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ERGODIC THEORY, ABELIAN GROUPS AND POINT PROCESSES
INDUCED BY STABLE RANDOM FIELDS

BY PARTHANIL ROY1

Michigan State University

We consider a point process sequence induced by a stationary symmet-
ric α-stable (0 < α < 2) discrete parameter random field. It is easy to prove,
following the arguments in the one-dimensional case in [Stochastic Process.
Appl. 114 (2004) 191–210], that if the random field is generated by a dissi-
pative group action then the point process sequence converges weakly to a
cluster Poisson process. For the conservative case, no general result is known
even in the one-dimensional case. We look at a specific class of stable random
fields generated by conservative actions whose effective dimensions can be
computed using the structure theorem of finitely generated Abelian groups.
The corresponding point processes sequence is not tight, and hence needs to
be properly normalized in order to ensure weak convergence. This weak limit
is computed using extreme value theory and some counting techniques.

1. Introduction. Suppose that X := {Xt }t∈Zd is a stationary symmetric α-
stable (SαS) discrete-parameter random field. In other words, every finite linear
combination

∑k
i=1 ciXti+s follows an SαS distribution which does not depend on

s ∈ Zd . We consider the following sequence of point processes on [−∞,∞] \ {0}
Nn = ∑

‖t‖∞≤n

δ
b−1
n Xt

, n = 1,2,3, . . . ,(1.1)

induced by the random field X with an aptly chosen sequence of scaling constants
bn ↑ ∞. Here, δx denotes the point mass at x. We are interested in the weak con-
vergence of this point process sequence in the space M of Radon measures on
[−∞,∞] \ {0} equipped with the vague topology. This is important in extreme
value theory because a number of limit theorems for various functionals of SαS

random fields can be obtained by continuous mapping arguments on the associ-
ated point process sequence. See, for example, Resnick (1987) and Balkema and
Embrechts (2007) for a background on weak convergence of point processes and
its applications to extreme value theory. See also Neveu (1977), Kallenberg (1983)
and Resnick (2007).

Received December 2007; revised July 2009.
1Supported in part by NSF Grant DMS-03-03493 and NSF training grant “Graduate and Postdoc-

toral Training in Probability and Its Applications” at Cornell University and by the RiskLab of the
Department of Mathematics, ETH Zurich.

AMS 2000 subject classifications. Primary 60G55; secondary 60G60, 60G70, 37A40.
Key words and phrases. Stable process, random field, point process, random measure, weak con-

vergence, extreme value theory, ergodic theory, group action.

770

http://www.imstat.org/aop/
http://dx.doi.org/10.1214/09-AOP495
http://www.imstat.org
http://www.ams.org/msc/


POINT PROCESSES BASED ON STABLE FIELDS 771

If {Xt }t∈Zd is an i.i.d. collection of random variables with tails decaying like
those of a symmetric α stable distribution, then {bn} can be chosen as follows:

bn = nd/α.(1.2)

With the above choice, the sequence {Nn} converges weakly in the space M to a
Poisson random measure, whose intensity blows up near zero (this is the reason
why we exclude zero from the state space) due to clustering of normalized observa-
tions. See, once again, Resnick (1987). Cluster Poisson processes are obtained as
weak limits also for the point processes induced by a stationary stochastic process
with the marginal distributions having balanced regularly varying tail probabilities
provided the process is a moving average [see Davis and Resnick (1985)] or it sat-
isfies some mild mixing conditions [see Davis and Hsing (1995)]. In these works,
weak limits of various functionals of the process were computed from the point
process convergence by clever use of the continuous mapping theorem. See also
Mori (1977) for various possible weak limits of a two-dimensional point process
induced by strong mixing sequences.

When the dependence structure is not necessarily local or mild, finding a suit-
able scaling sequence and computation of the weak limit both become challenging.
As in the one-dimensional case in Resnick and Samorodnitsky (2004), we will ob-
serve that for point processes induced by stable random fields the choice of {bn}
depends on the heaviness of the tails of the marginal distributions as well as on
the length of memory. In the short memory case, the choice (1.2) of normalizing
constants is appropriate whereas in the long memory case, it is not. Furthermore,
the observations may cluster so much due to long memory that one may need
to normalize the sequence {Nn} itself to ensure weak convergence. This phenom-
enon was also observed in the one-dimensional case in Resnick and Samorodnitsky
(2004).

This paper is organized as follows. We present some background materials on
stationary symmetric α-stable random fields in Section 2. Section 3 deals with the
point processes associated with dissipative actions, that is, point processes based
on mixed moving averages. In Section 4, we state our main result on the weak
convergence of the point process sequence induced by a class of random fields
generated by conservative actions whose effective dimensions can be computed
using group theory. This result is proved in Section 5 using extreme value theory
and counting techniques. Finally, an example is discussed in Section 6. Throughout
this paper, we use the notation cn ∼ dn to mean that cn/dn converges to a positive
number as n → ∞.

2. Preliminaries. It is well known that every SαS random field X has an in-
tegral representation of the form

Xt
d=

∫
S
ft (s)M(ds), t ∈ Zd,(2.1)
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where M is an SαS random measure on some standard Borel space (S, S) with
σ -finite control measure μ and ft ∈ Lα(S,μ) for all t ∈ Zd . See, for example,
Theorem 13.1.2 of Samorodnitsky and Taqqu (1994). The representation (2.1) is
called an integral representation of {Xt }. Without loss of generality, we can also
assume that the family {ft } satisfies the full support assumption

Support(ft , t ∈ Zd) = S,(2.2)

because we can always replace S by S0 = Support(ft , t ∈ Zd) in (2.1).
For a stationary {Xt }, using the fact that the action of the group Zd on {Xt }t∈Zd

by translation of indices preserves the law together with certain rigidity properties
of the spaces Lα , α < 2, it has been shown in Rosiński (1995) (for d = 1) and
Rosiński (2000) (for a general d) that there always exists an integral representation
of the form

ft (s) = ct (s)

(
dμ ◦ φt

dμ
(s)

)1/α

f ◦ φt(s), t ∈ Zd,(2.3)

where f ∈ Lα(S,μ), {φt }t∈Zd is a nonsingular Zd -action on (S,μ) (i.e., each
φt :S → S is measurable, φ0 is the identity map on S, φt1+t2 = φt1 ◦ φt2 for all
t1, t2 ∈ Zd and each μ ◦φ−1

t is an equivalent measure of μ), and {ct }t∈Zd is a mea-
surable cocycle for {φt } taking values in {−1,+1} [i.e., each ct is a measurable
map ct :S → {−1,+1} such that for all t1, t2 ∈ Zd , ct1+t2(s) = ct2(s)ct1(φt2(s)) for
μ-a.a. s ∈ S].

