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THE ASYMPTOTIC SHAPE THEOREM FOR GENERALIZED
FIRST PASSAGE PERCOLATION

BY MICHAEL BJÖRKLUND

Royal Institute of Technology

We generalize the asymptotic shape theorem in first passage percolation
on Zd to cover the case of general semimetrics. We prove a structure theorem
for equivariant semimetrics on topological groups and an extended version
of the maximal inequality for Z

d -cocycles of Boivin and Derriennic in the
vector-valued case. This inequality will imply a very general form of King-
man’s subadditive ergodic theorem. For certain classes of generalized first
passage percolation, we prove further structure theorems and provide rates of
convergence for the asymptotic shape theorem. We also establish a general
form of the multiplicative ergodic theorem of Karlsson and Ledrappier for
cocycles with values in separable Banach spaces with the Radon–Nikodym
property.

1. Introduction. First passage percolation was introduced by Hammersley
and Welsh in [16]. A detailed description of the model is given in Section 2.3. The
theory can be roughly described as the study of the generic large-scale geometry of
semimetric spaces, where the semimetric is allowed to vary measurably. The clas-
sical case deals with the space Z

d and semimetrics induced by random weights on
the edges of the standard Cayley graph of Z

d . However, the setup easily extends
to general groups.

In this paper, we introduce the notion of a random semimetric. Let G be a locally
compact group and suppose that G acts on a probability space (X,μ), where μ is
invariant under the action of G. We say that the action is ergodic if the invariant
sets are either null or conull, and quasi-invariant if it preserves the measure class
of μ. Suppose that (Y, ν) is a σ -finite measure space. A random semimetric on Y ,
modeled on the G-space X, is a map ρ :X × Y × Y → [0,∞) such that ρx is
a semimetric for almost every x in X and

ρg.x(y, y′) = ρx(g.y, g.y′)

for all y, y′ in Y , g in G and x ∈ X, and for all y, y′ in Y , the map

x �→ ρx(y, y′)

is measurable. In general, these objects are very complicated and form the basis of
subadditive ergodic theory. However, it turns out that all random semimetrics can
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be realized as norms of additive cocycles with values in large Banach spaces. The
definition of a Gelfand cocycle is given in Section 2.4 and is rather technical, but
turns out to be useful, in view of the following theorem.

THEOREM 1.1 (Structure theorem). Let G be a locally compact, second
countable group. Suppose that (X,μ) is a probability measure space with a G-
invariant ergodic measure μ. Suppose that (Y, ν) is a G-space with a quasi-
invariant σ -finite measure ν. If ρ is a random G-equivariant semimetric on Y ,
modeled on the G-space (X,μ), then there exists a Gelfand L1(Y, ν)-cocycle, with
respect to the left-regular representation of G on L∞(Y, ν) on the G-space (X,μ),
such that

ρx(y, y′) = ‖sx(y, y′)‖L∞(Y,ν).

We will refer to a random semimetric ρ on a space Y as generalized first passage
percolation on Y . In view of Theorem 1.1, the study of generalized first passage
percolation is equivalent to the study of Gelfand cocycles with values in L∞(Y, ν).
However, any Gelfand cocycle with values in the dual of a Banach space B defines
a random semimetric. In Sections 3.3 and 3.5, we will restrict the class of Banach
spaces under consideration and this will allow us to establish certain structure the-
orems which are not known for classical first passage percolation. For instance, we
determine the horofunctions of random semimetric spaces when the cocycles take
values in separable Hilbert spaces and we prove an analog of Kesten’s celebrated
inequality for classical first passage percolation in this context.

However, the main result of this paper is the following extension of Boivin’s
asymptotic shape theorem to general random semimetrics.

THEOREM 1.2 (Asymptotic shape theorem). Suppose that ρ is a random Z
d -

semimetric modeled on an ergodic Z
d -space (X,μ), where μ is a probability mea-

sure. Suppose that ρ(0, n) is in Ld,1(X,μ) for every n ∈ Z
d . There then exists

a seminorm L on R
d such that

lim|n|→∞
ρx(0, n) − L(n)

|n| = 0

almost everywhere on (X,μ).

This result was only known for a certain class of inner random semimetrics
on Z

d [7]. It can be proven [11] that the integrability condition on the cocycle to
belong to the Lorentz space Ld,1(X) is sharp. The unit ball of the semimetric L

roughly describes the generic asymptotic shape of large balls in Z
d with the ran-

dom semimetric ρ. In the general ergodic situation, essentially all convex shapes
can be attained as asymptotic shapes. This is a result of Häggström Meester [17].
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2. Generalized first passage percolation.

2.1. Bochner–Lorentz spaces. In the following sections, we will make use of
certain classes of function spaces introduced by Lorentz in [23]. It is straightfor-
ward to extend the definition to cover the case of vector-valued functions, and we
will do so. Before we give the definition of the necessary function spaces, we re-
call some basic notions and useful facts about measurability of vector-valued func-
tions. Let B be a Banach space and (X,F,μ) a measure space. A simple function
f :X → B is a function on the form

f =
n∑

k=1

ckχAk
,

where Ak are elements of F and ck are elements in B . A function f :X → B is
Bochner measurable (or strongly measurable) if there exists a sequence of simple
functions fn :X → B such that ‖fn − f ‖B → 0. A function f :X → B is weakly
measurable if

x �→ 〈λ,f (x)〉
is measurable for every λ in B∗, where B∗ is the dual of B . A function f :X → B∗
is weak*-measurable if

x �→ 〈λ,f (x)〉
is measurable for every λ in B , canonically identified with an element of B∗∗.

We now turn to the definition of the function spaces. Let 1 ≤ p,q ≤ ∞, and
suppose that f is a complex-valued measurable function on X. We define

f ∗(t) = inf{s > 0|df (s) ≤ t},
where df is the distribution function of f , that is,

df (α) = μ
({x ∈ X||f (x)| > α}), α ≥ 0.

We define the norm

‖f ‖p,q =

⎧⎪⎪⎨
⎪⎪⎩

(∫ ∞
0

(t1/pf ∗(t))q dt

t

)1/q

, if q < ∞,

sup
t>0

t1/pf ∗(t), if q = ∞.

We denote the set of all f with ‖f ‖p,q < ∞ by Lp,q(X). With the above norm,
this is a Banach space, usually referred to as the Lorentz space with indices p

and q . For instance, we see that Lp,p(X) = Lp(X).
The extension to vector-valued functions is straightforward: we say that

a weak*-measurable function f :X → B is in L
p,q
w∗ (X,B∗) if there exists a non-

negative function g on X with finite Lp,q(X)-norm such that ‖f (x)‖B ≤ g(x)
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almost everywhere. Note that ‖f ‖B is not necessarily measurable on X. If f is in
the space L

p,q
w∗ (X,B), then we define the norm ‖f ‖Lp,q (X,B∗) to be the infimum

of the L
p,q
w∗ (X)-norms of all nonnegative functions g such that ‖f ‖B ≤ g almost

everywhere on X. It can be proven that this defines a Banach space structure (see
Chapter 1 in [9]). If f :X → B is Bochner-measurable, and B∗ is separable, then
we say that f is in Lp,q(X,B) if the measurable function

x �→ ‖f (x)‖B

is in Lp,q(X). We will refer to Lp,q(X,B) as the Bochner–Lorentz space with
indices p and q .

