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LARGE DEVIATIONS FOR INTERSECTION LOCAL
TIMES IN CRITICAL DIMENSION

BY FABIENNE CASTELL

Université de Provence

Let (Xt , t ≥ 0) be a continuous time simple random walk on Z
d (d ≥ 3),

and let lT (x) be the time spent by (Xt , t ≥ 0) on the site x up to time T .
We prove a large deviations principle for the q-fold self-intersection local
time IT = ∑

x∈Zd lT (x)q in the critical case q = d
d−2 . When q is integer, we

obtain similar results for the intersection local times of q independent simple
random walks.

1. Introduction.

Position of the problem. Let (Xt , t ≥ 0) be a continuous time simple random

walk on Z
d , whose generator is denoted by � [where �f (x)

�= ∑
y∼x(f (y) −

f (x))]. Let

lT (x) =
∫ T

0
δx(Xs) ds.

The quantity of interest in this paper is the so called q-fold self-intersection local
time

IT = ∑
x∈Zd

lT (x)q.

When q is integer, then

IT = q!
∫

0≤s1≤···≤sq≤T
δXs1=Xs2=···=Xsq

ds1 · · ·dsq,

which measures the amount of time the random walk spends on sites visited at
least q-times. Quantities measuring how much a random walk does intersect itself,
such as the range of the random walk, or the self-intersection local time, appear
in many models in physics. Far from being exhaustive, we can cite the Polaron
problem (see, for instance, [18, 30]), models of polymers (see, for instance, [8,
38–40]), or models of diffusion in random environments [3, 4, 7, 11, 12, 24, 25].
Partly motivated by the understanding of these models, many studies have been
devoted to such quantities for more than twenty years. To describe the known
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TABLE 1
Typical behavior of IT for q = 2

d Order of E(IT ) Convergence in law References

d = 1 T 3/2 IT

T 3/2
(d)−→ γ1 [9, 10, 13, 33]

d = 2 T log(T )
IT −E(IT )

T

(d)−→ γ 1 [19, 27, 28, 34, 37]

d ≥ 3 T
IT −E(IT )√

var(IT )

(d)−→ N (0,1), [14, 21, 22]

var(IT ) ∼
{

σ(3)T log(T ), si d = 3,
σ(d)T , si d ≥ 4,

results, we focus on IT in the case q = 2, where the literature is more complete,
and we refer the reader to the monograph [15] in preparation for a very complete
exposition of the subject, including results on the range, or intersection local times
of independent random walks.

Regarding the typical behavior of IT for large T , the results depend of course
on the dimension d , and of the transience/recurrence of the random walk. They are
summarized in Table 1, where γ1 and γ

1
are, respectively, the intersection local

time and renormalized intersection local time of the Brownian motion up to time 1,
and σ(d) is a constant depending on the dimension d:

Once we know the typical behavior, on can ask for untypical ones, that is, for
the large and moderate deviations for IT . In many models, such as the Polaron
problem or polymers models, this is actually the question of interest. The table
below is an attempt to summarize the results for q = 2, achieved in recent years
concerning this problem.

In Table 2, κc(2, d) is the best constant c in the Gagliardo–Nirenberg inequality:

∀d ≤ 3,∃c ∈]0,∞[, s.t. ∀f : Rd �→ R, ‖f ‖4 ≤ c‖f ‖1−d/4
2 ‖∇f ‖d/4

2 ,

TABLE 2
Large and moderate deviations results for IT for q = 2

d P [IT − E(IT ) ≥ b2
T ] Value of bT References

d ≤ 2 exp(− 2
κc(2,d)8/d T (d−4)/db

4/d
T ) T 2−d/2 � b2

T � T 2 [5, 6, 13, 29, 30]

d = 3 exp(− b4
T

2σ(3)T log(T )
)

√
T log(T ) � b2

T �
√

T log(T )3/2 [15]

exp(− 2
κc(2,d)8/d T (d−4)/db

4/d
T )

√
T log(T )3/2 � b2

T � T 2 [1, 15]

d = 4 exp(− b4
T

2σ(4)T
)

√
T � b2

T ≤ √
T log logT [23]

d ≥ 5 exp(− b4
T

2σ(d)T
)

√
T � b2

T ≤ √
T log logT [23]

exp(−c(d)bT ) T ≤ b2
T � T 2 [2, 4]
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while c(d) is an explicit constant related to discrete variational inequalities.
So the picture is now almost complete, except for the dimensions d ≥ 4. Note

the coexistence of two different regimes in dimensions d = 3 and d ≥ 5. The first
one is an extension of the central limit theorem describing the typical behavior,
the second one corresponds to the same pattern than in dimension d ≤ 2. To un-
derstand it, we give some heuristics in the general case for q , where we want to
control P [IT − E(IT ) ≥ b

q
T ]. For IT to be atypically high, one possible strategy

for the random walk is to remain during a time τ ≤ T , in a box of size R. If
τ � R2, this event has a probability of order exp(−τ/R2). If τ � Rd , one can ex-
pect that on the box of size R, the local time lτ (x) is now of order τ/Rd , so that IT

has increased of an amount of order τq/Rd(q−1) = b
q
T . Hence, τ = bT Rd/q ′

where
q ′ is the conjugate exponent of q . Therefore, this strategy has a probability of or-
der exp(−bT Rd/q ′−2). The best choice for R is now the choice that maximizes
exp(−bT Rd/q ′−2), under the constraint T ≥ τ � Rmax(2,d).

• If d < 2q ′ or equivalently q < d
(d−2)+ , the bigger is R, the bigger is exp(−bT ×

Rd/q ′−2), so that the best strategy for the random walk to make IT of order b
q
T ,

is to remain all the time T in a ball of radius of order (T /bT )q
′/d , leading to the

result of Table 2 for d ≤ 2 and the second regime in d = 3.
• If d > 2q ′, the smaller is R, the bigger is exp(−bT Rd/q ′−2), so that the best

strategy for the random walk to make IT of order b
q
T , is now to remain during a

time τ of order bT in a ball of radius R of order 1, leading to the second regime
of Table 2 in d ≥ 5.

• The case d = 2q ′ is critical. In that case exp(−bT Rd/q ′−2) does not depend
on R, so that whatever the order of R, 1 ≤ R � √

T/bT , the strategy consist-
ing to remain a time τ = bT R2 in a ball of size R has a probability of order
exp(−bT ). The critical feature of d = 2q ′ is also reflected in the fact that the
Gagliardo–Nirenberg inequality appearing in the results for d < 2q ′, is now re-
placed by the Sobolev inequality. For these reasons, there is no result concerning
the large and moderate deviations of IT for d = 2q ′.

Main results. This paper is a contribution to the large and very large deviations
for IT in the critical case d = 2q ′. By large deviations, we mean deviations of the
order of the mean E(IT ), and by very large, we mean deviations of order much
larger than the order of the mean. When q is an integer (i.e., when d = 3 and
q = 3, or when d = 4 and q = 2), we obtain also similar results for the mutual
intersection QT of q independent random walks (X

(i)
t ; t ≥ 0,1 ≤ i ≤ q), defined

by:

QT = ∑
x∈Zd

q∏
i=1

l
(i)
T (x) =

∫
0≤s1,...,sq≤T

δ
X

(1)
s1 =X

(2)
s2 =···=X

(q)
sq

ds1 · · ·dsq,

where l
(i)
T (x) = ∫ T

0 δx(X
(i)
s ) ds. To state our main results, we introduce some

notation. For any function f : Zd �→ R, ‖f ‖p is the lp norm of f [‖f ‖p
p =
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∑
x∈Zd |f |p(x)], and ∇f is the discrete gradient of f [for all j ∈ {1, . . . , d}, for

all x ∈ Z
d , ∇jf (x) = f (x + ej ) − f (x)].

PROPOSITION 1. For d ≥ 3, let CS(d) ∈]0;+∞[ be the best constant in the
discrete Sobolev’s inequality

∀f ∈ l2d/(d−2)(Zd) ‖f ‖2d/(d−2) ≤ CS(d)‖∇f ‖2.

