherwise.
(5.3)

The convex conjugate (logϕ)∗ of the function logϕ is defined by

(logϕ)∗(v)
.= sup

a∈R2

(
a · v − logϕ(a)

)
.

Under the hypotheses (H4), (logϕ)∗(v) = a · v − logϕ(a) whenever v = ∇ϕ(a)

because the function (logϕ) is convex and differentiable everywhere in R
2 (see

Lemma 2.2.31 of the book of Dembo and Zeitouni [5]).
Consider now the local processes (Z1+(t)) and (Z2+(t)). Recall that (Z1+(t))

is the random walk on Z × N
∗ with transition probabilities p1(z, z

′) = μ(z′ − z)

which is killed at hitting the half-plane Z× (−N). Similarly, (Z2+(t)) is the random
walk on N

∗ × Z with transition probabilities p2(z, z
′) = μ(z′ − z) which is killed

at hitting the half-plane (−N) × Z. The sample path large deviation principle for
the scaled processes ε(Z1+([t/ε])) and ε(Z2+([t/ε])) is proved by Proposition 4.1
of Ignatiouk-Robert [12].

PROPOSITION 5.2. Under the hypotheses (H1)–(H3), the family of scaled
processes Z

ε,1
+ (t) = εZ1+([t/ε]) and Z

ε,2
+ (t) = εZ2+([t/ε]) satisfies the sample

path large deviation principle with the good rate functions

I
1,+
[0,T ](φ) =

⎧⎪⎪⎨
⎪⎪⎩

∫ T

0
(logϕ)∗(φ̇(t)) dt, if φ is absolutely continuous and

φ(t) ∈ R × R+ for all t ∈ [0, T ],
+∞, otherwise,

(5.4)

and

I
2,+
[0,T ](φ) =

⎧⎪⎪⎨
⎪⎪⎩

∫ T

0
(logϕ)∗(φ̇(t)) dt, if φ is absolutely continuous and

φ(t) ∈ R+ × R for all t ∈ [0, T ],
+∞, otherwise,

(5.5)

respectively.

For the random walk (Z+(t)) killed at the first exit from the quadrant N
∗ × N

∗,
with the same arguments as in the proof of Proposition 4.1 of Ignatiouk-
Robert [12], one gets the following statement.
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PROPOSITION 5.3. Under the hypotheses (H1)–(H3), the family of scaled
processes Zε+(t) = εZ+([t/ε]) satisfies the sample path large deviation principle
with the good rate function

I+
[0,T ](φ) =

⎧⎪⎪⎨
⎪⎪⎩

∫ T

0
(logϕ)∗(φ̇(t)) dt, if φ is absolutely continuous and

φ(t) ∈ R+ × R+ for all t ∈ [0, T ],
+∞, otherwise.

(5.6)

5.3. Large deviation estimates of the Green function. The large deviation
properties of scaled processes imply the large deviation estimates of the Green
function. Recall that G(z, z′) denotes the Green function of the homogeneous ran-
dom walk (S(t)), Gi+(z, z′) denotes the Green function of the Markov process
(Zi+(t)), for i = 1,2, and the Green function of the random walk (Z+(t)) is de-
noted by G+(z, z′).

PROPOSITION 5.4. For any q ∈ R
2+, z ∈ N

∗ × N
∗ and any sequences εn > 0

and zn ∈ N
∗ ×N

∗ with limn εn = 0 and limn εnzn = q , the following relations hold

lim
δ→0

lim inf
n→∞ inf

z∈N∗×N∗ : εn|z|<δ
εn logG+(z, zn) ≥ −a(q) · q,(5.7)

lim
δ→0

lim inf
n→∞ inf

z∈Z2 : εn|z|<δ
εn logG(z, zn) ≥ −a(q) · q(5.8)

and for every i ∈ {1,2},
lim
δ→0

lim inf
n→∞ inf

z∈Z×N∗ : εn|z|<δ
εn logGi+(z, zn) ≥ −a(q) · q.(5.9)

The proof of this proposition uses the communication condition of Proposi-
tion 5.1 and the lower large deviation bound (5.1) for the families of scaled
processes ε(Z+([t/ε])), ε(S([t/ε])), ε(Z1+([t/ε])) and ε(Z2+([t/ε])), respectively.
It is quite similar to the proof of Proposition 4.2 of Ignatiouk-Robert [12].

6. Principal part of the renewal equations. For δ > 0 and a sequence of
points zn ∈ N

∗ × N
∗ with limn |zn| = +∞ and limn zn/|zn| = q = (q1, q2), we

define the sequence of functions �
q
δ (z, zn) by letting

�
q
δ (z, zn) = G(z, zn) − Ez

(
G(S(τ), zn), τ < ∞, |S(τ)| < δ|zn|),(6.1)

if the coordinates q1 and q2 of the vector q are nonzero. For q = (1,0), we put

�
q
δ (z, zn) = G1+(z, zn) − Ez

(
G1+(S(τ ), zn), τ = τ1 < τ2, |S(τ)| < δ|zn|)(6.2)

and for q = (0,1), we let

�
q
δ (z, zn) = G2+(z, zn) − Ez

(
G2+(S(τ ), zn), τ = τ2 < τ1, |S(τ)| < δ|zn|).(6.3)
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Recall that G(z, z′) denotes the Green function of the homogeneous random walk
(S(t)) on Z

2 having transition probabilities pS(z, z′) = μ(z′ − z). The Green func-
tion of the random walk (Z1+(t)) on Z × N

∗ having a substochastic transition
matrix (p1(z, z

′) = μ(z′ − z), z, z′ ∈ Z × N
∗) is denoted by G1+(z, z′). Similarly,

G2+(z, z′) denotes the Green function of the random walk (Z2+(t)) on N
∗ × N

∗
with a sub-stochastic transition matrix (p2(z, z

′) = μ(z′ − z), z, z′ ∈ N
∗ × Z). The

main result of this section proves that for any z ∈ N
∗ × N

∗ and δ > 0, the quantity
�

q
δ (z, zn) represents the principal part of right-hand side of the renewal equations

(2.1) and (2.6) for z′ = zn when limn|zn| = +∞ and limn zn/|zn| = q . This is a
subject of the following proposition.

