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GAUSSIAN MULTIPLICATIVE CHAOS REVISITED

BY RAOUL ROBERT AND VINCENT VARGAS

Université Grenoble and CNRS

In this article, we extend the theory of multiplicative chaos for positive
definite functions in R

d of the form f (x) = λ2 ln+ R|x| + g(x), where g is
a continuous and bounded function. The construction is simpler and more
general than the one defined by Kahane in [Ann. Sci. Math. Québec 9 (1985)
105–150]. As a main application, we provide a rigorous mathematical mean-
ing to the Kolmogorov–Obukhov model of energy dissipation in a turbulent
flow.

1. Introduction. The theory of multiplicative chaos was first defined rigor-
ously by Kahane in 1985 in the article [13]. More specifically, Kahane constructed
a theory relying on the notion of a σ -positive-type kernel: a generalized func-
tion K : Rd × R

d → R+ ∪ {∞} is of σ -positive type if there exists a sequence
Kk : Rd × R

d → R+ of continuous positive and positive definite kernels such that

K(x,y) = ∑
k≥1

Kk(x, y).(1.1)

If K is a σ -positive-type kernel with decomposition (1.1), one can consider a
sequence of Gaussian processes (Xn)n≥1 of covariance given by

∑n
k=1 Kk . It is

proved in [13] that the sequence of random measures mn given by

mn(A) =
∫
A

eXn(x)−(1/2)E[Xn(x)2] dx, A ∈ B(Rd),(1.2)

converges almost surely in the space of Radon measures (equipped with the topol-
ogy of weak convergence) to a random measure m and that the limit measure m

obtained does not depend on the sequence (Kk)k≥1 used in the decomposition (1.1)
of K . Thus, the theory enables one to give a unique and mathematically rigorous
definition to a random measure m in R

d defined formally by

m(A) =
∫
A

eX(x)−(1/2)E[X(x)2] dx, A ∈ B(Rd),(1.3)

where (X(x))x∈Rd is a “Gaussian field” whose covariance K is a σ -positive-type
kernel. As it will appear later, the σ -positive-type condition is not easy to check in
practice. Therefore it is convenient to avoid of this hypothesis.
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The main application of the theory is to give a meaning to the “limit-lognormal”
model introduced by Mandelbrot in [17]. In the sequel, we define ln+ x for x > 0
by means of the following formula:

ln+ x = max(ln(x),0).

The “limit-lognormal” model corresponds to the choice of a homogeneous K given
by

K(x,y) = λ2 ln+(R/|x − y|) + O(1),(1.4)

where λ2,R are positive parameters and O(1) is a bounded quantity as |x −
y| → 0. This model has many applications which we will review in the follow-
ing subsections.

1.1. Multplicative chaos in dimension 1: A model for the volatility of a financial
asset. If (X(t))t≥0 is the logarithm of the price of a financial asset, the volatil-
ity m of the asset on the interval [0, t] is, by definition, equal to the quadratic
variation of X:

m[0, t] = lim
n→∞

n∑
k=1

(
X(tk/n) − X

(
t (k − 1)/n

))2
.

The volatility m can be viewed as a random measure on R. The choice of m

for multiplicative chaos associated with the kernel K(s, t) = λ2 ln+ T
|t−s| satisfies

many empirical properties measured on financial markets, for example, lognormal-
ity of the volatility and long range correlations (see [6] for a study of the SP500
index and components, and [7] for a general review). Note that K is indeed of
σ -positive type (see Example 2.3), so m is well defined. In the context of finance,
λ2 is called the intermittency parameter, in analogy with turbulence, and T is the
correlation length. Volatility modeling and forecasting is an important area of fi-
nancial mathematics since it is related to option pricing and risk forecasting; we
refer to [9] for the problem of forecasting volatility with this choice of m.

Given the volatility m, the most natural way to construct a model for the (log)
price X is to set

X(t) = Bm[0,t],(1.5)

where (Bt )t≥0 is a Brownian motion independent of m. Formula (1.5) defines the
multifractal random walk (MRW) first introduced in [1] (see [2] for a recent review
of the financial applications of the MRW model).

1.2. Multiplicative chaos in dimension 3: A model for the energy dissipation
in a turbulent fluid. We refer to [10] for an introduction to the statistical theory
of three-dimensional turbulence. Consider a stationary flow with high Reynolds
number. It is believed that at small scales, the velocity field of the flow is homo-
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geneous and isotropic in space. By “small scales,” we mean scales much smaller
than the integral scale R characteristic of the time stationary force driving the
flow. In the work [15] and [19], Kolmogorov and Obukhov propose to model the
mean energy dissipation per unit mass in a ball B(x, l) of center x and radius
l � R by a random variable εl such that ln(εl) is normal with variance σ 2

l given
by

σ 2
l = λ2 ln

(
R

l

)
+ A,

where A is a constant and λ2 is the intermittency parameter. As noted by
Mandelbrot [17], the only way to define such a model is to construct a ran-
dom measure ε by a limit procedure. Then, one can define εl by the for-
mula

εl = 3〈ε〉
4πl3 ε(B(x, l)),

where 〈ε〉 is the average mean energy dissipation per unit mass. Formally, one is
looking for a random measure ε such that

∀A ∈ B(Rd) ε(A) =
∫
A

eX(x)−(1/2)E[X(x)2] dx,(1.6)

where (X(x))x∈Rd is a “Gaussian field” whose covariance K is given by
K(x,y) = λ2 ln+ R

|x−y| . The kernel λ2 ln+ R
|x−y| is positive definite when con-

sidered as a tempered distribution [see (2.1) below for a definition of posi-
tive definite distributions and Lemma 3.2 for a proof of this assertion]. There-
fore, one can give a rigorous meaning to (1.6) by using Theorem 2.1 be-
low.

However, it is not clear whether λ2 ln+ R
|x−y| is of σ -positive type in R

3

and, therefore, in [13], Kahane considers the σ -positive-type kernel K(x,y) =∫ ∞
1/R

e−u|x−y|
u

du as an approximation of λ2 ln+ R
|x−y| . Indeed, one can show that∫ ∞

1/R
e−u|x−y|

u
du = ln+ R

|x−y| + g(|x − y|), where g is a bounded continuous func-

tion. Nevertheless, it is important to work with λ2 ln+ R
|x−y| since this choice leads

to measures which exhibit generalized scale invariance properties; see Proposi-
tion 3.3.

1.3. Organization of the paper. In Section 2, we recall the definition of posi-
tive definite tempered distributions and we state Theorem 2.1, wherein we define
multiplicative chaos m associated with kernels of the type ln+ R

|x| + O(1). In Sec-
tion 3, we review the main properties of the measure m: existence of moments and
density with respect to Lebesgue measure, multifractality and generalized scale
invariance. In Sections 4 and 5, we supply the proofs for Sections 2 and 3, respec-
tively.
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2. Definition of multiplicative chaos.

2.1. Positive definite tempered distributions. Let S(Rd) be the Schwartz space
of smooth, rapidly decreasing functions and S ′(Rd) the space of tempered distrib-
utions (see [21]). A distribution f in S ′(Rd) is positive definite if

∀ϕ ∈ S(Rd)

∫
Rd

∫
Rd

f (x − y)ϕ(x)ϕ(y) dx dy ≥ 0.(2.1)

On S ′(Rd), one can define the Fourier transform f̂ of a tempered distribution via
the formula

∀ϕ ∈ S(Rd)

∫
Rd

f̂ (ξ)ϕ(ξ) dξ =
∫

Rd
f (x)ϕ̂(x) dx,(2.2)

where ϕ̂(x) = ∫
Rd e−2iπx.ξϕ(ξ) dξ is the Fourier transform of ϕ. An extension of

Bochner’s theorem (Schwartz [21]) states that a tempered distribution f is positive
definite if and only if its Fourier transform is a tempered positive measure.

