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A STOCHASTIC DIFFERENTIAL GAME FOR THE
INHOMOGENEOUS ∞-LAPLACE EQUATION

BY RAMI ATAR AND AMARJIT BUDHIRAJA1

Technion—Israel Institute of Technology and University of North Carolina

Given a bounded C 2 domain G ⊂ R
m, functions g ∈ C(∂G,R) and

h ∈ C(G,R \ {0}), let u denote the unique viscosity solution to the equation
−2�∞u = h in G with boundary data g. We provide a representation for u
as the value of a two-player zero-sum stochastic differential game.

1. Introduction.

1.1. Infinity-Laplacian and games. For an integer m≥ 2, let a bounded C 2 do-
main G⊂ R

m, functions g ∈ C(∂G,R) and h ∈ C(G,R \ {0}) be given. We study
a two-player zero-sum stochastic differential game (SDG), defined in terms of an
m-dimensional state process that is driven by a one-dimensional Brownian motion,
played until the state exits the domain. The functions g and h serve as terminal,
and, respectively, running payoffs. The players’ controls enter in a diffusion coef-
ficient and in an unbounded drift coefficient of the state process. The dynamics are
degenerate in that it is possible for the players to completely switch off the Brown-
ian motion. We show that the game has value, and characterize the value function
as the unique viscosity solution u (uniqueness of solutions is known from [10]) of
the equation {−2�∞u= h, in G,

u= g, on ∂G.
(1.1)

Here, �∞ is the infinity-Laplacian defined as �∞f = (Df )′(D2f )(Df )/|Df |2,
provided Df �= 0, where for a C 2 function f we denote by Df the gradient and
by D2f the Hessian matrix. Our work is motivated by a representation for u of
Peres et al. [10] (established in fact in a far greater generality), as the limit, as
ε → 0, of the value function V ε of a discrete time random turn game, referred to
as Tug-of-War, in which ε is a parameter. The contribution of the current work is
the identification of a game for which the value function is precisely equal to u.

The infinity-Laplacian was first considered by Aronsson [1] in the study of
absolutely minimal (AM) extensions of Lipschitz functions. Given a Lipschitz
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function u defined on the boundary ∂G of a domain G, a Lipschitz function û

extending u to G is called an AM extension of u if, for every open U ⊂ G,
LipU û = Lip∂U u, where for a real function f defined on F ⊂ R

m, LipF f =
supx,y∈F,x �=y |f (x)− f (y)|/|x − y|. It was shown in [1] that a Lipschitz function
û on G that is C 2 on G is an AM extension of û|∂G if and only if û is infinity-
harmonic, namely satisfies �∞û= 0 in G. This connection enables in some cases
to prove uniqueness of AM extensions via PDE tools. However, due to the degen-
eracy of this elliptic equation, classical PDE approach in general is not applicable.
Jensen [8] showed that an appropriate framework is through the theory of viscos-
ity solutions, by establishing existence and uniqueness of viscosity solutions to the
homogeneous version (h= 0) of (1.1), and showing that if g is Lipschitz then the
solution is an AM extension of g. In addition to the relation to AM extensions,
the infinity-Laplacian arises in a variety of other situations [4]. Some examples in-
clude models for sand-pile evolution [2], motion by mean curvature and stochastic
target problems [9, 11].

We do not treat the homogenous equation for reasons mentioned later in this
section. The inhomogeneous equation may admit multiple solutions when h as-
sumes both signs [10]. Our assumption on h implies that either h > 0 or h < 0.
Uniqueness for the case where these strict inequalities are replaced with weak in-
equalities is unknown [10]. Thus, the assumption we make on h is the minimal one
under which uniqueness is known to hold in general (except the case h= 0).

Let us describe the Tug-of-War game introduced in [10]. Fix ε > 0. Let a token
be placed at x ∈G, and setX0 = x. At the kth step of the game (k ≥ 1), an indepen-
dent toss of a fair coin determines which player takes the turn. The selected player
is allowed to move the token from its current position Xk−1 ∈G to a new position
Xk in G, in such a way that |Xk −Xk−1| ≤ ε ([10] requires |Xk −Xk−1|< ε but
this is an equivalent formulation in the setting described here). The game ends at
the first time K when XK ∈ ∂G. The associated payoff is given by

E

[
g(XK)+ ε2

4

K−1∑
k=0

h(Xk)

]
.(1.2)

Player I attempts to maximize the payoff and player II’s goal is to minimize it.
It is shown in [10] that the value of the game, defined in a standard way and de-
noted V ε(x), exists, that V ε converges uniformly to a function V referred to as
the “continuum value function” and that V is the unique viscosity solution of (1.1)
(these results are in fact also proved for the homogeneous case, and in generality
greater than the scope of the current paper). The question of associating a game
directly with the continuum value was posed and some basic technical challenges
associated with it were discussed in [10].

Our approach to the question above is via a SDG formulation. To motivate the
form of the SDG, we start with the Tug-of-War game and present some formal
calculations (a precise definition of the SDG will appear later). Let {ξk, k ∈ N} be
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a sequence of i.i.d. random variables on some probability space (�,F ,P) with
P(ξk = 1) = P(ξk = −1) = 1/2, interpreted as the sequence of coin tosses. Let
{Fk}k≥0 be a filtration of F to which {ξk} is adapted and such that {ξk+1, ξk+2, . . .}
is independent of Fk for every k ≥ 0. Let {ak}, {bk} be {Fk}-predictable sequences
of random variables with values in Bε(0) = {x ∈ R

m : |x| ≤ ε}. These sequences
correspond to control actions of players I and II; that is, ak (resp., bk) is the dis-
placement exercised by player I (resp., player II) if it wins the kth coin toss. As-
sociating the event {ξk = 1} with player I winning the kth toss, one can write the
following representation for the position of the token, starting from initial state x.
For j ∈ N,

Xj = x +
j∑

k=1

[
ak

1 + ξk

2
+ bk

1 − ξk

2

]
=

j∑
k=1

ak − bk

2
ξk +

j∑
k=1

ak + bk

2
.

We shall refer to {Xj } as the “state process.” This representation, in which turns
are not taken at random but both players select an action at each step, and the noise
enters in the dynamics, is more convenient for the development that follows. Let
ε = 1/

√
n and rescale the control processes by defining, for t ≥ 0, An

t = √
na[nt],

Bn
t = √

nb[nt]. Consider the continuous time state process Xn
t =X[nt], and define

{Wn
t }t≥0 by setting Wn

0 = 0 and using the relation

Wn
t =Wn

(k−1)/n +
(
t − k − 1

n

)√
nξk, t ∈

(
k − 1

n
,
k

n

]
, k ∈ N.

Then we have

Xn
t = x + 1

2

∫ t

0
(An

s −Bn
s ) dW

n
s + 1

2

∫ t

0

√
n(An

s +Bn
s ) ds.(1.3)

Note that Wn converges weakly to a standard Brownian motion, and since |An
t | ∨|Bn

t | ≤ 1, the second term on the right-hand side of (1.3) forms a tight sequence.
Thus, it is easy to guess a substitute for it in the continuous game. Interpretation
of the asymptotics of the third term is more subtle, and is a key element of the
formulation. One possible approach is to replace the factor

√
n by a large quantity

that is dynamically controlled by the two players. This point of view motivates one
to consider the identity (that we prove in Proposition 5.1)

−2�∞f = sup
|b|=1,d≥0

inf|a|=1,c≥0

{
−1

2
(a − b)′(D2f )(a − b)

− (c+ d)(a + b) ·Df
}
,(1.4)

f ∈ C 2,Df �= 0,

for the following reason. Let H = Sm−1 × [0,∞) where Sm−1 is the unit sphere
in R

m. The expression in curly brackets is equal to La,b,c,df (x), where for
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(a, c), (b, d) ∈ H, La,b,c,d is the controlled generator associated with the process

Xt = x +
∫ t

0
(As −Bs)dWs +

∫ t

0
(Cs +Ds)(As +Bs)ds, t ∈ [0,∞),(1.5)

and (A,C) and (B,D) are control processes taking values in H. Since �∞ is
related to (1.3) via the Tug-of-War, and La,b,c,d to (1.5), identity (1.4) suggests
to regard (1.5) as a formal limit of (1.3). Consequently the SDG will have (1.5)
as a state process, where the controls (A,C) and (B,D) are chosen by the two
players. Finally, the payoff functional, as a formal limit of (1.2), and accounting
for the extra factor of 1/2 in (1.3), will be given by E[∫ τ0 h(Xs) ds+g(Xτ )], where
τ = inf{t :Xt /∈G} (with an appropriate convention regarding τ = ∞).

A precise formulation of this game is given in Section 1.2, along with a state-
ment of the main result. Section 1.3 discusses the technique and some open prob-
lems.

Throughout, we will denote by S(m) the space of symmetric m×m matrices,
and by Im ∈ S(m) the identity matrix. A function ϑ : [0,∞)→ [0,∞) will be said
to be a modulus if it is continuous, nondecreasing, and satisfies ϑ(0)= 0.