PROPOSITION 6.1. Under the hypotheses (H1)–(H3), for any z ∈ N
∗ × N

∗,
δ > 0 and any sequence zn ∈ N

∗ × N
∗ with limn |zn| = +∞ and limn zn/|zn| = q ,

lim
n→∞G+(z, zn)/�

q
δ (z, zn) = 1.(6.4)

To prove this proposition, we need to investigate the function

λε(q,w) = a(w) · w + a(q − w) · (q − w) − ε|w|.
LEMMA 6.1. Under the hypotheses (H1) and (H3), for any q ∈ S 2+ and δ > 0,

there is a small ε > 0 such that

inf
w∈R2 : infθ>0 |w−θq|≥δ

λε(q,w) > a(q) · q.(6.5)

PROOF. Under the hypotheses (H1) and (H3), the set D
.= {a ∈ R

2 :ϕ(a) ≤ 1}
is compact and strictly convex (see [9]), and according to the definition (1.2) of the
mapping q → a(q), the point a(q) is the only point on the boundary of the set D

where the vector q is normal to D. For any nonzero vector q ∈ R
2, the point a(q)

is therefore the only point in D where the linear function a → a · q achieves its
maximum over a ∈ D. Hence, for any w ∈ R

2,

a(w) · w + a(q − w) · (q − w) ≥ a(q) · w + a(q) · (q − w) = a(q) · q,

where the inequality holds with the equality if and only if a(w) = a(q) =
a(q − w). Since the mapping w → a(w) from the unit sphere S 2 to ∂D = {a ∈
R

2 :ϕ(a) = 1} is one to one, this proves that

a(w) · w + a(q − w) · (q − w) > a(q) · q if w /∈ {θq : θ ≥ 0}.(6.6)

Moreover, the set D = {a ∈ R
2 :ϕ(a) ≤ 1} being compact, the function w →

a(w) · w + a(q − w) · (q − w) is convex, finite and therefore continuous on R
2.

Hence, for any R > 0 and δ > 0,

ε(R, δ)
.= inf

w∈R2 : |w|≤R

infθ>0 |w−θq|≥δ

(
a(w) · w + a(q − w) · (q − w)

) − a(q) · q > 0
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and consequently, for 0 < ε < ε(R, δ)/R,

inf
w∈R2 : |w|≤R,infθ>0 |w−θq|≥δ

λε(q,w) > a(q) · q.

To get (6.5), it is now sufficient to show that for any ε > 0 small enough, there is
R > 0 such that

inf
w∈R2 : |w|≥R,infθ>0 |w−θq|≥δ

λε(q,w) > a(q) · q.(6.7)

Here, we use the following estimates: for any w ∈ R
2 and q ∈ S 2+,

a(w) · w + a(q − w) · (q − w) − a(q) · q
= sup

a∈D

a · w + sup
a∈D

a · (q − w) − a(q) · q
(6.8)

≥ a(w) · w + a(−w) · (q − w) − a(q) · q
≥ a(w) · w + a(−w) · (−w) − 2 max

a∈D
|a|.

The function λ(w)
.= a(w) · w + a(−w) · (−w) is continuous and positively ho-

mogeneous:

λ(w) = |w|λ(w/|w|).(6.9)

Moreover, the same arguments as in the proof of the inequality (6.6) show that

λ(w) > a(w) · w + a(w) · (−w) = 0 whenever a(w) �= a(−w),

and consequently λ(w) > 0 for all w �= 0. Hence, letting

ε0
.= 1

2
min

w∈R2 : |w|=1
λ(w) > 0 and c

.= 2 max
a∈D

|a|

and using (6.9) at the right-hand side of (6.8), we get

λε(q,w) − a(q) · q ≥ 2ε0|w| − c − ε|w| ≥ ε0|w| − ε|w| > 0

for all 0 < ε < ε0 and w ∈ R
2 with |w| > c/ε0. The inequality (6.7) holds therefore

for R = c/ε0 and 0 < ε < ε0, and the inequality (6.5) is satisfied for 0 < ε <

min{ε0, ε(c/ε0, δ)}. �

PROOF OF PROPOSITION 6.1. Let a sequence of points zn ∈ N
∗ × N

∗ be such
that limn |zn| = +∞ and limn zn/|zn| = q . Then by Proposition 5.4,

lim inf
n→∞

1

|zn| logG+(z, zn) ≥ −a(q) · q ∀z ∈ N
∗ × N

∗,

and hence, to get (6.4) it is sufficient to show that

lim sup
n→∞

1

|zn| log
(
�

q
δ (z, zn) − G+(z, zn)

)
< −a(q) · q ∀z ∈ N

∗ × N
∗.(6.10)
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Moreover, since the quantities �
q
δ (z, zn) − G+(z, zn) are decreasing with respect

to δ > 0, it is sufficient to prove this relation for small δ > 0. For this, the following
estimates are used: for any δ > 0, z ∈ N

∗ × N
∗ and n ∈ N,

�
q
δ (z, zn) − G+(z, zn) = Ez

(
G(S(τ), zn), τ < ∞, |S(τ)| ≥ δ|zn|)

≤ ∑
w∈Z2\(N∗×N∗) : |w|≥δ|zn|

G(z,w)G(w, zn),

when the coordinates of the vector q ∈ S 2+ are nonzero. Similarly,

�
q
δ (z, zn) − G+(z, zn) ≤ ∑

w∈(−N)×N∗ : |w|≥δ|zn|
G(z,w)G(w, zn)

for q = (1,0) and

�
q
δ (z, zn) − G+(z, zn) ≤ ∑

w∈N∗×(−N) : |w|≥δ|zn|
G(z,w)G(w, zn)

for q = (0,1). These estimates show that for any q = (q1, q1) ∈ S 2+, δ > 0, z ∈
N

∗ × N
∗ and n ∈ N,

�
q
δ (z, zn) − G+(z, zn) ≤ ∑

w∈Z2 : infθ>0 |w−θq|≥κδ|zn|
G(z,w)G(w, zn)(6.11)

with

κ =
{

1, if q = (q1, q2) ∈ {(1,0), (0,1)},
min{q1, q2}, otherwise.

Remark furthermore that for all a, a′ ∈ ∂D and z,w, zn ∈ Z
2

G(z,w)G(w, zn) = exp
(−a · (w − z) − a′ · (zn − w)

)
Ga(z,w)Ga′

(w, zn),

where Ga(z, z′) denotes the Green function of the twisted random walk (Sa(t))

on Z
2 with transition probabilities (3.1). Since clearly Ga(z,w) ≤ Ga(w,w) =

G(0,0) and Ga′
(w, zn) ≤ Ga′

(zn, zn) ≤ G(0,0), from this it follows that

G(z,w)G(w, zn)

≤ exp
(−a · (w − z) − a′ · (zn − w)

)
(G(0,0))2

≤ exp
(−a · w − a′ · (|zn|q − w) + a · z − a′ · (zn − |zn|q)

)
(G(0,0))2

≤ exp
(−a · w − a′ · (|zn|q − w) + c(|z| + |zn − |zn|q|))(G(0,0))2

with c
.= maxa∈D |a|. Letting moreover a = a(w/|zn|) = a(w) and a′ = a(q −

w/|zn|) and using the last inequality at the right-hand side of (6.11), we obtain(
�

q
δ (z, zn) − G+(z, zn)

)
exp(−c|z| − c|zn − |zn|q|)/(G(0,0))2

≤ ∑
w∈Z2 : infθ>0 |w−θq|≥κδ|zn|

exp
(−a(w) · w − a(q − w/|zn|) · (q|zn| − w)

)

≤ ∑
w∈Z2 : infθ>0 |w−θq|≥κδ|zn|

exp
(−|zn|λε(q,w/|zn|) − ε|w|)
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for any ε > 0. Since limn zn/|zn| = q and the series
∑

w∈Z2 exp(−ε|w|) converge
for every ε > 0, from this inequality it follows that the left-hand side of (6.10) does
not exceed

lim sup
n→∞

1

|zn| log
∑

w∈Z2 : infθ>0 |w−θq|≥κδ|zn|
exp

(−|zn|λε(q,w/|zn|) − ε|w|)

≤ − inf
w∈R2 : infθ>0 |w−θq|≥κδ

λε(q,w).