1. Exponential moments for IT .
Let d ≥ 3, and let q = d

d−2 .

If T 1/q � bT ,∀θ ∈
[
0; 1

C2
S(d)

[
lim sup
T →∞

1

bT

logE[exp(θI
1/q
T )] = 0.(1)

If bT � T ,∀θ >
1

C2
S(d)

lim inf
T →∞

1

bT

logE[exp(θI
1/q
T )] = +∞.(2)

2. Exponential moments for QT .
Assume that d = 4 and q = 2, or d = 3 and q = 3.

If T 1/q � bT ,∀θ ∈
[
0; q

C2
S(d)

[
lim sup
T →∞

1

bT

logE[exp(θQ
1/q
T )] = 0.(3)

If bT � T ,∀θ >
q

C2
S(d)

lim inf
T →∞

1

bT

logE[exp(θQ
1/q
T )] = +∞.(4)

From Proposition 1, it is straightforward to obtain very large deviations upper
bounds for IT and QT . However, due to the degenerate form of the log-Laplace
of I

1/q
T , the corresponding lower bounds are not a direct consequence of Proposi-

tion 1. These lower bounds are actually the main statement of the following theo-
rem.

THEOREM 2 (Very large deviations).

1. Very large deviations for IT .
Assume that d ≥ 3, q = d

d−2 , and T � bT � T 1/q .

lim
T →∞

1

bT

logP [IT ≥ b
q
T ] = − 1

C2
S(d)

.(5)

2. Very large deviations for QT .
Assume that d = 4 and q = 2, or d = 3 and q = 3, and that T � bT � T 1/q .

lim
T →∞

1

bT

logP [QT ≥ b
q
T ] = − q

C2
S(d)

.(6)
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Concerning the large deviations, our result is less precise since the lower and
upper bounds are different. To state it, we recall that for d ≥ 3 and q > 1,
limT →∞ 1

T
E[IT ] exists in R

+ [when q is integer, this limit is equal to q!Gd(0)q−1,
where Gd is the Green kernel of the simple random walk on Z

d ].

THEOREM 3 (Large deviations for IT ). Assume that d ≥ 3, q = d
d−2 . There

exists a constant c(d) > 0 such that ∀y > c(d)

− y1/q

C2
S(d)

≤ lim inf
T →∞

1

T 1/q
logP [IT ≥ Ty]

(7)

≤ lim sup
T →∞

1

T 1/q
logP [IT ≥ Ty] = − 1

c(d)
y1/q .

REMARK 1. Unfortunately, our proof does not allow to obtain the result for
all y > limT →∞ E(IT )

T
.

REMARK 2. As in Theorem 2, we could obtain similar results for QT . How-
ever, such a result would not correspond to a large deviations result for QT , since
E(QT ) is of order log(T ) for d ≥ 3 and q = d/(d − 2). Concerning QT , we
should also mention that papers [31] and [35] give moderate deviations estimates
P [QT − E(QT ) ≥ log(T )bT ] for scales bT up to log log log(T ).

Sketch of the proof. The proof of the lower bounds is easy and relies
heavily on the large deviations results for lT

T
proved by Donsker and Varad-

han. Namely, let F = {μ : Zd �→ R
+;∑

x∈Zd μ(x) = 1}. F is endowed with the
weak topology of probability measures. By the results of Donsker and Varad-
han [17], lT /T satisfy a restricted large deviations principle in F (by “re-
stricted,” it is meant that the large deviations upper bound is only true for
compact sets), with rate function I(μ) = ‖∇√

μ‖2
2. Now, for any M satisfying

MbT ≤ T , IT

b
q
T

≥ IMbT

b
q
T

= Mq‖ lMbT
MbT

‖q
q . Moreover, the function μ ∈ F �→ ‖μ‖q =

sup{∑x μ(x)f (x);f compactly supported, ‖f ‖q ′ = 1} is lower semicontinuous

in weak topology. The large deviations lower bound for
lMbT
MbT

[with the change of

variable μ(x) = g2(x)], leads therefore to

lim inf
T →∞

1

bT

logP [IT > b
q
T ]

(8)

≥ −M inf
{
‖∇g‖2

2;g such that ‖g‖2 = 1 and ‖g‖2
2q >

1

M

}

for all M < lim inf T
bT

. For bT � T , all the values of M are allowed, and taking
the supremum in M in (8) leads to the lower bound in (5). Actually, this argument
remains valid for any scale bT such that 1 � bT � T (see Proposition 11).
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For the very large deviations upper bound for IT , the results of Donsker and
Varadhan are not sufficient, since on one hand, the large deviations upper bound
for lT /T is only true for compact sets of F , and on the other hand, the function
μ ∈ F �→ ‖μ‖q is not continuous. We present now the main ingredients of the
proof of the upper bound (1). First of all, it is easy to see that IT ≤ IT (R), the
intersection local time of the random walk folded on the torus of radius R. Now,
the main tool in the proof is the mysterious Dynkin isomorphism theorem, accord-
ing to which the law of the local times of a symmetric recurrent Markov process
stopped at an independent exponential time, is related to the law of the square of
a Gaussian process whose covariance function is the Green kernel of the stopped
Markov process. This allows us to control the exponential moments of I

1/q
T , with

the exponential moments of NT (R) = 1
2(

∑
x∈TR

Z
2q
x )1/q = 1

2‖Z‖2
2q,R where:

- TR is the torus of radius R;
- (Zx, x ∈ TR) is a centered Gaussian process whose covariance function is given

by GR,λ(x, y), the Green kernel of the simple random walk on TR , stopped at an
independent exponential time with parameter λ ∼ bT /T , (Lemmas 4, 5 and 6);

- ‖ · ‖2q,R denotes the norm in l2q(TR).

We can now rely on concentration inequalities for norms of Gaussian processes.
Let MR,T denote the median of ‖Z‖2q,R . For small α,

exp
[
θ

2
‖Z‖2

2q,R

]
≤ exp

[
θ(1 + α)

2
(‖Z‖2q,R − MR,T )2

]
exp

[
θ(1 + α)

2α
M2

R,T

]
.

By concentration inequalities, the tail behavior of ‖Z‖2q,R − MR,T is that of a
centered Gaussian variable with variance

ρ = sup{〈f,GR,λf 〉; ‖f ‖(2q)′,R = 1}.
Therefore, for θ < 1

(1+α)ρ
,

exp
[
θ(1 + α)

2
(‖Z‖2q,R − MR,T )2

]
≤ 1√

1 − θ(1 + α)ρ
.

Besides, one can prove that MR,T is of order Rd/(2q) as soon as λRd � 1, and
that ρ ∼ 1

C2
S(d)

if λR2 � 1. We therefore obtain the result in (1), if R is chosen

so that bT � Rd/q and λR2 ∼ bT
T

R2 � 1. The best choice for R is now to take
Rd/q = T/R2, i.e., R = T 1/d since q = d

d−2 , leading to bT � T 1/q .

An open question. The large, very large and moderate deviations for IT and
QT in the subcritical case (i.e., d ≤ 2, or d = 3 and q < d

d−2 ) are linked to
Gagliardo–Nirenberg inequality in a continuous setting (i.e., for functions f from
R

d to R), while the same problem in supercritical case d ≥ 3 and q > d
d−2 , is

linked to functional inequality in a discrete setting. One can therefore think that in
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the critical case q = d
d−2 , the moderate deviations of IT − E[IT ] are at least up

to some scale, related to the Sobolev inequality in a continuous setting. However,
since the best constants in the discrete and continuous Sobolev inequality are the
same, this would not change the statement. Therefore, we do believe that in the
critical case d = 2q ′, there are only two regimes of deviations from the mean:

P [IT − E(IT ) ≥ b
q
T ] �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

exp
(
− b

2q
T

2σ(d)T

)
, for

√
T � b

q
T � T q/(2q−1),

exp
(
− 1

C2
S(d)

bT

)
, for T q/(2q−1) � b

q
T � T q .

We do not know how to prove this result. Actually, the same question is also open
in the supercritical case (with 1

C2
S(d)

replaced by the constant c(d) given in [2]).