2.2. Random semimetric spaces. We will recall some basic notions from the
ergodic theory of subadditive cocycles. Classically, a subadditive cocycle over
a measurable Z-action T on a probability measure (X,F,μ) is a measurable map
a : Z × X → R such that

a(n + m,x) ≤ a(n, x) + a(m,Tnx) ∀n,m ∈ Z.

A celebrated theorem of Kingman [21] asserts that if a(n, ·) is integrable with
respect to μ for all n in Z, then there exists a T -invariant real-valued measurable
function A on X such that

lim
n→+∞

a(n, x) − nA(x)

n
= 0

almost everywhere on (X,μ). If the action T is assumed to be ergodic, then A is
necessarily constant. Furthermore, in this case,

A = inf
n>0

1

n

∫
X

a(n, x) dμ(x).

In this paper, we will be concerned with a generalization of this theorem to mea-
surable Z

d -actions. We will need the following definition.

DEFINITION 2.1 (Random semimetric). Let G be a locally compact and sec-
ond countable group. Suppose that (X,F) is a measurable space on which G acts
measurably and with an invariant probability measure μ. Let (Y, ν) be a σ -finite
measure space, where ν is a quasi-invariant measure under the action of G. A ran-
dom semimetric on Y , modeled on the G-space X, is a map ρ :X × Y × Y →
[0,∞) such that the following conditions hold:

(i) (symmetry) for all x ∈ X and y, y′ in Y ,

ρx(y, y′) = ρx(y
′, y) and ρx(y, y) = 0;

(ii) (triangle inequality) for all x ∈ X and y, y′, y′′ in Y ,

ρx(y, y′) ≤ ρx(y, y′′) + ρx(y
′′, y′);
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(iii) (equivariance) for all x ∈ X and g ∈ G and y, y′ in Y ,

ρgx(y, y′) = ρx(gy, gy′).

REMARK. Let (Z, d) be a metric space and suppose that c :G × X →
Isom(Z, d) is a measurable map which satisfy the equations

c(gg′, x) = c(g, x)c(g′, gx) ∀g,g′ ∈ G and x ∈ X.

It is easy to see that

ρx(g, g′) = d(c(g, x).z0, c(g
′, x).z0)

defines a random semimetric on G, modeled on the G-space X, for any choice of
base point z0 in Z. Indeed, by the cocycle property of c, we have

ρgx(g
′, g′′) = d(c(g′, gx).z0, c(g

′′, gx))

= d(c(g, x)c(g′, gx).z0, c(g, x)c(g′′, gx).z0)

= d(c(gg′, x).z0, c(gg′′, x)z0)

= ρx(gg′, gg′′)
for all x ∈ X and g,g′, g′′ in G.

2.3. Classical first passage percolation. First passage percolation was first de-
fined by Hammersley and Welsh in [16] and has served as one of the main inspi-
rations for the early developments of subadditive ergodic theory. Let (X,F,μ)

be a probability space on which the group Z
d acts ergodically and preserves the

measure μ. We denote the action by T . Let f1, . . . , fd be nonnegative measurable
functions on X and define, for an edge ē = (n,n+ek) in the standard Cayley graph
of Z

d , the weight

tx(ē) = fk(Tnx), x ∈ X,k ∈ {1, . . . , d},
where ek denotes the kth standard basis vector in Z

d . We define the weight tx(γ )

of a path γ by summing the individual weights on the edges of the path. For two
points m,n in Z

d , we define

ρx(m,n) = inf{tx(γ ) | γ is a path from m to n}.
It is clear from the construction that this defines a measurable map from X into the
convex cone of semimetrics on Z

d , equipped with the Borel structure coming from
the topology of pointwise convergence. Note that the relation tTkx(γ ) = tx(γ + k)

for k ∈ Z
d implies that

ρT x(m,n) = ρx(m + k,n + k)

and thus ρ is a random semimetric on Z
d , modeled on the Z

d -space (X,μ). By
construction, the semimetric ρ is inner. The random semimetric space (Zd, ρ)
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modeled on the Z
d -space X is known as the classical first passage percolation

model.
Note that in the case when d = 1, we essentially recover the absolute value of

the Birkhoff sum

n−1∑
k=0

f1(Tkx)

and thus the almost sure asymptotic behavior of the random semimetric can be
analyzed using Birkhoff’s ergodic theorem. When d ≥ 2, the situation is more
involved and new techniques are needed. The main part of this paper is concerned
with a generalization to general semimetrics on Z

d of the following theorem of
Boivin [7].

THEOREM 2.1 (Boivin). Suppose that f1, . . . , fd are in Ld,1(X). There is
then a seminorm L on R

d such that

lim
n→∞

ρx(0, n) − L(n)

|n| = 0

almost everywhere on (X,μ).

REMARK. This theorem had previously been established for independent and
identically distributed edge-weights by Cox and Durrett [10] (d = 2) and by
Kesten [20] (d ≥ 2) under weaker integrability conditions. However, it can be
shown [8] that Ld,1(X) is a sharp condition in the general ergodic case.

The definition of classical first passage percolation described above extends nat-
urally to a more general situation. Let G be a finitely generated group and suppose
that S is a finite subset of G such that S and S−1 are disjoint and S ∪ S−1 gener-
ates G as a group. Suppose that {fs}s∈S is a set of nonnegative measurable func-
tions on a probability measure space (X,μ) with a measure-preserving right action
by G. For every g in G and edge (g, gs) in the Cayley graph of (G,S ∪ S−1), we
define the random weight tx(g, gs) = fs(xg). In analogy with the scheme above,
we define the distance ρ between two points g and g′ in G to be the infimum of
the weights over all paths between g and g′. By construction, ρ is a semimetric
and

ρx(hg,hg′) = ρxh(g, g′)

for all g,g′, h in G and x in X. It is not clear that Boivin’s proof of Theorem 2.1
immediately extends to the case when G = Z

d and S is not the standard generating
set. Note, however, that Theorem 1.2 covers this case.
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2.4. Cohomology of Borel groupoids. In this subsection, we will define vari-
ous important types of cocycles. A more conceptual explanation can be given in the
language of groupoids; however, we will refrain from making very general state-
ments and will restrict our attention to the first order cohomology of a groupoid.

DEFINITION 2.2 (Borel cocycle). Let (Z, d) be a metric space and G a topo-
logical group. Suppose that X is a G-space. A map c :G × X → Isom(Z, d) such
that

(g, x) �→ c(g, x).z

is measurable for all z in Z, with respect to the Borel σ -algebra on Z, and

c(gg′, x) = c(g, x)c(g′, gx) ∀g,g′ ∈ G,x ∈ X,

is called a Borel cocycle over the G-space X.

DEFINITION 2.3 (Gelfand cocycle). Let B be a Banach space and G a locally
compact and second countable group. Let (X,μ) be a probability measure space,
where μ is a G-invariant measure and (Y, ν) a σ -finite measure space, where ν

is a quasi-invariant measure under the action of G. Let c :G × X → Isom(B∗) be
a Borel cocycle. A map s :X × Y × Y → B∗ is called a Gelfand B-cocycle with
respect to the Borel cocycle c if the following conditions hold:

(i) (additivity) for all x ∈ X,

sx(y, y′′) + sx(y
′′, y′) = sx(y, y′) ∀y, y′, y′′ ∈ Y ;

(ii) (equivariance) for all x ∈ X,

c(g, x).sgx(y, y′) = sx(gy, gy′) ∀y, y′ ∈ Y and g ∈ G;
(iii) (measurability) the maps

x �→ sx(y, y′) and x �→ ‖sx(y, y′)‖B∗

are weak*-measurable for every y, y′ ∈ Y .