When combined with Lemma 6.1, the last inequality proves (6.10). �

7. Uniform ratio limit theorem for Markov-additive processes. In this sec-
tion, we improve the ratio limit theorem of the paper [12]. This result is next ap-
plied to get the desirable estimates (2.5) and (2.8) for the local processes (S(t))

and (Z1+(t)).

7.1. Uniform ratio limit theorem for general Markov-additive processes. Re-
call that a Markov chain Z(t) = (A(t),M(t)) on a countable set Z

d × E with
transition probabilities p((x, y), (x′, y′)) is called Markov-additive if

p((x, y), (x′, y′)) = p
(
(0, y), (x′ − x, y′)

)
for all x, x′ ∈ Z

d , y, y′ ∈ E.

The first component A(t) of Z(t) = (A(t),M(t)) is said to be an additive part
of the process Z(t), and the second component M(t) is its Markovian part. The
assumptions we need on the Markov-additive process (Z(t) = (A(t),M(t))) are
the following:

(A1) The Markov chain (Z(t)) is irreducible on Z
d × E.

(A2) E ⊂ R
l for some l ∈ N and the function

ϕ̂(a) = sup
z∈Zd×E

Ez

(
exp

(
a · (

Z(1) − z
)))

(7.1)

is finite in a neighborhood of zero in R
d+l .

Remark that the Markov-additive process (Z(t)) is not assumed to be stochas-
tic: its transition matrix can be strictly substochastic in some points z = (x, y) ∈
Z

d × E.
The following property of Markov-additive processes is essential in our analy-

sis. G(z, z′) denotes here the Green function of the Markov process (Z(t)).

PROPOSITION 7.1. Let the Markov-additive processes Z(t) = (A(t),M(t))

be transient and satisfy the conditions (A1) and (A2). Suppose moreover that for
given w,w′ ∈ Z

d × {0} the inequality

inf
z∈Zd×E

min
{
Pz

(
Z(n) = z + w

)
,Pz

(
Z(n) = z + w′)} > 0(7.2)
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holds with some n > 0. Then for any 0 < σ < 1 and r > 0 there are C > 0 and
θ > 0 such that

G(z, z′) ≤ 1 + σ + C/|z′|
1 − σ

G(z + w − w′, z′)
(7.3)

+ C exp(−θ |z′| + r|z|)
for all z, z′ ∈ Z

d × E.

PROOF. In a particular case, for n = 1, this statement was proved in the core
of the proof of Proposition 3.2 of the paper [12] by using the method of Bernoulli
part decomposition due to Foley and McDonald [6]. When n > 1, for the Green
function

G̃(z, z′) =
∞∑
t=0

Pz

(
Z(nt) = z′), z, z′ ∈ Z

d × E,

of the included Markov chain Z̃(t) = Z(nt), this result proves that for any r > 0
and 0 < σ < 1 there are C̃ > 0 and θ̃ > 0 such that

G̃(z, z′) ≤ 1 + σ + C̃/|z′|
1 − σ

G̃(z + w − w′, z′)

+ C̃ exp(−θ̃ |z′| + r|z|) ∀z, z′ ∈ Z
d × E.

Since clearly, G̃(z + w − w′, z′) = G̃(z, z′ + w′ − w) for all w,w′ ∈ Z
d × {0} and

G(z, z′) =
n−1∑
t=0

∑
z′′∈Zd×E

Pz

(
Z(t) = z′′)G̃(z′, z′′) ∀z, z′ ∈ Z

d × E,

from this it follows that

G(z, z′) ≤ 1 + σ + C̃/|z′|
1 − σ

n−1∑
t=0

∑
z′′∈Zd×E

Pz

(
Z(t) = z′′)G̃(z′′, z′ + w′ − w)

+ C̃

n−1∑
t=0

∑
z′′∈Zd×E

Pz

(
Z(t) = z′′) exp(−θ̃ |z′| + r|z′′|)

≤ 1 + σ + C̃/|z′|
1 − σ

G(z, z′ + w′ − w)

+ C̃ exp(−θ̃ |z′|)
n−1∑
t=0

∑
z′′∈Zd×E

Pz

(
Z(t) = z′′) exp(r|z′′|),
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where ∑
z′′∈Zd×E

Pz

(
Z(t) = z′′) exp(r|z′′|)

≤ 4 max
a∈R2 : |a|=r

∑
z′′∈Zd×E

Pz

(
Z(t) = z′′) exp(a · z′′)

≤ 4 max
a∈R2 : |a|≤r

ϕ̂(a)t ∀t ∈ N.

When n > 1, inequality (7.3) holds therefore for r > 0 small enough with θ = θ̃

and

C = 4C̃

n−1∑
t=0

max
a∈R2 : |a|≤r

ϕ̂(a)t < ∞.

To complete the proof of this proposition, it is now sufficient to notice that the
right-hand side of (7.3) is increasing with respect to r > 0. Hence, if the inequality
(7.3) holds with some C > 0 and θ > 0 for a small r > 0, then it is also satisfied
for large r > 0 with the same constants C and θ . �

The following statement is an immediate consequence of Proposition 7.1. From
now on, for the sake of simplicity of expressions, we will use the following nota-
tion

Lim
δ,n,z

= lim
δ→0

lim inf
n→∞ inf

z∈Zd×E : |z|<δ|zn|
,

(7.4)
Lim
δ,n,z

= lim
δ→0

lim sup
n→∞

sup
z∈Zd×E : |z|<δ|zn|

.

PROPOSITION 7.2. Let a sequence zn ∈ Z
d × E be such that limn |zn| = ∞

and

Lim
δ,n,z

1

|zn| log G(z, zn) ≥ 0.(7.5)

Then under the hypotheses of Proposition 7.1,

Lim
δ,n,z

G(z + w′, zn)

G(z + w,zn)
= Lim

δ,n,z

G(z + w′, zn)

G(z + w,zn)
= 1.(7.6)

PROOF. Indeed, by Proposition 7.1, for any r > 0 and 0 < σ < 1 there are
C > 0 and θ > 0 such that

G(z + w′, zn) ≤ 1 + σ + C/|zn|
1 − σ

G(z + w,zn) + C exp(−θ |zn| + r|z|)
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for all z, z′ ∈ Z
d × E and consequently,

Lim
δ,n,z

G(z + w′, zn)

G(z + w,zn)
≤ 1 + σ

1 − σ
+ C Lim

δ,n,z

exp(−θ |zn| + rδ|zn|)
G(z + w,zn)

.(7.7)

Moreover, (7.5) shows that the sequence exp(−θ |zn| + rδ|zn|) tends to zero as
n → ∞ faster than the sequence 1/G(z + w,zn). From this. it follows that the
second term of the right-hand side of (7.7) is equal to zero and hence, letting σ → 0
we conclude that

Lim
δ,n,z

G(z + w′, zn)/G(z + w,zn) ≤ 1.