The paper is organized as follows. Section 2 is devoted to the proof of expo-
nential moments lower bounds (2) and (4). In Section 3, we prove the exponential
moments upper bounds (1) and (3). In Section 4, we give the proof of the large
and very large deviations lower bounds. With Proposition 1, this ends the proof of
Theorem 2. Finally, Section 5 is devoted to the proof of the upper bound in (7),
which ends the proof of Theorem 3.

2. Exponential moments lower bound. This section is devoted to the proof
of the lower bounds (2) and (4) in Proposition 1.

Lower bound for IT . Fix M > 0. Since bT � T , for T sufficiently large [T ≥
T0(M)] MbT ≤ T , and IT ≥ IMbT

. For any f such that ‖f ‖q ′ = 1,

E[exp(θI
1/q
T )] ≥ E[exp(θI

1/q
MbT

)] ≥ E

[
exp

(
θ

∑
x

f (x)lMbT
(x)

)]
.(9)

It is a standard result that the occupation measure of X satisfies a weak large
deviations principle in F , in τ -topology (i.e., the topology defined by duality with
bounded measurable functions), with rate function J (μ) = ‖∇√

μ‖2 (see, for in-
stance, Theorem 5.3.10, page 210 in [16]). Since f is bounded by 1 as soon as
‖f ‖q ′ = 1, the function μ ∈ F �→ ∑

x∈Zd f (x)μ(x) is continuous in τ -topology

and the large deviations lower bound for 1
MbT

∫ MbT

0 δXs ds (written with the change

of variable g = √
μ) yields: ∀θ ≥ 0, ∀M > 0, ∀f ∈ lq ′(Zd) such that ‖f ‖q ′ = 1,

lim inf
T →∞

1

bT

logE[exp(θI
1/q
T )] ≥ M sup

g,‖g‖2=1

{
θ

∑
x

f (x)g2(x) − ‖∇g‖2
2

}
.(10)

Assume now that θ > 1
C2

S(d)
= inf

‖∇f ‖2
2

‖f ‖2
2q

for q = d
d−2 . Since the infimum can be

reduced to the infimum over compactly supported functions f , we can find g0

with compact support in Z
d , such that θ >

‖∇g0‖2
2

‖g0‖2
2q

. Dividing g0 by its l2-norm if
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necessary, we can moreover assume that ‖g0‖2 = 1. We now take f = g
2(q−1)
0

‖g0‖2(q−1)
2q

(note that ‖f ‖q ′ = 1), g = g0 in (10). ∀M > 0,

lim inf
T →∞

1

bT

logE[exp(θI
1/q
T )] ≥ M

(
θ

∑
x

f (x)g2(x) − ‖∇g‖2
2

)

= M

(
θ

∑
x g

2q
0 (x)

‖g0‖2(q−1)
2q

− ‖∇g0‖2
2

)

= M(θ‖g0‖2
2q − ‖∇g0‖2

2).

But θ‖g0‖2
2q − ‖∇g0‖2

2 > 0, so that (2) is proved by sending M to infinity.

Lower bound for QT . Fix M > 0. Since bT � T , for T sufficiently large [T ≥
T0(M)] MbT ≤ T , and QT ≥ QMbT

. ∀θ ≥ 0, and ∀m ∈ N,

E[exp(θQ
1/q
T )] ≥ E[exp(θQ

1/q
MbT

)]

≥ θqm

(qm)!E[Qm
MbT

]

= θqm

(qm)!
∑

x1,...,xm

E

[ q∏
j=1

m∏
i=1

l
(j)
MbT

(xi)

]

= θqm

(qm)!
∑

x1,...,xm

E

[
m∏

i=1

lMbT
(xi)

]q

≥ θqm

(qm)!
[ ∑

x1,...,xm

f (x1) · · ·f (xm)E

[
m∏

i=1

lMbT
(xi)

]]q

for any f ∈ lq ′(Zd), such that ‖f ‖q ′ = 1. Therefore, ∀θ ≥ 0, and ∀m ∈ N,

E[exp(θQ
1/q
T )]1/q ≥ θm

((qm)!)1/q
E

[(∑
x

f (x)lMbT
(x)

)m]
.(11)

It follows from Stirling’s formula that there exists C > 0 such that ∀m ∈ N,
1

((qm)!)1/q ≥ C 1
qmm! . Hence, ∀θ ≥ 0, and ∀m ∈ N,

E[exp(θQ
1/q
T )]1/q ≥ C

1

m!E
[(

θ

q

∫ MbT

0
f (Xs) ds

)m]
.(12)

Summing over m, we have thus proved that for T ≥ T0(M), ∀θ ≥ 0, ∀f ∈ lq ′(Zd)

such that ‖f ‖q ′ = 1,

E[exp(θQ
1/q
T )]1/q ≥ CE

[
exp

(
θ

q

∫ MbT

0
f (Xs) ds

)]
.

At this point, the proof is the same as the proof of the lower bound for IT .
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3. Exponential moments upper bounds. In this section, we obtain an upper
bound for the exponential moments of I

1/q
T and Q

1/q
T .

Step 1. Comparison with the SILT of the random walk on the torus, stopped at
an exponential time.

LEMMA 4. Let α > 0, and let τ be an exponential random variable with pa-
rameter λ = α bT

T
, independent of the random walk (Xs, s ≥ 0). Let R ∈ N

∗, and

let us denote by X
(R)
s = Xs mod(R) the simple random walk on TR , the d-di-

mensional discrete torus of radius R. Finally, let l
(R)
τ (x) = ∫ τ

0 δx(X
(R)
s ) ds, and

IR,τ = ∑
x∈TR

(l
(R)
τ (x))q . Then, ∀θ > 0, ∀α > 0, ∀R > 0, ∀T > 0,

E[exp(θI
1/q
T )] ≤ eαbT E[exp(θI

1/q
R,τ )].(13)

PROOF.

IT = ∑
x∈Zd

l
q
T (x) = ∑

x∈TR

∑
k∈Zd

l
q
T (x + kR)

≤ ∑
x∈TR

( ∑
k∈Zd

lT (x + kR)

)q

= ∑
x∈TR

l
q
R,T (x) = IR,T .

Therefore,

E[exp(θI
1/q
T )] exp(−αbT ) ≤ E[exp(θI

1/q
R,T )]P [τ ≥ T ]

≤ E[exp(θI
1/q
R,T )1τ≥T ]

≤ E[exp(θI
1/q
R,τ )],

where the first inequality comes from the choice of λ = α bT
T

, and the second one
from independence of τ and X. �

Step 2. The Eisenbaum isomorphism theorem. There are various versions of iso-
morphism theorems in the spirit of the Dynkin isomorphism theorem. We use here
the following version due to Eisenbaum [20] (see also Corollary 8.1.2, page 364
in [32]).

THEOREM 5 (Eisenbaum). Let α and τ be as in Lemma 4. Let us define for
all x, y ∈ TR , GR,λ(x, y) = Ex[∫ τ

0 δy(X
(R)
s ) ds]. Let (Zx, x ∈ TR) be a centered

Gaussian process with covariance matrix GR,λ, independent of τ and of the ran-
dom walk (Xs, s ≥ 0). For s �= 0, consider the process Sx := l

(R)
τ (x)+ 1

2(Zx + s)2.
Then, for all measurable and bounded function F : RTR �→ R,

E
[
F

(
(Sx;x ∈ TR)

)] = E

[
F

((
1

2
(Zx + s)2;x ∈ TR

))(
1 + Z0

s

)]
.(14)
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Step 3. Comparison between exponential moments of IT and exponential mo-
ments for

∑
x Z

2q
x .

Theorem 5 allows one to control exponential moments of I
1/q
R,τ by exponential

moments of (
∑

x∈TR
Z

2q
x )1/q .