We say that s is in the Lorentz space L
p,q
w∗ (X,B) if the map x �→ ‖sx(y, y′)‖p,q

is in Lp,q(X) for all y, y′ in Y .

REMARK. If the cocycle is trivial, that is, if there is an isometric representa-
tion π of G on B∗ such that c(g, x) = π(g) for all x ∈ X and g ∈ G, we will refer
to s as a Gelfand B-cocycle with respect to the representation π .

We also define two related types of cocycles, where stronger versions of mea-
surability are assumed.
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DEFINITION 2.4 (Pettis cocycle). A map s :X×Z
d ×Z

d → B is called a Pet-
tis B-cocycle with respect to the Borel cocycle c if it is a Gelfand cocycle with
respect to the cocycle c and the maps

x �→ sx(y, y′)
are weakly measurable for all y, y′ in Y .

REMARK. Note that, in the definition of a Pettis cocycle, we do not insist
that s takes values in the dual of a Banach space B . Thus, the formulation of the
definition is slightly misleading, but we hope that this will not cause any confusion
for the reader.

In Section 2.8, we will need the following cocycles, which are measurable in a
strong sense.

DEFINITION 2.5 Bochner cocycle. A map s :X × Z
d × Z

d → B is called
a Bochner B-cocycle with respect to the Borel cocycle c if it is a Gelfand cocycle
with respect to c and the maps

x �→ sx(y, y′)
are Bochner measurable for all y, y′ in Y .

REMARK. If B is a separable Banach space, it follows from Pettis’s measura-
bility theorem (see, e.g., Chapter 1 of [12]) that every Pettis cocycle is a Bochner
cocycle. The converse is obvious.

One connection between Gelfand B-cocycles and random semimetrics on Y is
suggested by the following proposition.

PROPOSITION 2.1. Let G be a locally compact group. Suppose that s :X ×
Y × Y → B∗ is a Gelfand B-cocycle with respect to a Borel cocycle c. Then

ρx(y, y′) = ‖sx(y, y′)‖B∗, y, y′ ∈ Y,

is a random semimetric on Y , modeled on the G-space X.

PROOF. The measurability is clear from the definition of s. From the additivity
property of s, it follows that

sx(y, y′) = −sx(y
′, y) for all x, y, y′.

Thus, ρx is symmetric and ρx(y, y) = 0. For the triangle inequality, we observe
that

‖sx(y, y′)‖B∗ = ‖sx(y, y′′) + sx(y
′′, y′)‖B∗

≤ ‖sx(y, y′′)‖B∗ + ‖sx(y′′, y′)‖B∗

= ρx(y, y′′) + ρx(y
′′, y′)
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for all y, y′, y′′ in Y . Finally, to prove equivariance, we note that since c takes
values in the isometry group of B∗,

ρgx(y, y′) = ‖sgx(y, y′)‖B∗ = ‖c(g, x).sgx(y, y′)‖B∗

= ‖sx(gy, gy′)‖B∗ = ρx(gy, gy′)

for all g ∈ G and y, y′ in Y . In the second-to-last equality, the equivariance prop-
erty of s was used. �

REMARK. We will see in Theorem 2.2 that these examples of random semi-
metrics are the only such examples. This observation will be one of the crucial
steps in the proof of Theorem 2.4.

2.5. Representation of subadditive cocycles. In this subsection, we will prove
the following, important, structure theorem.

THEOREM 2.2. Let G be a locally compact, second countable group. Suppose
that (X,μ) is a probability measure space with a G-invariant ergodic measure μ.
Suppose that (Y, ν) is a G-space with a quasi-invariant σ -finite measure. If ρ is
a random G-equivariant semimetric on Y , modeled on the G-space (X,μ), then
there exists a Gelfand L1(Y, ν)-cocycle, with respect to the left-regular represen-
tation λ of G on L∞(Y, ν), on the G-space (X,μ) such that

ρx(y, y′) = ‖sx(y, y′)‖L∞(Y,ν).

PROOF. The proof is based on the following trivial observation:

ρx(y, y′) = sup
y′′∈Y

|ρx(y, y′′) − ρx(y
′′, y′)|,

which is a direct consequence of the triangle inequality. We define

sx(y, y′) = ρx(y, ·) − ρx(·, y′) ∈ L∞(Y, ν).

Note that

sx(y, y′′) + sx(y
′′, y′) = ρx(y, ·) − ρx(·, y′′) + ρx(·, y′′) − ρx(·, y′) = sx(y, y′)

and that

λ(g).sgx(y, y′) = ρgx(y, g−1·) − ρgx(g
−1·, y′) = sx(gy, gy′).

To prove measurability, we first note that the map x �→ ‖sx(y, y′)‖L∞(Y,ν) is mea-
surable, by definition. Thus, we only need to prove that the map sx(y, y′) is weak*-
measurable. If we choose η ∈ L1(Y, ν), then

〈η, sx(y, y′)〉 =
∫
Y

(
ρx(y, y′′) − ρx(y

′′, y′)
)
η(y′′) dν(y′′)
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is measurable by Fubini’s theorem, since, by definition, the map

(x, y′′) �→ (
ρx(y, y′′) − ρx(y

′′, y′)
)
η(y′′)

is clearly measurable on the probability measure space (X × Y,μ × ν) for almost
every choice of y, y′ ∈ Y with respect to ν × ν. �

REMARK. In the paper [21], Kingman asked the naturally arising question as
to whether every subadditive cocycle a on Z-space X has a representation of the
form

a(n, x) = sup
i∈I

n−1∑
k=0

fi(T
kx), n ∈ N,

where {fi}i∈I is a set of real-valued measurable functions on X and I is some
countable index set. This question was later answered in the negative by Hammer-
sley in [15]. Theorem 2.2 gives a positive answer to an extended version of King-
man’s question, where the functions fi are allowed to be Banach-space-valued
and the supremum is replaced by the corresponding Banach norm. However, it
is certainly an inconvenience that the proof requires the Banach space B∗ to be
nonseparable. Therefore, it seems appropriate to ask the following question.

QUESTION. Can every random G-equivariant semimetric ρ on a G-space Y ,
quasi-invariant under the action of G and modeled on a G-space (X,μ), be rep-
resented as the norm of a Gelfand B-cocycle, where B∗ is a separable Banach
space?

2.6. Asymptotic shape theorems. We will now outline the main steps in the
proof of Theorem 1.2. We first make some preliminary observations and remarks.

PROPOSITION 2.2. Suppose that ρ is a random G-equivariant semimetric
on Y , modeled on the G-space (X,μ). The function

r(y, y ′) =
∫
X

ρx(y, y′) dμ(x)

is then a G-invariant semimetric on Y .

PROOF. The axioms for a semimetric are easily verified. The rest of the proof
consists of the following simple calculation:

r(gy, gy′) =
∫
X

ρx(gy, gy′) dμ(x) =
∫
X

ρgx(y, y′) dμ(x) = r(y, y′). �

The study of the almost sure asymptotic geometry of random semimetric spaces
will be referred to as generalized first passage percolation. We begin by describing
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some general features of this theory. Suppose that Y is a locally compact space and
that r is dominated by a G-invariant metric η such that

lim inf
y→∞ η(y, o) = +∞

for every choice of base point o ∈ Y . We say that the random G-equivariant semi-
metric on Y satisfies an asymptotic shape theorem (with respect to the G-invariant
metric η) if there exists a measurable function L :Y → [0,∞) such that

lim sup
y→∞

∣∣∣∣ρx(o, y) − L(y)

η(o, y)

∣∣∣∣ = 0.