1.2. SDG formulation and main result. Recall that G is a bounded C 2 domain
in R

m, and that g : ∂G→ R and h :G→ R\ {0} are given continuous functions. In
particular we have that either h > 0 or h < 0. Since the two cases are similar, we
will only consider h > 0, and use the notation h := infG h > 0. Let (�,F , {Ft},P)
be a complete filtered probability space with right-continuous filtration, supporting
an (m+1)-dimensional {Ft }-Brownian motion W = (W, W̃ ), where W and W̃ are
one- and m-dimensional Brownian motions, respectively. Let E denote expectation
with respect to P. Let Xt be a process taking values in R

m, given by

Xt = x +
∫ t

0
(As −Bs)dWs +

∫ t

0
(Cs +Ds)(As +Bs)ds, t ∈ [0,∞),(1.6)

where x ∈G, At and Bt take values in the unit sphere Sm−1 ⊂ R
m, and Ct and Dt

take values in [0,∞). Denote

Y 0 = (A,C), Z0 = (B,D).(1.7)

The processes Y 0 and Z0 take values in H = Sm−1 × [0,∞). These processes
will correspond to control actions of the maximizing and minimizing player, re-
spectively. We remark that, although W̃ does not appear explicitly in the dynam-
ics (1.6), the control processes Y 0,Z0 will be required to be {Ft }-adapted, and
thus may depend on it. In Section 1.3, we comment on the need for including this
auxiliary Brownian motion in our formulation. Let

τ = inf{t :Xt ∈ ∂G}.
Throughout, we will follow the convention that the infimum over an empty set
is ∞. We write

X(x,Y 0,Z0) [resp., τ(x,Y 0,Z0)](1.8)
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for the process X (resp., the random time τ ) when it is important to specify the
explicit dependence on (x,Y 0,Z0). If τ <∞ a.s., then the payoff J (x,Y 0,Z0) is
well defined with values in (−∞,∞], where

J (x,Y 0,Z0)= E
[∫ τ

0
h(Xs) ds + g(Xτ )

]
(1.9)

and X is given by (1.6). When P(τ (x,Y 0,Z0) = ∞) > 0, we set J (x,Y 0,Z0) =
∞, in agreement with the expectation of the first term in (1.9).

We turn to the precise definition of the SDG. For a process H 0 = (A,C) taking
values in H, we let S(H 0)= ess sup supt∈[0,∞) Ct . In the formulation below, each
player initially declares a bound S, and then plays so as to keep S(H 0)≤ S.

DEFINITION 1.1. (i) A pair H = ({H 0
t }, S), where S ∈ N and {H 0

t } is a
process taking values in H, is said to be an admissible control if {H 0

t } is {Ft }-
progressively measurable, and S(H 0) ≤ S. The set of all admissible controls is
denoted by M . For H = ({H 0

t }, S) ∈M , denote S(H)= S.
(ii) A mapping 	 :M →M is said to be a strategy if, for every t ,

P(H 0
s = H̃ 0

s for a.e. s ∈ [0, t])= 1 and S = S̃

implies

P(I 0
s = Ĩ 0

s for a.e. s ∈ [0, t])= 1 and T = T̃ ,

where (I 0, T ) = 	[(H 0, S)] and (Ĩ 0, T̃ ) = 	[(H̃ 0, S̃)]. The set of all strategies is
denoted by 
̃. For 	 ∈ 
̃, let S(	)= supH∈M S(	[H ]). Let


 = {	 ∈ 
̃ : S(	) <∞}.

We will use the symbols Y and α for generic control and strategy for the max-
imizing player, and Z and β for the minimizing player. If Y = (Y 0,K),Z =
(Z0,L) ∈ M , we sometimes write J (x,Y,Z) = J (x, (Y 0,K), (Z0,L)) for J (x,
Y 0,Z0). Similar conventions will be used for X(x,Y,Z) and τ(x,Y,Z). Let

J x(Y,β)= J (x,Y,β[Y ]), x ∈G,Y ∈M,β ∈ 
,

J x(α,Z)= J (x,α[Z],Z), x ∈G,α ∈ 
,Z ∈M.

Define analogously Xx(Y,β), Xx(α,Z), τx(Y,β) and τx(α,Z) via (1.8). Define
the lower value of the SDG by

V (x)= inf
β∈
 sup

Y∈M
Jx(Y,β)(1.10)

and the upper value by

U(x)= sup
α∈


inf
Z∈M Jx(α,Z).(1.11)
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The game is said to have a value if U = V .
Recall that the infinity-Laplacian is defined by �∞f = p′
p/|p|2, where f

is a C 2 function, p = Df and 
 = D2f , provided that p �= 0. Thus, �∞f is
equal to the second derivative in the direction of the gradient. In the special case
where D2f (x) is of the form λIm for some real λ, it is therefore natural to define
�∞f (x) = λ even if Df (x) = 0 [10]. This will be reflected in the definition of
viscosity solutions of (1.1), that we state below. Let

D0 = {(0, λIm) ∈ R
m × S(m) :λ ∈ R},

D1 = (Rm \ {0})× S(m),

D = D0 ∪ D1

and

�(p,
)=
⎧⎨⎩

−2λ, (p,
)= (0, λIm) ∈ D0,

−2
p′
p
|p|2 , (p,
) ∈ D1.

DEFINITION 1.2. A continuous function u :G → R is said to be a viscosity
supersolution (resp., subsolution) of (1.1), if:

(i) for every x ∈ G and ϕ ∈ C 2(G) for which (p,
) := (Dϕ(x),D2ϕ(x)) ∈
D, and u− ϕ has a global minimum [maximum] on G at x, one has

�(p,
)− h(x)≥ 0 [≤ 0];(1.12)

and
(ii) u= g on ∂G.

A viscosity solution is a function which is both a super- and a subsolution.

The result below has been established in [10].

THEOREM 1.1. There exists a unique viscosity solution to (1.1).

The following is our main result.

THEOREM 1.2. The functions U and V are both viscosity solutions to (1.1).
Consequently, the SDG has a value.

In what follows, we use the terms subsolution, supersolution and solution as
shorthand for viscosity subsolution, etc.
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1.3. Discussion. We describe here our approach to proving the main result,
and mention some obstacles in extending it.

A common approach to showing solvability of Bellman–Isaacs (BI) equations
[(1.1) can be viewed as such an equation due to (1.4)] by the associated value func-
tion, is by proving that the value function satisfies a dynamic programming prin-
ciple (DPP). Roughly speaking, this is an equation expressing the fact that, rather
than attempting to maximize their profit by considering directly the payoff func-
tional, the players may consider the payoff incurred up to a time t plus the value
function evaluated at the position Xt that the state reaches at that time. Although
in a single player setting (i.e., in pure control problems) DPP are well understood,
game theoretic settings as in this paper are significantly harder. In particular, as we
shall shortly point out, there are some basic open problems related to such DPP.
In a setting with a finite time horizon, Fleming and Souganidis [7] established a
DPP based on careful discretization and approximation arguments. We have been
unable to carry out a similar proof in the current setting, which includes a payoff
given in terms of an exit time, degenerate diffusion and unbounded controls.

Swiech [12] has developed an alternative approach to the above problem that
relies on existence of solutions. Instead of establishing a DPP for the value func-
tion, the idea of [12] is to show that any solution must satisfy a DPP. To see what is
meant by such a DPP and how it is used, consider the equation, −2�∞u+λu= h

in G, u= g on ∂G, where λ≥ 0 is a constant, associated with the payoff in (1.9)
modified by a discount factor. Assume that one can show that whenever u and v

are sub- and supersolutions, respectively, then

u(x)≤ sup
α∈


inf
Z∈M E

[∫ σ

0
e−λsh(Xs) ds + e−λσ u(Xσ )

]
,(1.13)

v(x)≥ sup
α∈


inf
Z∈M E

[∫ σ

0
e−λsh(Xs) ds + e−λσ v(Xσ )

]
,(1.14)

for X =X[x,α[Z],Z], τ = τ [x,α[Z],Z] and σ = σ(t)= τ ∧ t . Sending t → ∞
in the above equations, one would formally obtain

u(x)≤ sup
α∈


inf
Z∈M E

[∫ τ

0
e−λsh(Xs) ds + e−λτ g(Xτ )

]
≤ v(x),(1.15)

in particular yielding that if u= v is a solution to the equation then it must equal
the upper value function. This would establish unique solvability of the equation
by the upper value function, provided there exists a solution. In the case λ > 0,
justifying the above formal limit is straightforward (see [12]) but the case λ = 0,
as in our setting, requires a more careful argument. Our proofs exploit the uniform
positivity of h due to which the minimizing player will not allow τ to be too large.
This leads to uniform estimates on the decay of P(τ > t) as t → ∞, from which
an inequality as in (1.15) follows readily. This discussion also explains why we are
unable to treat the case h= 0.
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Establishing DPP as in (1.13), (1.14) is thus a key ingredient in this approach.
For a class of BI equations, defined on all of R

m, for which the associated game
has a bounded action set and a fixed, finite time horizon, such a DPP was proved in
Swiech [12]. In the current paper, although we do not establish (1.13), (1.14) in the
above form, we derive similar inequalities (for λ= 0) for a related bounded action
game, defined on G. The characterization of the value function for the original
unbounded action game is then treated by taking suitable limits.