LEMMA 6. For any α > 0 and R > 0, let τ and (Zx, x ∈ TR) be defined as

in Lemma 5. ∀α > 0, ∀θ > 0, ∀γ > θ , ∀ε ∈]0;min(1,
√

γ
θ

− 1)[, ∀R > 0, ∀T > 0,
there exists a constant C(ε) ∈]0;∞[ depending only on ε, such that

E[exp(θI
1/q
R,τ )]

≤ 1 + C(ε)
θ

γ − θ(1 + ε)2

(
1 +

√
T Rd/2q

√
αbT

)
(15)

× E[exp(γ /2‖Z‖2
2q,R)]1/(1+ε)

P [‖Z‖2q,R ≥ 2
√

2bT ε] exp(γ ε2bT ),

where ‖ · ‖p,R is the lp norm of functions on TR .

PROOF. By independence of (Zx, x ∈ TR) and (Xs, s ≥ 0), ∀s �= 0, ∀y > 0,
∀ε > 0,

P

[ ∑
x∈TR

(Zx + s)2q

2q
≥ b

q
T εq

]
P [IR,τ ≥ b

q
T yq]

= P

[ ∑
x∈TR

(Zx + s)2q

2q
≥ b

q
T εq; ∑

x∈TR

(
l(R)
τ (x)

)q ≥ b
q
T yq

]
(16)

≤ P

[ ∑
x∈TR

Sq
x ≥ b

q
T (yq + εq)

]

= E

[(
1 + Z0

s

)
1∑

x∈TR
(Zx+s)2q/2q≥b

q
T (yq+εq)

]
by Theorem 5.

Hence, using Markov inequality,

E[exp(θI
1/q
R,τ )] = 1 +

∫ ∞
0

θbT eθbT yP [IR,τ ≥ b
q
T yq]dy

≤ 1 + E[(1 + Z0/s) exp(γ /2‖Z + s1‖2
2q,R)]

P [‖Z + s1‖2q,R ≥ √
2bT ε](17)

×
∫ ∞

0
θbT eθbT ye−bT γ (yq+εq)1/q

dy.
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Now, ∀ε > 0, ∀θ > 0, ∀γ > θ , ∀T > 0,∫ ∞
0

θbT eθbT ye−bT γ (yq+εq)1/q

dy ≤
∫ ∞

0
θbT eθbT ye−bT γydy = θ

γ − θ
.(18)

Regarding the denominator in (17),

P
[‖Z + s1‖2q,R ≥ √

2bT ε
] ≥ P

[‖Z‖2q,R ≥ √
2bT ε + ‖s1‖2q,R

]
(19)

= P
[‖Z‖2q,R ≥ √

2bT ε + |s|Rd/2q]
.(20)

On the other hand, ∀ε > 0,

‖Z + s1‖2
2q,R ≤ (‖Z‖2q,R + ‖s1‖2q,R)2 ≤ ‖Z‖2

2q,R(1 + ε) +
(

1 + 1

ε

)
‖s1‖2

2q,R,

so that

E

[(
1 + Z0

s

)
exp

(
γ

2
‖Z + s1‖2

2q,R

)]

≤ E

[(
1 + Z0

s

)
exp

(
γ

2
(1 + ε)‖Z‖2

2q,R

)]
exp

(
γ

2

1 + ε

ε
s2Rd/q

)
(21)

≤ E

[∣∣∣∣1 + Z0

s

∣∣∣∣
(1+ε)/ε]ε/(1+ε)

E

[
exp

(
γ

2
(1 + ε)2‖Z‖2

2q,R

)]1/(1+ε)

× exp
(

γ

2

1 + ε

ε
s2Rd/q

)
,

Z0 being a centered Gaussian variable with variance GR,λ(0,0) ≤ E(τ) = 1/λ,
for all ε > 0, there exists a constant C(ε) depending only on ε such that

E

[∣∣∣∣1 + Z0

s

∣∣∣∣
(1+ε)/ε]ε/(1+ε)

≤ C(ε)

(
1 +

√
T

αbT

1

s

)
.(22)

Putting (17), (18), (20), (21) and (22) together, we have thus proved that ∀θ > 0,
∀γ > θ , ∀ε > 0, ∀R > 0, ∀T > 0, ∀s �= 0,

E[exp(θI
1/q
R,τ )]

≤ 1 + C(ε)
θ

γ − θ

(
1 +

√
T

αbT

1

s

)
(23)

× E[exp(γ (1 + ε)2/2‖Z‖2
2q,R)]1/(1+ε)

P [‖Z‖2q,R ≥ √
2bT ε + |s|Rd/2q]

× exp
(

γ

2

1 + ε

ε
s2Rd/q

)
.
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Choose s = √
2bT ε3/2R−d/2q in (23). ∀θ > 0, ∀γ > θ , ∀ε > 0, ∀R > 0, ∀T > 0,

E[exp(θI
1/q
R,τ )]

≤ 1 + C(ε)
θ

γ − θ

(
1 +

√
T Rd/2q

√
αbT ε3/2

)
(24)

× E[exp(γ (1 + ε)2/2‖Z‖2
2q,R)]1/(1+ε)

P [‖Z‖2q,R ≥ √
2bT ε(1 + ε)] exp

(
γ ε2(1 + ε)bT

)
.

(15) is now obtained by the change of variable γ � γ /(1 + ε)2. �

Step 4. Large deviations for ‖Z‖2q,R .

LEMMA 7. For any α > 0 and R > 0, let τ and (Zx, x ∈ TR) be defined
as in Lemma 5. Let ρ1(α,R,T ) := inf{∑x,y∈TR

fxG
−1
R,λ(x, y)fy ; f such that∑

x∈TR
f

2q
x = 1}.

1. ∀α > 0, ∀R > 0, ∀T > 0, α bT
T

≤ ρ1(α,R,T ) ≤ 2d + α bT
T

.
2. ∀α > 0, ∀ε > 0, ∀R > 0, ∀T > 0,

P
[‖Z‖2q,R ≥ √

bT ε
] ≥ 1 − 1/(bT ερ1(α,R,T ))√

2πbT ερ1(α,R,T )
exp

(
−bT ερ1(α,R,T )

2

)
.(25)

3. ∃C(q) such that ∀α > 0, ∀R > 0, ∀T > 0, ∀γ < ρ1(α,R,T ), ∀ε > 0 such that
γ (1 + ε) < ρ1(α,R,T ),

E

[
exp

(
γ

2
‖Z‖2

2q,R

)]
≤ 2√

1 − γ (1 + ε)/(ρ1(α,R,T ))
(26)

× exp
(
C(q)γ

1 + ε

ε
Rd/qGR,λ(0,0)

)
.

PROOF. 1. Since GR,λ = (λ Id−�)−1,

ρ1(α,R,T ) = inf{λ‖f ‖2
2,R − (f,�f );f such that ‖f ‖2q,R = 1}.

Taking f = δ0, we obtain that ρ1(α,R,T ) ≤ λ + 2d = α bT
T

+ 2d . For the
lower bound, note that if ‖f ‖2q,R = 1, for all x ∈ TR , |fx | ≤ 1, so that ‖f ‖2

2,R ≥∑
x∈TR

f
2q
x = 1. Therefore, ρ1(α,R,T ) ≥ λ.

2. For all (fx, x ∈ TR), such that
∑

x |fx |2q/(2q−1) = 1,

P
[‖Z‖2q,R ≥ √

bT ε
] ≥ P

[ ∑
x∈TR

fxZx ≥ √
bT ε

]
.
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∑
x∈TR

fxZx is a real centered Gaussian variable, with variance

σ 2
α,R,T (f ) = ∑

x,y∈TR

GR,λ(x, y)fxfy.

Therefore, for all (fx, x ∈ TR), such that
∑

x |fx |2q/(2q−1) = 1,

P
[‖Z‖2q,R ≥ √

bT ε
] ≥ σα,R,T (f )√

2π
√

bT ε

(
1 − σ 2

α,R,T (f )

bT ε

)
exp

(
− bT ε

2σ 2
α,R,T (f )

)
,

≥ σα,R,T (f )√
2π

√
bT ε

(
1 − ρ2(α,R,T )

bT ε

)
exp

(
− bT ε

2σ 2
α,R,T (f )

)
,

where ρ2(α,R,T ) := sup{σ 2
α,R,T (f ); f such that

∑
x∈TR

|fx |2q/(2q−1) = 1}.
Take the supremum over f , to obtain ∀α > 0, ∀R > 0, ∀T > 0,

P
[‖Z‖2q,R ≥ √

bT ε
] ≥

√
ρ2(α,R,T )√

2πbT ε

(
1 − ρ2(α,R,T )

bT ε

)
(27)

× exp
(
− bT ε

2ρ2(α,R,T )

)
.