This paper is concerned with a general asymptotic shape theorem for actions of the
group Z

d on probability spaces. We will specialize the above situation to the case
where G = Z

d and Y = Z
d . In this case, L can be realized as a norm on R

d and η

will be taken to be the standard word-metric on Z
d .

The following important lemma is proved in [7].

LEMMA 2.1 (Boivin’s lemma). Suppose that ρ is a random Z
d -equivariant

semimetric on Z
d , modeled on an ergodic Z

d -space (X,μ), where μ is a proba-
bility measure. If there is a positive constant C such that

μ

({
x ∈ X

∣∣∣ sup
n�=0

ρx(0, n)

|n| ≥ λ

})
≤ C

λd
∀λ > 1,

then there exists a seminorm L on R
d such that

lim|n|→∞
ρx(0, n) − L(n)

|n| = 0

almost everywhere on (X,μ).

Thus, in order to prove an asymptotic shape theorem, we will need a maximal
inequality. Let s be a Gelfand B-cocycle and define the function

Ms(x) = sup
n�=0

‖sx(0, n)‖B∗

|n| , x ∈ X.

We prove the following maximal inequality.

THEOREM 2.3 (Maximal inequality). Let B be a Banach space. Suppose
that s is a Gelfand B-cocycle on an ergodic Z

d -space (X,μ), where μ is a prob-
ability measure. Suppose that s(0, n) is in L

d,1
w∗ (X,μ,B∗) for every n ∈ Z

d . There
exists a positive constant C such that

μ
({x ∈ X | Ms(x) ≥ λ}) ≤ C

λd
‖s‖

L
d,1
w∗ (X,B)

for all λ ≥ 1.



A GENERAL ASYMPTOTIC SHAPE THEOREM 643

The proof of this theorem will be presented in Section 2.7. An immediate corol-
lary of this result is the following theorem.

THEOREM 2.4 (Asymptotic shape theorem). Suppose that ρ is a random Z
d -

semimetric modeled on an ergodic Z
d -space (X,μ), where μ is a probability mea-

sure. Suppose that ρ(0, n) is in Ld,1(X,μ) for every n ∈ Z
d . There then exists

a seminorm L on R
d such that

lim|n|→∞
ρx(0, n) − L(n)

|n| = 0

almost everywhere on (X,μ).

REMARK. This theorem was proven by Boivin in [7] in the case of certain
inner random semimetrics on Z

d . The proof is slightly different and does not seem
to extend to the general situation. Note that when d = 1, Boivin’s theorem is es-
sentially equivalent to Birkhoff’s ergodic theorem, while our theorem is strictly
stronger.

2.7. Maximal inequalities. The goal of this section is to establish Theo-
rem 2.3. The proof closely follows the arguments outlined by Derriennic and
Boivin in [8]. We begin to recall the basic combinatorial lemma used by Boivin
and Derriennic in their proof. A detailed proof can be found in [8].

LEMMA 2.2. For every n ∈ Z
d , n �= 0, let

Pn = {m ∈ Z
d | |n − m| ≤ |n|/2}.

Let H be a coordinate hyperplane of Z
d such that H ∩ Px = ∅. Let (Hj )

d−1
j=1 be

an increasing sequence of coordinate subspaces of Z
d such that dimHj = j and

Hd−1 = H . There exists a set En of elementary paths γ in Z
d , joining 0 to n, such

that:

(i) the cardinality of En is |n|d−1;
(ii) each γ is entirely included in the set

{m ∈ Z
d | |m| ≤ 2|n|};

(iii) for every m ∈ Pn and m �= n,

∣∣{γ ∈ En|m ∈ γ }∣∣ ≤ C

( |n|
|n − m|

)d−1

;
(iv) for every m /∈ Pn with |m| ≤ 2|n|,∣∣{γ ∈ En|m ∈ γ }∣∣ ≤ |n|d−j (m)

for j (m) = sup{j = 1, . . . , d − 1 | m ∈ Hj };
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(v) for every m /∈ H ∪ Pn with |m| ≤ 2|n|,
∣∣{γ ∈ Ex |m ∈ γ }∣∣ ≤ 1.

For an elementary path γ = {n1, . . . , nr} between 0 and n in Z
d , we define

Aγ f (x) =
r−1∑
k=0

f (Tnk
x),

where f :X → R is a measurable function. The following lemma was proven
in [8].

LEMMA 2.3. Suppose that f is a nonnegative and measurable function on X.
Then, for all n �= 0,

1

|En|
∣∣∣∣
∑
γ∈En

Aγ f (x)

∣∣∣∣ ≤ C

[ ∑
H∈H

1

|n|dimH

∑
m∈H

|m|≤2|n|

f (Tmx)

+ 1

|n|
(
f (Tnx) + ∑

0<|n−m|≤|n|/2

f (Tmx)

|m − n|d−1

)]
,

where H denotes the collection of all coordinate subspaces of Z
d .

This lemma readily implies the following estimate.

PROPOSITION 2.3. For every nonzero n ∈ Z
d , we have

‖sx(0, n)‖B∗

|n| ≤ C

[ ∑
H∈H

1

|n|dimH

∑
m∈H

|m|≤2|n|

f (Tmx)

+ 1

|n|
(
f (Tnx) + ∑

0<|n−m|≤|n|/2

f (Tmx)

|m − n|d−1

)]
,

where H denotes the collection of all coordinate subspaces of Z
d and

f (x) = sup
k=1,...,d

max (‖sx(0, ek)‖B∗,‖sx(0,−ek)‖B∗).

PROOF. For every elementary path γn = {n1, . . . , nr} from 0 to n, we write

sx(0, n) =
r−1∑
k=0

sx(nk, nk+1) =
r−1∑
k=0

λ(nk).sTnk
x(0, nk+1 − nk),
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where λ is the left-regular representation of L∞(Zd). Thus, since |nk+1 − nk| = 1
for all k, we have

‖sx(0, n)‖B∗ ≤
r−1∑
k=0

f (Tnk
x) = Aγ f (x).

We now take the average over the set En. By Lemma 2.2 and Proposition 2.3, we
have

‖sx(0, n)‖B∗

|n| ≤ C

[ ∑
H∈H

1

|n|dimH

∑
m∈H

|m|≤2|n|

f (Tmx)

+ 1

|n|
(
f (Tnx) + ∑

0<|n−m|≤|n|/2

f (Tmx)

|m − n|d−1

)]
.

�

The following lemma was proven in [8] for general actions of Z
d on probability

spaces.

LEMMA 2.4. Suppose that f is a nonnegative and measurable function on X.
There is then a constant C > 0 such that

μ

(
x ∈ X

∣∣∣ sup
n∈Zd

1

|n|
(
f (Tnx) + ∑

0<|n−m|≤|n|/2

f (Tmx)

|n − m|d−1 > λ

))
≤ C

(
1

λ
‖f ‖d,1

)d

for all λ ≥ 1.

Define the maximal function

Ms(x) = sup
n�=0

‖sx(0, n)‖B∗

|n|
for a Gelfand B-cocycle s. The maximal inequality for the first terms in the esti-
mate in Lemma 2.3 are taken care of by Wiener’s maximal inequality [26]. Propo-
sition 2.3 and Lemma 2.4 now imply the following theorem.