Conversely, if {ft } is of the form (2.3) then {Xt } defined by (2.1) is a stationary
SαS random field. We will say that a stationary SαS random field {Xt }t∈Zd is gen-
erated by a nonsingular Zd -action {φt } on (S,μ) if it has an integral representation
of the form (2.3) satisfying (2.2).

A measurable set W ⊆ S is called a wandering set for the nonsingular Zd -action
{φt }t∈Zd (as defined above) if {φt (W) : t ∈ Zd} is a pairwise disjoint collection.
Proposition 1.6.1 of Aaronson (1997) gives a decomposition of S into two dis-
joint and invariant parts as follows: S = C ∪ D where D = ⋃

t∈Zd φt (W) for some
wandering set W ⊆ S, and C has no wandering subset of positive μ-measure. D is
called the dissipative part, and C is called the conservative part of the action. The
action {φt } is called conservative if S = C and dissipative if S = D. The reader is
suggested to read Aaronson (1997) and Krengel (1985) for various ergodic theoret-
ical notions used in this paper. Following the notation of Rosiński (1995), Rosiński
(2000) and Roy and Samorodnitsky (2008), we can obtain the following unique (in
law) decomposition of the random field X:

Xt
d=

∫
C
ft (s)M(ds) +

∫
D

ft (s)M(ds) =: XC
t + XD

t , t ∈ Zd,(2.4)

into a sum of two independent random fields XC and XD generated by conserv-
ative and dissipative Zd -actions, respectively. This decomposition implies that it
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is enough to study stationary SαS random fields generated by conservative and
dissipative actions.

Stationary stable random fields generated by conservative actions are expected
to have longer memory than those generated by dissipative actions because a con-
servative action “does not wander too much,” and so the same values of the random
measure M in (2.3) contribute to observations Xt far separated in t . The length of
memory of stable random fields determines, among other things, the rate of growth
of the partial maxima sequence

Mn := max‖t‖∞≤n
|Xt |, n = 0,1,2, . . . .(2.5)

If Xt is generated by a conservative action, the partial maxima sequence (2.5)
grows at a slower rate because longer memory prevents erratic changes in Xt even
when t becomes “large.” More specifically,

n−d/αMn ⇒
{

cXZα, if X is generated by a dissipative action,
0, if X is generated by a conservative action,

(2.6)

weakly as n → ∞. Here, Zα is a standard Frechét type extreme value random
variable with distribution function

P(Zα ≤ x) = e−x−α

, x > 0,(2.7)

and cX is a positive constant depending on the random field X. The above di-
chotomy, which was established in the d = 1 case by Samorodnitsky (2004) and in
the general case by Roy and Samorodnitsky (2008), implies that the choice of scal-
ing sequence (1.2) is not appropriate in the conservative case since all the points
in the sequence {Nn} will be driven to zero by this normalization. On the other
hand, we will see in the next section that (1.2) is indeed a good choice when the
underlying action is dissipative.

3. The dissipative case. Assume, in this section, that X is a stationary SαS

discrete parameter random field generated by a dissipative Zd -action. In this case,
X has the following mixed moving average representation:

X d=
{∫

W×Zd
f (v, t + s)M(dv, ds)

}
t∈Zd

,(3.1)

where f ∈ Lα(W × Zd, ν ⊗ ζ ), ζ is the counting measure on Zd , ν is a σ -finite
measure on a standard Borel space (W, W ), and M is a SαS random measure on
W ×Zd with control measure ν ⊗ ζ . Mixed moving averages were first introduced
by Surgailis et al. (1993). The above representation was established in the d = 1
case by Rosiński (1995) and in the general case by Roy and Samorodnitsky (2008)
based on a previous work by Rosiński (2000).

Suppose να is the symmetric measure on [−∞,∞] \ {0} given by

να(x,∞] = να[−∞,−x) = x−α, x > 0.
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Without loss of generality, we assume that the original stable random field is of the
form given in (3.1). Let

N = ∑
i

δ(ji ,vi ,ui) ∼ PRM(να ⊗ ν ⊗ ζ )(3.2)

be a Poisson random measure on ([−∞,∞] \ {0}) × W × Zd with mean measure
να ⊗ ν ⊗ ζ . Then from the assumption above, it follows that X has the following
series representation:

Xt = Cα
1/α

∑
i

jif (vi, ui + t), t ∈ Zd,(3.3)

where Cα is the stable tail constant given by

Cα =
(∫ ∞

0
x−α sinx dx

)−1

=

⎧⎪⎪⎨
⎪⎪⎩

1 − α

�(2 − α) cos (πα/2)
, if α �= 1,

2

π
, if α = 1.

(3.4)

See, for example, Samorodnitsky and Taqqu (1994).
It follows from (2.6) that the partial maxima sequence (2.5) grows exactly at the

rate nd/α . As expected, bn ∼ nd/α turns out to be the right normalization for the
point process (1.1) in this case. The following theorem, which is an extension of
Theorem 3.1 in Resnick and Samorodnitsky (2004) to the d > 1 case, states that
with this choice of {bn} the limiting random measure is a cluster Poisson random
measure even though the dependence structure is no longer weak or local. The
proof is parallel to the one-dimensional case, and hence omitted.

THEOREM 3.1. Let X be the mixed moving average (3.1), and define the
point process Nn = ∑

‖t‖∞≤n δ(2n)−d/αXt
, n = 1,2, . . . . Then Nn ⇒ N∗ as n → ∞,

weakly in the space M, where N∗ is a cluster Poisson random measure with rep-
resentation

N∗ =
∞∑
i=1

∑
t∈Zd

δjif (vi ,t),(3.5)

where ji , vi are as in (3.2). Furthermore, N∗ is Radon on [−∞,∞] \ {0} with
Laplace functional (g ≥ 0 continuous with compact support)

ψN∗(g) = E
(
e−N∗(g))

(3.6)

= exp
{
−

∫ ∫
([−∞,∞]\{0})×W

(
1 − e−∑

t∈Zd g(xf (v,t)))να(dx)ν(dv)

}
.