Both [7] and [12] require some assumptions on the sample space and underly-
ing filtration. In [7], the underlying filtration is the one generated by the driving
Brownian motion. The approach taken in [12], which the current paper follows, al-
lows for a general filtration as long as it is rich enough to support anm-dimensional
Brownian motion, independent of the Brownian motion driving the state process
[for example, it could be the filtration generated by an (m+1)-dimensional Brown-
ian motion]. The reason for imposing this requirement in [12] is that inequalities
similar to (1.13) and (1.14) are proved by first establishing them for a game associ-
ated with a nondegenerate elliptic equation, and then taking a vanishing viscosity
limit. This technical issue is the reason for including the auxiliary process W̃ in
our formulation as well. As pointed out in [12], the question of validity of the DPP
and the characterization of the value as the unique solution to the PDE, under an
arbitrary filtration, remains a basic open problem on SDGs.

The unboundedness of the action space, on one hand, and the combination of de-
generacy of the dynamics and an exit time criterion on the other hand, make it hard
to adapt the results of [12] to our setting. In order to overcome the first difficulty,
we approximate the original SDG by a sequence of games with bounded action
spaces, that are more readily analyzed. For the bounded action game, existence of
solutions to the upper and lower BI equations follow from [5]. We show that the
solutions to these equations satisfy a DPP similar to (1.13) and (1.14) (Proposi-
tion 4.1). As discussed above, existence of solutions along with the DPP yields the
characterization of these solutions as the corresponding value functions. Next, as
we show in Lemma 2.5, the upper and lower value functions for the bounded action
games approach the corresponding value functions of the original game, pointwise,
as the bounds approach ∞. Moreover, in Lemma 2.4, we show that any uniform
subsequential limit, as the bounds approach ∞, of solutions to the BI equation for
bounded action games is a viscosity solution of (1.1). The last piece in the proof of
the main result is then showing existence of uniform (subsequential) limits. This
is established in Theorem 2.1 by proving equicontinuity, in the parameters gov-
erning the bounds, of the value functions for bounded action games. The proof of
equicontinuity is the most technical part of this paper and the main place where the

C 2 assumption on the domain is used. This is also the place where the possibility
of degenerate dynamics close to the exit time needs to be carefully analyzed.

The rest of this paper is organized as follows. In Section 2, we prove Theo-
rem 1.2 based on results on BI equations for bounded action SDG. These results
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are established in Sections 3 (equicontinuity of the value functions) and 4 (relat-
ing the value function to the PDE). Finally, it is natural to ask whether the state
process, obtained under δ-optimal play by both players, converges in law as δ tends
to zero. Section 5 describes a recently obtained result [3] that addresses this issue.

2. Relation to Bellman–Isaacs equation. In this section, we prove Theo-
rem 1.2 by relating the value functions U and V to value functions of SDG with
bounded action sets, and similarly, the solution to (1.1) to that of the corresponding
Bellman–Isaacs equations.

Let p ∈ R
m, p �= 0 and S ∈ S(m) be given, and, for n ∈ N, fix pn ∈ R

m, pn �= 0
and Sn ∈ S(m), such that pn → p, Sn → S. Denote p = p/|p| and pn = pn/|pn|.
Let {kn} and {ln} be positive, increasing sequences such that kn → ∞, ln → ∞.

Denote

�(a,b, c, d;p,S)= −1
2(a − b)′S(a − b)− (c+ d)(a + b) · p,(2.1)

and let

�+
kl(p, S)= max|b|=1,0≤d≤l min|a|=1,0≤c≤k�(a, b, c, d;p,S),(2.2)

�−
kl(p, S)= min|a|=1,0≤c≤k max|b|=1,0≤d≤l �(a, b, c, d;p,S).(2.3)

Set

�+
n (p,S)=�+

knln
(p,S), �−

n (p,S)=�−
knln

(p,S).

LEMMA 2.1. One has �+
n (pn, Sn) → �(p,S), and �−

n (pn, Sn) → �(p,S),
as n→ ∞.

PROOF. We prove only the statement regarding �−
n , since the other statement

can be proved analogously. We omit the superscript “−” from the notation. Denote
�n(a, b, c, d)=�(a,b, c, d;pn,Sn). Let

�n(a, c)= max|b|=1,0≤d≤ln
�n(a, b, c, d).

Let (a∗
n, c

∗
n) be such that �∗

n := �n(pn,Sn) = �n(a
∗
n, c

∗
n). Note that �∗

n ≤
�n(pn,0), which is bounded from above as n → ∞, since (b + pn) · pn ≥ 0 for
all b ∈ Sm−1, n≥ 1. On the other hand, if for some fixed ε > 0, a∗

n ·pn < |pn| − ε

holds for infinitely many n, then lim sup�n(a
∗
n, cn)= ∞ for any choice of cn con-

tradicting the statement that �∗
n is bounded from above. This shows, for every

ε > 0,

|pn| − ε ≤ a∗
n · pn ≤ |pn|

for all large n. In particular, a∗
n → p. Next note that

�∗
n =�n(a

∗
n, c

∗
n)≥�n(−pn, a∗

n, ln, c
∗
n)≥ −1

2(pn + a∗
n)

′Sn(pn + a∗
n)
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hence,

lim inf�∗
n ≥ −2p′Sp =�(p,S).

Also, with (b̃n, d̃n) ∈ arg max(b,d) �n(b,pn, d, kn),

�∗
n =�n(a

∗
n, c

∗
n)≤�n(pn, kn)

= −1
2(b̃n − pn)

′Sn(b̃n − pn)− (d̃n + kn)(b̃n + pn) · pn(2.4)

≤ −1
2(b̃n − pn)

′Sn(b̃n − pn).

If b̃n → −p does not hold, then lim inf�∗
n = −∞ by the first line of (2.4) which

contradicts the previous display. This shows b̃n → −p. Hence, from the second
line of (2.4)

lim sup�∗
n ≤ −2p′Sp =�(p,S). �

We now consider two formulations of SDG with bounded controls, the first
being based on Definition 1.1 whereas the second is more standard. For k, l ∈ N,
let

Mk = {Y ∈M : S(Y )≤ k},

l = {β ∈ 
 : S(β)≤ l}.

Define accordingly the lower value

Vkl(x)= inf
β∈
l

sup
Y∈Mk

J x(Y,β),(2.5)

and the upper value

Ukl(x)= sup
α∈
k

inf
Z∈Ml

J x(α,Z).(2.6)

DEFINITION 2.1. (i) A process {Ht } taking values in H is said to be a simple
admissible control if it is {Ft }-progressively measurable. We denote by M0 the set
of all simple admissible controls, and let M0

k = {H ∈M0 :S(H)≤ k}.
(ii) Given k, l ∈ N, we say that a mapping 	 :M0

k → M0
l is a simple strategy,

and write 	 ∈ 
0
kl if, for every t ,

P(Hs = H̃s for a.e. s ∈ [0, t])= 1

implies

P(	[H ]s = 	[H̃ ]s for a.e. s ∈ [0, t])= 1.
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For β ∈ 
0
kl, Y ∈M0

k , we write J x(Y,β(Y )) as J x(Y,β). For α ∈ 
0
lk,Z ∈M0

l ,
J x(α,Z) is defined similarly.

For k, l ∈ N, let

V 0
kl(x)= inf

β∈
0
kl

sup
Y∈M0

k

J x(Y,β),(2.7)

U0
kl(x)= sup

α∈
0
lk

inf
Z∈M0

l

J x(α,Z).(2.8)

The following shows that the two formulations are equivalent.

LEMMA 2.2. For every k, l, V 0
kl = Vkl and U0

kl =Ukl .

PROOF. We only show the claim regarding Vkl . Let β ∈ 
l . Define β0 ∈

0
kl by letting, for every Y ∈ M0

k , β0[Y ] be the process component of the
pair β[(Y, k)]. Clearly, for every Y ∈ M0

k , J x((Y, k), β) = J x(Y,β0), whence
supY∈Mk

J x(Y,β)≥ supY∈M0
k
J x(Y,β0), and Vkl(x)≥ V 0

kl(x).

Next, let β0 ∈ 
0
kl . Define β :M → Ml as follows. Given Y ≡ (Y 0,K) ≡

(A,C,K) ∈ M , let Y k = (A,C ∧ k), and set β[Y ] = (β0[Y k], l). Note that if,
for some K , Y 0 and Ỹ 0 are elements of M0

K and Y 0(s) = Ỹ 0(s) on [0, t] then
Y k(s)= Ỹ k(s) on [0, t] and so β0[Y k]s = β0[Ỹ k]s on [0, t]. By definition of β , it
follows that β ∈ 
l . Also, if (Y 0,K) ∈Mk then K ≤ k and thus J x((Y 0,K),β)=
J x(Y 0, β0). This shows that supY∈Mk

J x(Y,β) ≤ supY 0∈M0
k
J x(Y 0, β0). Conse-

quently, Vkl(x)≤ V 0
kl(x). �

Denote Vn = Vknln and Un =Uknln . The following result is proved in Section 3.

THEOREM 2.1. For some n0 ∈ N, the family {Vn;n ≥ n0} is equicontinuous,
and so is the family {Un;n≥ n0}.