To prove the inequality

Lim
δ,n,z

G(z + w′, zn)/G(z + w,zn) ≥ 1

it is now sufficient to exchange the roles of w and w′. The equalities (7.6) are
therefore verified. �

Suppose now that the Markov process (Z(t)) satisfies the communication con-
dition 5.1 on Z

d × E. Then there is a bounded function n0 :E → N
∗ such that for

any z = (x, y) ∈ Z
d × E,

P(x,y)

(
Z(n0(y)) = (x, y)

) ≥ θn0(y) > 0

and hence, there is k ∈ N
∗ (for instance, k = n! with n = maxy n0(y)) such that

Pz

(
Z(k) = z

) ≥ θk ∀z ∈ Z
d × E.

We denote by k̂ the greatest common divisor of the set of all integers k > 0 for
which

inf
z∈Zd×E

Pz

(
Z(k) = z

)
> 0.(7.8)

The following statement is a refined version of the ratio limit theorem obtained
in [12].

PROPOSITION 7.3. Let a Markov-additive process Z(t) = (A(t),M(t)) be
transient and satisfy the communication condition 5.1 and the condition (A2). Sup-
pose moreover that a sequence of points zn ∈ Z

d × E satisfies the inequality (7.5)
with limn|zn| = ∞. Then

Lim
δ,n,z

G(z + k̂w, zn)/G(z, zn) = Lim
δ,n,z

G(z + k̂w, zn)/G(z, zn) = 1

for all w ∈ Z
d × {0}.
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PROOF. Indeed, let K be the set of all integers for which the inequality (7.8)
holds. Because of the communication condition 5.1, for any w ∈ Z × {0} there are
ε > 0 and a bounded function n :E → N

∗ such that

inf
z∈Zd×E

Pz

(
Z(n(y)) = z + w

) ≥ ε.

Using the Markov property, we get therefore

inf
z∈Zd×E

Pz

(
Z(kn(y)) = z + kw

) ≥ εk

for any k ∈ N
∗ and consequently,

inf
z∈Zd×E

min
{
Pz

(
Z(kn(y)) = z + kw

)
,Pz

(
Z(kn(y)) = z

)}
> 0 ∀k ∈ K.

By Proposition 7.2, from this it follows that

Lim
δ,n,z

G(z + kw, zn)/G(z, zn) = Lim
δ,n,z

G(z + kw, zn)/G(z, zn) = 1(7.9)

for all w ∈ Z
d × {0} and k ∈ K. Consider now the subgroup 〈K〉 of Z generated

by K. Since (7.9) is satisfied for all w ∈ Z
d ×{0} one can replace w in the left-hand

side of (7.9) by −w and hence, (7.9) holds also for any k ∈ −K. Moreover, if (7.9)
is satisfied for some k = k1 and k = k2 then the same relation is clearly satisfied
for k = k1 + k2. This proves that (7.9) holds for any k ∈ 〈K〉 and in particular for
k = k̂ because k̂ ∈ 〈K〉 (see Lemma A.1 of Seneta [19]). �

7.2. Applications to local processes. According to the above definition, our
homogeneous random walk (S(t)) on Z

2 is Markov-additive: its additive part is
the process S(t) itself and the Markovian part is empty. The quantity k̂ is here the
period of the random walk (S(t)). Proposition 7.3 applied for the process (S(t))

with d = 2 and E = ∅ and combined with the estimates (5.8) yields the following
statement.

PROPOSITION 7.4. For any sequence of points zn ∈ Z
2 with limn |zn| = +∞

and limn zn/|zn| = q ∈ S 2,

Lim
δ,n,z

exp
(−a(q) · k̂w

)
G(z + k̂w, zn)/G(z, zn)

(7.10)
= Lim

δ,n,z
exp

(−a(q) · k̂w
)
G(z + k̂w, zn)/G(z, zn) = 1

for all w ∈ Z
2.

PROOF. Indeed, for any a ∈ ∂D, the twisted homogeneous random walk
(Sa(t)) defined by (3.1) satisfies the communication condition 5.1 and the con-
dition (A2). The condition (A2) is satisfied because of the assumption (H3), and
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the communication condition 5.1 is satisfied because the random walk (Sa(t)) is
irreducible (see the proof of Lemma 4.1 in [12] for more details). Moreover, the
Green function Ga(z, z′) of the twisted random walk (Sa(t)) satisfies the equality

Ga(z, z′) = G(z, z′) exp
(
a · (z′ − z)

) ∀z, z′ ∈ Z
2.(7.11)

Hence, for any sequence of points zn ∈ Z
2 with limn |zn| = +∞ and limn zn/|zn| =

q ∈ S 2, using (5.8) we get

Lim
δ,n,z

1

|zn| logGa(q)(z, zn) ≥ 0

and consequently, by Proposition 7.3,

Lim
δ,n,z

Ga(q)(z + k̂w, zn)/Ga(q)(z, zn) = Lim
δ,n,z

Ga(q)(z + k̂w, zn)/Ga(q)(z, zn) = 1.

The last relations combined with (7.11) prove (7.10). �

We need the following consequence of this proposition.

COROLLARY 7.1. Let a sequence of points zn ∈ Z
2 be such that limn |zn| =

+∞ and limn zn/|zn| = q ∈ S 2. Then for any σ > 0 there are C′ > 0, C′′ > 0,
δ > 0 and N > 0 such that

C′ exp
(
a(q) · z − σ |z|) ≤ G(z, zn)/G(0, zn) ≤ C ′′ exp

(
a(q) · z + σ |z|)(7.12)

for all n ≥ N and z ∈ Z
2 with |z| < δ|zn|.