REMARK 3.2. The above result is true as long as the underlying action is not
conservative because Theorem 4.3 in Roy and Samorodnitsky (2008) ensures that
the conservative part of the random field [see (2.4)] will be killed by the normal-
ization (1.2) and hence the mixed moving average part will determine the conver-
gence.
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4. Point processes and group theory. This section deals with the longer
memory case, that is, the random field X is now generated by a conservative ac-
tion. In this case, we know from (2.6) that the partial maxima sequence (2.5) of
the random field grows at a rate slower than nd/α . Hence, (1.2) is inappropriate
in this case. In general, there may or may not exist a normalizing sequence {bn}
that ensures weak convergence of {Nn}. See Resnick and Samorodnitsky (2004)
for examples of both kinds in the d = 1 case.

We will work with a specific class of stable random fields generated by con-
servative actions for which the effective dimension p ≤ d is known. For this class
of random fields, the point process {Nn} will not converge weakly to a nontrivial
limit for any choice of the scaling sequence. Even for the most appropriate choice
of {bn}, the associated point process will not even be tight (see Remark 4.4 below)
because of the clustering effect of extreme observations due to longer memory of
the random field. Hence, in order to ensure weak convergence, we have to normal-
ize the point process sequence {Nn} in addition to using a normalizing sequence
{bn} different from (1.2) for the points. This phenomenon was also observed in
Example 4.2 in the one-dimensional case in Resnick and Samorodnitsky (2004).

Without loss of generality, we may assume that the original stable random
field is of the form given in (2.1) and (2.3). Following the approach of Roy and
Samorodnitsky (2008), we view the underlying action as a group of invertible
nonsingular transformations on (S,μ) and use some basic counting arguments to
analyze the point process {Nn}. We start with introducing the appropriate notation.

Consider A := {φt : t ∈ Zd} as a subgroup of the group of invertible nonsingular
transformations on (S,μ) and define a group homomorphism

� : Zd → A

by �(t) = φt for all t ∈ Zd . Let K := Ker(�) = {t ∈ Zd :φt = 1S}, where 1S

denote the identity map on S. Then K is a free Abelian group and by the first
isomorphism theorem of groups [see, e.g., Lang (2002)] we have

A � Zd/K.

Hence, by the structure theorem for finitely generated Abelian groups [see Theo-
rem 8.5 in Chapter I of Lang (2002)], we get

A = F̄ ⊕ N̄,

where F̄ is a free Abelian group and N̄ is a finite group. Assume rank(F̄ ) = p ≥ 1
and |N̄ | = l. Since F̄ is free, there exists an injective group homomorphism

� : F̄ → Zd

such that � ◦ � = 1F̄ . Let F = �(F̄ ). Then F is a free subgroup of Zd of rank p.
In particular, p ≤ d .
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The rank p is the effective dimension of the random field, giving more precise
information on the choice of normalizing sequence {bn} than the nominal dimen-
sion d . Theorem 5.4 in Roy and Samorodnitsky (2008) yields a better estimate on
the rate of growth of the partial maxima (2.5) than (2.6), namely

n−p/αMn ⇒
{

c′
XZα, if {φt }t∈F is a dissipative action,

0, if {φt }t∈F is a conservative action.
(4.1)

Here, c′
X is another positive constant depending on X and Zα is as in (2.7). Hence,

we can guess that bn ∼ np/α is a legitimate choice of the scaling sequence provided
{φt }t∈F is dissipative.

It is easy to check that the sum F + K is direct and

Zd/G � N̄,(4.2)

where G = F ⊕ K . Let x1 + G,x2 + G, . . . , xl + G be all the cosets of G in Zd .
We give a group structure to

H :=
l⋃

k=1

(xk + F)(4.3)

as follows. For all u1, u2 ∈ H , there exists unique u ∈ H such that (u1 +u2)−u ∈
K . We define this u to be u1 ⊕ u2. Clearly, H becomes a countable Abelian group
isomorphic to Zd/K under the operation ⊕ (“addition modulo K”).

Define a map N :H → {0,1, . . .} as,

N(u) := min{‖u + v‖∞ :v ∈ K}.
It is easy to check that N(·) satisfies “symmetry”: for all u ∈ H ,

N(u−1) = N(u),(4.4)

where u−1 is the inverse of u in (H,⊕), and the “triangle inequality”: for all
u1, u2 ∈ H ,

N(u1 ⊕ u2) ≤ N(u1) + N(u2).(4.5)

Define

Hn = {u ∈ H :N(u) ≤ n}.(4.6)

It has been shown in Roy and Samorodnitsky (2008) that the Hn’s are finite and

|Hn| ∼ np.(4.7)

Also, clearly Hn ↑ H .
If {φt }t∈F is a dissipative group action, then we get a dissipative H -action

{ψu}u∈H defined by

ψu = φu for all u ∈ H.(4.8)
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See, once again, Roy and Samorodnitsky (2008). In this case, if we further assume
that the cocycle in (2.3) satisfies

ct ≡ 1 for all t ∈ K,(4.9)

then it will follow that {cu}u∈H is an H -cocycle for {ψu}u∈H , i.e., for all u1,
u2 ∈ H ,

cu1⊕u2(s) = cu1(s)cu2(ψu1(s)) for μ-a.a. s ∈ S.

Hence, the subfield {Xu}u∈H is H -stationary and is generated by the dissipative
action {ψu}u∈H . This implies, in particular, that there is a standard Borel space
(W, W ) with a σ -finite measure ν on it such that

Xu
d=

∫
W×H

h(w,u ⊕ s)M ′(dw,ds), u ∈ H,(4.10)

for some h ∈ Lα(W ×H,ν ⊗ τ), where τ is the counting measure on H , and M ′ is
a SαS random measure on W × H with control measure ν ⊗ τ [see, for example,
Remark 2.4.2 in (2008)].

Once again, we may assume, without loss of generality, that the original subfield
{Xu}u∈H is given in the form (4.10). Let

N ′ = ∑
i

δ(ji ,vi ,ui) ∼ PRM(να ⊗ ν ⊗ τ)(4.11)

be a Poisson random measure on ([−∞,∞] \ {0}) × W × H with mean measure
να ⊗ ν ⊗ τ . The following series representation holds in parallel to (3.3):

Xu = C1/α
α

∞∑
i=1

jih(vi, ui ⊕ u), u ∈ H,(4.12)

where Cα is the stable tail constant (3.4).
Let rank(K) = q ≥ 1 (we can also allow q = 0 provided we follow the conven-

tion mentioned in Remark 4.2). Note that from (4.2) it follows that q = d − p.
Choose a basis {ū1, ū2, . . . , ūp} of F and a basis {v̄1, v̄2, . . . , v̄q} of K . Let U be
the d × p matrix with ūi as its ith column and V be the d × q matrix with v̄j as
its j th column. Define

C = {y ∈ Rp: there exists λ ∈ Rq such that ‖Uy + V λ‖∞ ≤ 1}.
Let |C| denote the p-dimensional volume of C, and for y ∈ C denote by V(y) the
q-dimensional volume of the polytope

Py := {λ ∈ Rq :‖Uy + V λ‖∞ ≤ 1}.
Define, for t ∈ H ,

m(t, n) := |[−n1, n1] ∩ (t + K)|.(4.13)
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Here, |B| denotes the cardinality of the finite set B , 1 = (1,1, . . . ,1) ∈ Zd , and for
u = (u(1), u(2), . . . , u(d)) and v = (v(1), v(2), . . . , v(d)),

[u, v] := {(
t (1), t (2), . . . , t (d)) ∈ Zd :u(i) ≤ t (i) ≤ v(i) for all 1 ≤ i ≤ d

}
.