Consider the Bellman–Isaacs equations for the upper and, respectively, lower
values of the game with bounded controls, namely{

�+
n (Du,D

2u)− h= 0, in G,
u= g, on ∂G,

(2.9) {
�−
n (Du,D

2u)− h= 0, in G,
u= g, on ∂G.

(2.10)

Solutions to these equations are defined analogously to Definition 1.2, with �±
n

replacing �, and where there is no restriction on the derivatives of the test function,
that is, D is replaced with R

m × S(m).

LEMMA 2.3. There exists n1 ∈ N such that for each n≥ n1, Un is the unique
solution to (2.9), and Vn is the unique solution to (2.10).
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PROOF. This follows from a more general result, Theorem 4.1 in Section 4.
�

LEMMA 2.4. Any subsequential uniform limit of Un or Vn is a solution of
(1.1).

PROOF. Denote by U0 (resp., V0) a subsequential limit of Un [Vn]. By relabel-
ing, we assume without loss that Un (resp., Vn) converges to U0 [V0]. We will show
that U0 and V0 are subsolutions of (1.1). The proof that these are supersolutions is
parallel.

We start with the proof that U0 is a subsolution. Fix x0 ∈ G. Let ϕ ∈ C 2(G)

be such that U0 − ϕ is strictly maximized at x0. Assume first that Dϕ(x0) �= 0.
Since Un → U0 uniformly, we can find {xn} ⊂ G, xn → x0, where xn is a local
maximum of Un − ϕ for n ≥ N . We take N to be larger than n1 of Lemma 2.3.
Since by Lemma 2.3 Un is a subsolution of (2.9), we have that for n≥N

�+
n (Dϕ(xn),D

2ϕ(xn))− h(xn)≤ 0.

Thus, by Lemma 2.1,

�(Dϕ(x0),D
2ϕ(x0))− h(x0)≤ 0

as required.
Next, assume that Dϕ(x0)= 0 and D2ϕ(x0)= λIm for some λ ∈ R. In particu-

lar, ϕ(x)= ϕ(x0)+ λ
2 |x − x0|2 + o(|x − x0|2). We need to show that

−2λ− h(x0)≤ 0.(2.11)

Consider the case λ ≥ 0. Fix δ > 0 and let ψδ(x) = λ+δ
2 |x − x0|2. Then U0 − ψδ

has a strict maximum at x0. Since Un → U0 uniformly, we can find {xn} ⊂ G,
xn → x0, where xn is a local maximum of Un −ψδ . To prove (2.11), it suffices to
show that for each ε > 0,

−2(λ+ δ)− sup
x∈Bε(x0)

h(x)≤ 0.(2.12)

To prove (2.12), argue by contradiction and assume that it fails. Then there exists
ε > 0 such that

−2(λ+ δ)− sup
x∈Bε(x0)

h(x) > 0.(2.13)

Let N ≥ n1 be such that |xn − x0|< ε for all n≥N . Since Un is a subsolution of
(2.9),

μn :=�+
n (Dψδ(xn),D

2ψδ(xn))≤ h(xn).(2.14)
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Also,

μn = max|b|=1,0≤d≤ln
min|a|=1,0≤c≤kn

[
−1

2
(λ+ δ)|a − b|2

− (λ+ δ)(c+ d)(a + b) · (xn − x0)

]
(2.15)

≥ min|a|=1,0≤c≤kn

[
−1

2
(λ+ δ)|a − bn|2

]
= −2(λ+ δ),

where bn = −(xn − x0)/|xn − x0| if xn �= x0 and arbitrary otherwise. Thus by
(2.13),

μn > h(xn).(2.16)

However, this contradicts (2.14). Hence, (2.12) holds and so (2.11) follows.
Consider now the case λ < 0. Let δ > 0 be such that λ + δ < 0. Let ψδ be as

above. Then U0 − ψδ has a strict maximum at x0. Fix ε > 0. Then one can find
γ < ε such that

U0(x0)=U0(x0)−ψδ(x0) > U0(x)−ψδ(x) ∀0 < |x − x0| ≤ γ.(2.17)

Thus, one can find η ∈ R
m such that 0 < |η|< γ and

U0(x0) > U0(x)−ψδ(x + η) ∀x ∈ ∂Bγ (x0).(2.18)

Let ψδ,η(x)=ψδ(x+η). Let xη ∈ Bγ (x0) be a maximum point for U0 −ψδ,η over
Bγ (x0). We claim that

xη /∈ ∂Bγ (x0) and xη �= x0 − η.(2.19)

Suppose the claim holds. Then Dψδ,η(xη) �= 0, and so from the first part of the
proof

−2(λ+ δ)− h(xη)=�(Dψδ,η(xη),D
2ψδ,η(xη))− h(xη)≤ 0.

Since |xη − x0| ≤ γ < ε, sending ε → 0 and then δ → 0 yields (2.11).
We now prove (2.19). From (2.18) and the fact that λ+ δ < 0,

sup
x∈∂Bγ (x0)

[U0(x)−ψδ,η(x)]<U0(x0)≤U0(x0)−ψδ,η(x0).

Hence, xη /∈ ∂Bγ (x0). Also

U0(x0 − η)−ψδ,η(x0 − η)= U0(x0 − η) < U0(x0)+ψδ(x0 − η)

≤ U0(x0)−ψδ,η(x0),

where we used (2.17) and the negativity of the functions ψδ and ψδ,η. This shows
that xη �= x0 − η, and (2.19) follows. This completes the proof that U0 is a subso-
lution of (1.1).
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Finally, the argument for V0 differs only at one point. If we had (Vn,�−
n ) instead

of (Un,�
+
n ), then instead of (2.15), we could write

μn = min|a|=1,0≤c≤kn
max|b|=1,0≤d≤ln

[
−1

2
(λ+ δ)|a − b|2

− (λ+ δ)(c+ d)(a + b) · (xn − x0)

]
= max|b|=1,0≤d≤ln

[
−1

2
(λ+ δ)|an − b|2 − (λ+ δ)(cn + d)(an + b) · (xn − x0)

]
,

where (an, cn) achieves the minimum, and then by choosing (b, d)= (−an,0),

μn ≥ −2(λ+ δ).

Hence, (2.16) is still true. Rest of the argument for the subsolution property of V0

follows as that for U0. �

LEMMA 2.5. Fix x ∈G.

(i) One can choose (kn, ln) in such a way that lim supn→∞ Vn(x)≤ V (x).
(ii) One can choose (kn, ln) in such a way that lim infn→∞ Vn(x)≥ V (x).

Similar statements hold for Un(x) and U(x).

PROOF. We prove (i) and (ii). The statements regarding Un(x) and U(x) are
proved analogously.

(i) Fix k. Since 
 = ⋃
l≥1
l , we have that given ε,

V (x) ≥ inf
β∈
 sup

Y∈Mk

J x(Y,β)

≥ inf
β∈
l

sup
Y∈Mk

J x(Y,β)− ε

= Vkl(x)− ε,

for all l sufficiently large. This shows V (x)≥ lim supl→∞Vkl(x), and (i) follows.
(ii) Fix ε. For each (k, l) ∈ N

2, let βkl ∈ 
l be such that

sup
Y∈Mk

J x(Y,βkl)≤ inf
β∈
l

sup
Y∈Mk

J x(Y,β)+ ε.(2.20)

Fix l. Let βl be defined by

βl[Y ] = βkl[Y ], Y ∈Mk \Mk−1, k ∈ N,

where we define M0 to be the empty set. Then βl ∈ 
l . Since M = ⋃
k≥1Mk , we
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have that the following holds provided that k is sufficiently large

V (x) ≤ sup
Y∈M

Jx(Y,βl)

≤ sup
Y∈Mk

J x(Y,βl)+ ε

= max
j≤k sup

Y∈Mj \Mj−1

J x(Y,βjl)+ ε

≤ inf
β∈
l

sup
Y∈Mk

J x(Y,β)+ 2ε,

where the last inequality follows from (2.20). This shows that, for every l, V (x)≤
lim infk Vkl(x). The result follows. �

PROOF OF THEOREM 1.2. The statement that U and V are solutions of (1.1)
follows from Theorem 2.1, Lemmas 2.3, 2.4 and uniqueness of solutions of (1.1),
established in [10]. The latter result also yields U = V . �

3. Equicontinuity. In this section, we prove Theorem 2.1. With an eye toward
estimates needed in Section 4 we will consider a somewhat more general setting.
Thanks to Lemma 2.2 we may, and will use the value functions (2.7), (2.8), defined
using simple controls and strategies (Definition 2.1). Given X defined as in (1.6)
for some Y,Z ∈ M0, we let for γ ∈ [0,1), Xγ = X + γ W̃ . Define τγ and Jγ
as below (1.7) but with X replaced with Xγ . Also denote by U

γ
kl and V

γ
kl the

expressions in (2.7), (2.8) with J replaced with Jγ . We write Uγ
n = U

γ
knln

, V γ
n =

V
γ
knln

. Theorem 2.1 is an immediate consequence of the following more general
result.

THEOREM 3.1. For some n2 ∈ N, the family {V γ
n ,U

γ
n ;n ≥ n2, γ ∈ [0,1)} is

equicontinuous.

In what follows, we will suppress γ from the notation unless there is a scope for
confusion. We start by showing that the value functions are uniformly bounded. To
this end, fix a0 ∈ Sm−1, and note that the constant process Y 0 := (a0,1) is in M0.