By definition, a function f in S ′(Rd) is of σ -positive type if the associated
kernel K(x,y) = f (x −y) is of σ -positive type. As mentioned in the Introduction,
Kahane’s theory of multiplicative chaos is defined for σ -positive-type functions f .
The main problem stems from the fact that definition (1.1) is not practical. A key
question is whether there exists a simple characterization (like the computation of
a Fourier transform) of functions whose associated kernel can be decomposed in
the form (1.1). If such a characterization exists, there is the further question of how
one finds the kernels Kn explicitly.

Finally, we recall the following simple implication: if f belongs to S ′(Rd) and
is of σ -positive type, then f is positive and positive definite. However, the converse
statement is not clear.

2.2. A generalized theory of multiplicative chaos. In this subsection, we con-
struct a theory of multiplicative chaos for positive definite functions of type
λ2 ln+ R

|x| + O(1), without the assumption of σ -positivity for the underlying func-
tion. The theory is therefore much easier to use.

We consider, in R
d , a positive definite function f such that

f (x) = λ2 ln+ R

|x| + g(x),(2.3)

where λ2 �= 2d and g(x) is a bounded continuous function. Let θ : Rd → R be
some continuous function with the following properties:

(1) θ is positive definite;
(2) |θ(x)| ≤ 1

1+|x|d+γ for some γ > 0;

(3)
∫
Rd θ(x) dx = 1.

The following is the main theorem of the article.
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THEOREM 2.1 (Definition of multiplicative chaos). For all ε > 0, we consider
the centered Gaussian field (Xε(x))x∈Rd defined by the convolution

E[Xε(x)Xε(y)] = (θε ∗ f )(y − x),

where θε = 1
εd θ( ·

ε
). The associated random measure mε(dx) =

eXε(x)−(1/2)E[Xε(x)2] dx then converges in law in the space of Radon measures
(equipped with the topology of weak convergence), as ε goes to 0, to a random
measure m, independent of the choice of the regularizing function θ with proper-
ties (1)–(3). We call the measure m the multiplicative chaos associated with the
function f .

Below, we review two possible choices of the underlying function f . The first
example is a d-dimensional generalization of the cone construction considered
in [3]. The second example is λ2 ln+ R

|x| for d = 1,2,3 (the case d = 2,3 seems
never to have been considered in the literature). Both examples are, in fact, of σ -
positive type (except perhaps the crucial example of λ2 ln+ R

|x| in dimension d = 3)
and it is easy to show that in these cases, Theorem 2.1 and Kahane’s theory lead to
the same limit measure m.

EXAMPLE 2.2. One can construct a positive definite function f with decom-
position (2.3) by generalizing the cone construction of [3] to dimension d . This
was performed in [5]. For all x in R

d , we define the cone C(x) in R
d × R+:

C(x) =
{
(y, t) ∈ R

d × R+; |y − x| ≤ t ∧ R

2

}
.

The function f is given by

f (x) = λ2
∫
C(0)∩C(x)

dy dt

td+1 .(2.4)

One can show that f has decomposition (2.3) (see [5]). The function f is of σ -
positive type, in the sense of Kahane, since one can write f = ∑

n≥1 fn with fn

given by

fn(x) = λ2
∫
C(0)∩C(x);1/n≤t<1/(n−1)

dy dt

td+1 .

In dimension d = 1, we get the simple formula f (x) = λ2 ln+ R
|x| .

EXAMPLE 2.3. In dimension d = 1,2, the function f (x) = ln+ R
|x| is of σ -

positive type, in the sense of Kahane, and, in particular, positive definite. Indeed,
one has, by straightforward calculations,

ln+ R

|x| =
∫ ∞

0
(t − |x|)+νR(dt),
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where νR(dt) = 1[0,R[(t)dt
t2 + δR

R
. For all μ > 0, we have

ln+ R

|x| = 1

μ
ln+ Rμ

|x|μ = 1

μ

∫ ∞
0

(t − |x|μ)+νRμ(dt).

We are therefore led to consider the μ > 0 such that (1−|x|μ)+ is positive definite
(the so-called Kuttner–Golubov problem; see [11] for an introduction).

For d = 1, it is straightforward to show that (1 − |x|)+ is of σ -positive type.
One can thus write f = ∑

n≥1 fn with fn given by

fn(x) =
∫ R/(n−1)

R/n
(t − |x|)+νR(dt).

For d = 2, the function (1 −|x|1/2) is positive definite (Pasenchenko [20]). One
can thus write f = ∑

n≥1 fn, with fn given by

fn(x) =
∫ R1/2/(n−1)

R1/2n
(t − |x|1/2)+νR1/2(dt).

In dimension d = 3, the function ln+ R
|x| is positive definite (see Lemma 3.2),

but it is an open question whether it is of σ -positive type.

3. Main properties of multiplicative chaos. In the sequel, we will consider
the structure functions ζp defined for all p in R by

ζp =
(
d + λ2

2

)
p − λ2p2

2
.(3.1)

3.1. Multiplicative chaos is equal to 0 for λ2 > 2d . The following proposi-
tion shows that multiplicative chaos is nontrivial only for sufficiently small values
of λ2.

PROPOSITION 3.1. If λ2 > 2d , then the limit measure is equal to 0.

3.2. Generalized scale invariance. In this subsection and the following, in
view of Proposition 3.1, we will suppose that λ2 < 2d .

Let m be a homogeneous random measure on R
d ; we recall that this means that

for all x, the measures m and m(x + ·) are equal in law. We denote by B(0,R)

the ball of center 0 and radius R in R
d . We say that m has the generalized scale

invariance property with integral scale R > 0 if, for all c in ]0,1], the following
equality in law holds:

(m(cA))A⊂B(0,R)
(Law)= e
c(m(A))A⊂B(0,R),(3.2)

where 
c is a random variable independent of m. Let νt denote the law of 
e−t .
If m is different from 0, then it is straightforward to prove that the laws (νt )t≥0



GAUSSIAN MULTIPLICATIVE CHAOS REVISITED 611

satisfy the convolution property νt+t ′ = νt ∗ νt ′ . Therefore, one can find a Lévy
process (Lt )t≥0 such that, for each t , νt is the law of Lt . In the context of Gaussian
multiplicative chaos, the process (Lt )t≥0 will be Brownian motion with drift.

In order to get scale invariance with integral scale R, one can choose f = ln+ R
|·| .

This is possible if and only if ln+ R
|·| is positive definite. This motivates the follow-

ing lemma.

LEMMA 3.2. Let d ≥ 1 be the dimension of the space and R > 0 the integral
scale. We consider the function f : Rd → R+ defined by

f (x) = ln+ R

|x| .

The function f is positive definite if and only if d ≤ 3.

The above choice of f leads to measures that have the generalized scale invari-
ance property.