The following result, which is an extension of Theorem 3.1 (see Remark 4.2 be-
low), states that the weak limit of properly scaled {Nn} is a random measure which
is not a point process.

THEOREM 4.1. Suppose {φt }t∈F is a dissipative group action and (4.9) holds.
Let Ñn = n−q ∑

‖t‖∞≤n δ(cn)−p/αXt
, n = 1,2, . . . , where c = (l|C|)1/p . Then Ñn ⇒

Ñ∗ weakly in M, where Ñ∗ is a random measure with the following representation:

Ñ∗ =
∞∑
i=1

∑
u∈H

V(ξi)δjih(vi ,u),(4.14)

where {ji} and {vi} are as in (4.11), {ξi} is a sequence of i.i.d. p-dimensional
random vectors uniformly distributed in C independent of {ji} and {vi}, and V
is the continuous function defined on C as above. Furthermore, Ñ∗ is Radon on
[−∞,∞] \ {0} with Laplace functional (g ≥ 0 continuous with compact support)

ψ
Ñ∗(g) = E

(
e−Ñ∗(g))

= exp
{
− 1

|C|
∫
C

∫
|x|>0

∫
W

(
1 − e−V(y)

∑
w∈H g(xh(v,w)))(4.15)

ν(dv)να(dx) dy

}
.

REMARK 4.2. In the above theorem, we can also allow q to be equal to 0 pro-
vided we follow the convention R0 = {0}, which is assumed to have 0-dimensional
volume equal to 1. With these conventions, Theorem 4.1 reduces to Theorem 3.1
when q = 0. Also, by a reasoning similar to Remark 3.2 and using Theorem 5.4
in Roy and Samorodnitsky (2008), one can extend this result to the case when
{φt }t∈F is not conservative.

REMARK 4.3 (Due to Jan Rosiński). Suppose that {φt }t∈Zd in (2.3) is mea-
sure-preserving. Define S̃ := {−1,1} × S and μ̃ := δ−1+δ1

2 ⊗ μ. Then ψt(ε, s) :=
(εct (s), φt (s)), t ∈ Zd , is a measure-preserving action on S̃ and

Xt
d=

∫
S̃
f̃ (ψt (ε, s))M̃(dε, ds), t ∈ Zd,

where f̃ (ε, s) := εf (s) ∈ Lα(S̃, μ̃) and M̃ is an SαS random measure on S̃ with
control measure μ̃. This means, in particular, that (4.9) holds. Since all the known
stationary SαS random fields are generated by actions that preserve the under-
lying measure (or an equivalent measure), it follows that (4.9) is not at all a big
restriction.
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REMARK 4.4. Note that the above theorem together with Lemma 3.20 in
Resnick (1987) implies that the sequence of point process (1.1) with the choice
bn ∼ np/α is not tight and hence does not converge weakly in M. Furthermore,
{Nn} will not converge weakly to a nontrivial limit for any other choice of nor-
malizing sequence {bn}. All the points of {Nn} will be driven to zero if bn grows
faster than np/α . This follows from (4.1), which also implies that if we select bn to
grow slower than np/α then we will see an accumulation of mass at infinity. Only
bn ∼ np/α places the points at the right scale, but they repeat so much due to long
memory, that the point process itself has to be normalized by nq (the order of the
cluster sizes) to ensure weak convergence.

5. Proof of Theorem 4.1. The major steps of the proof of Theorem 4.1 are
similar to those of the proof of Theorem 3.1 in Resnick and Samorodnitsky (2004).
However, Theorem 4.1 needs some counting which is taken care of mostly by the
following lemma about C, V(y) and m(t, n) defined in Section 4.

LEMMA 5.1. With the notation introduced above, we have:

(i) C is compact and convex.
(ii) V(y) is a continuous function of y.

(iii) For all 1 ≤ k ≤ l, the functions mk,n :C → R defined by

mk,n(y) := m(xk + ∑p
i=1[nyi]ui, n)

nq
, n = 1,2, . . .

[y = (y1, . . . , yp)] are uniformly bounded on C and converge (as n → ∞) to V(y)

for all y ∈ C.
(iv) There is a constant κ0 > 0 such that m(t, n)/nq ≤ κ0 for all t ∈ H and for

all n ≥ 1. Also,

1

np

∑
u∈Hn

m(u,n)

nq
→ l

∫
C

V(y) dy < ∞

as n → ∞. Here, Hn is as in (4.6).

PROOF. (i) Let W = [U :V ] and z =
[

y
λ

]
. Then C is a projection of the closed

and convex set

P := {z ∈ Rp+q :‖Wz‖∞ ≤ 1}.
To complete the proof of part (i) it is enough to establish that P is bounded. To
this end note that the columns of W are independent over Z and hence over Q

which means that there is a (p + q) × d matrix Z over Q such that ZW = Ip+q ,
the identity matrix of order p + q . From the string of inequalities (for z ∈ P ),

‖z‖∞ = ‖ZWz‖∞ ≤ ‖Z‖∞‖Wz‖∞ ≤ ‖Z‖∞
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the boundedness of P follows.
(ii) Take {y(n)} ⊆ C such that y(n) → y. Fixing an integer m ≥ 1 we get that for

large enough n, ‖y(n) − y‖ ≤ 1
m

, and hence{
λ ∈ Rq :‖Uy + V λ‖∞ ≤ 1 − ‖U‖∞

m

}

⊆ Py(n) ⊆
{
λ ∈ Rq :‖Uy + V λ‖∞ ≤ 1 + ‖U‖∞

m

}
.