THEOREM 2.5 (Maximal inequality). Let B be a Banach space. Suppose
that s is a Gelfand B-cocycle on an ergodic Z

d -space (X,μ), where μ is a prob-
ability measure. Suppose that s(0, n) is in L

d,1
w∗ (X,μ,B∗) for every n ∈ Z

d . There
then exists a positive constant C such that

μ
({x ∈ X|Ms(x) ≥ λ}) ≤

(
C

λ
‖s‖

L
d,1
w∗ (X,B)

)d

for all λ ≥ 1.
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2.8. Ergodic theorems for Bochner cocycles. In this subsection, we will be
concerned with a slight generalization of the ergodic theorem of Boivin and Der-
riennic in [8] to vector-valued cocycles. We will see an application of this theorem
to horofunctions in random media in Section 3.3. The main ingredient of the proof
is a result of Phillips, ensuring that the Bochner–Lorentz space Ld,q(X,B) is a re-
flexive Banach space if 1 < q < ∞. This will allow for standard splitting theorems
to be used (see Chapter 2 of Krengel’s book [22] for more references).

THEOREM 2.6. Let B be a reflexive Banach space. Suppose that s is Bochner
B-cocycle on an ergodic Z

d -space (X,μ), where μ is a probability measure. Let
q > 1 and suppose that the cocycle s(0, n) is in L

d,q
s (X,B∗) for every n ∈ Z

d .
There is then a linear and continuous map L : Rd → B∗ such that

lim|n|→∞
sx(0, n) − L(n)

|n| = 0

almost everywhere on (X,μ).

Before we turn to the proof of Theorem 2.6, we recall some basic splitting
theorems for Z

d -actions on Bochner–Lorentz spaces. The following theorem is
due to Phillips [25].

THEOREM 2.7. Let (X, F ,μ) be a measure space. Suppose that B is a reflex-
ive Banach space, 1 ≤ p < ∞ and 1 < q < ∞. Then Lp,q(X,B) is reflexive.

By the well-developed splitting theory of semigroups of isometries on reflex-
ive Banach spaces (see, e.g., Chapter 2 of [22]), this implies that every Bochner
cocycle s in Ld,1(X,B∗) can be written as a limit in Ld,1(X,B) of

s = lim
j→∞ r + cj ,

where r is an invariant cocycle and cj is a sequence of coboundaries, that is, co-
cycles of the form

cj
x(0, n) = gj (x) − gj (Tnx), gj ∈ Ld,q(X,B∗), q > 1,

and extended by equivariance.

PROOF OF THEOREM 2.6. Note that the theorem is trivial for invariant co-
cycles and coboundaries. By Banach’s principle and Theorem 2.3, the set of all
cocycles for which the theorem holds is closed in Ld,q(X,B). Since the span of
invariant cocycles and coboundaries is dense in Ld,q(X,B∗), we are done. �
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3. Applications.

3.1. Random Schrödinger operators. Let (X, F ,μ,T ) be an ergodic Z-space
and suppose that S is a measurable map from Z × X → GLd(R) which satisfies
the equations S(0, ·) = I and

S(n + m,x) = S(n,T mx)S(m,x) ∀m,n ∈ Z

almost everywhere on X. The asymptotic behavior of the random semimetric

ρx(m,n) = max
(
log+(‖Sn(x)Sm(x)−1‖), log+(‖Sm(x)Sn(x)−1‖))

∀n,m ∈ Z,

has been the subject of a detailed study in the theory of random Schrödinger op-
erators over the years. The first convergence result, prior to Kingman’s paper, was
due to Furstenberg and Kesten [14], where the almost sure limit

A = lim
n→∞

ρx(0, n)

|n|
was established. Before we begin our discussion of multiparameter analogs, we
first describe the connection to random Schrödinger operators. Let (X, F ,μ,T )

be an ergodic probability-measure-preserving system and suppose that V is a real-
valued measurable function on X. We consider, for a fixed x in X, the following
discrete analog of the Schrödinger equation:

vn+1 + vn−1 + V (T nx)vn = λvn ∀n ∈ Z,

with vo = a and v1 = b, where λ is assumed to be real. If we introduce the vectors
un = (vn, vn+1)

t , the equation can be written in the equivalent form

un+1 =
(

0 1
−1 λ − V (T nx)

)
un, u0 =

(
a

b

)

and thus

un = S(n, x)uo ∀n ∈ Z,

with S is generated by

S(1, x) =
(

0 1
−1 λ − V (x)

)
.

Hence, the generic [in terms of the measure space (X, F ,μ)] asymptotic behavior
of the solutions of random Schrödinger operators on Z is governed by the ran-
dom semimetric ρx defined above. By a remarkable tour de force, Furstenberg and
Kesten established the almost sure limit

A = lim
n→∞

ρx(0, n)

|n| .
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This result predates Kingman’s subadditive ergodic theorem and the methods of
Furstenberg and Kesten were indeed quite different from the ones Kingman later
used.

This example leads to a natural generalization for Z
d -actions. Let (X, F ,μ,T )

be an ergodic Z
d -space and let S : Zd ×X → GLk(R) be a measurable map which

satisfies S(0, ·) = I and

S(n + m,x) = S(n,T mx)S(m,x) ∀m,n ∈ Z
d,

almost everywhere on X. Define the random semimetric

ρx(m,n) = max
(
log+(‖Sn(x)Sm(x)−1‖), log+(‖Sm(x)Sn(x)−1‖))

∀n,m ∈ Z
d .

Note that the sequence un = S(T nx)u is the solution of the random difference
equation

∑
|e|=1

un+e =
( ∑

|e|=1

S(e, T nx)

)
un ∀n ∈ Z

d,

with uo = u, where | · | denotes the �∞-metric on Z
d . Note that the existence of

a map S with the above properties is not obvious and, indeed, we do not expect
any new examples for d ≤ 2. However, any embedding of Z

d into GLk(R) for
sufficiently large k will give rise to maps S with the above properties and hence the
class of new difference equations which can be solved by this method is nontrivial.
In this class, the following theorem can be deduced from Theorem 1.2.

THEOREM 3.1. Suppose that for some ε > 0,
∫
X
(log+ ‖Sn(x)‖)d+ε dμ(x) < +∞

for all |n| = 1. There is then a seminorm L on R
d with the property that

lim
n→∞

ρx(0, n) − L(n)

|n| = 0

almost everywhere on X.

The class of difference equations which can be solved by means of the above
scheme can probably be considerably enlarged if Theorem 1.2 is extended to more
general linear groups, which motivates the study of extensions of Boivin and Der-
riennic’s result to more general groups.
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3.2. A multiplicative ergodic theorem. In this subsection, we will establish
a multiplicative ergodic theorem for general Pettis Z-cocycles on ergodic proba-
bility measure spaces (X,μ) with values in separable Banach spaces B with the
Radon–Nikodym property. The formulation is close to the celebrated Karlsson–
Ledrappier ergodic theorem [18]. However, their paper is concerned with a special
kind of a Pettis cocycle with values in the Banach space of continuous functions
on an infinite compact metrizable space, which, unfortunately, does not possess
the Radon–Nikodym property [12]. It is not unlikely that our ergodic theorem
holds in greater generality (e.g., nonseparable or weakly compact generated Ba-
nach spaces). For the present proof and methods, the Radon–Nikodym assumption
seems to be sharp.

We begin by recalling the definition and some basic facts about Banach spaces
with the Radon–Nikodym property. Recall that a vector measure ν is μ-continuous
if

lim
μ(E)→0

ν(E) = 0.