We are now going to prove that ∀α > 0, ∀R > 0, ∀T > 0,

ρ2(α,R,T ) = 1

ρ1(α,R,T )
.(28)

Indeed,

(GR,λh,h) = (GR,λh,G−1
R,λGR,λh) ≥ ρ1(α,R,T )‖GR,λh‖2

2q,R

≥ ρ1(α,R,T )
(GR,λh,h)2

‖h‖2
2q/(2q−1),R

,

where the first inequality follows from the definition of ρ1(α,R,T ), and
the second one from Hölder’s inequality. Therefore, for all h, (GR,λh,h) ≤

1
ρ1(α,R,T )

‖h‖2
2q/(2q−1),R . Taking the supremum over h yields ρ2(α,R,T ) ≤

1
ρ1(α,R,T )

. For the opposite inequality, take f0 achieving the infimum in
the definition of ρ1(α,R,T ). Applying the Lagrange multipliers method, it
is easy to see that f0 satisfies the equation G−1

R,λf0 = ρ1(α,R,T )f
2q−1
0 .

Hence, ‖G−1
R,λf0‖2q/(2q−1),R = ρ1(α,R,T )‖f 2q−1

0 ‖2q/(2q−1),R = ρ1(α,R,

T )‖f0‖2q−1
2q,R = ρ1(α,R,T ). Moreover, (G−1

R,λf0, f0) = ρ1(α,R,T ) and

ρ2(α,R,T ) ≥ (G−1
R,λf0,GR,λG

−1
R,λf0)

‖G−1
R,λf0‖2

2q/(2q−1),R

≥ ρ1(α,R,T )

ρ1(α,R,T )2 = 1

ρ1(α,R,T )
,

which ends the proof of (28) and of (25).
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3. Let MR,T denote the median of ‖Z‖2q,R . For γ < ρ1(α,R,T ), and ε > 0 such
that γ (1 + ε) < ρ1(α,R,T ),

E

[
exp

(
γ

2
‖Z‖2

2q,R

)]
≤ E

[
exp

(
γ (1 + ε)

2
(‖Z‖2q,R − MR,T )2

)]

× exp
(

γ

2

1 + ε

ε
M2

R,T

)
.

But MR,T = median((
∑

x Z
2q
x )1/2q) = (median(

∑
x Z

2q
x ))1/2q . Moreover, it is

easy to see that for any positive r.v. X, median(X) ≤ 2E(X). Hence, using the
fact that Zx is a centered Gaussian variable with variance GR,λ(0,0),

M2
R,T ≤ 21/qE

[ ∑
x∈TR

Z2q
x

]1/q

= 21/qRd/qGR,λ(0,0)E(V 2q)1/q,

where V ∼ N (0,1).
On the other hand,

E

[
exp

(
γ (1 + ε)

2
(‖Z‖2q,R − MR,T )2

)]

= 1 +
∫ ∞

0

γ (1 + ε)

2
eγ (1+ε)u/2P

[∣∣‖Z‖2q,R − MR,T

∣∣ ≥ √
u
]
du.

We now use the concentration inequalities for norms of Gaussian processes
(see, for instance, Lemma 3.1 in [26]): ∀u > 0,

P
[∣∣‖Z‖2q,R − MR,T

∣∣ ≥ √
u
] ≤ 2P

(
V ≥ √

ρ1(α,R,T )u
)
.

Therefore, since γ (1 + ε) < ρ1(α,R,T ),

E

[
exp

(
γ (1 + ε)

2
(‖Z‖2q,R − MR,T )2

)]

≤ −1 + 2E

[
exp

(
γ (1 + ε)

2ρ1(α,R,T )
V 2

)]

= −1 + 2√
1 − γ (1 + ε)/(ρ1(α,R,T ))

. �

Step 5. An upper bound for exponential moments of IT and QT .

LEMMA 8. Assume that log(T ) � bT ≤ T , and that R depends on T in such
a way that ∀α > 0, bT � Rd/qGR,λ(0,0). For all α > 0, set

ρ1(α) = lim inf
T →∞ ρ1(α,R,T )

= lim inf
T →∞ inf

{
α

bT

T
‖f ‖2

2,R + ‖∇f ‖2
2,R;f such that ‖f ‖2q,R = 1

}

ρ1 = lim sup
α→0

ρ1(α).
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1. For any θ ∈ [0, ρ1[, lim supT →∞ 1
bT

logE[exp(θI
1/q
T )] = 0.

2. For any θ ∈ [0, qρ1[,

lim sup
T →∞

1

bT

logE[exp(θQ
1/q
T )] = 0.

PROOF. Point 2 is a straightforward consequence of 1, since

Q
1/q
T =

(∑
x

q∏
i=1

l
(i)
T (x)

)1/q

≤
( q∏

i=1

∥∥l(i)T

∥∥
q

)1/q

≤ 1

q

q∑
i=1

∥∥l(i)T

∥∥
q,

where the last inequality comes from the concavity of the log function. Hence,

E[exp(θQ
1/q
T )] ≤ E

[
exp

(
θ

q
‖lT ‖q

)]q

= E

[
exp

(
θ

q
I

1/q
T

)]q

.

We thus focus on step 1 of Lemma 8. Let α > 0, and θ < ρ1(α) be fixed. Take

γ such that θ < γ < ρ1(α). Take then ε ∈]0;min(
√

γ
θ

− 1,1)[ such that

θ < γ < γ (1 + 2ε) < ρ1(α).

For T sufficiently large (T ≥ T0), ρ1(α,R,T ) ≥ γ (1 + 2ε). Lemmas 4 and 6 lead
to

e−αbT E[eθI
1/q
T ] ≤ 1 + C(ε)

θ

γ − θ(1 + ε)2

(
1 +

√
T Rd/2q

√
αbT

)
(29)

× E[exp(γ /2‖Z‖2
2q,R)]1/(1+ε)

P [‖Z‖2q,R ≥ √
8bT ε] exp(γ ε2bT ).

By Lemma 7, for bT ≤ T , and T ≥ T0, ρ1(α,R,T ) ≥ γ (1 + 2ε), and

P
[‖Z‖2q,R ≥ √

8bT ε
]

≥ 1√
16πbT ε(2d + α)

(
1 − 1

8bT ερ1(α,R,T )

)
exp

(−4bT ε(2d + α)
)
,

≥ 1√
16πbT ε(2d + α)

(
1 − 1

8bT εγ (1 + 2ε)

)
exp

(−4bT ε(2d + α)
)
.

Moreover, for T ≥ T0, (26) of Lemma 7 yields

E

[
exp

(
γ

2
‖Z‖2

2q,R

)]1/(1+ε)

≤
(

2

√
1 + 2ε

ε

)1/(1+ε)

exp
(
C(q)

γ

ε
Rd/qGR,λ(0,0)

)
.
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Therefore, for Rd/qGR,λ(0,0) � bT , and bT � log(T ),

lim sup
T →∞

1

bT

logE[exp(θI
1/q
T )] ≤ α + 4ε(2d + α) + γ ε2.

Sending ε to 0, we thus obtain that ∀α > 0, ∀θ < ρ1(α),

lim sup
T →∞

1

bT

logE[exp(θI
1/q
T )] ≤ α.(30)

Take now θ < ρ1 = lim supα→0 ρ1(α). Let (αn) be a sequence converging to 0,
such that limn→∞ ρ1(αn) = ρ1. For sufficiently large n, ρ1(αn) > θ , and by (30),

lim sup
T →∞

1

bT

logE[exp(θI
1/q
T )] ≤ αn.

Point 1 is now proved by letting n go to infinity. �

Step 6. Study of ρ1 and GR,λ(0,0).
By Lemma 8 and (2), we know that if R is such that bT � Rd/qGR,λ(0,0), then

ρ1 ≤ 1
C2

S(d)
. It could however happen that ρ1 = 0. It remains thus to determine the

values of R for which ρ1 > 0, and to study the behavior of GR,λ(0,0).