First, taking the lim sup (and lim inf) as n → ∞ and then taking the limit as
m → ∞ we get that

V(y) ≤ lim inf
n→∞ V

(
y(n)) ≤ lim sup

n→∞
V

(
y(n)) ≤ V(y),

which proves part (ii).
(iii) Fix 1 ≤ k ≤ l. Let L = max1≤k≤l‖xk‖∞. We start by showing that for all

y ∈ C

mk,n(y) → V(y)(5.1)

as n → ∞. Let

Bn :=
{
ν ∈ Zq :

∥∥∥∥∥xk +
p∑

i=1

[nyi]ūi + V ν

∥∥∥∥∥∞
≤ n

}
, n ≥ 1.

Since the columns of V are linearly independent over Z, we have

|Bn| =
∣∣∣∣∣[−n1, n1] ∩

(
xk +

p∑
i=1

[nyi]ūi + K

)∣∣∣∣∣ = nqmk,n(y).(5.2)

Define

Cm :=
{
λ ∈ Rq :‖Uy + V λ‖∞ ≤ 1 − 1

m

( p∑
i=1

‖ūi‖∞ + L

)}
, m ≥ 1.

We first fix m ≥ 1 and claim that for all n ≥ m

Zq ∩ nCm ⊆ Zq ∩ nCn ⊆ Bn.(5.3)

The first inclusion is obvious. To prove the second one, take

ν̃ ∈ Zq ∩ nCn =
{
ν ∈ Zq :

∥∥∥∥∥
p∑

i=1

nyiūi + V ν

∥∥∥∥∥∞
≤ n −

p∑
i=1

‖ūi‖∞ − L

}

and observe that∥∥∥∥∥xk +
p∑

i=1

[nyi]ūi + V ν̃

∥∥∥∥∥∞

≤ ‖xk‖∞ +
∥∥∥∥∥

p∑
i=1

nyiūi + V ν̃

∥∥∥∥∥∞
+

p∑
i=1

‖ūi‖∞ ≤ n.
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It follows from (5.3) and (5.2) that

|Zq ∩ nCm|
nq

≤ |Bn|
nq

= mk,n(y)(5.4)

for all n ≥ m. Since Cm is a rational polytope (i.e., a polytope whose vertices have
rational coordinates) the left-hand side of (5.4) converges to Volume(Cm), the q-
dimensional volume of Cm by Theorem 1 of De Loera (2005). Hence, (5.4) yields

Volume(Cm) ≤ lim inf
n→∞ mk,n(y).

Now taking another limit as m → ∞, we get

V(y) ≤ lim inf
n→∞ mk,n(y)(5.5)

since Cm ↑ Py . Defining another sequence of rational polytopes

C′
m :=

{
λ ∈ Rq :‖Uy + V λ‖∞ ≤ 1 + 1

m

( p∑
i=1

‖ūi‖∞ + L

)}
, m ≥ 1,

and observing that C ′
m ↓ Py as m → ∞ we can conclude using a similar argument

that

lim sup
n→∞

mk,n(y) ≤ V(y).(5.6)

(5.1) follows from (5.5) and (5.6).
To establish the uniform boundedness let R := supy∈C‖y‖∞ < ∞ by part (i).

Once again fixing y ∈ C observe that for C′
1 defined above, we have

C′
1 ⊆

{
λ ∈ Rq :‖V λ‖∞ ≤ 1 +

p∑
i=1

‖ūi‖∞ + L + R‖U‖∞
}

=: C′,

which is another rational polytope. Hence,

mk,n(y) ≤ |Zq ∩ nC′
1|

nq
≤ |Zq ∩ nC′|

nq

from which the uniform boundedness follows by another application of Theorem 1
of De Loera (2005).

(iv) To establish this part, we start by proving two set inclusions which will be
useful once more later in this section. For 1 ≤ k ≤ l and n ≥ 1, define

Fk,n = {u ∈ xk + F : there exists v ∈ K such that u + v ∈ [−n1, n1]}
and

Q(k)
n = {α ∈ Zp :xk + Uα ∈ Fk,n}.
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Clearly,

Hn =
l⋃

k=1

Fk,n.(5.7)

Let L = max1≤k≤l‖xk‖∞ as before and L′ = L+∑p
i=1‖ui‖∞ +∑q

j=1‖vj‖∞. We
claim that for all n > L′,{([(n − L′)y1], . . . , [(n − L′)yp]) :y ∈ C

}
(5.8)

⊆ Q(k)
n ⊆ {([(n + L)y1], . . . , [(n + L)yp]) :y ∈ C

}
.

To prove the first inclusion, let y ∈ C. Find λ ∈ Rq be such that

‖Uy + V λ‖∞ ≤ 1.

Then we have∥∥∥∥∥xk +
p∑

i=1

[(n − L′)yi]ūi +
q∑

j=1

[(n − L′)λj ]v̄j

∥∥∥∥∥∞

≤ L + (n − L′)
∥∥∥∥∥

p∑
i=1

yiūi +
q∑

j=1

λj v̄j

∥∥∥∥∥∞
+

p∑
i=1

‖ūi‖∞ +
q∑

j=1

‖v̄j‖∞ ≤ n

proving xk + ∑p
i=1[(n − L′)yi]ūi ∈ Fk,n and hence the first inclusion in (5.8). The

second one is easy. If α ∈ Q
(k)
n , then for some β ∈ Zq

‖xk + Uα + Vβ‖∞ ≤ n,

and hence

‖Uα + Vβ‖∞ ≤ n + L,

which yields y = (1/(n + L))α ∈ C and establishes the second set inclusion
in (5.8).

To prove the uniform boundedness in part (iv), we use (5.8) as follows:

sup
n≥1

sup
t∈H

m(t, n)

nq

= sup
n≥1

max
t∈Hn

m(t, n)

nq

≤ max
1≤k≤l

sup
n≥1

max
α∈Q

(k)
n

m(xk + Uα,n + L)

nq

≤ max
1≤k≤l

sup
n≥1

sup
y∈C

(
1 + L

n

)q m(xk + ∑p
i=1[(n + L)yi]ūi , n + L)

(n + L)q
,
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and this is bounded above by

κ0 = (1 + L)q max
1≤k≤l

sup
n≥1

sup
y∈C

mk,n(y),(5.9)

which is finite by part (iii).
Now we prove the convergence in part (iv). Because of (5.7), it is enough to

show that for all 1 ≤ k ≤ l

1

np

∑
u∈Fk,n

m(u,n)

nq
→

∫
C

V(y) dy (n → ∞).(5.10)

To prove (5.10), we use (5.8) once again to get the following bound:

1

np

∑
u∈Fk,n

m(u,n)

nq

≤
(

n + L

n

)p 1

(n + L)p

∑
α∈Q

(k)
n

m(xk + Uα,n + L)

nq

≤
(

n + L

n

)p+q ∫
C

m(xk + ∑p
i=1[(n + L)yi]ūi , n + L)

(n + L)q
dy + o(1)

from which using part (iii) and the dominated convergence theorem we get

lim sup
n→∞

1

np

∑
u∈Fk,n

m(u,n)

nq
≤

∫
C

V(y) dy.