PROPOSITION 3.3. Let d be less than or equal to 3 and m the Gaussian multi-
plicative chaos with kernel λ2 ln+ R

|x| . Then m is scale invariant: for all c in ]0,1],
we have

(m(cA))A⊂B(0,R)
(Law)= e
c(m(A))A⊂B(0,R),(3.3)

where 
c is a Gaussian random variable independent of m with mean −(d +
λ2

2 ) ln(1/c) and variance λ2 ln(1/c).

The proof of the proposition is straightforward.

REMARK 3.4. It remains an open problem to construct isotropic and homo-
geneous measures in dimension greater or equal to 4 which are scale invariant.

3.3. Existence of moments and multifractality. We recall that we have sup-
posed that λ2 < 2d: this ensures the existence of ε > 0 such that ζ1+ε > d . There-
fore, there exists a unique p∗ > 1 such that ζp∗ = d . The following two proposi-
tions establish the existence of positive and negative moments for the limit mea-
sure.

PROPOSITION 3.5 (Positive moments). Let p belong to ]0,p∗[ and m be the
Gaussian multiplicative chaos associated with the function f given by (2.3). For
all bounded A in B(Rd),

E[m(A)p] < ∞.(3.4)
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Let θ be some function satisfying the conditions (1)–(3) of Section 2.2. With the
notation of Theorem 2.1, we consider the random measure mε associated with θ .
We have the following convergence for all bounded A in B(Rd):

E[mε(A)p]−→
ε→0

E[m(A)p].(3.5)

PROPOSITION 3.6 (Negative moments). Let p belong to ]–∞,0] and m be
the Gaussian multiplicative chaos associated with the function f given by (2.3).
For all c > 0,

E[m(B(0, c))p] < ∞.(3.6)

Let θ be some function satisfying the conditions (1)–(3) of Section 2.2. With the
notation of Theorem 2.1, we consider the random measure mε associated with θ .
We have the following convergence for all c > 0:

E[mε(B(0, c))p]−→
ε→0

E[m(B(0, c))p].(3.7)

The following proposition states the existence of the structure functions.

PROPOSITION 3.7. Let p belong to ]–∞,p∗[. Let m be the Gaussian multi-
plicative chaos associated with the function f given by (2.3). There exists some
Cp > 0 [independent of g and R in decomposition (2.3): Cp = Cp(λ2)] such that
we have the following multifractal behavior:

E[m([0, c]d)p] ∼
c→0

ep(p−1)g(0)/2Cp

(
c

R

)ζp

.(3.8)

In the next proposition, we will suppose that d ≤ 3 and that f (x) = λ2 ln+ R
|x| .

In this case, we can prove the existence of a C∞ density.

PROPOSITION 3.8. Let d be less than or equal to 3 and m the Gaussian mul-
tiplicative chaos with kernel λ2 ln+ R

|x| . For all c < R, the variable m(B(0, c)) has
a C∞ density with respect to the Lebesgue measure.

4. Proof of Theorem 2.1.

4.1. A few intermediate lemmas. In order to prove the theorem, we start by
giving some lemmas we will need in the proof.

LEMMA 4.1. Let θ be some function on R
d such that there exist γ,C > 0 with

|θ(x)| ≤ C
1+|x|d+γ . We then have the following convergence:

sup
|z|>A

∣∣∣∣∫
Rd

|θ(v)| ln
∣∣∣∣ z

z − v

∣∣∣∣dv

∣∣∣∣ −→
A→∞ 0.(4.1)
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PROOF. We have∫
Rd

|θ(v)| ln
∣∣∣∣ z

z − v

∣∣∣∣dv

=
∫
|v|≤√|z|

|θ(v)| ln
∣∣∣∣ z

z − v

∣∣∣∣dv +
∫
|v|>√|z|

|θ(v)| ln
∣∣∣∣ z

z − v

∣∣∣∣dv.

In the remainder of the proof, we will suppose that |z| > 1.
Considering the first term. We have 1 − |v|

|z| ≤ |z−v|
|z| ≤ 1 + |v|

|z| so that for |v| ≤√|z|,
1 − 1√|z| ≤ |z − v|

|z| ≤ 1 + 1√|z| .

Thus, we get | ln |z−v|
|z| | ≤ ln( 1

1−1/
√|z|) ≤ 1√|z|−1

. We conclude that∫
|v|≤√|z|

|θ(v)| ln
∣∣∣∣ z

z − v

∣∣∣∣dv ≤ 1√|z| − 1

∫
Rd

|θ(v)|dv.

Considering the second term. We have∫
|v|>√|z|

|θ(v)| ln
∣∣∣∣ z

z − v

∣∣∣∣dv

≤ ln |z|
∫
|v|>√|z|

|θ(v)|dv +
∫
|v|>√|z|

|θ(v)|∣∣ln |z − v|∣∣dv.

The first term above is obvious. We decompose the second as follows:∫
|v|>√|z|

|θ(v)|∣∣ln |z − v|∣∣dv

=
∫
√|z|<|v|<|z|+1

|θ(v)|∣∣ln |z − v|∣∣dv +
∫
|v|≥|z|+1

|θ(v)|∣∣ln |z − v|∣∣dv.

For |v| ≥ |z| + 1, we have 1 ≤ |z − v| ≤ |z||v| and thus

0 ≤ ln |z − v| ≤ ln |z| + ln |v|,
which enables us to handle the corresponding integral. Let us now estimate the re-
maining term I = ∫√|z|<|v|<|z|+1 |θ(v)|| ln |z − v||dv. Applying Hölder’s inequal-

ity with 1
p

+ 1
q

= 1 gives

I ≤
(∫

√|z|<|v|<|z|+1
|θ(v)|p dv

)1/p(∫
√|z|<|v|<|z|+1

∣∣ln |z − v|∣∣q dv

)1/q

,

from which we straightforwardly get, if p is close to 1,

I ≤ C ln |z|
|z|d/2+γ /2−d/2p−d/q

−→|z|→∞ 0. �

We will also use the following lemma.
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LEMMA 4.2. Let λ be a positive number such that λ2 �= 2 and (Xi)1≤i≤n

an i.i.d. sequence of centered Gaussian variables with variance λ2 ln(n). For all
positive p such that p < max( 2

λ2 ,1), there exists 0 < x < 1 such that

E
[

sup
1≤i≤n

epXi−p(λ2/2) ln(n)
]
= O(nxp).(4.2)

PROOF. By Fubini, we get

E
[

sup
1≤i≤n

epXi−p(λ2/2) ln(n)
]

=
∫ ∞

0
P

(
sup

1≤i≤n

epXi−p(λ2/2) ln(n) > v
)
dv

=
∫ ∞

0
P

(
sup

1≤i≤n

Xi >
ln(v)

p
+ λ2

2
ln(n)

)
dv(4.3)

=
∫ ∞
−∞

pepuP

(
sup

1≤i≤n

Xi > u + λ2

2
ln(n)

)
du

≤ 1 +
∫ ∞

0
pepuP

(
sup

1≤i≤n

Xi > u + λ2

2
ln(n)

)
du,

where we have performed the change of variable u = ln(v)
p

in the above identities.

If we define F̄ (u) = P(X1 > u), then we have

P

(
sup

1≤i≤n

Xi > u + λ2

2
ln(n)

)
= 1 − en ln(1−F̄ (u+(λ2/2) ln(n))).

Let x be some positive number such that 0 < x < 1. Using (4.3), we get

E
[

sup
1≤i≤n

epXi−p(λ2/2) ln(n)
]

≤ nxp + p

∫ ∞
x ln(n)

epu(
1 − en ln(1−F̄ (u+(λ2/2) ln(n))))du(4.4)

≤ nxp + pnxp
∫ ∞

0
epũ(

1 − en ln(1−F̄ (ũ+((λ2/2)+x) ln(n))))dũ.