LEMMA 9 [Behavior of ρ1(α,R,T )]. Let d ≥ 3, and q = d
d−2 . Let ρ1 be de-

fined as in Lemma 8.

1. Assume that R depends on T in such a way that ∀α > 0, λR2 � 1. Then ρ1 ≥
1

C2
s (d)

.

2. Assume that R depends on T in such a way that limT →∞ λR2 = l(α) ∈]0;
+∞[. Then there exists a constant C such that ∀α > 0, ρ1(α) > C min(1, l(α)).

PROOF. Let f0 ∈ l2q(TR) achieve the minimum in the definition of ρ1(α,

R,T ). f0 is viewed as a periodic function on Z
d , and by definition

ρ1(α,R,T ) = λ‖f0‖2
2,R + ‖∇f0‖2

2,R; ‖f0‖2q,R = 1.

Let 0 < r < R, and define

Cr,R =
d⋃

i=1

{x ∈ Z
d;0 ≤ xi ≤ r or R − r ≤ xi ≤ R}.

Then one can find a ∈ Z
d such that

∑
x∈Cr,R

f
2q
0 (x − a) ≤ 2dr

R
. Indeed, on one

hand, ∑
a∈[0,R]d

∑
x∈Cr,R

f
2q
0 (x − a) = ∑

x∈Cr,R

∑
a∈[0,R]d

f
2q
0 (x − a)

= ∑
x∈Cr,R

∑
x∈TR

f
2q
0 (x) = card(Cr,R) ≤ 2drRd−1.
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On the other hand,∑
a∈[0,R]d

∑
x∈Cr,R

f
2q
0 (x − a) ≥ Rd inf

a∈[0;R]d
∑

x∈Cr,R

f
2q
0 (x − a).

Set f0,a(x) � f0(x − a). f0,a is a periodic function of period R. Note that
‖∇f0,a‖2,R = ‖∇f0‖2,R , ‖f0,a‖2q,R = ‖f0‖2q,R , and that ‖f0,a‖2,R = ‖f0‖2,R .
We can therefore assume without loss of generality, that f0 achieving the mini-
mum in the definition of ρ1(α,R,T ), satisfies also∑

x∈Cr,R

f
2q
0 (x) ≤ 2dr

R
.

Let ψ : Zd �→ [0,1] a truncature function satisfying⎧⎪⎪⎨
⎪⎪⎩

ψ(x) = 0, if x /∈ [0;R]d ;
ψ(x) = 1, if x ∈ [0;R]d \ Cr,R;

|∇iψ(x)| ≤ 1

r
, ∀x ∈ Z

d,∀i ∈ {1, . . . , d}.
Fix ε > 0, and take r = εR

2d
. By definition, for q = d

d−2 ,

1

C2
s (d)

≤ ‖∇(ψf0)‖2
2

‖ψf0‖2
2q

.

Regarding the denominator,

‖ψf0‖2q
2q ≥ ∑

x∈[0;R]d
f

2q
0 (x) − ∑

x∈Cr,R

f
2q
0 (x) ≥ 1 − 2dr

R
= 1 − ε.(31)

It remains to control ‖∇(ψf0)‖2,

‖∇(ψf0)‖2
2 = ∑

x∈[0;R]d

d∑
i=1

(∇iψ(x)f0(x + ei) + ψ(x)∇if0(x)
)2

= ∑
x∈[0;R]d

d∑
i=1

(∇iψ(x))2f 2
0 (x + ei) + ψ2(x)(∇if0(x))2

+ 2
∑

x∈[0;R]d

d∑
i=1

∇iψ(x)ψ(x)f0(x + ei)∇if0(x)

(32)

≤ d

r2 ‖f0‖2
2,R + ‖∇f0‖2

2,R + 2
√

d

r
‖f0‖2,R‖∇f0‖2,R

≤ ‖∇f0‖2
2,R(1 + ε) + d

r2 ‖f0‖2
2,R(1 + 1/ε).

≤ (1 + ε)max
(

1,
d

λr2ε

)
ρ1(α,R,T ).
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It follows from (31) and (32) that ∀ε ∈]0;1[, ∀α > 0, ∀T > 0,

1

C2
S(d)

≤ 1 + ε

(1 − ε)1/q
max

(
1,

4d3

ε3

1

λR2

)
ρ1(α,R,T ).(33)

Case 1. Since R is such that bT � T
R2 , ∀ε > 0, ∀α > 0, ρ1(α) ≥ 1

C2
S(d)

(1−ε)1/q

1+ε
.

Hence, letting ε go to 0, ∀α > 0, ρ1(α) ≥ 1
C2

S(d)
, so that ρ1 ≥ 1

C2
S(d)

.

Case 2. Take ε = 1/2 in (33), and let l(α) = limT →∞ λR2. Then ∀α > 0,

ρ1(α) ≥ 21−1/q

3

1

C2
s (d)

min
(

1,
l(α)

32d3

)
≥ C min(l(α),1). �

LEMMA 10 [Behavior of GR,λ(0,0)]. Assume that d ≥ 3, that λ � 1, and
that R depends on T in such a way that λRd � 1. Then limT →∞ GR,λ(0,0) =
Gd(0,0), where Gd(0,0) is the expected amount of time the simple random walk
on Z

d spends on site 0.

PROOF. Let pR
t (x, y) be the transition probability of X

(R)
t . Then

GR,λ(0,0) =
∫ ∞

0
exp(−λt)pR

t (0,0) dt.

It follows from Nash inequality (see, for instance, Theorems 2.3.1 and 3.3.15 in
[36]) that there exists a constant C(d) such that ∀R > 0, ∀t > 0,∣∣∣∣pR

t (0,0) − 1

Rd

∣∣∣∣ ≤ C(d)

td/2 .

Therefore, ∀S > 0,∫ +∞
S

exp(−λt)pR
t (0,0) dt

≤ 1

Rd

∫ ∞
0

exp(−λt) dt +
∫ +∞
S

C(d)

td/2 dt

≤ 1

λRd
+ C(d)

Sd/2−1 .

Thus, when λRd � 1, and S � 1,

lim
T →∞

∫ +∞
S

exp(−λt)pR
t (0,0) dt = 0.(34)

For the values of t less than S,

pR
t (0,0) = P0

(
X

(R)
t = 0

)
≤ P0

[
X

(R)
t = 0; sup

s≤S

‖Xs‖ ≤ R

2

]
+ P0

[
sup
s≤S

‖Xs‖ ≥ R

2

]
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= P0

[
Xt = 0; sup

s≤S

‖Xs‖ ≤ R

2

]
+ P0

[
sup
s≤S

‖Xs‖ ≥ R

2

]

≤ P0[Xt = 0] + C(d) exp
(
− R2

C(d)S

)
.

The third equality comes from the fact that as long as X does not exit a ball of
radius R/2, then X and X(R) are the same. The fourth one follows from standard
results on simple random walks. Thus,∫ S

0
exp(−λt)pR

t (0,0) dt ≤
∫ ∞

0
pt(0,0) dt + C(d)S exp

(
− R2

C(d)S

)
.

On the other hand, pR
t (0,0) = P0(X

(R)
t = 0) ≥ pt(0,0), so that∫ S

0
exp(−λt)pR

t (0,0) dt ≥
∫ S

0
pt(0,0) dt −

∫ S

0

(
1 − exp(−λt)

)
dt

=
∫ S

0
pt(0,0) dt + exp(−λS) − 1 + λS

λ
.

Hence, if S is chosen so that S � 1, S � R2/(log(R))1+ε , and λS2 � 1,

lim
T →∞

∫ S

0
exp(−λt)pR

t (0,0) dt =
∫ ∞

0
pt(0,0) dt = Gd(0,0).(35)

Now, for λ � 1, and λRd � 1 (which implies R � 1), one can always choose S

such that 1 � S � min(R2/(log(R))1+ε,1/
√

λ). For such a choice of S, it follows
from (34) and (35) that

lim
T →∞GR,λ(0,0) = Gd(0,0) < ∞ for d ≥ 3. �

Step 7. End of proof of Proposition 1.
Choose R such that

T

R2 � bT , bT � Rd/q.