DEFINITION 3.1 (Radon–Nikodym property). A Banach space B has the
Radon–Nikodym property with respect to the measure space (X, F ,μ) if, for
each μ-continuous vector measure ν : F → B of bounded variation, there exists
g ∈ L1(X,B) such that

ν(E) =
∫
E

g dμ ∀E ∈ F ,

in the sense of Bochner integrals. A Banach space B has the Radon–Nikodym
property if B has the Radon–Nikodym property with respect to any finite measure
space.

Classical examples of Banach spaces with the Radon–Nikodym property in-
clude reflexive Banach space and Banach spaces with separable dual spaces. Ex-
amples of Banach space without the Radon–Nikodym property are L1([0,1]) and
C(H), where H is an infinite compact Hausdorff space. The notion of a Radon–
Nikodym space is now fairly well understood and a very readable account of re-
sults and techniques can be found in [12].

We will need the following theorem by Bochner and Taylor [6].

THEOREM 3.2. Let (X, F ,μ) be a finite measure space, B be a Banach space
and 1 ≤ p < ∞. Then Lp(X,B)∗ = Lq(X,B∗), where 1

p
+ 1

q
= 1, if and only if B∗

has the Radon–Nikodym property with respect to μ.

In particular, this implies that if B has the Radon–Nikodym property, then

‖f ‖L1(X,B) = sup
‖λ‖∞,B∗≤1

∫
X
〈λ(x), f (x)〉dμ(x)
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for every Bochner measurable function f :X → B , where ‖ · ‖∞,B∗ denotes the
L∞(X,B∗)-norm. More generally, we will write ‖ · ‖q,C if we restrict the elements
in Lq(X,B∗) to take values in C , for q > 1.

Suppose that s is a Pettis B-cocycle on a probability measure space (X,μ)

with respect to a Z-action T and Borel cocycle c, where the Banach space B is
supposed to be separable and to have the Radon–Nikodym property. Note that
this implies that s is also Bochner integrable. We also assume that the function
x �→ ‖sx(0, n)‖B is integrable for all n ∈ Z. Suppose that there exists a weak*-
compact subset C of B∗

1 which is invariant under the dual action of the cocycle c,
such that

‖sx(m,n)‖1,B = sup
‖λ‖∞,C ≤1

〈λ, sx(m,n)〉 ∀m,n ∈ Z.

It is a well-known fact (see, e.g., Chapter V.5.1 of [13]) that C is metrizable and
thus separable. By subadditivity, the following nonnegative limit exists:

A := lim
n→∞

1

n
‖s(0, n)‖L1(X,B) = inf

n>0
sup

‖λ‖∞,C ≤1

1

n

∫
X
〈λ(x), sx(0, n)〉dμ(x).

We define the skew-product Z-action T̂ on the measurable space X × C with the
product σ -algebra by

T̂n(x, y) = (Tnx, c(n, x)∗.λ), x ∈ X,λ ∈ C.

Note that if n ≥ 0 and λ ∈ C , then

〈λ, sx(0, n)〉 =
n−1∑
k=0

〈λ, c(k, x).sx(0,1)〉 =
n−1∑
k=0

F(T̂k(x, λ)),

where F(x,λ) = 〈λ, sx(0,1)〉, and thus

A = inf
n>0

sup
‖λ‖∞,C ≤1

1

n

∫
X

n−1∑
k=0

F(T̂k(x, ξ)) dδλ(x)(ξ) dμ(x)

= inf
n>0

sup
μ̂∈M1

μ(X×C)

1

n

∫
X×C

n−1∑
k=0

F(T̂k(x, ξ)) dμ̂(x, ξ),

where Mμ(X × C) denotes the space of probability measures on X × C which
projects onto μ under the canonical map from X × C to X. By standard disintegra-
tion theory (see, e.g., [3]), this space can be given a compact metrizable topology
arising from the duality of L1(X,C(C)). Following the outline of the proof in [18],
we take a sequence of elements μ̂n in M1(X × C) such that

1

n

∫
X

n−1∑
k=0

F(Tk(x, ξ)) dμ̂n(x, ξ) ≥ A ∀n ≥ 1.
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This is possible due to the compactness of M1(X × C). Define

ν̂n = 1

n

n−1∑
k=0

T̂ k∗ μ̂n, n ≥ 1.

By sequential compactness, there exist a convergent subsequent and a T̂ -invariant
limit probability measure ν̂0 in M1

μ(X × C) such that
∫
X×C

F(x, ξ) dν̂0(x, ξ) ≥ A

and thus the set of T̂ -invariant probability measures on X× C which project onto μ

and satisfy the above inequality is a compact and convex subset of M1
μ(X × C).

By the Krein–Milman theorem, there must be an extremal point ν in this set, and
by a standard argument (see, e.g., [3]), this point is an ergodic measure for T̂ . By
Birkhoff’s theorem and the obvious inequality

|〈ξ, sx(0, n)〉| ≤ ‖sx(0, n)‖B

for all ξ in the unit ball of B∗, we can conclude that

A = lim
n→∞

1

n
‖sx(0, n)‖B = lim

n→∞
1

n
〈ξ, sx(0, n)〉

for a co-null subset of X × C with respect to the measure ν. If we assume that
(X,F,μ) is standard Borel space, then we can use the Von Neumann selection
theorem (in complete analogy with [18]) and establish the existence of a measur-
able map ξ :X → C such that

lim
n→∞

〈ξ(x), sx(0, n)〉
n

= A

for all x in a co-null subset of X. We have established the following theorem.

THEOREM 3.3. Suppose that (X,F,μ) is a standard measure space with an
ergodic Z-action. Suppose that B is a separable Banach space with the Radon–
Nikodym property and that s is an integrable Pettis cocycle with respect to a Borel
cocycle c. Suppose that there is a weak*-compact subset of B∗

1 such that

‖s(0, n)‖1,B = sup
‖λ‖∞,B∗≤1

∫
X
〈λ(x), sx(0, n)〉dμ(x) ∀n ≥ 1.

There is then a measurable map ξ :X → C such that

lim
n→∞

1

n
〈ξ(x), sx(0, n)〉 = lim

n→∞
1

n

∫
X

‖sx(0, n)‖B dμ(x)

almost everywhere on (X,μ).



652 M. BJÖRKLUND

REMARK. The main reason for including the proof above is an application to
Kingman decompositions of subadditive cocycles which will be described below.
Note that the restrictions on the Banach space B and the measurability of s are
fairly severe and exclude many interesting applications. For instance, note that the
case of Pettis cocycles for B = C(H), where H is a compact metrizable space,
would generalize the celebrated multiplicative ergodic theorem of Oseledec [24].
In this situation, Theorem 3.3 was established for a certain class of cocycles by
Karlsson and Ledrappier in [18]. One important feature of these cocycles is an
obvious choice of a sequence of weakly measurable maps ηn :X → B∗ such that

‖sx(0, n)‖B = 〈ηn(x), sx(0, n)〉
for n ∈ Z. This is no longer true for general cocycles in Banach spaces. The
Radon–Nikodym assumption on B is a convenient way to circumvent this prob-
lem.

An extension of Theorem 3.3 to conservative and ergodic actions of Z on σ -
finite measure spaces can be proven using the same techniques as in [5], where the
Karlsson–Ledrappier ergodic theorem is extended to the σ -finite situation.