Similarly, we can also prove

lim inf
n→∞

1

np

∑
u∈Fk,n

m(u,n)

nq
≥

∫
C

V(y) dy,

(5.10) follows from the above two inequalities. This completes the proof of Lem-
ma 5.1. �

With the above lemma, we are now well prepared to prove Theorem 4.1. Fol-
lowing Resnick and Samorodnitsky (2004), we start with the Laplace functional
of Ñ∗,

ψ
Ñ∗(g) = E

(
e−Ñ∗(g))

= E exp

{
−

∞∑
i=1

∑
u∈H

V(ξi)g(jih(vi, u))

}
,

which can be shown to be equal to (4.15) using∑
i

δ(ji ,vi ,ξi ) ∼ PRM
(
να ⊗ ν ⊗ 1

|C| Leb|C
)
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and by the argument used in the computation of the Laplace functional of the
limiting point process in Theorem 3.1 of Resnick and Samorodnitsky (2004).

To prove that Ñ∗ is Radon, we take η(x) = I[−∞,−δ]∪[δ,∞], δ > 0 and look at

E(Ñ∗(η)) = E

∞∑
i=1

∑
u∈H

V(ξi)η(jih(vi, u))

(5.11)

≤ ‖V‖∞E

∞∑
i=1

∑
u∈H

η(jih(vi, u)),

where ‖V‖∞ := supy∈C V(y) < ∞ by Lemma 5.1. It is enough to show that

E(Ñ∗(η)) < ∞ which follows from (5.11) by the exact same argument used to
establish that the limiting point process in Theorem 3.1 of Resnick and Samorod-
nitsky (2004) is Radon.

Observe that because of (4.9) and the assumption that the original stable random
field is of the form given in (2.1) and (2.3) it follows that for all u ∈ H and for all
v ∈ K

Xu+v
a.s.= Xu.

As a consequence, Ñn can also be written as

Ñn = ∑
t∈Hn

m(t, n)

nq
δ(cn)−p/αXt

,

where m(t, n) is as in (4.13) and Hn is as in (4.6). The weak convergence of Ñn

is established in two steps in parallel to the proof of Theorem 3.1 in Resnick and
Samorodnitsky (2004) as follows: we first show that

Ñ (2)
n :=

∞∑
i=1

∑
t∈Hn

m(t, n)

nq
δ(cn)−p/αjih(vi ,ui⊕t)

converges to Ñ∗ weakly in M and then show that Ñn must have the same weak
limit as Ñ

(2)
n .

We start by proving the weak convergence of Ñ
(2)
n . The scaling property of να

yields the Laplace functional of Ñ
(2)
n (g ≥ 0 continuous with compact support) as

E
(
e−Ñ

(2)
n (g))

= exp
{
− 1

(cn)p

∫
|x|>0

∫
W

∑
u∈H

(
1 − e−1/nq ∑

t∈Hn
m(t,n)g(xh(v,u⊕t)))(5.12)

ν(dv)να(dx)

}
,
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which needs to be shown to converge to (4.15). As in Resnick and Samorodnitsky
(2004), we first assume that h is compactly supported, that is, for some positive
integer M

h(v,u)IW×Hc
M

(v,u) ≡ 0.(5.13)

Recall that each HM is finite and HM ↑ H as M → ∞. Using properties (4.4),
(4.5) and the compact support assumption (5.13), the integral in (5.12) becomes

1

(cn)p

∫ ∫ ∑
u∈Hn+M

(
1 − exp

(
− ∑

t∈Hn

m(t, n)

nq
g
(
xh(v,u ⊕ t)

)))
ν(dv)να(dx),

which, by a change of variable, equals

1

(cn)p

∫ ∫ ∑
u∈Hn+M

(
1 − exp

(
− ∑

w∈A′
n

m(w � u,n)

nq
g(xh(v,w))

))

ν(dv)να(dx) =: In.

Here, w � u := w ⊕ u−1, u−1 is the inverse of u in (H,⊕), and A′
n = HM ∩

{w′ :w′ � u ∈ Hn}.
We claim that for all n > M

m(u−1, n − M) ≤ m(w � u,n) ≤ m(u−1, n + M).(5.14)

The first inequality follows, for example, because

τ ∈ [−(n − M)1, (n − M)1] ∩ (u−1 + K)

if and only if

τ + w ∈ [−n1, n1] ∩ (
(w � u) + K

)
.

Similarly, we can prove the second inequality in (5.14).
We bound In using (5.14) by

1

(cn)p

∫ ∫ ∑
u∈Hn+M

(
1−exp

(
− ∑

w∈A′
n

m(u−1, n + M)

nq
g(xh(v,w))

))
ν(dv)να(dx),

which we claim to be equal to

= 1

(cn)p

∫ ∫ ∑
u∈Hn+M

(
1 − exp

(
− ∑

w∈A′
n

m(u−1, n)

nq
g(xh(v,w))

))

ν(dv)να(dx) + o(1)(5.15)

=: I ′
n + o(1).
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To prove this claim, observe that using the inequality |e−a −e−b| ≤ |a−b|, (a, b >

0) the difference of the two integrals above can be bounded by

1

(cn)p

∑
u∈Hn+M

(
m(u−1, n + M) − m(u−1, n)

nq

)

×
∫ ∫ ∑

w∈HM

g(xh(v,w))ν(dv)να(dx),

which needs to be shown to converge to 0 as n → ∞. This is easy because
g ≤ CI[−∞,−δ]∪[δ,∞] for some C,δ > 0 (since g ≥ 0 has compact support on
[−∞,∞] \ {0}) which implies∫ ∫ ∑

w∈HM

g(xh(v,w))ν(dv)να(dx)

≤ C

∫ ∫ ∑
w∈HM

I(|x|≥δ/|h(v,w)|)να(dx)ν(dv)(5.16)

= Cδ−α
∫
W

∑
w∈HM

|h(v,w)|αν(dv) < ∞

and Lemma 5.1 together with (4.7) implies∣∣∣∣ 1

(cn)p

∑
u∈Hn+M

(
m(u−1, n + M) − m(u−1, n)

nq

)∣∣∣∣
= 1

(cn)p

∑
u∈Hn+M

((
n + M

n

)q m(u,n + M)

(n + M)q
− m(u,n)

nq

)

= o(1) + 1

cp

[(
n + M

n

)p+q 1

(n + M)p

∑
u∈Hn+M

m(u,n + M)

(n + M)q

− 1

np

∑
u∈Hn

m(u,n)

nq

]
→ 0.