Then, on one hand, ∀α > 0, λbT � R2, and ρ1 ≥ 1
C2

S(d)
by 1. of Lemma 9. On the

other hand, λRd = α bT
T

Rd � α bT
T

R2 � 1. Hence, by Lemma 10, GR,λ(0,0) �
Gd(0,0) and it follows from Lemma 8 that ρ1 ≤ 1

C2
S(d)

. Therefore, for such a

choice of R, ρ1 = 1
C2

s (d)
and

∀θ ∈
[
0; 1

C2
s (d)

[
lim inf
T →∞

1

bT

logE[exp(θI
1/q
T )] = 0,

∀θ ∈
[
0; q

C2
s (d)

[
lim inf
T →∞

1

bT

logE[exp(θQ
1/q
T )] = 0.
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The best choice for R corresponds to T/R2 = Rd/q = Rd−2, i.e., Rd = T , lead-
ing to bT � T 1−2/d = T 1/q .

4. Large and very large deviations lower bounds. The aim of this section
is to prove the lower bounds in Theorems 2 and 3. We have actually the following
result.

PROPOSITION 11. 1. Lower bound for IT .
Assume that d ≥ 3, q = d

d−2 , and T � bT � 1.

lim inf
T →∞

1

bT

logP [IT ≥ b
q
T ] ≥ − 1

C2
S(d)

.(36)

2. Lower bound for QT .
Assume that d = 4 and q = 2, or d = 3 and q = 3, and that 1 � bT � T .

lim inf
T →∞

1

bT

logP [QT ≥ b
q
T ] ≥ − q

C2
S(d)

.(37)

PROOF OF (36). Fix M > 0. Let T0 be such that for all T ≥ T0, T
bT

> M . For
T ≥ T0,

P [IT ≥ b
q
T ] ≥ P [IMbT

≥ b
q
T ] ≥ P

[∥∥∥∥ lMbT

MbT

∥∥∥∥
q

≥ 1

M

]
.

The function μ ∈ F �→ ‖μ‖q = supf ;‖f ‖q′=1
∑

x μ(x)f (x) is lower semicontin-
uous in τ -topology, so that ∀t > 0, {μ ∈ F ,‖μ‖q > t} is an open subset of F .
Therefore, ∀ε > 0,

lim inf
T →∞

1

MbT

logP

[∥∥∥∥ lMbT

MbT

∥∥∥∥
q

≥ 1

M

]

≥ lim inf
T →∞

1

MbT

logP

[∥∥∥∥ lMbT

MbT

∥∥∥∥
q

>
1 − ε

M

]

≥ − inf
{
‖∇f ‖2

2; ‖f ‖2 = 1,‖f ‖2
2q >

1 − ε

M

}
.

We have thus proved that ∀M > 0, ∀ε > 0,

lim inf
T →∞

1

bT

logP [IT ≥ b
q
T ] ≥ −Mρ3

(
1 − ε

M

)
,

where ρ3(y) := inf{‖∇f ‖2
2; ‖f ‖2

2q > y,‖f ‖2 = 1}. To end the proof of (36), it

remains to show that when q = d
d−2 , ∀y > 0,

inf
M>0

Mρ3(y/M) = y

C2
S(d)

.(38)



INTERSECTION LOCAL TIMES 947

But, if q = d
d−2 , ∀y > 0,

inf
M>0

Mρ3(y/M) = y inf
M>0

Mρ3(1/M)(39)

= y inf
M>0

inf
f

{
M‖∇f ‖2

2; ‖f ‖2 = 1,‖f ‖2
2q >

1

M

}
(40)

= y inf
f ;‖f ‖2=1

inf
M>0

{
M‖∇f ‖2

2;M >
1

‖f ‖2
2q

}
(41)

= y inf
f ;‖f ‖2=1

{‖∇f ‖2
2

‖f ‖2
2q

}
;(42)

= y

C2
S(d)

.(43) �

PROOF OF (37). The proof of (37) cannot be done as the proof of (36), since
the function (μ1, . . . ,μq) �→ ∑

x∈Zd μ1(x) · · ·μq(x) is not lower semicontinuous
in the product of τ -topology.

Let ε > 0 be fixed. Let h be a function approaching the infimum in the definition
of CS(d), i.e., h is such that

‖∇h‖2
2 ≤ ‖h‖2

2q

CS(d)2 (1 + ε), q = d

d − 2
.

Dividing h by its l2-norm if necessary, we may and we do assume that ‖h‖2 = 1.
Set η = 2(q+1)/qε1/q , and M = 1

(2−(1+η)q)1/q‖h‖2
2q

[ε is chosen small enough in

order that M is strictly positive; actually, one has to choose ε < ε0(q) = (21/q −
1)q2−(q+1)]. For T large enough, T ≥ MbT , and

P [QT ≥ b
q
T ] ≥ P [QMbT

≥ b
q
T ].

Assume that ∀i ∈ {1, . . . , q}, ‖ l
(i)
MbT
MbT

− h2‖q < η‖h‖2
2q . Then∣∣∣∣ QMbT

(MbT )q
− ‖h‖2q

2q

∣∣∣∣
=

∣∣∣∣∣
∑

x∈Zd

q∏
1

l
(i)
MbT

(x)

MbT

− h2q(x)

∣∣∣∣∣
≤ ∑

x∈Zd

q∑
j=1

(j−1∏
i=1

h2(x)

)∣∣∣∣ l
(j)
MbT

(x)

MbT

− h2(x)

∣∣∣∣
( q∏

l=j+1

l
(l)
MbT

(x)

MbT

)

≤
q∑

j=1

∥∥∥∥ l
(j)
MbT

MbT

− h2
∥∥∥∥
q

‖h‖2(j−1)
2q

q∏
l=j+1

∥∥∥∥ l
(l)
MbT

MbT

∥∥∥∥
q
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≤ η‖h‖2q
2q

q∑
j=1

(1 + η)q−j = η‖h‖2q
2q

(1 + η)q − 1

η

= [(1 + η)q − 1]‖h‖2q
2q .

Therefore, QMbT
≥ b

q
T Mq‖h‖2q

2q(2 − (1 + η)q) = b
q
T , by the choice of M .

Hence, for T large enough,

P [QT ≥ b
q
T ] ≥ P

[
∀i ∈ {1, . . . , q},

∥∥∥∥ l
(i)
MbT

MbT

− h2
∥∥∥∥
q

< η‖h‖2
2q

]
(44)

= P

[∥∥∥∥ lMbT

MbT

− h2
∥∥∥∥
q

< η‖h‖2
2q

]q

.

But,
∥∥∥∥ lMbT

MbT

− h2
∥∥∥∥
q

q

= ∑
x∈Zd

(
lMbT

(x)

MbT

− h2(x)

)q

= ∑
x∈Zd

q∑
j=0

(−1)q−jC
q
j

l
j
MbT

(x)

(MbT )j
h2(q−j)(x)

=
∥∥∥∥ lMbT

MbT

∥∥∥∥
q

q

+ (−1)q‖h‖2q
2q − Fq

(
lMbT

MbT

)
,

where the function Fq is defined by Fq(μ) = ∑q−1
j=1(−1)q+1−jC

q
j

∑
x μj (x) ×

h2(q−j)(x). Hence, for T large enough,

P [QT ≥ b
q
T ]1/q

(45)

≥ P

[
Fq

(
lMbT

MbT

)
>

∥∥∥∥ lMbT

MbT

∥∥∥∥
q

q

+ (
(−1)q − ηq)‖h‖2q

2q

]

≥ P

[
Fq

(
lMbT

MbT

)
>

∥∥∥∥ lMbT

MbT

∥∥∥∥
q

q

+ (
(−1)q − ηq)‖h‖2q

2q;
(46) ∥∥∥∥ lMbT

MbT

∥∥∥∥
q

q

<

(
1 + ηq

2

)
‖h‖2q

2q

]