LEMMA 3.1. There exists a constant c1 <∞ such that

E[τ(x,Y 0,Z)2] ≤ c1, x ∈G,Z ∈M0, γ ∈ [0,1).

PROOF. We only present the proof for the case γ = 0. The general case fol-
lows upon minor modifications. Denote by m0 the diameter of G. Fix T > m0.
By (1.6), with αt = a0 ·Bt , on the event τ > T one has∫ T

0
(1 − αs) dWs +

∫ T

0
(1 + αs) ds ≤ a0 · (XT −X0) < m0.
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Consider the {Ft }-martingale, Mt = ∫ t
0 (1 − αs) dWs , with 〈M〉t = ∫ t

0 (1 − αs)
2 ds.

On the event 〈M〉T < T ,∫ T

0
(1 + αs) ds = 2T −

∫ T

0
(1 − αs) ds ≥ T .

So on the set {〈M〉T < T ; τ > T } we have |MT | ≥ T − m0. Letting σ =
inf{s : 〈M〉s ≥ T },

P(τ > T ; 〈M〉T < T )≤ P(|MT∧σ | ≥ T −m0)
(3.1)

≤ m1E〈M〉2
T∧σ

(T −m0)4
≤ m1T

2

(T −m0)4
.

We now consider the event {τ > T ; 〈M〉T ≥ T }. One can find m2,m3 ∈ (0,∞)

such that for all nondecreasing, nonnegative processes {γ̂t },
P
(
Hs + γ̂s ∈ (−m0,m0);0 ≤ s ≤ T

) ≤m2e
−m3T ,(3.2)

where H is a one-dimensional Brownian motion. Letting γt = ∫ t
0 (1 + Ds)(1 +

αs) ds, where Z = (B,D), we see that

{τ > T ; 〈M〉T ≥ T } ⊂ {Ms + γs ∈ (−m0,m0),0 ≤ s ≤ T ; 〈M〉T ≥ T }.
For u≥ 0, let Su = inf{s : 〈M〉s > u}. Then, with γ̂s = γSs ,

P(τ > T ; 〈M〉T ≥ T )≤ P
(
Hs + γ̂s ∈ (−m0,m0);0 ≤ s ≤ T

) ≤m2e
−m3T ,

where the last inequality follows from (3.2). The result now follows on combining
the above display with (3.1) �

The inequality J (x,Y 0,Z) ≤ |h|∞E(τ (x,Y 0,Z)) + |g|∞, where |h|∞ =
supx |h(x)| and |g|∞ = supx |g(x)|, immediately implies the following.

COROLLARY 3.1. There exists a constant c2 < ∞ such that |V γ
n (x)| ∨

|Uγ
n (x)| ≤ c2, for all x ∈G, γ ∈ [0,1) and n ∈ N.

The idea of the proof of equicontinuity, explained in a heuristic manner, is as
follows. Let x1 and x2 be in G, let ε = |x1 − x2|, and let δ > 0. Consider the
game with bounded controls for which Vn is the lower value function, for some
n ∈ N. Let the minimizing player select a strategy βn that is δ-optimal for the initial
position x1; namely supY∈M0

kn
J x1(Y,βn) ≤ Vn(x1) + δ. Denote the exit time by

τ1 = τx1(Y,βn) and the exit position by ξ1 =Xx1(τ1). Now, modify the strategy is
such a way that the resulting control Z = βn[Y ] is only affected for times t ≥ τ1.
This way, the payoff incurred remains unchanged. Thus, denoting the modified
strategy by β̃n, we have, for every Y ∈M0

kn
,

J x1(Y, β̃n)≤ Vn(x1)+ δ.
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Given a point ξ2 located inside G, ε away from ξ1, and a new state process which,
at time τ1 is located at ξ2, the modified strategy attempts to force this process to
exit the domain soon after τ1 and with a small displacement from ξ2 (provided that
ε is small).

Let now the maximizing player select a control Yn that is δ-optimal for playing
against β̃n, when starting from x2. This control is modified after the exit time
τx2(Y n, β̃n) in a similar manner to the above. Denoting the modified control by Ỹ n,
we have

Vn(x2)≤ J x2(Ỹ n, β̃n)+ δ.

Hence, Vn(x2)−Vn(x1)≤ J x2(Ỹ n, β̃n)−J x1(Ỹ n, β̃n)+2δ. One can thus estimate
the modulus of continuity of Vn by analyzing the payoff incurred when (Ỹ n, β̃n)

is played, considering simultaneously two state processes, starting from x1 and x2.
The form (1.6) of the dynamics ensures that the processes remain at relative po-
sition x1 − x2 until, at time σ , one of them leaves the domain. The difference
between the running payoffs incurred up to that time can be estimated in terms
of ε, the modulus of continuity of h, and the expectation of σ . It is not hard to see
that the latter is uniformly bounded, owing to Corollary 3.1 and the boundedness
of h away from zero. By construction, one of the players will now attempt to force
the state process that is still in G to exit. If one can ensure that exit occurs soon
after σ and with a small displacement (uniformly in n), then the running payoff
incurred between time σ and the exit time is small, and the difference between
the terminal payoffs is bounded in terms of ε and the modulus of continuity of g,
resulting in an estimate that is uniform in n.

This argument is made precise in the proof of the theorem. Lemmas 3.2 and 3.3
provide the main tools for showing that starting at a state near the boundary, each
player may force exit within a short time and with a small displacement. To state
these lemmas, we first need to introduce some notation.

We have assumed that G is a bounded C2 domain in R
m. Thus, there exist

ρ ∈ (0, 1
8), k ∈ N, zj ∈ ∂G, Ej ∈ O(m), ξj ∈ C2(Rm−1), j = 1, . . . , k, such that,

with Bj = Bρ(zj ), j = 1, . . . , k, one has ∂G⊂ ⋃k
j=1 Bj , and

G∩ Bj = {Ejy :y1 > ξj (y2, . . . , ym)} ∩ Bj , j = 1, . . . , k.

Here, O(m) is the space of m×m orthonormal matrices. Define for j = 1, . . . , k,
ϕ̃j : Rm → R as

ϕ̃j (y)= y1 − ξj (y2, . . . , ym), y ∈ R
m.

Let ϕj (x) = ϕ̃j (E
−1
j x), x ∈ R

m. Then |Dϕj(x)| ≥ 1, x ∈ R
m, j = 1, . . . , k. Fur-

thermore,

G∩ Bj = {x :ϕj (x) > 0} ∩ Bj , j = 1, . . . , k.

Let 0 < ρ0 < ρ be such that ∂G⊂ ⋃k
j=1 Bρ0(zj ). For ε > 0, denote

Xε = {(x1, x2) :x1 ∈ ∂G,x2 ∈G, |x1 − x2| ≤ ε}.
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Let j : ∂G→ {1, . . . , k} be a measurable map with the property

x ∈ Bρ0

(
zj(x)

)
for all x ∈ ∂G.

For existence of such a map see, for example, Theorem 10.1 of [6]. Then, for every
ε ≤ ρ1 := ρ−ρ0

4 ,

(x1, x2) ∈ Xε implies Bρ1(xi)⊂ Bj(x1), i = 1,2.(3.3)

For j = 1, . . . , k and x0 ∈ Bj , define ψx0
j : Rm → R as

ψ
x0
j (x)= ϕj (x)+ |x − x0|2.

Also, note that |Dψx0
j | ≥ 1

2 in Bj . Define π
x0
j : Rm → Sm−1 such that it is Lip-

schitz, and

π
x0
j (x)= − Dψ

x0
j (x)

|Dψx0
j (x)| , x ∈ Bj .(3.4)

Given a strategy β , and a point x2, we seek a control Y = (A,C) that forces a
state process starting from x2 to exit in a short time and with a small displacement
from x2 (provided that x2 is close to the boundary). We would like to determine
Y via the functions πj just constructed, in such a way that the following relation
holds:

A(t)= π(X(t)), C(t)= c0,(3.5)

where π = π
x2
j(x1)

and c0 > 0 is some constant. Making A be oriented in the neg-

ative direction of the gradient of ϕj allows us to show that the state is “pushed”
toward the boundary. The inclusion of a quadratic term in ψx0

j ensures in addition
that the sublevel sets {ψj < a} are contained in a small vicinity of x0, provided
smallness of a and dist(x0, ∂G). The latter property enables us to show that the
process does not wander a long way along the boundary before exiting.

The difficulty we encounter is that due to the feedback nature of A in (3.5)
we cannot ensure (local) existence of solutions of the set of (1.6) and (3.5). Take,
for example, a strategy β that is given as β[Y ]t = b(Yt ), Y ∈ M0, where b is
some measurable map from H to H. Along with (1.6), and (3.5) this defines X
as a solution to an SDE with general measurable coefficients. However, as is well
known, the SDE may not admit any solution in this generality. To overcome this
problem, we will construct a Y that approximates the Y we seek in (3.5) via a time
discretization.

Let �ε denote the collection of all quintuples σ = (σ, ξ1, ξ2, β,Y ) such that σ
is an a.s. finite Ft stopping time, ξ1 and ξ2 are Fσ -measurable random variables
satisfying (ξ1, ξ2) ∈ Xε a.s., β ∈ 
0, and Y ∈M0. Fix γ ∈ [0,1).