We now turn to the proof of an alternative Kingman decomposition for random
semimetrics induced by Pettis cocycles on reflexive and separable Banach spaces.
Let η denote the disintegration of ν with respect to the canonical projection onto
measure μ. Let g :X → Isom(B) be the generator of the Borel cocycle c, that is,

c(n, x) = g(x) · · ·g(T n−1x)

for n ≥ 0. For all f ∈ L1(X,B), we have

〈ν, T̂ f 〉 =
∫
X
〈η(x), g(x)f (T x)〉dμ(x)

=
∫
X
〈(g(x))∗η(x), f (T x)〉dμ(x)

=
∫
X
〈(g(T −1x)∗)η(T −1x), f (x)〉dμ(x)

=
∫
X
〈η(x), f (x)〉dμ(x) = 〈ν,f 〉.

Thus, if B is a reflexive Banach space, we conclude that

η(T x) = (g(x)∗)−1η(x)

or, equivalently,

η(T kx) = c(k, x)∗η(x) ∀k ≥ 1.

Thus, we can rewrite the Birkhoff sum above as

〈η(x), sx(0, n)〉 =
n−1∑
k=0

〈η(x), c(k, x).f (T kx)〉 =
n−1∑
k=0

ϕ(T kx),
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where ϕ(x) = 〈η(x), f (x)〉 satisfies
∫
X

ϕ(x)dμ(x) = A.

Furthermore, we obviously have

‖sx(0, n)‖B ≥
n−1∑
k=0

ϕ(T kx), n ≥ 1.

We have proven the following weak version of Kingman’s decomposition of sub-
additive cocycles.

THEOREM 3.4 (Kingman decomposition). Suppose that s is an integrable
Pettis cocycle with values in a separable and reflexive Banach space, defined on
a standard probability measure space with an ergodic Z-action. The random semi-
metric defined by

ρx(m,n) = ‖sx(m,n)‖B, n,m ∈ Z,

then decomposes as

ρx(0, n) =
n−1∑
k=0

ϕ(T kx) + rn(x),

where ϕ is integrable on (X,μ) such that
∫
X ϕ(x)dμ(x) equals the drift of ρ

and rn is a nonnegative subadditive cocycle with drift 0.

REMARK. Kingman [21] established a more general decomposition theorem
for integrable subadditive cocycles. Note, however, that Theorem 3.4 provides
more information about the decomposition. The restrictions on the measurabil-
ity of s and the Banach space B in the theorem above seem to be necessary for the
methods described. However, it is natural to ask for a canonical class M of Gelfand
cocycles on ergodic G-spaces and with values in Banach spaces with separable
pre-duals, such that for any s in M with values in B , there is an G-equivariant and
weakly*-measurable map η :X → B∗ such that

‖sx(e, g)‖B = p(g)〈ηx, sx(e, g)〉 + rx(e, g),

where p :G → R is a weight function and rx is negligible with respect to s in
a certain sense. In the case where G = Z

d and the seminorm L in Theorem 1.2 is
nondegenerate, this would have interesting implications for generalized first pas-
sage percolation. Indeed, this would imply a multiparameter version of Oseledec’s
theorem with possible applications to infinite geodesics in random metric spaces.
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3.3. Horofunctions in random media. Suppose that H is a separable Hilbert
space and that s :X × Z

d × Z
d → H is a Bochner cocycle in Ld,1(X, H). Recall

that

ρx(m,n) = ‖sx(m,n)‖H, n,m ∈ Z
d,

defines a random semimetric on Z
d . Suppose that m is in Z

d and define the horo-
function at the point m, with respect to the random semimetric ρ, by

hm(n) = ρ(m,n) − ρ(m,0), n ∈ Z
d .

We want to study the behavior of hm as m leaves finite subsets of Z
d . We will see

that the limit exists along the sequence mj if and only if there is an element η in
the unit ball of �1(Zd) such that

lim
j→∞

m
j
k

|m| = ηk, k = 1, . . . , d.

It will follow from the proof that the limit point is unique, that is, independent
of the particular sequence which converges to η. We will denote the limit point
by hη and refer to it as the horofunction located at η. Before we give the proof, we
establish the following simple lemma.

LEMMA 3.1. Suppose that mj is a sequence in Z
d such that there exists an

element η in the unit ball of �1(Rd), such that m
j
k/|m| → ηk for k = 1, . . . , d ,

where | · | denotes the �1-metric. Suppose that s is a Bochner cocycle in L1(X, H),
where H is a separable Hilbert space and (X,μ) is an ergodic Z

d -space. Then

lim
m→η

‖sx(0,m)‖H
|m| =

∥∥∥∥∥
d∑

k=1

ηkLk

∥∥∥∥∥
H

almost everywhere on X with respect to μ. Here, Lk = L(ek), k = 1, . . . , d , and L

is the continuous linear map in Theorem 2.6. Conversely, the limit

lim
m→η

‖sx(0,m)‖H
|m|

exists almost everywhere on X if and only if mk/|m| converges to η.

PROOF. By Theorem 2.6,

lim|m|→∞
‖sx(0,m) − L(m)‖H

|m| = 0

almost everywhere on X. Thus,

lim
m→η

‖sx(0,m)‖H
|m| = lim

m→η

‖sx(0,m) − L(m) + L(m)‖H
|m| = ‖ηkLk‖H
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since L(m) = ∑d
k=1 mkLk for all m ∈ Z

d . �

In general, if (Y, d) is a semimetric space, we define the horofunction at a
point y in Y by

hy(y
′) = d(y, y′) − d(y,0), y′ ∈ Y.

If d is a metric, the map y �→ hy is injective. Furthermore, if (Y, d) is a proper
metric space, that is, closed and bounded sets are compact, then the closure of the
set {hy}y∈Y in C(Y ) is compact by the Arzela–Ascoli theorem. In our case, the
semimetric ρ is, in general, not a metric, nor is the topology it induces proper.
However, the notion of a horofunction is still well defined. We will study the as-
ymptotic behavior of the horofunctions with respect to the random semimetric ρ

defined above in terms of H-valued cocycles. It turns out that a nice description is
possible in this situation.

THEOREM 3.5. Suppose that (X,μ) is an ergodic Z
d -space and s :X × Z

d ×
Z

d → H is a Bochner cocycle in Ld,1(X, H), where H is a real separable Hilbert
space. Let

ρ(m,n) = ‖s(m,n)‖H, n,m ∈ Z
d,

denote the associated random semimetric on Z
d . If η is an element in �1(Rd) such

that ξ = ∑d
k=1 ηkLk is a nontrivial element in H, where L is the continuous linear

map in Theorem 2.6, then

hη(n) = 2〈s(0, n), ξ〉
‖ξ‖H

, n ∈ Z
d,

almost everywhere on X with respect to μ.

PROOF. The proof is a straightforward modification of the standard method
for computing horofunctions on a Hilbert space. If we suppose that sx(0, n) and
sx(0,m) are both nontrivial elements of H, then

‖sx(n,m)‖H − ‖sx(m,0)‖H = ‖sx(n,0) + sx(0,m)‖2
H − ‖sx(0,m)‖2

H
‖sx(n,0)‖H + ‖sx(m,0)‖H

= ‖sx(n,0)‖2
H + 2〈sx(n,0), sx(0,m)〉H

|m|
· |m|
‖sx(n,0)‖H + ‖sx(m,0)‖H

.