We have

F̄

(
ũ +

(
λ2

2
+ x

)
ln(n)

)
= 1√

2πλ
√

ln(n)

∫ ∞
ũ+(λ2/2+x) ln(n)

e−v2/(2λ2 ln(n)) dv

= n−(λ2/2+x)2/(2λ2)

√
2πλ

√
ln(n)

∫ ∞
ũ

e−(1/2+x/λ2)ṽ−ṽ2/(2λ2 ln(n)) dṽ,



GAUSSIAN MULTIPLICATIVE CHAOS REVISITED 615

where we have performed the change of variable ṽ = v − (λ2

2 + x) ln(n). Thus, we
get

nxp
∫ ∞

0
epũ(

1 − en ln(1−F̄ (ũ+((λ2/2)+x) ln(n))))dũ

≤ nxp+1
∫ ∞

0
epũF̄

(
ũ +

(
λ2

2
+ x

)
ln(n)

)
dũ

≤ nxp+1−(λ2/2+x)2/(2λ2)

√
2πλ

√
ln(n)

∫ ∞
0

epũ

(∫ ∞
ũ

e−(1/2+x/λ2)ṽ−ṽ2/(2λ2 ln(n)) dṽ

)
dũ

(4.5)

≤ nxp+1−(λ2/2+x)2/(2λ2)

p
√

2πλ
√

ln(n)

∫ ∞
0

epṽ−(1/2+x/λ2)ṽ−ṽ2/(2λ2 ln(n)) dṽ

≤ nxp+1−(λ2/2+x)2/(2λ2)

p
√

2πλ
√

ln(n)

∫ ∞
−∞

epṽ−(1/2+x/λ2)ṽ−ṽ2/(2λ2 ln(n)) dṽ

= nxp+α(x,λ2,p)

p
,

with α(x,λ2,p) = 1 − (λ2/2+x)2

2λ2 + (p − 1
2 − x

λ2 )
2 λ2

2 . We have, by combining (4.4)
and (4.5),

E
[

sup
1≤i≤n

epXi−p(λ2/2) ln(n)
]
≤ nxp + nxp+α(x,λ2,p).

We focus on the case p ∈]1
2 + 1

λ2 ,max( 2
λ2 ,1)[. This implies inequality (4.2) for

p ≤ 1
2 + 1

λ2 ; indeed, if inequality (4.2) holds for some p, then it holds for all p′ < p

by applying Jensen’s inequality to the concave function u → up′/p .
First case: λ2 < 2. Note that α(1, λ2, 2

λ2 ) = 0, so if p < 2
λ2 , then there exists

0 < x < 1 such that α(x,λ2,p) < 0.
Second case: λ2 > 2. Note that α(1, λ2,1) = 0, so if p < 1, then there exists

0 < x < 1 such that α(x,λ2,p) < 0. �

4.2. Proof of Theorem 2.1. For the sake of simplicity, we give the proof in the
case where d = 1, R = 1 and the function f (x) = λ2 ln+ 1

|x| . This is no restriction;
indeed, the proof in the general case is an immediate adaptation of the following
proof.

4.2.1. Uniqueness. Let α ∈]0,1/2[. We consider θ and θ̃ , two continuous
functions satisfying properties (1)–(3). We note that

m(dt) = eX(t)−(1/2)E[X(t)2] dt = lim
ε→0

eXε(t)−(1/2)E[Xε(t)
2] dt,
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where (Xε(t))t∈R is a Gaussian process of covariance qε(|t − s|) with

qε(x) = (θε ∗ f )(x) = λ2
∫

R

θ(v) ln+
(

1

|x − εv|
)

dv.

We similarly define the measure m̃, X̃ε and q̃ε associated with the function θ̃ .
Note that we suppose that the random measures mε(dt) = eXε(t)−(1/2)E[Xε(t)

2] dt

and m̃ε(dt) = eX̃ε(t)−(1/2)E[Xε(t)
2] dt converge in law in the space of Radon mea-

sures. This is no restriction since, using Fubini and E[eXε(t)−(1/2)E[Xε(t)
2]] = 1, we

get the equality E[mε(A)] = E[m̃ε(A)] = |A| for all bounded A in B(R) which
implies that the measures are tight (see Lemma 4.5 in [14]).

We will show that

E[m[0,1]α] = E[m̃[0,1]α]
for α in the interval ]0,1/2[. If we define Zε(t)(u) = √

tX̃ε(u) + √
1 − tXε(u)

with Xε(u) and X̃ε(u) independent, then we get, by using the continuous version
of Lemma A.1,

E[m̃ε[0,1]α] − E[mε[0,1]α] = α(α − 1)

2

∫ 1

0
ϕε(t) dt,(4.6)

with ϕε(t) defined by

ϕε(t) =
∫
[0,1]2

(
q̃ε(|t2 − t1|) − qε(|t2 − t1|)E[Xε(t, t1, t2)])dt1 dt2,

where Xε(t, t1, t2) is given by

Xε(t, t1, t2) = eZε(t)(t1)+Zε(t)(t2)−(1/2)E[Zε(t)(t1)
2]−(1/2)E[Zε(t)(t2)

2]

(
∫ 1

0 eZε(t)(u)−(1/2)E[Zε(t)(u)2] du)2−α
.

We now state and prove the following short lemma which we will need in the
sequel.

LEMMA 4.3. For A > 0, we let Cε
A = sup|x|≥Aε|qε(x) − q̃ε(x)|. We have

lim
A→∞

(
lim
ε→0

Cε
A

)
= 0.

PROOF. Let |x| ≥ Aε. If |x| ≥ 1/2, then qε(x) and q̃ε(x) converge uniformly
to λ2 ln+ 1

|x| , thus qε(x) − q̃ε(x) converges uniformly to 0 (this a consequence

of the fact that λ2 ln+ 1
|x| is continuous and of compact support for |x| ≥ 1/2). If

|x| < 1/2, then we write

qε(x) = λ2
(

ln
1

ε
+ Q(x/ε) + Rε(x)

)
,
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where Q(x) = ∫
R

ln 1
|x−z|θ(z) dz and Rε(x) converges uniformly to 0 (for |x| <

1/2) as ε → 0 [similarly, we can write q̃ε(x) = λ2(ln 1
ε

+ Q̃(x/ε) + R̃ε(x))].
This follows from straightforward calculations. Applying Lemma 4.1, we get that
Q(x) = ln 1

|x| + �(x) with �(x) → 0 for |x| → ∞. Thus, Q(x) − Q̃(x) is a con-
tinuous function such that, for |x| ≥ Aε and |x| ≤ 1/2, we have

|qε(x) − q̃ε(x)| ≤ λ2 sup
|y|≥A

|Q(y) − Q̃(y)| + λ2 sup
|x|≤1/2

|Rε(x) − R̃ε(x)|.

The result follows. �

One can decompose expression (4.6) in the following way:

E[m̃ε[0,1]α] − E[mε[0,1]α]
(4.7)

= α(α − 1)

2

∫ 1

0
ϕA

ε (t) dt + α(α − 1)

2

∫ 1

0
ϕ̄A

ε (t) dt,

where

ϕA
ε (t) =

∫
[0,1]2,|t2−t1|≤Aε

(
q̃ε(|t2 − t1|) − qε(|t2 − t1|)E[Xε(t, t1, t2)])dt1 dt2

and

ϕ̄A
ε (t) =

∫
[0,1]2,|t2−t1|>Aε

(
q̃ε(|t2 − t1|) − qε(|t2 − t1|)E[Xε(t, t1, t2)])dt1 dt2.