≥ P

[
Fq

(
lMbT

MbT

)
>

(
1 + (−1)q − ηq

2

)
‖h‖2q

2q

]
(47)

− P

[∥∥∥∥ lMbT

MbT

∥∥∥∥
q

q

≥
(

1 + ηq

2

)
‖h‖2q

2q

]
.
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The second term is controlled by the large deviations upper bound for IT , and we
have

lim sup
T →∞

1

bT

logP

[∥∥∥∥ lMbT

MbT

∥∥∥∥
q

q

≥
(

1 + ηq

2

)
‖h‖2q

2q

]
(48)

≤ −M
(1 + ηq/2)1/q

C2
S(d)

‖h‖2
2q = − (1 + ηq/2)1/q

(2 − (1 + η)q)1/qC2
S(d)

,

by the choice of M .
On the other hand, the function μ ∈ F �→ Fq(μ) is lower semicontinuous in

τ -topology. Indeed:

• For d = 4 and q = 2, F2(μ) = 2
∑

x μ(x)h2(x) is continuous.
• For d = 3 and q = 3, F3(μ) = 3

∑
x μ2(x)h2(x) − 3

∑
x μ(x)h4(x) = 3 ×

supg;‖g‖2=1{
∑

x μ(x)h(x)g(x)}2 − 3
∑

x μ(x)h4(x) is lower semicontinuous.

Using the large deviations lower bound in F for
lMbT
MbT

, we get that

lim inf
T →∞

1

bT

logP

[
Fq

(
lMbT

MbT

)
>

(
1 + (−1)q − ηq

2

)
‖h‖2q

2q

]
(49)

≥ −M inf
{
‖∇g‖2

2; ‖g‖2 = 1,Fq(g
2) >

(
1 + (−1)q − ηq

2

)
‖h‖2q

2q

}
.

Note that:

• For d = 4 and q = 2, F2(h
2) = 2‖h‖4

4 > (1 + (−1)2 − η2

2 )‖h‖4
4.

• For d = 3 and q = 3, F3(h
2) = 0 > (1 + (−1)3 − η3

2 )‖h‖6
6.

Therefore, in any case,

lim inf
T →∞

1

bT

logP

[
Fq

(
lMbT

MbT

)
>

(
1 + (−1)q − ηq

2

)
‖h‖2q

2q

]

≥ −M‖∇h‖2
2 = − ‖∇h‖2

2

(2 − (1 + η)q)1/q‖h‖2
2q

(50)

≥ − 1 + ε

C2
S(d)(2 − (1 + η)q)1/q

,

by the choice of M and h. Putting (47), (48) and (50) together, we get that

1

q
lim inf
T →+∞

1

bT

logP [QT ≥ b
q
T ] ≥ −min(1 + ε; (1 + ηq/2)1/q)

(2 − (1 + η)q)1/qC2
S(d)

.(51)

But for ε ∈]0;1], (1 + ε)q = ∑q
k=0 Ck

qεk ≤ 1 + ε
∑q

k=1 Ck
q = 1 + ε(2q − 1) <

1 + ε2q = 1 + ηq

2 . We have thus proved that ∀ε ∈]0;1 ∧ ε0(q)[,
lim inf
T →+∞

1

bT

logP [QT ≥ b
q
T ] ≥ − q(1 + ε)

C2
S(d)(2 − (1 + η)q)1/q

.(52)
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(37) is then obtained by letting ε go to zero. �

5. Large deviations upper bound. The only thing that remains to prove now
is the upper bound in Theorem 3.

Let α > 0 and A > 0 to be chosen later. We take here

λ = α
T 1/q

T
; Rd = AT.

Let τ be an exponential time with parameter λ, independent on the random walk.
Exactly as in (16), ∀s > 0, ∀ε > 0,

exp(−αT 1/q)P [IT ≥ Ty]
≤ P [IR,τ ≥ Ty]

≤ E[(1 + Z0/s); ‖Z + s1‖2q,R ≥ √
2T 1/2q(y + ε)1/2q ]

P [‖Z + s1‖2q,R ≥ √
2T 1/2qε1/2q ](53)

≤ E

[(
1 + Z0

s

)(1+ε)/ε]ε/(1+ε)

× P [‖Z‖2q,R ≥ √
2T 1/2q(y + ε)1/2q − sRd/2q]1/(1+ε)

P [‖Z‖2q,R ≥ √
2T 1/2qε1/2q + sRd/2q] .

We now choose sRd/2q = √
2T 1/2qε1/2q , i.e., s = √

2A−1/2qε1/2q .

P [IT ≥ Ty]

≤ exp(αT 1/q)E

[(
1 + Z0

s

)(1+ε)/ε]ε/(1+ε)

(54)

× P [‖Z‖2q,R ≥ √
2T 1/2q((y + ε)1/2q − ε1/2q)]1/(1+ε)

P [‖Z‖2q,R ≥ 2
√

2T 1/2qε1/2q ] .

Using the fact that Z0 is a centered Gaussian variable with variance GR,λ(0,0),
we obtain that ∀ε > 0,

E

[(
1 + Z0

s

)(1+ε)/ε]ε/(1+ε)

≤ C(ε)

(
1 +

√
GR,λ(0,0)

s

)

≤ C(ε)
(
1 +

√
GR,λ(0,0)A1/2q)

.

But, λRd = αAT 1/q � 1, so that lim supT →∞ GR,λ(0,0) < ∞ by Lemma 10.
Therefore, ∀ε > 0, ∀α > 0, ∀A > 0,

lim sup
T →∞

1

T 1/q
logE

[(
1 + Z0

s

)(1+ε)/ε]ε/(1+ε)

= 0.
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Let us treat the numerator of the ratio appearing in the left-hand side of (54). Using
again that

MR,T = median(‖Z‖2q,R) ≤ 21/2qE

[∑
x

Z2q
x

]1/2q

≤ C(q)Rd/2qGR,λ(0,0)1/2

∼ C(q)A1/2qT 1/2qGd(0,0)1/2,

we conclude that there exists a constant C(q) such that ∀α > 0, ∀A > 0, for T

large enough, ∀ε > 0,

P
[‖Z‖2q,R ≥ √

2T 1/2q(
(y + ε)1/2q − ε1/2q)]

≤ P
[‖Z‖2q,R − MR,T ≥ √

2T 1/2q(
(y + ε)1/2q − ε1/2q − C(q)A1/2q)]

(55)

≤ 2 exp
(−T 1/qρ1(α,R,T )

(
(y + ε)1/2q − ε1/2q − C(q)A1/2q)2

+
)
.

But λR2 = αA2/d , and it follows from Lemma 9 that ∀α > 0, ∀A > 0, for ∀ε > 0,

lim sup
T →∞

1

T 1/q
logP

[‖Z‖2q,R ≥ √
2T 1/2q(

(m + y + ε)1/2q − ε1/2q)]
(56)

≤ −c(q)min(1, αA2/d)
(
(y + ε)1/2q − ε1/2q − C(q)A1/2q)2

+.

For the denominator in (54), using (27), (28) and part 1 of Lemma 7, we get that

lim inf
T →∞

1

T 1/q
logP

[‖Z‖2q,R ≥ 2
√

2T 1/2qε1/2q] ≥ −C(q)ε1/q .(57)

We have thus proved that ∀α > 0, ∀A > 0, for ∀ε > 0,

lim sup
T →∞

1

T 1/q
P [IT ≥ Ty]

≤ α + C(q)ε1/q − c(q)min(1, αA2/d)(58)

× (
(y + ε)1/2q − ε1/2q − C(q)A1/2q)2

+.

We send ε to zero and take α = A−2/d , to obtain that ∀A > 0,

lim sup
T →∞

1

T 1/q
P [IT ≥ Ty] ≤ A−2/d − c(q)

(
y1/2q − C(q)A1/2q)2

+.(59)

We now choose A such that C(q)A1/2q = 1
2y1/2q . ∀y > 0,

lim sup
T →∞

1

T 1/q
P [IT ≥ Ty] ≤ −c(q)(y1/q − y−2/d) ≤ −c(q)y1/q(60)

for y−2/d ≤ y1/q/2, that is, y > 2.
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