This proves claim (5.15) which yields In ≤ I ′
n + o(1). Similarly, we can also get a

lower bound of In and establish that In ≥ I ′
n + o(1). Hence, in order to complete

the proof of weak convergence of Ñ
(2)
n to Ñ∗ under the compact support assump-

tion (5.13), it is enough to show that

I ′
n = 1

(cn)p

∫ ∫ ∑
u∈Hn+M

(
1 − exp

(
−m(u,n)

nq

∑
w∈A′

n

g(xh(v,w))

))
ν(dv)να(dx)

converges to

l
1

cp

∫
C

∫
|x|>0

∫
W

(
1 − exp

(
−V(y)

∑
w∈HM

g(xh(v,w))

))
ν(dv)να(dx) dy.(5.17)
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To this end, we decompose the integral I ′
n into two parts as follows:

I ′
n = 1

(cn)p

∫ ∫ ∑
u∈Hn−M

(
1 − exp

(
−m(u,n)

nq

∑
w∈HM

g(xh(v,w))

))
ν(dv)να(dx)

+ 1

(cn)p

∫ ∫ ∑
u∈B ′

n

(
1 − exp

(
−m(u,n)

nq

∑
w∈A′

n

g(xh(v,w))

))
ν(dv)να(dx)

=: J ′
n + L′

n

for all n > M . Here, B ′
n = Hn+M ∩ Hc

n−M . For 1 ≤ k ≤ l let

J ′
k,n = 1

(cn)p

∫ ∫ ∑
u∈Fk,n−M

(
1 − exp

(
−m(u,n)

nq

∑
w∈HM

g(xh(v,w))

))

ν(dv)να(dx).

Clearly, by (5.7), J ′
n = ∑l

k=1 J ′
k,n. We will show that each J ′

k,n, 1 ≤ k ≤ l, con-
verges to (5.17) except for the factor l.

Fix k ∈ {1,2, . . . , l}. Repeating the argument in the proof of (5.15), we obtain
for all n > M ,

J ′
k,n = o(1) +

∫ ∫ 1

(cn)p

× ∑
u∈Fk,n−M

(
1 − e

−m(u,n−M+L)/nq ∑
w∈HM

g(xh(v,w)))

ν(dv)να(dx)

= o(1) +
(

n − M + L

cn

)p

×
∫ ∫ 1

(n − M + L)p

× ∑
α∈Q

(k)
n−M

(
1 − e

−m(xk+Uα,n−M+L)/nq ∑
w∈HM

g(xh(v,w)))

ν(dv)να(dx),

which can be estimated using (5.8) as follows:

≤ o(1) +
(

n − M + L

cn

)p

×
∫
|x|>0

∫
W

∫
C

(
1 − e

−m(xk+∑p
i=1[(n−M+L)yi ]ūi ,n−M+L)/nq ∑

w∈HM
g(xh(v,w)))

ν(dv)να(dx) dy.
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By Lemma 5.1, there is a constant κ > 0 such that the above integrand sequence is
dominated by

1 − exp
{
−κ

∑
w∈HM

g(xh(v,w))

}
,

which can be shown to be integrable using the inequality 1 − e−x ≤ x, x > 0, and
the arguments given in (5.16). Hence, Lemma 5.1 together with the dominated
convergence theorem yields∫

|x|>0

∫
W

∫
C

(
1 − e

−m(xk+∑p
i=1[(n−M+L)yi ]ūi ,n−M+L)/nq ∑

w∈HM
g(xh(v,w)))

ν(dv)να(dx) dy

→
∫
C

∫
|x|>0

∫
W

(
1 − exp

(
−V(y)

∑
w∈HM

g(xh(v,w))

))
ν(dv)να(dx) dy.

This shows

lim sup
n→∞

J ′
k,n ≤ 1

cp

∫
C

∫
|x|>0

∫
W

(
1 − exp

(
−V(y)

∑
w∈HM

g(xh(v,w))

))

ν(dv)να(dx) dy.

Similarly, we can also prove that

lim inf
n→∞ J ′

k,n ≥ 1

cp

∫
C

∫
|x|>0

∫
W

(
1 − exp

(
−V(y)

∑
w∈HM

g(xh(v,w))

))

ν(dv)να(dx) dy.

Hence, J ′
n converges to (5.17) as n → ∞. To establish the weak convergence of

Ñ
(2)
n when h is compactly supported it remains to prove that L′

n → 0 as n → ∞.
This is easy because

L′
n ≤ 1

(cn)p

∫ ∫ ∑
u∈B ′

n

(
1 − exp

(
−m(u,n)

nq

∑
w∈HM

g(xh(v,w))

))
ν(dv)να(dx)

= 1

(cn)p

∫ ∫ ∑
u∈Hn+M

(
1 − exp

(
−m(u,n)

nq

∑
w∈HM

g(xh(v,w))

))

ν(dv)να(dx)

− 1

(cn)p

∫ ∫ ∑
u∈Hn−M

(
1 − exp

(
−m(u,n)

nq

∑
w∈HM

g(xh(v,w))

))

ν(dv)να(dx) → 0



POINT PROCESSES BASED ON STABLE FIELDS 789

since the first term can also be shown to converge to the same limit as the second
term by the exact same argument as above.

To remove the assumption of compact support on the function h, for a general
h ∈ Lα(ν ⊗ τ) define

hM(v,u) = h(v,u)IHM
(u), M ≥ 1.(5.18)

Notice that each hM satisfies (5.13) and that hM → h almost surely as well as in
Lα(ν ⊗ τ) as M → ∞. Denote

Ñ (2,M)
n =

∞∑
i=1

∑
t∈Hn

m(t, n)

nq
δ(cn)−p/αjihM(vi ,ui⊕t)(5.19)

for M,n ≥ 1, and

Ñ (M)∗ =
∞∑
i=1

∑
u∈H

V(ξi)δjihM(vi ,u), M ≥ 1,(5.20)

with the notation as above. We already know that for every M ≥ 1, Ñ
(2,M)
n ⇒

Ñ
(M)∗ weakly in the space M as n → ∞. Therefore, to establish Ñ

(2)
n ⇒ Ñ∗, it is

enough to show two things:

Ñ (M)∗ ⇒ Ñ∗ weakly as M → ∞,(5.21)

and

lim
M→∞ lim sup

n→∞
P

(∣∣Ñ (2,M)
n (g) − Ñ (2)

n (g)
∣∣ > ε

) = 0(5.22)

for all ε > 0 and for every nonnegative continuous function g with compact sup-
port on [−∞,∞] \ {0}.