With the notation of Lemma 4.3, we have

|ϕ̄A
ε (t)| ≤ Cε

A

∫
[0,1]2,|t2−t1|>Aε

E[Xε(t, t1, t2)]dt1 dt2

≤ Cε
A

∫
[0,1]2

E[Xε(t, t1, t2)]dt1 dt2

= Cε
AE

[(∫ 1

0
eZε(t)(u)−(1/2)E[Zε(t)(u)2] du

)α]
≤ Cε

A.

Thus, taking the limit as ε goes to 0 in (4.7) gives

lim
ε→0

|E[m̃ε[0,1]α] − E[mε[0,1]α]|

≤ α(1 − α)

2
lim
ε→0

Cε
A + α(1 − α)

2
lim
ε→0

∫ 1

0
|ϕA

ε (t)|dt.

We will show that limε→0 ϕA
ε (0) = 0 [the general case ϕA

ε (t) is similar]. There
exists a constant C̃A > 0, independent of ε, such that

sup
|x|≤Aε

|q̃ε(x) − qε(x)| ≤ C̃A.
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Therefore, we have

|ϕA
ε (0)| ≤ C̃A

∫ 1

0

∫ t1+Aε

t1−Aε
E[Xε(0, t1, t2)]dt2 dt1

(4.8)

= C̃AE

[∫ 1
0

∫ t1+Aε
t1−Aε eXε(t1)+Xε(t2)−(1/2)E[Xε(t1)

2]−(1/2)E[Xε(t2)
2] dt1 dt2

(
∫ 1

0 eXε(u)−(1/2)E[Xε(u)2] du)2−α

]
.

We now have∫ 1

0

∫ t1+Aε

t1−Aε
eXε(t1)+Xε(t2)−(1/2)E[Xε(t1)

2]−(1/2)E[Xε(t2)
2] dt2 dt1

≤
(

sup
t1

∫ t1+Aε

t1−Aε
eXε(t2)−(1/2)E[Xε(t2)

2] dt2

)∫ 1

0
eXε(t1)−(1/2)E[Xε(t1)

2] dt1

≤ 2
(

sup
0≤i<1/(2Aε)

∫ 2(i+1)Aε

2iAε
eXε(t2)−(1/2)E[Xε(t2)

2] dt2

)

×
∫ 1

0
eXε(t1)−(1/2)E[Xε(t1)

2] dt1.

In view of (4.8), this implies that

|ϕA
ε (0)| ≤ 2C̃AE

[(
sup

0≤i<1/(2Aε)

∫ 2(i+1)Aε

2iAε
eXε(t2)−(1/2)E[Xε(t2)

2] dt2

)

×
(∫ 1

0
eXε(t1)−(1/2)E[Xε(t1)

2] dt1

)α−1]

≤ 2C̃AE

[(
sup

0≤i<1/(2Aε)

∫ 2(i+1)Aε

2iAε
eXε(t2)−(1/2)E[Xε(t2)

2] dt2

)α]
,

where we have used the inequality supi ai

(
∑

i ai )
1−α ≤ (supi ai)

α . For the sake of simplic-

ity, we now replace 2A by A.
To study the above supremum, the idea is to use the approximation Xε(t) ≈

Xε(Aiε) for t in [Aiε,A(i + 1)ε]. We define Cε by

Cε = sup
0≤i<1/(Aε)

Aiε≤u≤A(i+1)ε

(
Xε(u) − Xε(Aiε)

)
.(4.9)

By the definition of Cε , we have Xε(t) ≤ Xε(Aiε) + Cε for all i < 1
Aε

and all t in
[Aiε,A(i + 1)ε]. We then get

E

[(
sup

0≤i<1/(Aε)

∫ A(i+1)ε

Aiε
eXε(t)−(1/2)E[Xε(t)

2] dt

)α]

≤ E

[(
sup

0≤i<1/(Aε)

∫ A(i+1)ε

Aiε
eXε(Aiε)−(1/2)E[Xε(Aiε)2] dt

)α

eαCε

]
(4.10)
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= E
[(

εA sup
0≤i<1/(Aε)

eXε(Aiε)−(1/2)E[Xε(Aiε)2])α
eαCε

]
≤ (εA)αE

[(
sup

0≤i<1/(Aε)

eXε(Aiε)−(1/2)E[Xε(Aiε)2])2α]1/2
E[e2αCε ]1/2.

There exists some c ≥ 0 (independent of ε) such that for all s, t in [0,1],
E[Xε(s)Xε(t)] = qε(|t − s|) ≥ −c.

Indeed, for simplicity, let us suppose that θ has compact support in [−K,K] with
K > 0. The function qε(x) converges uniformly to λ2 ln+ 1

|x| on |x| ≥ 1
2 , so we can

restrict to the case |x| ≤ 1
2 . If x = εx̃, then |x̃| ≤ 1

2ε
and we have

qε(x) = λ2
∫ K

−K
θ(v) ln

(
1

|x − εv|
)

dv

= λ2 ln
(

1

ε

)
− λ2

∫ K

−K
θ(v) ln(|x̃ − v|) dv.

The quantity λ2 ∫ K
−K θ(v) ln(|x̃ − v|) dv is bounded for |x̃| ≤ K + 1 and for |x̃| >

K + 1, it can be written

λ2
∫ K

−K
θ(v) ln(|x̃ − v|) dv = λ2 ln |x̃| + λ2

∫ K

−K
θ(v) ln

( |x̃ − v|
|x̃|

)
dv

≤ λ2 ln
(

1

2ε

)
+ λ2

∫ K

−K
θ(v) ln

( |x̃ − v|
|x̃|

)
dv.

The conclusion follows from the fact that the second term in the right-hand side
above is bounded independently of ε.

We introduce a centered Gaussian random variable Z independent of Xε and
such that E[Z2] = c. Let (Rε

i )1≤i<1/(Aε) be a sequence of i.i.d. Gaussian random
variables such that E[(Rε

i )
2] = E[Xε(Aiε)2] + c. By applying Corollary A.3, we

get

E
[(

sup
0≤i<1/(Aε)

eXε(Aiε)−(1/2)E[Xε(Aiε)2])2α]

= 1

e2α2c−αc
E

[(
sup

0≤i<1/(Aε)

eXε(Aiε)+Z−(1/2)E[Xε(Aiε)2]−(c/2)
)2α]

≤ 1

e2α2c−αc
E

[(
sup

0≤i<1/(Aε)

eRε
i −(1/2)E[(Rε

i )
2])2α]

.

We have E[(Rε
i )

2] = λ2 ln 1
ε

+ C(ε), with C(ε) converging to some constant as ε

goes to 0. Since 2α < 1, by applying Lemma 4.2, there exists some 0 < x < 1 such
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that

E
[(

sup
0≤i<1/(Aε)

eRε
i −(1/2)E[(Rε

i )
2])2α]

≤ C

(
1

ε

)2αx

and we therefore have

|ϕA
ε (0)| ≤ Cεγ E[e2αCε ]1/2

with γ = α(1 − x) > 0.
One can write Cε = sup0≤i<1/(Aε),0≤v≤1 Wi

ε(v), where Wi
ε(v) = Xε(Aiε +

Aεv) − Xε(Aiε). We have

E[Wi
ε(v)Wi

ε(v
′)] = gε(v − v′),

where gε is a continuous function bounded by some constant M independent
of ε. Let Y be a centered Gaussian random variable independent of Wi

ε such that
E[Y 2] = M . Thus, we can write

E[e2αCε ] = E[e2αsupi,v(W
i
ε (v)+Y )]

e2α2M
.