Let σ = (σ, ξ1, ξ2, β,Y ) ∈ �ρ1 be given. Let j∗(ω)= j(ξ1(ω)). Denote

�≡�(ω, ·)= ϕj∗(ω), � ≡�(ω, ·)=ψ
ξ2(ω)
j∗(ω), �≡�(ω, ·)= π

ξ2(ω)
j∗(ω).
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We define a sequence of processes (X(i), Y (i))i≥0 as follows. Let Y (0)
t ≡ (A

(0)
t ,

C
(0)
t ) be given by

Y
(0)
t =

{
Yt , t < σ ,
(�(ξ2), c

0), t ≥ σ .

The constant c0 above will be chosen later. Denote (B(0),D(0))= β[Y (0)]. Define,
for t ≥ σ ,

X
(0)
t = ξ2 +

∫
1[σ,t](s)

([
A(0)
s −B(0)

s

]
dWs + γ dW̃s

)
+
∫ t

σ

[
C(0)
s +D(0)

s

][
A(0)
s +B(0)

s

]
ds.

The process X(0) can be defined arbitrarily for t < σ . Set η0 = σ . We now define
recursively, for all i ≥ 1,

ηi = (ηi−1 + ε)
(3.6)

∧ inf
{
t ≥ ηi−1 :

∣∣X(i−1)
t −X(i−1)

ηi−1

∣∣ ≥ ε or
∫ t

ηi−1

R(i)
s ds ≥ t − ηi−1

}
,

where R(i)
s = [C(i−1)

s +D
(i−1)
s ]D�(X(i−1)

s ) · [A(i−1)
s −�(X

(i−1)
s )],

X
(i)
t =X

(i−1)
t , Y

(i)
t = Y

(i−1)
t , 0 ≤ t < ηi,

Y
(i)
t ≡ (

A
(i)
t ,C

(i)
t

) = (
�
(
X(i−1)
ηi

)
, c0), t ≥ ηi,(

B(i),D(i)) = β
[
Y (i)],(3.7)

X
(i)
t =X(i−1)

ηi
+
∫

1[ηi ,t](s)
([
A(i)
s −B(i)

s

]
dWs + γ dW̃s

)
+
∫ t

ηi

[
A(i)
s +B(i)

s

][
C(i)
s +D(i)

s

]
ds, t > ηi.

It is easy to check that η0 < η1 < · · · and ηi → ∞ a.s. Define Xt =X
(i)
t , Yt = Y

(i)
t

if t ≤ ηi . Let ρ = ρ2
1 and

τρ = inf{t ≥ σ :�(Xt)≥ ρ},
τG = inf{t ≥ σ :Xt ∈Gc},(3.8)

τ = τρ ∧ τG.

Define

Y t ≡ (At ,Ct )=
{
Yt , t < τ ,
(a0, c0), t ≥ τ ,

(B,D)= β(Y ),
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where a0 is as fixed at the beginning of the section. Let

Xt = ξ2 +
∫

1[σ,t](s)([As −Bs]dWs + γ dW̃s)+
∫ t

σ
[Cs +Ds][As +Bs]ds.

We write

X =X[σ, ξ1, ξ2, β,Y ], Y = Y [σ, ξ1, ξ2, β,Y ].
Note that if τρ and τG are defined by (3.8) upon replacing X by X then τ :=
τρ ∧ τG = τρ ∧ τG = τ , because X differs from X only after time τ . We write
τ = τ [σ, ξ1, ξ2, β,Y ]. Similar notation will be used for τρ and τG.

LEMMA 3.2. There exists a c0 ∈ (0,∞) and a modulus ϑ such that for every
ε ∈ (0, ρ1), and γ ∈ [0,1), if σ = (σ, ξ1, ξ2, β,Y ) ∈ �ε and τG = τG[σ ], one has:

(i) E{τG − σ |Fσ } ≤ ϑ(ε),
(ii) E{|X− ξ2|2∗,τG |Fσ } ≤ ϑ(ε), where |X− ξ2|∗,τG = supt∈[σ,τG]|X(t)− ξ2|.

Proof of the lemma is provided after the proof of Theorem 3.1.
Next, we construct a strategy β∗ ∈ 
0 with analogous properties. Here, exis-

tence of solutions is not an issue, and discretization is not needed.
Fix (x1, x2) ∈ Xρ1 . Let j = j(x1), �̃ =ψ

x2
j , and �̃= π

x2
j . Given Y = (A,C) ∈

M0, let X̃ solve

X̃t = x2 +
∫ t

0

([As − �̃(X̃s)]dWs + γ dW̃s

)+
∫ t

0
[Cs + d0][As + �̃(X̃s)]ds,

where d0 is a constant to be determined later. Let

τ̃ρ = inf{t : �̃(X̃t )≥ ρ},
τ̃G = inf{t : X̃t ∈Gc},(3.9)

τ̃ = τ̃ρ ∧ τ̃G.

Define Z∗ ∈M0 as

Z∗
s ≡ (B∗

s ,D
∗
s )=

{
(�̃(X̃s), d

0), s < τ̃ ,
(a0, d0), s ≥ τ̃ .

Note that β∗[Y ](s) := Z̃s , s ≥ 0 defines a strategy. Let

X∗
t = x2 +

∫ t

0
([As −B∗

s ]dWs + γ dW̃s)+
∫ t

0
[Cs + d0][As +B∗

s ]ds.

Define τ ∗
ρ , τ ∗

G and τ ∗ by replacing X̃ with X∗ in (3.9), and note that τ ∗ = τ̃ . To
make the dependence explicit, we write

X∗ =X∗[x1, x2, Y,W ], Z∗ =Z∗[x1, x2, Y,W ], τ ∗ = τ ∗[x1, x2, Y,W ].
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LEMMA 3.3. There exists d0 ∈ (0,∞) and a modulus ϑ̃ such that for all ε ∈
(0, ρ1), Y ∈M0, (x1, x2) ∈ Xε , if τ ∗

G = τ ∗
G[x1, x2, Y,W ], one has:

(i) E[τ ∗
G] ≤ ϑ̃(ε),

(ii) E[|X∗ − x2|2∗,τ∗
G
] ≤ ϑ̃(ε), where |X∗ − x2|∗,τ∗

G
= supt∈[0,τ∗

G]|X∗(t)− x2|.

The proof of Lemma 3.3 is very similar to (in fact somewhat simpler than) the
proof of Lemma 3.2, and therefore will be omitted.

If σ is an a.s. finite {Ft }-stopping time and (ξ1, ξ2) are Fσ -measurable ran-
dom variables such that (ξ1, ξ2) ∈ Xρ1 a.s., then we define the Gt = Ft+σ adapted
processes

X∗
t =X∗[ξ1, ξ2, Ŷσ , Ŵσ ](t),

Z∗
t = Z∗[ξ1, ξ2, Ŷσ , Ŵσ ](t),

where Ŷσ (t) = Y(t + σ) and Ŵσ (t) = W(t + σ) − W(σ), t ≥ 0. To make the
dependence explicit, write

X∗ =X∗[σ, ξ1, ξ2, Y ], Z∗ = Z∗[σ, ξ1, ξ2, Y ].
PROOF OF THEOREM 2.1. Fix x1, x2 ∈G and γ ∈ [0,1). We will suppress γ

from the notation. Assume that |x1 −x2| = ε < ρ1, so that Lemmas 3.2 and 3.3 are
in force (see Figure 1). Let n0 be large enough so that ln, kn ≥ max{c0, d0} for all
n≥ n0. Given δ ∈ (0,1) and n≥ n0, let βn ∈ 
0

knln
be such that

sup
Y∈M0

kn

J x1(Y,βn)− δ ≤ Vn(x1)≤ c1.

For Y ∈M0 write τ 1,n(Y ) := τx1(Y,βn) and X1,n(Y ) :=Xx1(Y,βn). Note that

hE[τ 1,n(Y )] − |g|∞ ≤ c1 + 1,

FIG. 1.
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hence for every n and every Y ∈M0
kn

,

E[τ 1,n(Y )] ≤m1,(3.10)

where m1 <∞ is a constant that does not depend on n.
Define β̃n ∈ 
0

knln
as follows. For Y ∈M0, let

ξ
1,n
1 (Y )=X

1,n
τ 1,n(Y )

(Y ), ξ
1,n
2 (Y )= ξ

1,n
1 (Y )+ x2 − x1,

β̃n[Y ]t =
⎧⎪⎨⎪⎩
βn[Y ]t , t < τ 1,n(Y ),

Z∗[τ 1,n(Y ), ξ
1,n
1 (Y ), ξ

1,n
2 (Y ), Y ], t ≥ τ 1,n(Y ), ξ

1,n
2 (Y ) ∈G,

arbitrarily defined, t ≥ τ 1,n(Y ), ξ
1,n
2 (Y ) ∈G

c
.

Note that for every Y ∈ M0
kn

, J x1(Y,βn) = J x1(Y, β̃n). Next, choose Yn ∈ M0
kn

such that

Vn(x2)≤ sup
Y∈M0

kn

J x2(Y, β̃n)≤ J x2(Y n, β̃n)+ δ.