Claim (5.21) is easy since the Laplace functional of Ñ
(M)∗ , which is obtained

by replacing h in (4.15) by hM , converges by the dominated convergence theorem
to (4.15) for every nonnegative continuous function g with compact support on
[−∞,∞] \ {0}. The proof of (5.22) is along the same lines as the proof of the
corresponding limit [namely (3.13)] in Resnick and Samorodnitsky (2004). Using
similar calculations, we have

E
∣∣Ñ (2,M)

n (g) − Ñ (2)
n (g)

∣∣
= ∑

t∈Hn

m(t, n)

nq
E

( ∞∑
i=1

g
(
(cn)−p/αjih(vi, ui ⊕ t)

)
I
(
N(ui ⊕ t) > M

))

=
(

1

(cn)p

∑
t∈Hn

m(t, n)

nq

)∫
W

∫
|x|>0

∑
u∈Hc

M

g(xh(v,u))να(dx)ν(dv).

Repeating the argument in (5.16), the integral∫
W

∫
|x|>0

∑
u∈Hc

M

g(xh(v,u))να(dx)ν(dv)
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can be shown to be bounded by

Cδ−α
∫
W

∑
u∈Hc

M

|h(u, v)|αν(dv),

which converges to 0 as M → ∞. Hence, by Lemma 5.1, (5.22) follows and so
does Ñ

(2)
n ⇒ Ñ∗ without the assumption of compact support.

To complete the proof of the theorem, we need to prove (with ρ being the vague
metric on M) that for all ε > 0

P
[
ρ

(
Ñn, Ñ

(2)
n

)
> ε

] → 0 (n → ∞)

and for this, it suffices to show that for every nonnegative continuous function g

with compact support on [−∞,∞] \ {0},
P

(∣∣Ñn(g) − Ñ (2)
n (g)

∣∣ > ε
)

= P

(∣∣∣∣∣
∑
t∈Hn

m(t, n)

nq

(
g

(
Xt

(cn)p/α

)
−

∞∑
i=1

g

(
jih(vi, ui ⊕ t)

(cn)p/α

))∣∣∣∣∣ > ε

)
(5.23)

→ 0

as n → ∞. By Lemma 5.1, (5.23) would follow from

P

(∣∣∣∣∣
∑
t∈Hn

(
g

(
Xt

(cn)p/α

)
−

∞∑
i=1

g

(
jih(vi, ui ⊕ t)

(cn)p/α

))∣∣∣∣∣ > ε/κ0

)
→ 0.(5.24)

Here, κ0 is as in (5.9). Once again, following verbatim the proof of (3.14) in
Resnick and Samorodnitsky (2004), we can establish (5.24) and complete the proof
of Theorem 4.1.

6. An example. We end this paper by considering a simple example and com-
puting the weak limit of the corresponding random measure (properly normalized
{Nn}) using Theorem 4.1. This will help us understand the result as well as get
used to the notation.

EXAMPLE 6.1. Suppose d = 2, and define the Z2-action {φ(t1,t2)} on S = R

as

φ(t1,t2)(x) = x + t1 − t2.

Take any f ∈ Lα(S,μ) where μ is the Lebesgue measure on R and define a sta-
tionary SαS random field {X(t1,t2)} as follows:

X(t1,t2) =
∫

R
f

(
φ(t1,t2)(x)

)
M(dx), t1, t2 ∈ Z,
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where M is an SαS random measure on R with control measure μ. Note that
the above representation of {X(t1,t2)} is of the form (2.3) generated by a measure
preserving conservative action with c(t1,t2) ≡ 1.

In this case, using the notation as above, we have

K = {(t1, t2) ∈ Z2 : t1 = t2},
which implies A � Z2/K � Z, and

F = {(t1,0) : t1 ∈ Z}.
In particular, we have p = q = l = 1, and

U =
[

1
0

]
, V =

[
1
1

]
so that

C = {y ∈ R: there exists λ ∈ R such that ‖Uy + V λ‖∞ ≤ 1}
= {y ∈ R : |y + λ| ≤ 1 for some λ ∈ [−1,1]} = [−2,2].

For all y ∈ C = [−2,2], we have

Py = {λ ∈ [−1,1] : |y + λ| ≤ 1} =
{ [−(1 + y),1], y ∈ [−2,0),

[−1,1 − y], y ∈ [0,2],
which yields

V(y) = 2 − |y|, y ∈ [−2,2].
Clearly, {X(t1,0)}t1∈Z is a stationary SαS process generated by a dissipative Z-

action {φ(t1,0)}t1∈Z. Hence, by Theorem 4.4 in Rosiński (1995), there is a σ -finite
standard measure space (W,ν) and a function h ∈ Lα(W × Z, ν ⊗ ζZ) such that

X(t1,0)
d=

∫
W×Z

h(v, t1 + s)M(dv, ds), t1 ∈ Z.

Here, ζZ is the counting measure on Z, and M is an SαS random measure on
W × Z with control measure ν ⊗ ζZ. Let

∞∑
i=1

δ(ji ,vi ,ξi ) ∼ PRM
(
να ⊗ ν ⊗ 1

4
Leb|[−2,2]

)

be a Poisson random measure on ([−∞,∞]\{0})×W ×[−2,2]. In this example,
c = (l|C|)1/p = 4 and

Ñn = n−1
∑

|t1|,|t2|≤n

δ(4n)−1/αX(t1,t2)
, n = 1,2, . . . .

Since {φu}u∈F is a dissipative group action and (4.9) holds in this case, we can use
Theorem 4.1 and conclude that

Ñn ⇒
∞∑
i=1

∑
t1∈Z

(2 − |ξi |)δjih(vi ,t1)

weakly in the space M.
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REMARK 6.1. Note that Ñn can also be written as follows:

Ñn =
2n∑

k=−2n

(
2 − |k|

n
+ 1

n

)
δ(4n)−1/αYk

,

where Yk = X(k,0). Only a few (a Poisson number) of the Yk’s are not driven to zero
by the normalization bn = (4n)−1/α . By stationarity, each of these rare k’s should
be distributed uniformly in {−2n,−2n+1, . . . ,2n} which along with Theorem 3.1
provides an intuitive justification of the above weak limit of Ñn.
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