Let us now consider a family (W
i

ε)1≤i<1/(Aε) of centered i.i.d. Gaussian
processes of law (W 0

ε (v) + Y)0≤v≤1. Applying Corollary A.3 from the Appendix,
we get

E[e2αCε ] ≤ E[e2αsupi,vW
i
ε(v)]

e2α2M
.

We now estimate E[e2αsupi,vW
i
ε(v)]. Let us write Xi = sup0≤v≤1W

i

ε(v). Applying
Corollary 3.2 of [16] to the continuous Gaussian process (W 0

ε (v) + Y)0≤v≤1, we
get that the random variable has a Gaussian tail:

P(Xi > z) ≤ Ce−z2/(2σ 2) ∀z > 0

for some C and σ . Using computations similar to the ones used in the proof of
Lemma 4.2, the above tail inequality gives the existence of some constant C > 0
such that

E
[
e2αsup0≤i<1/(Aε)Xi

] ≤ CeC
√

ln(1/ε).

Therefore, we have E[e2αCε ] ≤ CeC
√

ln(1/ε) and then

|ϕA
ε (0)| ≤ Cεγ eC

√
ln(1/ε).

It follows that limε→0|ϕA
ε (0)| = 0 so that for α < 1/2,

lim
ε→0

|E[m̃ε[0,1]α] − E[mε[0,1]α]| ≤ α(1 − α)

2
lim
ε→0

Cε
A.
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Since limε→0 Cε
A → 0 as A goes to infinity (Lemma 4.3), we conclude that

lim
ε→0

|E[m̃ε[0,1]α] − E[mε[0,1]α]| = 0.

It is straightforward to check that the above proof can be generalized to show that
for all positive λ1, . . . , λn and intervals I1, . . . , In, we have

E

[(
n∑

k=1

λkm(Ik)

)α]
= E

[(
n∑

k=1

λkm̃(Ik)

)α]
.

This implies that the random measures m and m̃ are equal (see [8]).

Existence. Let f (x) be a real positive definite function on R
d (note that this

implies that f is symmetric). Let us recall that a centered Gaussian field of corre-
lation f (x − y) can be constructed by means of the following formula:

X(x) =
∫

Rd
ζ(x, ξ)

√
f̂ (ξ)W(dξ),

where ζ(x, ξ) = cos(2πx.ξ) − sin(2πx.ξ) and W(dξ) is the standard white noise
on R

d (to see this, one can check, using the inverse Fourier formula, that the above
X has the desired correlations). This can also be written as

X(x) =
∫
]0,∞[×Rd

ζ(x, ξ)

√
f̂ (ξ)g(t, ξ)W(dt, dξ),(4.11)

where W(dt, dξ) is the white noise on ]0,∞[×R
d and

∫ ∞
0 g(t, ξ)2 dt = 1 for

all ξ . The significance of the expression (4.11) should be evident in what fol-
lows. Let the function θ be radially symmetric and let θ̂ be a decreasing function

of |ξ | [e.g., take θ(x) = e−|x|2/2

(2π)d/2 ]. Let us consider g(t, ξ) =
√

−θ̂ ′(t |ξ |)|ξ | so that∫ ∞
ε g(t, ξ)2 dt = θ̂ (ε|ξ |) for |ξ | �= 0. If we then consider the fields Xε defined by

Xε(x) =
∫
]ε,∞[×Rd

ζ(x, ξ)

√
f̂ (ξ)g(t, ξ)W(dt, dξ),(4.12)

then we will find

E[Xε(x)Xε(y)] =
∫

Rd
cos

(
2π(x − y).ξ

)
f̂ (ξ)θ̂(ε|ξ |) dξ

= (f ∗ θε)(x − y).

The significance of (4.12) is to make the approximation process appear as a martin-
gale. Indeed, if we define the filtration Fε = σ {W(A,B),A ⊂]ε,∞[,B ∈ B(Rd)

and bounded}, we have that for all A ∈ B(Rd), (mε(A))ε>0 is a positive Fε-
martingale of expectation |A|, so it converges almost surely to a random vari-
able m(A) such that

E[m(A)] ≤ |A|.(4.13)

This defines a collection (m(A))A∈B(Rd ) of random variables such that:
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(1) for all disjoint and bounded sets A1,A2 in B(Rd),

m(A1 ∪ A2) = m(A1) + m(A2) a.s.;
(2) for any bounded sequence (An)n≥1 decreasing to ∅,

m(An) −→
n→∞ 0 a.s.

By Theorem 6.1.VI. in [8], one can consider a version of the collection
(m(A))A∈B(Rd ) such that m is a random measure. It is straightforward that mε

converges almost surely to m in the space of Radon measures (equipped with the
weak topology).

5. Proofs for Section 3.

5.1. Proof of Proposition 3.1. Since ζ1 = d , we note that λ2 > 2d is equivalent
to the existence of α < 1 such that ζα > d . Let α be fixed and such that ζα > d .
We will show that m[[0,1]d ] = 0. We partition the cube [0,1]d into 1

εd subcubes
(Ij )1≤j≤1/εd of size ε. One has, by subadditivity and homogeneity,

E

[(∫
[0,1]d

eXε(x)−(1/2)E[Xε(x)2] dx

)α]

= E

[( ∑
1≤j≤1/εd

∫
Ij

eXε(x)−(1/2)E[Xε(x)2] dx

)α]

≤ E

[ ∑
1≤j≤1/εd

(∫
Ij

eXε(x)−(1/2)E[Xε(x)2] dx

)α]

= 1

εd
E

[(∫
[0,ε]d

eXε(x)−(1/2)E[Xε(x)2] dx

)α]
.

Let Yε be a centered Gaussian random variable of variance λ2 ln(1
ε
)+λ2c, where

c is such that

θε ∗ ln+ 1

|x| ≥ ln
1

ε
+ c

for |x| ≤ ε and ε small enough. By the definition of c, we have

∀x, x′ ∈ [0, ε]d E[Xε(x)Xε(x
′)] ≥ E[Y 2

ε ].
Using Corollary (A.2) in the continuous version, this implies that

E

[(∫
[0,1]d

eXε(x)−(1/2)E[Xε(x)2] dx

)α]

≤ 1

εd
E

[(∫
[0,ε]d

eYε−(1/2)E[Y 2
ε ] dx

)α]
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= εdα

εd
E

[(
eYε−(1/2)E[Y 2

ε ])α]
= εdα

εd
eα2E[Y 2

ε ]/2−αE[Y 2
ε ]/2

= e((α2−α)/2)cεζα−d .

Taking the limit as ε goes to 0 gives m[[0,1]d ] = 0.