Let τ 2,n = τx2(Y n, β̃n), and X2,n =Xx2(Y n, β̃n). Let

ξ
2,n
2 =X

2,n
τ 2,n , ξ

2,n
1 = ξ

2,n
2 + x1 − x2.

Define Ỹ n ∈M0
kn

as

Ỹ n
t =

⎧⎪⎪⎨⎪⎪⎩
Yn
t , t < τ 2,n,

Y [τ 2,n, ξ
2,n
2 , ξ

2,n
1 , β̃n, Y n](t), t ≥ τ 2,n, ξ

2,n
1 ∈G,

arbitrarily defined, t ≥ τ 2,n, ξ
2,n
1 ∈G

c
.

Note that J x2(Y n, β̃n)= J x2(Ỹ n, β̃n). Thus

Vn(x2)− Vn(x1)− 2δ ≤ J x2(Ỹ n, β̃n)− J x1(Ỹ n, β̃n).(3.11)

For k = 1,2, let

σk,n = τxk (Ỹ n, β̃n), X̃k,n =Xxk(Ỹ n, β̃n), �k,n = X̃
k,n

σk,n
.

For m0 ≥ 0, let ϑg(m0) = sup{|g(x) − g(y)| :x, y ∈ ∂G, |x − y| ≤ m0} and
ϑh(m0)= sup{|h(x)−h(y)| :x, y ∈G, |x−y| ≤m0}. Using (3.10), the right-hand
side of (3.11) can be bounded by

Eϑg(|�1,n −�2,n|)+ c3ϑh(ε)+ |h|∞E[(σ 1,n ∨ σ 2,n)− (σ 1,n ∧ σ 2,n)].(3.12)

On the set σ 1,n ≤ σ 2,n, we have |�1,n −�2,n| ≤ ε + |X̃2,n
σ 1,n − X̃

2,n
σ 2,n |. Hence, by

Lemma 3.3(ii),

E
[|�1,n −�2,n|21{σ 1,n≤σ 2,n}

] ≤ ϑ1(ε)

for some modulus ϑ1. Using Lemma 3.2(ii), a similar estimate holds on the com-
plement set, and consequently, the first term of (3.12) is bounded by ϑ2(ε), for



520 R. ATAR AND A. BUDHIRAJA

some modulus ϑ2. By Lemmas 3.2(i) and 3.3(i), the last term of (3.12) is bounded
by |h|∞(ϑ(ε) + ϑ̃(ε)). Hence, Vn(x2) − Vn(x1) ≤ 2δ + ϑ3(|x1 − x2|) for some
modulus ϑ3, and the equicontinuity of {V γ

n ;n,γ } follows on sending δ → 0. The
proof of equicontinuity of {Uγ

n ;n,γ } is similar, and therefore omitted. �

PROOF OF LEMMA 3.2. We will only present the proof for the case γ = 0.
The general case follows upon minor modifications. Denote

ψ1,∞ = sup
x0,x∈G

sup
j

|Dψx0
j (x)|, ψ2,∞ = sup

x0,x∈G
sup
j

|D2ψ
x0
j (x)|,

and let ϕ1,∞, ϕ2,∞ be defined analogously. Let ε > 0 and σ ≡ (σ, ξ1, ξ2, β,Y ) ∈
�ε be given, let X = X[σ ], Y = Y [σ ], τρ = τρ[σ ], τG = τG[σ ], and τ = τ [σ ].
Let

τ 0 = inf{t ≥ σ :�(Xt)≤ 0}, τB = inf{t ≥ σ :Xt /∈ Bj∗},
where we recall that j∗ = j(ξ1). We have τ ≡ τρ ∧ τG ≤ τρ ∧ τ 0, because � ≥�.
Also, by (3.3), τ ≤ τB . By Itô’s formula, for t > σ ,

�(Xt)=�(ξ2)+
∫

1[σ,t](s)D�(Xs)[As −Bs]dWs

+
∫ t

σ
D�(Xs)[As +Bs][Cs +Ds]ds

+ 1

2

∫ t

σ
[As −Bs]′D2�(Xs)[As −Bs]ds.

For t ≤ τ , using (3.4) and (3.7),

D�(Xs)[As −Bs] =D�(Xs)[�(Xs)−Bs] +D�(Xs)[As −�(Xs)]
= −|D�(Xs)|(1 − αs − δs),

where αs = −|D�(Xs)|−1D�(Xs) ·Bs , and δs = −�(Xs) · [As −�(Xs)]. Note
that |αs | ≤ 1. Moreover, using the inequality | v|v| · ( u

|u| − v
|v|)| ≤ 2|v|−1|u−v| along

with (3.6), recalling the definition of A and the fact |D�(Xs)| ≥ 1/2, we see that

|δs | ≤ 4εψ2,∞.

Furthermore,

D�(Xs)[As +Bs][Cs +Ds]
=D�(Xs)[�(Xs)+Bs][Cs +Ds] +D�(Xs)[As −�(Xs)][Cs +Ds]
= −|D�(Xs)|(1 + αs)(c

0 +Ds)+ es,

where, by (3.6), for σ ≤ t1 ≤ t2 ≤ τ∫ t2

t1

es ds ≤ ε+ t2 − t1.
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Finally, we can estimate

ps := 1
2 [As −Bs]′D2�(Xs)[As −Bs]

by |ps | ≤ 2ψ2,∞. Shifting time by σ , we denote Gt = Ft+σ , W̌t = Wt+σ − Wσ ,
and

(X̌t , Ďt , α̌t , δ̌t , ět , p̌t )= (Xt+σ ,Dt+σ ,αt+σ , δt+σ , et+σ ,pt+σ ).

Denote also mt = |D�(X̌s)|, let M be the Gt -martingale

Mt = −
∫ t

0
ms(1 − α̌s − δ̌s) dW̌s

and set

μt := 〈M〉t =
∫ t

0
m2
s (1 − α̌s − δ̌s)

2 ds,

Pt = −
∫ t

0
ms(1 + α̌s)(c

0 + Ďs) ds, Qt =
∫ t

0
(ěs + p̌s) ds,(3.13)

�t =�(X̌t ).

Combining the above estimates, we have for 0 ≤ s ≤ t ≤ τ − σ ,

�t =�0 +Mt + Pt +Qt,(3.14)

Qt −Qs ≤ ε+ r(t − s),(3.15)

where r = 2ψ2,∞ +1. Note that mt ≥ 1/2 for s ≤ τB −σ , and recall that τB ≥ τ ≡
τρ ∧ τG. We have for t ≤ τ − σ , assuming without loss of generality 4εψ2,∞ <

1/32,

r = r

4
(1 − α̌t − δ̌t + 1 + α̌t + δ̌t )

2 ≤ r

2
(1 − α̌t − δ̌t )

2 + 2r(1 + α̌t + δ̌t )

≤ 2rm2
t (1 − α̌t − δ̌t )

2 + 4rmt(1 + α̌t )+ 2rδ̌t

and

δ̌t ≤ (1 + α̌t )+ 1
8(1 − α̌t − δ̌t )

2 ≤ 2mt(1 + α̌t )+ 1
2m

2
t (1 − α̌t − δ̌t )

2.

Hence, for t ≤ τ − σ , we have r ≤ 3rm2
t (1 − α̌t − δ̌t )

2 + 8rmt(1 + α̌t ). Thus,
by (3.14), if c0 is chosen larger than 8r , we have

�t =�0 +Mt + 3rμt + P̃t + Q̃t ,(3.16)

where

P̃t = −
∫ t

0
ms(1 + α̌s)(c

0 + Ďs − 8r) ds,
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Q̃0 = 0, and

P̃t − P̃s ≤ 0, Q̃t − Q̃s ≤ ε, 0 ≤ s ≤ t ≤ τ − σ.(3.17)

We will write P̂ for P[·|G0], and Ê for the respective conditional expectation.
The proof will proceed in several steps.

STEP 1. For some ν1 ∈ (0,∞),

sup
σ∈�ρ1

Ê[(τ − σ)2] ≤ ν1, a.s.

STEP 2. For some ν2 ∈ (0,∞),

sup
σ∈�ρ1

Ê[(τG − σ)2] ≤ ν2, a.s.

Note that Step 2 is immediate from Step 1 and Lemma 3.1 because by construc-
tion, a constant control is used after time τ .

STEP 3. There exists a modulus ϑ1 such that

sup
σ∈�ε

P̂[τG − σ > ϑ1(ε), τρ > τG] ≤ ϑ1(ε), ε > 0.

STEP 4. There exists a modulus ϑ2 such that

sup
σ∈�ε

P̂[τρ ≤ τG] ≤ ϑ2(ε), ε > 0.

Based on these steps, part (i) of the lemma is established as follows. Writing Eε

for the event τG − σ > ϑ1(ε),

Ê[τG − σ ] = Ê[(τG − σ)1Eε ] + Ê[(τG − σ)1Ec
ε
]

≤ [Ê[(τG − σ)2]P̂(Eε)]1/2 + ϑ1(ε)

≤ ν
1/2
2 [ϑ1(ε)+ ϑ2(ε)]1/2 + ϑ1(ε),

where the first inequality uses Cauchy–Schwarz, and the second uses Steps 2, 3
and 4.