PROOF. Indeed, the equalities (7.10) show that for any σ > 0 there are δ > 0
and N > 0 such that

exp
(
a(q) · k̂e − k̂σ/2

) ≤ G(u + k̂e, zn)/G(u, zn)
(7.13)

≤ exp
(
a(q) · k̂e + k̂σ/2

)
for any unit vector e ∈ Z

2 and all n ≥ N , u ∈ Z
2 with |z| < δ|zn|. Remark that for

any z ∈ Z
2 there are unit vectors e1 ∈ {(−1,0), (1,0)} and e2 ∈ {(0,−1), (0,1)},

nonnegative integers n1, n2 ∈ N and real numbers r1, r2 ∈ [0,1[ such that

z = k̂(n1 + r1)e1 + k̂(n2 + r2)e2 and k̂(n1 + r1) + k̂(n2 + r2) ≤ 2|z|.
If |z| < δ|zn|, then letting u0 = k̂r1e1 + k̂r2e2 and

uk =
{

u0 + kk̂e1, for 1 ≤ k ≤ n1,
u0 + n1k̂e1 + (k − n1)k̂e2, for n1 < k ≤ n1 + n2,
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we get |uk| ≤ (n1 +r1)k̂+(n2 +r2)k̂ ≤ 2|z| < 2δ|zn| for all k = 0, . . . , n1 +n2 −1.
The inequalities (7.13) applied with u = uk for each k = 0, . . . , n1 + n2 − 1 prove
therefore that

1{|z|<δ|zn|}
G(z, zn)

G(0, zn)
≤ G(u0, zn)

G(0, zn)

n1+n2−1∏
k=0

1{|uk |<2δ|zn|}
G(uk+1, zn)

G(uk, zn)

≤ G(u0, zn)

G(0, zn)

n1+n2−1∏
k=0

exp
(
a(q) · (uk − uk−1) + k̂σ/2

)
(7.14)

≤ G(u0, zn)

G(0, zn)
exp

(
a(q) · (z − z0) + k̂σ (n1 + n2)/2

)

≤ G(u0, zn)

G(0, zn)
exp

(
a(q) · z + 2k̂|a(q)| + σ |z|)

and similarly

1{|z|<δ|zn|}
G(z, zn)

G(0, zn)
≥ 1{|z|<δ|zn|}

G(u0, zn)

G(0, zn)
(7.15)

× exp
(
a(q) · z − 2k̂|a(q)| − σ |z|)

for all n ≥ N . Remark finally that for any u ∈ Z
2,

Pu

(
S(t) = 0 for some t > 0

) ≤ G(u, zn)

G(0, zn)
≤ 1

P0(S(t) = u for some t > 0)
,

where Pu(S(t) = 0 for some t > 0) > 0 and P0(S(t) = u for some t > 0) > 0 be-
cause by assumption (H1), our random walk (S(t)) is irreducible. Using this rela-
tion together with (7.14) and (7.15), we conclude that (7.12) holds with

C′ = inf
u∈Z2 : |u|≤2k̂

Pu

(
S(t) = 0 for some t > 0

)
exp(−2|a(q)|k̂)

and

C′′ = sup
u∈Z2 : |u|≤2k̂

1

P0(S(t) = u for some t > 0)
exp(2|a(q)|k̂).

�

Consider now the random walk (Z1+(t)) on Z×N
∗. Recall that (Z1+(t)) is iden-

tical to (S(t)) for t < τ2
.= inf{n ≥ 0 :S(n) /∈ Z × N

∗} and killed at the time τ2.
Such a process (Z1+(t)) is Markov additive, its additive and Markovian parts are,
respectively, the first and the second coordinates of (Z1+(t)). To apply Proposi-
tion 7.3 in this case, we need to identify the greatest common divisor of the set of
all integers k > 0 for which

inf
z∈Z×N∗ Pz

(
Z1+(k) = z

)
> 0.(7.16)

This is a subject of the following lemma.



MARTIN BOUNDARY OF A KILLED RANDOM WALK ON A QUADRANT 1133

LEMMA 7.1. The greatest common divisor of the set of all integers k > 0 for
which (7.16) holds is equal to the period k̂ of the random walk (S(t)).

PROOF. Indeed, if P0(S(k) = 0) > 0 for some k ∈ N
∗ then there is a sequence

of points u0, u1, . . . , uk ∈ Z
2 with u0 = uk = 0 such that

Pui−1

(
S(1) = ui

)
> 0 for all i = 1, . . . , k.

Moreover, without any restriction of generality one can assume that for some l ∈
{1, . . . , k}, the second coordinate of the vectors e1 = u1 − u0, . . . , el = ul − ul−1
is positive and the second coordinate of the vectors el+1 = ul+1 − ul, . . . , ek =
uk − uk−1 is negative or zero. Then (0,1) + ui ∈ Z × N

∗ for all i = 0, . . . , k and

inf
z∈Z×N∗ Pz

(
Z1+(k) = z

) ≥ P(0,1)

(
Z1+(k) = (0,1)

)
≥ P(0,1)

(
Z1+(t) = (0,1) + ut ,∀t = 1, . . . , k

)
= P0

(
S(t) = ut ,∀t = 1, . . . , k

)
> 0.

Since according to the definition of the process (Z1+(t)),

inf
z∈Z×N∗ Pz

(
Z1+(k) = z

) ≤ Pz

(
S(k) = z

) = P0
(
S(k) = 0

) ∀k ∈ N
∗,

we conclude that (7.16) holds if and only if P0(S(k) = 0) > 0 and consequently,
the greatest common divisor of the set of all integers k > 0 for which (7.16)
holds is equal to the period k̂ of the random walk (S(t)). Lemma 7.1 is therefore
proved. �

From Proposition 7.3 applied with d = 1 and E = N
∗, using the estimates (5.9)

and Lemma 7.1, we get the following statement.

PROPOSITION 7.5. For any sequence of points zn ∈ N
∗ × N

∗ with limn |zn| =
+∞ and limn zn/|zn| = q = (1,0),

Lim
δ,n,z

exp
(−a(q) · k̂w

)
G1+(z + k̂w, zn)/G1+(z, zn)

(7.17)
= Lim

δ,n,z
exp

(−a(q) · k̂w
)
G1+(z + k̂w, zn)/G1+(z, zn) = 1

for all w ∈ Z × {0}.

PROOF. The proof of this proposition is quite similar to the proof of Proposi-
tion 7.4. Proposition 7.3 is applied here for the twisted random walk (Z

a,1
+ (t)) on

Z × N
∗ with a = a(q), which is identical to (Sa(t)) for

t < τa
2

.= inf{n ≥ 0 :Sa(n) /∈ Z × N
∗}
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and killed at the time τa
2 . Lemma 4.1 of [12] proves that such a random walk

satisfies the communication condition 5.1. The condition (A2) is satisfied here
because by assumption (H3), for any a′ ∈ R

2,

sup
z∈Z×N∗

Ez

(
exp

(
a′ · (Za,1

+ (1)−z
))) ≤ Ez

(
exp

(
a′ · (Sa(1)−z

))) = ϕ(a′ +a) < +∞.