5.2. Proof of Lemma 3.2. One has the following general formula for the
Fourier transform of radial functions:

f̂ (ξ) = 2π

|ξ |(d−2)/2

∫ ∞
0

ρd/2J(d−2)/2(2π |ξ |ρ)f (ρ)dρ,(5.1)

where Jν is the Bessel function of order ν (see, e.g., [21]).
First case: d ≤ 3. It suffices to consider the case d = 3. Indeed, consider

some function ϕ in S(R2). We introduce the family of functions ψε(x1, x2, x3) =
ϕ(x1, x2)θε(x3), where θε is a smooth function that converges to the Dirac mass δ0
as ε goes to 0. If we take the limit as ε goes to 0 in inequality (2.1) applied to ψε ,
then we get ∫

R2

∫
R2

f (x − y,0)ϕ(x)ϕ(y) dx dy ≥ 0.

This shows that (x1, x2) → f (x1, x2,0) is positive definite. Similarly, one can
show that x → f (x,0,0) is positive definite.

Using the explicit formula J1/2(x) =
√

2
πx

sin(x), we conclude, by integrating
by parts, that

f̂ (ξ) = 2

|ξ |
∫ T

0
ρ sin(2π |ξ |ρ) ln

(
T

ρ

)
dρ

= 1

π |ξ |2
∫ T

0
cos(2π |ξ |ρ)

(
ln

(
T

ρ

)
− 1

)
dρ

= 1

2π2|ξ |3
(∫ T

0

sin(2π |ξ |ρ)

ρ
dρ − sin(2π |ξ |T )

)

= 1

2π2|ξ |3
(
sinc(2π |ξ |T ) − sin(2π |ξ |T )

)
,

where “sinc” denotes the sinus cardinal function:

sinc(x) =
∫ x

0

sin(ρ)

ρ
dρ.

For x ≥ 0, we introduce the function l(x) = sinc(x) − sin(x). Since f̂ (ξ) =
l(2π |ξ |T )

2π2|ξ |3 , the nonnegativity of f̂ is equivalent to the nonnegativity of l. We have
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l′(x) = sin(x)−x cos(x)
x

. Thus, there exists some α in ]π,2π [ such that l is increasing

on ]0, α[ and decreasing on ]α,2π [. Since l(0) = 0 and l(2π) = ∫ 2π
0

sin(ρ)
ρ

dρ ≥ 0,
we conclude that for all x in [0,2π ], l(x) ≥ 0. A classical computation (Dirichlet
integral) gives

∫ ∞
0

sin(ρ)
ρ

dρ = π
2 . Thus, we have, by an integration by parts,

∫ 2π

0

sin(ρ)

ρ
dρ = π

2
−

∫ ∞
2π

sin(ρ)

ρ
dρ

= π

2
−

∫ ∞
2π

1 − cos(ρ)

ρ2 dρ

≥ π

2
− 1

2π

≥ 1.

Therefore, if x ≥ 2π , then we have

l(x) =
∫ x

0

sin(ρ)

ρ
dρ − sin(x)

≥
∫ 2π

0

sin(ρ)

ρ
dρ − sin(x)

≥ 0.

Second case: d ≥ 4. Combining (5.1) with the identity d
dx

(xνJν(x)) = xν ×
Jν−1(x), we get

f̂ (ξ) = 2π

|ξ |(d−2)/2

∫ T

0
ρd/2J(d−2)/2(2π |ξ |ρ) ln

(
T

ρ

)
dρ

= 1

(2π)d/2|ξ |d
∫ 2π |ξ |T

0
xd/2J(d−2)/2(x) ln

(
2π |ξ |T

x

)
dx(5.2)

= 1

(2π)d/2|ξ |d
∫ 2π |ξ |T

0
xd/2−1Jd/2(x) dx.

One has the following asymptotic expansion as x goes to ∞ [12]:

Jν(x) =
√

2

πx
cos

(
x − (1 + 2ν)π

4

)
(5.3)

− (4ν2 − 1)
√

2

8
√

πx3/2 sin
(
x − (1 + 2ν)π

4

)
+ O

(
1

x5/2

)
.

Combining (5.2) with (5.3), we therefore get the following expansion as |ξ | goes
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to infinity:

f̂ (ξ) = 1

(2π)d/2|ξ |d

×
(√

2

π
(2π |ξ |T )(d−3)/2 sin

(
2π |ξ |T − (1 + 2ν)π

4

)
+ o

(|ξ |(d−3)/2))
.

Thus, lim|ξ |→∞|ξ |d f̂ (ξ) = −lim|ξ |→∞|ξ |d f̂ (ξ) = +∞. In particular, f̂ (ξ) takes
negative values for some ξ .

5.3. Proofs for Section 3.3.

PROOF OF PROPOSITIONS 3.5 AND 3.6. We suppose that p belongs to ]1,p∗[
or ]–∞,0[. Let θ be some function satisfying the conditions (1)–(3) of Section 2.2
and mε be the random measure associated with θε ∗ f . Following the notation of
Example 2.2 for C(x), we consider m̃ε , the random measure associated with f̃ε ,
where f̃ε is the function

f̃ε(x) = λ2
∫
C(0)∩C(x);ε<t<∞

dy dt

td+1 .

One can show that there exists c,C > 0 such that for all x, we have (see Appen-
dix B in [5])

f̃ε(x) − c ≤ (θε ∗ f )(x) ≤ f̃ε(x) + C.

By using Corollary A.2 from the Appendix in the continuous version [with F(x) =
xp], we conclude that there exist c,C > 0 such that for all ε and all bounded A in
B(Rd),

cE[m̃ε(A)p] ≤ E[mε(A)p] ≤ CE[m̃ε(A)p].
First case: p belongs to ]1,p∗[. Proposition 3.5 is therefore established if we

can show that

sup
ε>0

E[m̃ε(A)p] < ∞.

To prove the above inequality for all bounded A, it is enough to suppose that
A = [0,1]d . This is proved in dimension 1 in [3], Theorem 3. One can adapt the
dyadic decomposition performed in the proof of Theorem 3 in [3] to handle the
d-dimensional case.

Second case: p belongs to ]–∞,0[. Proposition 3.5 is therefore established if
we can show that for all c > 0,

sup
ε>0

E[m̃ε(B(0, c))p] < ∞.
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The above bound can be proven by adapting the proof of Proposition 4 in [18] (this
is done to prove Theorem 3 in [4], where a log-Poisson model is considered). �

PROOF OF PROPOSITION 3.7. For the sake of simplicity, we consider the case
R = 1 and will consider the case p ∈ [1,p∗[. We consider θ , a continuous and
positive function with compact support B(0,A) satisfying properties (1)–(3) of
Section 2.2. We note that

mε(dx) = eXε(x)−(1/2)E[Xε(x)2] dx,

where (Xε(x))x∈Rd is a Gaussian field of covariance qε(x − y) with

qε(x) = (θε ∗ f )(x) =
∫

Rd
θ(z)

(
λ2 ln+ 1

|x − εz| + g(x − εz)

)
dz.