By Lemma 3.1,

lim
m→η

‖sx(n,m)‖H − ‖sx(m,0)‖H = 2〈sx(0, n), ξ̂〉H

almost everywhere on X, where ξ̂ = ξ/‖ξ‖H. �
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REMARK. It is still an open problem to compute the horofunctions at infinity
for the classical first passage percolation metrics. This would provide more refined
knowledge of the asymptotic geometry of these semimetric spaces. It is expected
that these horofunctions can be arbitrarily wild; indeed, by a celebrated result of
Meester and Häggström [17], essentially any convex shape in R

d can be obtained
as an asymptotic shape of a classical first passage percolation generated by ergodic
Z

d -actions.

3.4. Reproducing kernel Hilbert spaces. In this subsection, we will describe
natural examples of Bochner cocycles with values in separable Hilbert spaces. Let
(H,K,o) be a pointed reproducing Hilbert space. This means that H is a Hilbert
space of measurable functions on a measurable space (Y, G) with a fixed base
point o in Y and K :Y × Y → C is a positive definite reproducing kernel, that is,
for all finitely supported sequences (ci, yi) in C × Y , we have the inequality∑

i,j

cicjK(yi, yj ) ≥ 0

and for all y in Y , we have

〈K(y, ·), f 〉H = f (y) ∀f ∈ H,

where 〈·, ·〉H denotes the inner product on H.
Suppose that a locally compact group G acts measurably on (Y, G). In many

cases, the action of G on Y can be lifted to an isometric action of G on H so that
the measurable metric

d(y, y′) = ‖K(y, ·) − K(y′, ·)‖2
H, y, y′ ∈ Y,

is invariant under the action. Let (X, F ,μ,T ) be a Z-action and suppose that π is
a unitary representation of G on H. Given a measurable map g :X → G, we define
the isometry on L2(X, H) by

T̂ f (x) = π(g(x)).f (T x), f ∈ L2(X, H),

almost everywhere on X and we let

f ∗(x) = K(g(x)o, ·) − K(o, ·), x ∈ X.

Let s be the Bochner cocycle generated by f ∗ and the action T̂ . We will describe
a situation where π can be chosen so that

d(Zn(x)o, o) = ‖sx(0, n)‖2
H ∀n ∈ Z,

where Zn is the Borel cocycle generated by g and T . We believe that this is a fairly
general phenomenon.

Let D be the Poincaré disc, that is, the unit disc in C with the distance function β

given by

β(o, z) = log
1 + |z|
1 − |z| , z ∈ D,
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where o is the origin, and extended to all pairs (z, z′) in D × D by isometry. The
isometry group G of D is isomorphic to the Möbius group PSL2(R). The large
scale behavior of β can be equivalently described by the metric (see [2] for a more
details)

d(z, z′) = ‖K(z, ·) − K(z′, ·)‖2
H,

where (H,K) is the normalized Dirichlet reproducing kernel Hilbert space [2]
on D, that is, the reproducing Hilbert space of holomorphic functions φ on D with
φ(o) = 0 and subject to the integrability condition

‖φ‖H =
(∫

D

|φ′(z)|2 dA(z)

)1/2

< ∞,

where A is the Euclidean area measure on D and

K(z, z′) = − log(1 − zz′), (z, z′) ∈ D.

The precise relation between the metrics β and d is discussed, in a slightly different
language, in the paper [2]. In this example, the representation π can be chosen to
be

π(g).φ(z) = φ(g−1z) − φ(o), z ∈ D.

A discussion about the relevance of the metric β and the Borel cocycle Z to ran-
dom Schrödinger equations can be found in [18].

3.5. Rates of convergence. In this subsection, we will prove quantitative state-
ments about the convergence to a limit shape under certain conditions. Our results
will not apply to classical first passage percolation, where deep results have been
established in a series of paper (see, e.g., [4, 19, 27]). We will restrict the study
to Bochner cocycles with values in Hilbert spaces. This allows for certain spec-
tral measure computations to be performed and the methods will not generalize
beyond uniformly convex Banach spaces. In particular, L∞-spaces, which would
be the relevant spaces for classical first passage percolation, are certainly out of
reach.

Let s denote a Bochner cocycle on a Z
d -space X with values in a Hilbert

space H. By the additivity and equivariance properties of s, we note that

sx(0, ne1) =
n−1∑
k=0

sx
(
ke1, (k + 1)e1

) =
n−1∑
k=0

λ(k).sTke1x(0, e1) ∀n ∈ Z
d,

where λ is an isometric representation of Z
d on H. For notational convenience, we
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define f (x) = sx(0, e1). By standard Hilbert space calculations, we have

1

n2

∫
X

‖sx(0, ne1)‖2
H dμ(x)

= 1

n2

n−1∑
j,k=0

∫
X
〈λ(j).f (Tke1x), λ(k).f (Tke1x)〉H dμ(x)

= 1

n2

n−1∑
j,k=0

〈
f (x), λ(k − j).f

(
T(k−j)e1x

)〉
H dμ(x)

=
n∑

k=−n

(n − |k|)
n2

∫
X
〈f (x), λ(k).f (Tke1x)〉H dμ(x).

We introduce the unitary operator U on L2(X, H), defined by Ukf (x) =
λ(k).f (T kx). We note that the calculations above establish the following proposi-
tion.

PROPOSITION 3.1. Let U be the unitary operator defined above. Then

lim
n→∞

1

n2

n∑
k=−n

(n − |k|)Ukf = Pf,

where P is the projection onto the space of U -invariant vectors in L2(X, H).

REMARK. It should be remarked that the proposition is true for any unitary
operator on L2(X, H). This is an immediate consequence of Von Neumann’s mean
ergodic theorem. We included the calculation above for later reference.

A slight reformulation of the above proposition is contained in the following
lemma.

LEMMA 3.2. Suppose that s is a Bochner cocycle on a Z
d -space X with val-

ues in a Hilbert space H. Then

lim
n→∞

1

n
‖s(0, ne1)‖L2(X,H) = ‖Ps(0, e1)‖L2(X,H),

where P is the projection onto the space U -invariant vectors in L2(X, H).

Suppose that ‖f ‖L2(X,H) = 1 and let νf denote the probability measure on T

such that ν̂f (n) = 〈Unf,f 〉 for all n ∈ Z. We are interested in the asymptotic
behavior of the sequence

Rn =
∥∥∥∥∥
n−1∑
k=0

Ukf

∥∥∥∥∥
2

L2(X,H)

− n2‖Pf (x)‖2
L2(X,H)

.
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By Lemma 3.2, we may assume that Pf = 0 in L2(X, H). Several papers have
been written on the analogous situation in the case of classical first passage perco-
lation; see, for example, the papers [1, 4] and [27]. In our situation, we prove the
following analog of Kesten’s inequality in [19].

THEOREM 3.6. Suppose that νf is absolutely continuous with respect to the

Haar measure m on T and that
dνf

dm
is continuous at 0. There then exists a con-

stant C such that∣∣∣∣∣
∥∥∥∥∥
n−1∑
k=0

Ukf (x)

∥∥∥∥∥
2

L2(X,H)

− n2‖Pf (x)‖2
L2(X,H)

∣∣∣∣∣ ≤ Cn ∀n ∈ N.

PROOF. By Lemma 3.2, we can, without loss of generality, assume that
Pf = 0 as an element of L2(X, H). Thus, by the calculation above, we have

‖∑n−1
k=0 Ukf ‖L2(X,H)√

n
=

(∫
T

∑
|k|≤n

(
1 − |k|

n

)
e2πikθ dνf (θ)

)1/2

=
(∫

T

Fn(θ) dνf (θ)

)1/2

,

where Fn denotes the Fejér kernel. Thus, if νf

dm
is continuous at 0, then the limit

stays bounded for large n and we are done. �
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