The greatest common divisor of the set of all integers k > 0 for which

inf
z∈Z×N∗ Pz

(
Z

a,1
+ (k) = z

)
> 0,

is clearly the same as for the original process (Z1+(t)). By Lemma 7.1, this is
the period k̂ of the random walk (S(t)). Finally, the Green function G

a,1
+ (z, z′) of

the twisted random walk (Z
a,1
+ (t)) is related to the Green function G1+(z, z′) of the

original random walk (Z1+(t)) as follows:

G
a,1
+ (z, z′) = G1+(z, z′) exp

(
a · (z′ − z)

) ∀z, z′ ∈ Z
2.(7.18)

Using this relation together with (5.9), we conclude that for any sequence of points
zn ∈ N

∗ × N
∗ with limn |zn| = +∞ and limn zn/|zn| = q = (1,0),

Lim
δ,n,z

1

|zn| logG
a(q),1
+ (z, zn) ≥ 0

and consequently, by Proposition 7.3, for any w ∈ Z × {0},
Lim
δ,n,z

G
a(q),1
+ (z + k̂w, zn)/G

a(q),1
+ (z, zn)

= Lim
δ,n,z

G
a(q),1
+ (z + k̂w, zn)/G

a(q),1
+ (z, zn) = 1.

The last relation combined with (7.18) proves (7.17). �

From Proposition 7.5, using the same arguments as in the proof of Corollary 7.1
we get the following statement.

COROLLARY 7.2. Let a sequence of points zn ∈ N
∗ × N

∗ be such that
limn |zn| = +∞ and limn zn/|zn| = q = (1,0). Then for any σ > 0 there are
C′ > 0, C′′ > 0, δ > 0 and N > 0 such that

C′ exp
(
a(q) · w − σ |w|) ≤ G1+(z + w,zn)/G1+(z, zn) ≤ C ′′ exp

(
a(q) · w + σ |w|)

for all n ≥ N , z ∈ Z × N
∗ and w ∈ Z × {0} with max{|z|, |w|} < δ|zn|.

For the proof of Theorem 1, we need moreover the following stronger statement.
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PROPOSITION 7.6. Let a sequence zn ∈ N
∗ ×N

∗ be such that limn |zn| = +∞
and limn zn/|zn| = q = (1,0). Then for any σ > 0 there are C > 0, δ > 0 and
N > 0 such that

G1+(z, zn)/G1+(z0, zn) ≤ C exp
(
a(q) · z + σ |z|)

for all n ≥ N and z ∈ Z × N
∗ with |z| < δ|zn|.

The proof of this proposition uses Corollary 7.2 and the following results.

LEMMA 7.2. Let (ξ(t)) be an irreducible homogeneous random walk on Z

with a zero mean and a finite variance. Denote T0
.= inf{t ≥ 0 : ξ(t) ≤ 0} and let

T
.= inf{t ≥ 0 : ξ(t) = ξ(0) + 1}. Then limn→∞ Pn(T < T0) = 1.

PROOF. Indeed, under the hypotheses of this lemma, T
.= inf{t ≥ 0 : ξ(t) =

ξ(0)+ 1} is an almost surely finite stopping time relative to the natural filtration of
(ξ(t)) and Pn+1(T < T0) = P1(ξ(t) > −n for all 0 ≤ t ≤ T ) for any n ∈ N. Hence,
by monotone convergence theorem

lim
n→∞ Pn(T < T0) = lim

n→∞ P1

(
inf

0≤t≤T
ξ(t) > −n

)
= P1

(
inf

0≤t≤T
ξ(t) > −∞

)

=
∞∑

n=0

P1

(
T = n, inf

0≤t≤n
ξ(t) > −∞

)

=
∞∑

n=0

P1(T = n) = 1.
�

For the random walk (S(t)), this lemma implies the following statement.

LEMMA 7.3. Let τ̂ = inf{t ≥ 0 :S2(t) = S2(0) + 1}. Then for a = a(1,0),
E(0,k)(exp(a · (S(τ̂ ) − (0, k))), τ̂ < τ2) → 1 as k → ∞.

PROOF. Indeed, consider the twisted random walk (Sa(t)) on Z
2 having tran-

sition probabilities pa(z, z
′) = exp(a · (z′ − z)) with a = a(1,0). Then the same

arguments as in the proof of Proposition 3.1 show that

E(0,k)

(
exp

(
a · (

S(τ̂ ) − (0, k)
))

, τ̂ < τ2
) = P(0,k)(T

a < T a
0 )

with T a
0 = inf{n ≥ 0 :Sa

2 (t) ≤ 0} and T a = inf{n ≥ 0 :Sa
2 (t) = Sa

2 (0) + 1}. More-
over, for a = a(1,0), the second coordinate Sa

2 (t) of Sa(t) is a homogeneous ran-
dom walk on Z with zero mean

E0(S
a
2 (1)) = E0

(
S2(1) exp

(
a · S(1)

)) = ∂

∂a2
ϕ(a1, a2)

∣∣∣∣
(a1,a2)=a(1,0)

= 0
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and a finite variance because according to the assumption (H3), the jump generat-
ing function

α → E0(exp(αSa
2 (1))) = ϕ

(
a + (0, α)

)
of Sa

2 (t) is finite everywhere in R. Lemma 7.2 applied with ξ(t) = Sa
2 (t), T = T a

and T0 = T a
0 proves therefore that

lim
k→∞E(0,k)

(
exp

(
a · (

S(τ̂ ) − (0, k)
))

, τ̂ < τ2
) = lim

k→∞P(0,k)(T < T0) = 1. �

LEMMA 7.4. Under the hypotheses of Lemma 7.3, for any ε > 0 there are
Nε > 0, kε > 0 and σε > 0 such that for all N ≥ Nε , k ≥ kε and 0 < σ ≤ σε ,

E(0,k)

(
exp

(
a(1,0) · S(τ̂ ) − σ |S1(τ̂ )|), τ̂ < τ2, |S1(τ̂ )| < N

)
≥ exp

(−ε + a(1,0) · (0, k)
)
.

PROOF. Indeed, for any x ∈ Z, the sequence k → P(0,k)(S(τ̂ ) = (x, k + 1),

τ̂ < τ2) is increasing because for any k ∈ N
∗,

P(0,k+1)

(
S(τ̂ ) = (x, k + 2), τ̂ < τ2

)
≥ P(0,k+1)

(
S(τ̂ ) = (x, k + 2) and S2(t) > 1 for all t ≤ τ̂

)
= P(0,k)

(
S(τ̂ ) = (x, k + 1) and S2(t) > 0 for all t ≤ τ̂

)
= P(0,k)

(
S(τ̂ ) = (x, k + 1), τ̂ < τ2

)
.

By monotone convergence theorem from this, it follows that

E(0,k)

(
exp

(
a(1,0) · (

S(τ̂ ) − (0, k)
) − σ |S1(τ̂ )|), τ̂ < τ2, |S1(τ̂ )| < N

)
= ∑

x∈Z : |x|<N

exp
(
a(1,0) · (x,1) − σ |x|)P(0,k)

(
S(τ̂ ) = (x, k + 1), τ̂ < τ2

)

→ ∑
x∈Z

exp
(
a(1,0) · (x,1)

)
lim

k→∞P(0,k)

(
S(τ̂ ) = (x, k + 1), τ̂ < τ2

)
as k → ∞, σ → 0 and N → ∞. Moreover, using again monotone convergence
theorem, we get∑

x∈Z

exp
(
a(1,0) · (x,1)

)
lim

k→∞P(0,k)

(
S(τ̂ ) = (x, k + 1), τ̂ < τ2

)

= lim
k→∞

∑
x∈Z

exp
(
a(1,0) · (x,1)

)
P(0,k)

(
S(τ̂ ) = (x, k + 1), τ̂ < τ2

)

= lim
k→∞E(0,k)

(
exp

(
a(1,0) · (

S(τ̂ ) − (0, k)
))

, τ̂ < τ2
)
.