Let c, c′ be two positive numbers in ]0, 1
2 [ such that c < c′. If ε is sufficiently small

and u, v belong to [0,1]d , then we get

qcε

(
c(v − u)

) =
∫

Rd
θ(z)

(
λ2 ln

1

|c(v − u) − cεz| + g
(
c(v − u) − cεz

))
dz

= λ2 ln
(

c′

c

)
+

∫
Rd

θ(z)

(
λ2 ln

1

|c′(v − u) − c′εz|
+ g

(
c(v − u) − cεz

))
dz

≤ λ2 ln
(

c′

c

)
+ qc′ε

(
c′(v − u)

) + Cc,c′,ε,

where

Cc,c′,ε = sup
|z|≤A

|v−u|≤1

∣∣g(
c(v − u) − cεz

) − g
(
c′(v − u) − c′εz

)∣∣.
Let Yc,c′,ε be some centered Gaussian variable with variance Cc,c′,ε +λ2 ln( c′

c
). By

using Corollary A.2 from the Appendix in the continuous version, we conclude that

E[mcε([0, c]d)p]
= E

[(∫
[0,c]d

eXcε(x)−(1/2)E[Xcε(x)2] dx

)p]

= cdpE

[(∫
[0,1]d

eXcε(cu)−(1/2)E[Xcε(cu)2] du

)p]

≤ cdpE

[(∫
[0,1]d

eXc′ε(c′u)+Yc,c′,ε−(1/2)E[(Xc′ε(c′u)+Yc,c′,ε)2] du

)p]
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= cdp

(
c′

c

)p(p−1)λ2/2

ep(p−1)Cc,c′,ε/2

× E

[(∫
[0,1]d

eXc′ε(c′u)−(1/2)E[Xc′ε(c′u)2] du

)p]

=
(

c

c′
)dp−p(p−1)λ2/2

ep(p−1)Cc,c′,ε/2E

[(∫
[0,c′]d

eXc′ε(x)−(1/2)E[Xc′ε(x)2] dx

)]

=
(

c

c′
)ζp

ep(p−1)Cc,c′,ε/2E[mc′ε([0, c′]d)p].
Taking the limit ε → 0 in the above inequality leads to

E[m([0, c]d)p]
cζp

≤ ep(p−1)Cc,c′/2 E[m([0, c′]d)p]
c′ζp

,(5.4)

where Cc,c′ = sup|v−u|≤1 |g(c(v − u)) − g(c′(v − u))|. Similarly, we have,

E[m([0, c′]d)p]
c′ζp

≤ ep(p−1)Cc,c′/2 E[m([0, c]d)p]
cζp

.(5.5)

Since Cc,c′ goes to 0 as c, c′ → 0 ,we conclude by inequality (5.4) and (5.5) that

(E[m([0,c]d )p]
cζp

)c>0 is a Cauchy sequence as c → 0, bounded from below and above
by positive constants. Therefore, there exists some cp > 0 such that

E[m([0, c]d)p] ∼
c→0

cpcζp .

The same method can be applied to show that cp

ep(p−1)g(0)/2 is independent of g. The

proof is then concluded by setting Cp = cp

ep(p−1)g(0)/2 . �

PROOF OF PROPOSITION 3.8. We use the scaling relation (3.3) to compute
the characteristic function of m(B(0, c)) for all ξ in R:

E
[
eiξm(B(0,c))] = E

[
eiξe
cm(B(0,R))]

= E[F (ξm(B(0,R)))],
where F is the characteristic function of e
c . It is easy to show that for all n ∈ N,
there exists C > 0 such that

|F (ξ)| ≤ C

|ξ |n .

From this, we conclude, by Proposition 3.6, that

E
[
eiξm(B(0,c))] ≤ C

|ξ |n E

[
1

m(B(0,R))n

]
≤ C′

|ξ |n .

This implies the existence of a C∞ density. �
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APPENDIX

We give the following classical lemma, which was first derived in [13].

LEMMA A.1. Let (Xi)1≤i≤n and (Yi)1≤i≤n be two independent centered
Gaussian vectors and (pi)1≤i≤n a sequence of positive numbers. If φ : R+ → R

is some smooth function with polynomial growth at infinity, then we define

ϕ(t) = E

[
φ

(
n∑

i=1

pie
Zi(t)−(1/2)E[Zi(t)

2]
)]

,

with Zi(t) = √
tXi + √

1 − tYi . We then have the following formula for the deriv-
ative:

ϕ′(t) = 1

2

n∑
i=1

n∑
j=1

pipj (E[XiXj ] − E[YiYj ])
(A.1)

× E
[
eZi(t)+Zj (t)−(1/2)E[Zi(t)

2]−(1/2)E[Zj (t)2]φ′′(Wn,t )
]
,

where

Wn,t =
n∑

k=1

pke
Zk(t)−(1/2)E[Zk(t)

2].

As a consequence of the above formula, we can derive a similar formula in the con-
tinuous case. Let I be a bounded subinterval of R

d and let (X(u))u∈I , (Y (u))u∈I

be two independent centered continuous Gaussian processes. If we define

ϕ(t) = E

[
φ

(∫
I
eZ(t)(u)−(1/2)E[Z(t)(u)2] du

)]
with Z(t)(u) = √

tX(u)+√
1 − tY (u), then we have the following formula for the

derivative:

ϕ′(t) = 1

2

∫
I

∫
I

(
E[X(t1)X(t2)] − E[Y(t1)Y (t2)])

× E
[
eZ(t)(t1)+Z(t)(t2)−(1/2)E[Z(t)(t1)

2]−(1/2)E[Z(t)(t2)
2]

× φ′′(Wt)
]
dt1 dt2,

where

Wt =
∫
I
eZ(t)(u)−(1/2)E[Z(t)(u)2] du.

As a consequence of the above lemma, one can derive the following classical
comparison principle.



GAUSSIAN MULTIPLICATIVE CHAOS REVISITED 629

COROLLARY A.2. Let (pi)1≤i≤n be a sequence of positive numbers. Consider
(Xi)1≤i≤n and (Yi)1≤i≤n, two centered Gaussian vectors such that

∀i, j E[XiXj ] ≤ E[YiYj ].
Then, for all convex function F : R → R, we have

E

[
F

(
n∑

i=1

pie
Xi−(1/2)E[X2

i ]
)]

≤ E

[
F

(
n∑

i=1

pie
Yi−(1/2)E[Y 2

i ]
)]

.(A.2)

Similarly, we get a comparison in the continuous case. Let I be a bounded subin-
terval of R

d and (X(u))u∈I , (Y (u))u∈I be two independent centered continuous
Gaussian processes such that

∀u,u′ E[X(u)X(u′)] ≤ E[Y(u)Y (u′)].
Then, for all convex functions F : R → R, we have

E

[
F

(∫
I
eX(u)−(1/2)E[X(u)2] du

)]
≤ E

[
F

(∫
I
eY (u)−(1/2)E[Y (u)2] du

)]
.

We will also use the following corollary.

COROLLARY A.3. Let (Xi)1≤i≤n and (Yi)1≤i≤n be two centered Gaussian
vectors such that:

• ∀i, E[X2
i ] = E[Y 2

i ];
• ∀i �= j , E[XiXj ] ≤ E[YiYj ].
Then, for all increasing functions F : R → R+, we have

E
[
F

(
sup

1≤i≤n

Yi

)]
≤ E

[
F

(
sup

1≤i≤n

Xi

)]
.(A.3)

PROOF. It is enough to show inequality (A.3) for F = 1]x,+∞[, for some
x ∈ R. Let β be some positive parameter. Integrating equality (A.1) applied
to the convex function φ :u → e−e−βxu and the sequences (βXi), (βYi), pi =
e(β2/2)E[X2

i ], we get

E
[
e−∑n

i=1 eβ(Xi−x)] ≤ E
[
e−∑n

i=1 eβ(Yi−x)]
.

By letting β → ∞, we conclude that

P
(

sup
1≤i≤n

Xi < x
)

≤ P
(

sup
1≤i≤n

Yi < x
)
. �
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