Since by Lemma 7.3, the right-hand side of the last relation is equal to 1, we
conclude that

E(0,k)

(
exp

(
a(1,0) · (

S(τ̂ ) − (0, k)
) − σ |S1(τ̂ )|), τ̂ < τ2, |S1(τ̂ )| < N

) → 1
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as k → ∞, σ → 0 and N → ∞, and consequently, for any ε > 0 there are Nε > 0,
kε > 0 and σε > 0 such that for all N ≥ Nε , k ≥ kε and 0 < σ ≤ σε ,

E(0,k)

(
exp

(
a(1,0) · (

S(τ̂ ) − (0, k)
) − σ |S1(τ̂ )|), τ̂ < τ2, |S1(τ̂ )| < N

) ≥ exp(−ε).

Lemma 7.4 is therefore proved. �

Consider now an increasing sequence of stopping times τ̂k defined as follows:
τ̂0

.= 0, τ̂1
.= τ̂ and τ̂k

.= inf{t ≥ τ̂k−1 :S2(t) = S2(0) + k} for k ≥ 2. Then from
Lemma 7.4, using strong Markov property, we obtain the following statement.

LEMMA 7.5. Let a = a(1,0). Then for any ε > 0 there are Cε > 0, Nε > 0
and σε > 0 such that for all N ≥ Nε , 0 < σ ≤ σε and k ≥ 1,

E(0,1)

(
exp

(
a · (

S(τ̂k) − (0,1)
) − σ |S1(τ̂k)|),

τ̂k < τ2, |S1(τ̂k)| < N(k − 1)
)

(7.19)

≥ Cε exp(−kε).

PROOF. Indeed, by strong Markov property, the left-hand side of the above
inequality is greater than

E(0,1)

(
k−1∏
l=1

exp
(
a · (

S
(
τ̂l+1 − S(τ̂l)

) − σ
∣∣S1

(
τ̂l+1 − S1(τ̂l)

)∣∣), τ̂k < τ2,

∣∣S1
(
τ̂l+1 − S1(τ̂l)

)∣∣ < N,∀1 ≤ l ≤ k − 1
))

≥
k−1∏
l=1

E(0,l)

(
exp

(
a · (

S(τ̂ ) − (0, l)
) − σ |S1(τ̂ )|), τ̂ < τ2, |S1(τ̂ )| < N

)

and hence, for any ε > 0 with the same quantities Nε > 0, σε > 0 and kε > 0 as in
Lemma 7.4, the inequality (7.19) holds for all N ≥ Nε , 0 < σ ≤ σε and k ≥ 1 with

Cε = exp(σεkε)

kε−1∏
l=1

E(0,l)

(
exp

(
a · (

S(τ̂ ) − (0, l)
) − σ |S1(τ̂ )|),

τ̂ < τ2, |S1(τ̂ )| < N
)
. �

PROOF OF PROPOSITION 7.6. Let a sequence of points zn ∈ N
∗ × N

∗ be such
that limn|zn| = +∞ and limn zn/|zn| = q = (1,0). To simplify the notation, we
denote throughout the proof of Proposition 7.6

a(1,0) = a.
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Then by Corollary 7.2, for any σ > 0 there are C′ > 0, C′′ > 0, δσ > 0 and nσ > 0
such that

C′ exp
(
a · (x,0) − σ |x|) ≤ G1+((x, k), zn)

G1+((0, k), zn)
≤ C′′ exp

(
a · (x,0) + σ |x|)(7.20)

for all those n ≥ nσ , x ∈ Z and k ∈ N
∗ for which

max{|x|, k} < δσ |zn|.
Furthermore, recall that the process (Z1+(t)) is identical to the homogeneous ran-
dom walk (S(t)) on Z

2 before the first time when the second coordinate S2(t) of
S(t) becomes zero or negative and is killed at the time τ2

.= inf{t ≥ 0 :S2(t) ≤ 0}.
Hence, for any n ∈ N and k ∈ N

∗

G1+((0,1), zn)

G1+((0, k), zn)
≥ ∑

x∈Z

P(0,1)

(
S(τ̂ ) = (x, k), τ̂ < τ2

)G1+((x, k), zn)

G1+((0, k), zn)

≥ ∑
x∈Z : |x|<N(k−1)

P(0,1)

(
S(τ̂ ) = (x, k), τ̂k < τ2

)G1+((x, k), zn)

G1+((0, k), zn)

and consequently, for all n ≥ nσ , N > 0 and k ≥ 1 satisfying the inequalities 0 <

N(k − 1) < δσ |zn| and 1 < k < δσ |zn|, using the first inequality of (7.20) we get

G1+((0,1), zn)

G1+((0, k), zn)
≥ ∑

x∈Z : |x|<N(k−1)

C′
P(0,1)

(
S(τ̂ ) = (x, k), τ̂ < τ2

)

× exp
(
a · (x,0) − σ |x|).

Moreover, the right-hand side of the above inequality is equal to

C′ exp
(−a · (0, k)

)
E(0,1)

(
exp

(
a · S(τ̂ ) − σ |S1(τ̂ )|), τ̂ < τ2, |S1(τ̂ )| < N(k − 1)

)
and hence, using Lemma 7.5, we conclude that for any ε > 0, there are Cε > 0,
Nε > 0 and σε > 0 such that

G1+((0,1), zn)/G
1+((0, k), zn) ≥ C ′Cε exp

(−a · (0, k − 1) − kε
)
,

whenever

0 < σ < σε, n ≥ nσ , 1 ≤ k < δσ |zn| and δσ |zn| > (1 − k)Nε.

Since |zn| → +∞, this proves that for any ε > 0 there are Ĉε > 0, δ̂ε > 0 and
n̂ε > 0 such that

1{k<δ̂ε|zn|}G
1+((0, k), zn)/G

1+((0,1), zn) ≤ Ĉε exp
(
a · (0, k) + εk

)
(7.21)

for all n ≥ n̂ε and k ∈ N
∗.

To complete the proof of our proposition, we combine now the estimates (7.21)
with (7.20). From now on, ε > 0 and σ > 0 are arbitrary and independent from
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each other. For n ≥ max{nσ , n̂ε} and z = (x, k) ∈ Z×N
∗ satisfying the inequalities

|x| ≤ δσ |zn| and k ≤ δ̂ε|zn|, the second inequality of (7.20) together with (7.21)
imply that

G1+((x, k), zn)

G1+((0,1), zn)
≤ G1+((x, k), zn)

G1+((0, k), zn)
× G1+((0, k), zn)

G1+((0,1), zn)

≤ ĈεC
′′ exp

(
a · (x, k) + σ |x| + εk

)
and consequently,

G1+((x, k), zn)

G1+(z0, zn)
≤ G1+(z0, zn)

G1+((0,1), zn)
× ĈεC

′′ exp
(
a · (x, k) + σ |x| + εk

)

≤ ĈεC
′′

Pz0(Z
1+(t) = (0,1) for some t > 0)

exp
(
a · (x, k) + σ |x| + εk

)
.

When ε = δ, the last inequality proves Proposition 7.6 with δ = min{δ̂ε, δσ } > 0,
N = max{nσ , n̂ε} > 0 and C = C′′Ĉε/Pz0(Z

1+(t) = (0,1) for some t > 0). �

8. Proof of Theorem 1. Let a sequence of point zn ∈ N
∗ × N

∗ be such that
limn |zn| = +∞ and limn zn/|zn| = q ∈ S 2+. Recall that by Proposition 6.1, for any
z ∈ N

∗ × N
∗ and δ > 0,

lim
n→∞G+(z, zn)/�

q
δ (z, zn) = 1.

To prove (1.4) it is therefore sufficient to show that for some δ > 0,

lim
n→∞�

q
δ (z, zn)/�

q
δ (z0, zn) = ha(q)(z)/ha(q)(z0) ∀z ∈ N

∗ × N
∗.(8.1)

Consider first the case when the coordinates q1 and q2 of the vector q are nonzero.
In this case, the quantities �

q
δ (z, zn) are defined by (6.1), and to get (8.1) it is

sufficient to show that for some δ > 0,

lim
n→∞

�
q
δ (z, zn)

G(0, zn)

.= lim
n→∞

G(z, zn)

G(0, zn)

− lim
n→∞ Ez

(
G(S(τ), zn)

G(0, zn)
, τ < ∞, |S(τ)| < δ|zn|

)
(8.2)

= ha(q)(z) ∀z ∈ N
∗ × N

∗.

The proof of this relation uses dominated convergence theorem, Proposition 3.2,
Corollary 7.1 and the results of Ney and Spitzer [16]. Ney and Spitzer [16] proved
that

lim
n→∞G(z, zn)/G(0, zn) = exp

(
a(q) · z) ∀z ∈ Z

2,
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by Corollary 7.1, for any σ > 0, there are C > 0 and δ > 0 for such that

1{|z|<δ|zn|}G(z, zn)/G(z0, zn) ≤ C exp
(
a(q) · z + σ |z|)

for all n ∈ N and z ∈ Z
2 \ (N∗ × N

∗), and by Proposition 3.2,

Ez

(
exp

(
a(q) · S(τ) + σ |S(τ)|), τ < ∞)

< ∞,(8.3)

if σ > 0 is small enough. Hence, by the dominated convergence theorem,

lim
n→∞ Ez

(
G(S(τ), zn)

G(0, zn)
, τ < ∞, |S(τ)| < δ|zn|

)
= Ez

(
exp

(
a(q) · S(τ)

)
, τ < ∞)

and consequently, (8.2) holds. When the coordinates of limn zn/|zn| = q are
nonzero, the equality (8.1) is therefore proved.

Suppose now that limn zn/|zn| = q = (1,0). For such a vector q , the quantities
�

q
δ (z, zn) are defined by (6.2), and to get (8.1) it is sufficient to show that for some

δ > 0 and C0 > 0,

lim
n→∞

G1+(z, zn)

G1+(z0, zn)
− lim

n→∞Ez

(
G1+(S(τ ), zn)

G1+(z0, zn)
, τ = τ1 < τ2, |S(τ)| < δ|zn|

)
(8.4)

= C0ha(q)(z) ∀z ∈ N
∗ × N

∗.
The proof of this equality uses the same arguments as above but with the help of
Propositions 3.3, 7.6 and the results of [12]. Theorem 1 of [12] proves the point-
wise convergence

lim
n→∞G1+(z, zn)/G1+(z0, zn) = h1

a(q),+(z)/h1
a(q),+(z0)

with a strictly positive function h1
a(q),+ on Z × N

∗ defined by

h1
a(q),+(z) = x2 exp

(
a(q) · z) − Ez

(
S2(τ2) exp

(
a(q) · S(τ2)

)
, τ2 < ∞)

.(8.5)

By Proposition 3.3, (8.3) holds if σ > 0 is small enough and by Proposition 7.6,
for any σ > 0 there are C > 0 and δ > 0 such that

1{|z|<δ|zn|}G1+(z, zn)/G1+(z0, zn) ≤ C exp
(
a(q) · z + σ |z|)

for all n ∈ N and z ∈ Z × N
∗. By dominated convergence theorem, from this it

follows that the left-hand side of (8.4) is equal to

1

h1
a(q),+(z0)

(
h1

a(q),+(z) − Ez

(
h1

a(q),+(S(τ )), τ = τ1 < τ2
))

.

Finally, for any z = (x1, x2) ∈ N
∗ × N

∗, from (8.5) it follows that

h1
a(q),+(z) − Ez

(
h1

a(q),+(S(τ )), τ = τ1 < τ2
)

= x2 exp
(
a(q) · z) − Ez

(
S2(τ2) exp

(
a(q) · S(τ2)

)
, τ2 < ∞)

− Ez

(
S2(τ ) exp

(
a(q) · S(τ)

)
, τ = τ1 < τ2

)
+ Ez

(
ES(τ)

(
S2(τ2) exp

(
a(q) · S(τ2)

)
, τ2 < ∞)

, τ = τ1 < τ2
)
.
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By strong Markov property, the last term of the right-hand side of this relation is
equal to

Ez

(
S2(τ2) exp

(
a(q) · S(τ2)

)
, τ1 < τ2 < ∞)

= Ez

(
S2(τ2) exp

(
a(q) · S(τ2)

)
, τ2 < ∞)

− Ez

(
S2(τ2) exp

(
a(q) · S(τ2)

)
, τ = τ2 ≤ τ1

)
from which if follows that

h1
a(q),+(z) − Ez

(
h1

a(q),+(S(τ )), τ = τ1 < τ2
)

= x2 exp
(
a(q) · z) − Ez

(
S2(τ ) exp

(
a(q) · S(τ)

)
, τ < ∞)

= ha(q)(z)

and consequently, the left-hand side of (8.4) is equal to ha(q)(z)/h1
a(q),+(z0). The

equality (8.4) holds therefore with C0 = 1/h1
a(q),+(z0) > 0 and hence, for q =

(1,0), the equality (8.1) is also proved.
The proof of (8.1) for q = (0,1) uses exactly the same arguments as above, it is

sufficient to exchange the roles of the first and the second coordinates.
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