To show part (ii) of the lemma, use Steps 3 and 4 to write

Ê[|X− ξ2|2∗,τG] ≤ Ê
[|X− ξ2|2∗,τG1Ec

ε∩{τρ>τG}
]

(3.18)
+ [ϑ1(ε)+ ϑ2(ε)]diam(G)2.

By (3.14) and (3.15), we can estimate

Ê
[

sup
t∈[σ,τG]

�(Xt)1Ec
ε∩{τρ>τG}

]
≤ ϕ1,∞ε+ 3ϑ1(ε)

1/2ψ1,ε + rϑ1(ε)+ ε.(3.19)
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Thus, noting that �(Xt)≥ 0 on {τρ > τG; t ∈ [σ, τG]}, we have on this set,

�(Xt)≥ |Xt − ξ2|2.
Part (ii) of the lemma now follows on using the above inequality and (3.19) in
(3.18).

In order to complete the proof, we need to establish the statements in Steps 1, 3
and 4.

PROOF OF STEP 1. Let t be given. Let Ft denote the event {�s ∈ (0, ρ),0 ≤
s ≤ t}. We have

P̂(τ − σ > t)= P̂(τ − σ > t, τ 0 − σ > t, τB − σ > t)
(3.20)

≤ P̂(Ft , τB − σ > t).

Denote Su = inf{s :μs > u}, where we recall that the infimum over an empty set is
taken to be ∞. Let κ ∈ (0,1/16). Then

P̂(Ft , τB − σ > t,μt > κt)

≤ P̂
(
μt > κt,�Ss ∈ (0, ρ), τB − σ > t,0 ≤ s ≤ μt

)
(3.21)

≤ P̂
(
�0 +Hs + 3rs + P̂s ∈ (0, ρ),0 ≤ s ≤ κt

)
= P̂

(
Ĥs + P̂s ∈ (0, ρ),0 ≤ s ≤ κt

)
,

where H is a standard Brownian motion (in particular, Hs = MSs for s < μt ),
P̂t is a process that satisfies P̂s − P̂u ≤ ε, u ≤ s, and Ĥs = �0 + Hs + 3rs. On
the event indicated in the last line of (3.21), one has, for every integer k < κt ,
that Ĥk − Ĥk−1 ≥ −2. Hence, the right-hand side of (3.21) can be estimated by
m1e

−m2κt , for some positive constants m1 and m2, independent of t and κ , ε, and
as a result,

P̂(Ft , τB − σ > t,μt > κt)≤m1e
−m2κt .(3.22)

Next, on the event Ft ∩{τB −σ > t,μt ≤ κt} we have
∫ t

0 m
2
s (1− α̌s − δ̌s)

2 ds ≤
κt , thus∫ t

0
m2
s (1 − α̌s)

2 ds ≤ 2κt + 2
∫ t

0
m2
s δ̌

2
s ds ≤ (2κ + 16ψ2

1,∞ψ2
2,∞ε2)t ≤ t

4
,

where we assumed without loss that 2κ + 16ψ2
1,∞ψ2

2,∞ε2 ≤ 1/4. Consequently,∫ t
0 ms(1 − α̌s) ds ≤ t/2. Using ms ≥ 1/2, we have

∫ t
0 (1 + α̌s) ds ≥ 2t − t = t ,

whence, letting c0 be so large that c0 − 8r > 8r ,

3rμt + P̃t ≤ 3rt − 4rt = −rt,
where we used μt ≤ κt ≤ t . Using (3.16), on this event we have 0 ≤ �t ≤ �0 +
Mt − rt + Q̃t . Hence, recalling that Q̃t ≤ ε and �0 ≤ ψ1,∞ε, denoting m0 =
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ψ1,∞ + 1, and letting γ be the (t-dependent) stopping time γ = inf{s :μs > κt},
we have, for t ≥ r−1m0ε,

P̂(Ft , τB − σ > t,μt ≤ κt)≤ P̂(Mt ≥ rt −m0ε,μt ≤ κt)

≤ P̂(Mt∧γ ≥ rt −m0ε)(3.23)

≤ m3Ê[〈M〉2
t∧γ ]

(rt −m0ε)4
≤ m3(κt)

2

(rt −m0ε)4
.

In the second inequality above, we used the fact that μt ≤ κt implies γ ≥ t , and
in the third we used Burkholder’s inequality. In particular, m3 does not depend on
t or κ (which will allow us to use this estimate more efficiently in Step 3 below).
Combining (3.20), (3.21) and (3.23) we obtain the statement in Step 1. �

PROOF OF STEP 3. We begin by observing that, from (3.21),

P̂(Ft , τB − σ > t,μt > κt)≤ P(Ĥs + P̂s > 0,0 ≤ s ≤ κt),(3.24)

and since �0 + P̂s ≤m0ε, this probability is bounded by

p(ε, κt) := P(m0ε+Hs + 3rs > 0,0 ≤ s ≤ κt).

The latter converges to zero as ε → 0 (for fixed κ and t). Let ϑ be a modulus
such that p(ε,ϑ(ε)) ≤ ϑ(ε), and 1

2ϑ(ε)
1/4 ≥ m0ε. Taking t = r−1(ϑ(ε))1/4 and

κ = rϑ(ε)3/4, combining (3.23) and (3.24),

P̂
(
Ft, τB − σ > r−1ϑ(ε)1/4) ≤ ϑ(ε)+ m3ϑ(ε)

2

(1/2ϑ(ε)1/4)4
= (1 + 16m3)ϑ(ε).

Using the above estimate in (3.20), Step 3 follows. �

PROOF OF STEP 4. For a > 0, let τa and τ0 denote the first time [a,∞),
and, respectively, (−∞,0], is hit by Ĥ . Since Ĥ is a Brownian motion (with drift
3r) starting from Ĥ (0)≤ ψ1,∞ε, we have that P(τρ−ε ≤ τ0) converges to zero as
ε → 0. The proof is completed on noting that

P̂(τρ ≤ τG)≤ P(τρ−ε ≤ τ0),

which follows from (3.16), (3.17), the relation Ĥs =�0 +MSs + 3rμSs for all s <
μ∞ ≡ supt≥0μt and observing that on the set where σ0 = sup{Ss : s < μ∞}<∞
we have that Mt + 3rμt =Mσ0 + 3rμσ0 , for t ≥ σ0. �

4. Analysis of the game with bounded controls. The main result of this sec-
tion, Theorem 4.1, implies Lemma 2.3. Fix k, l such that min{k, l} ≥ max{c0, d0,
kn2, ln2}, where n2 is as in Theorem 3.1. Throughout this section, (k, l) will be
omitted from the notation. As in the previous section, only simple controls and
strategies will be used. Recall that

�(a,b, c, d;p,S)= −1
2(a − b)′S(a − b)− (c+ d)(a + b) · p.
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Fix γ ∈ [0,1) and write

�+
γ (p,S)= max|a|=1,0≤c≤k min|b|=1,0≤d≤l �(a, b, c, d;p,S)− γ 2

2
Tr(S),

�−
γ (p,S)= min|b|=1,0≤d≤l max|a|=1,0≤c≤k �(a, b, c, d;p,S)− γ 2

2
Tr(S),

and consider the equations{
�+
γ (Du,D

2u)− h= 0, in G,
u= g, on ∂G,

(4.1) {
�−
γ (Du,D

2u)− h= 0, in G,
u= g on ∂G.

(4.2)

We will write V γ and, respectively, Uγ for the functions V γ
kl and U

γ
kl introduced

at the beginning of Section 3.

THEOREM 4.1. For each γ ∈ [0,1), one has the following:

(i) The function Uγ uniquely solves (4.1).
(ii) The function V γ uniquely solves (4.2).

The proof of the theorem is based on a result on a finite time horizon, Proposi-
tion 4.1, in which we adopt a technique of [12]. Given a function u ∈ C(G), x0 ∈G,
T ≥ 0, and Y ∈M0, Z ∈M0, let

J γ (x0, T ,u,Y,Z)= E
[∫ T∧τγ

0
h(Xγ

s ) ds + u(X
γ
T∧τγ )

]
,(4.3)

where Xγ and τγ = τ(x0, Y,Z) are as introduced in Section 3 with X0 = x0,
Y = (A,C) and Z = (B,D).

PROPOSITION 4.1. Let x0 ∈G, T ∈ [0,∞) and γ ∈ [0,1). Let u ∈ C(G).
(i) If u is a subsolution of (4.1), then

u(x0)≤ sup
α∈
0

lk

inf
Z∈M0

l

J γ (x0, T ,u,α[Z],Z).(4.4)

(ii) If u is a supersolution of (4.1), then

u(x0)≥ sup
α∈
0

lk

inf
Z∈M0

l

J γ (x0, T ,u,α[Z],Z).(4.5)

(iii) If u is a subsolution of (4.2), then

u(x0)≤ inf
β∈
0

kl

sup
Y∈M0

k

J γ (x0, Y, T ,u,β[Y ]).(4.6)
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(iv) If u is a supersolution of (4.2), then

u(x0)≥ inf
β∈
0

kl

sup
Y∈M0

k

J γ (x0, T ,u,Y,β[Y ]).(4.7)

Before proving Proposition 4.1, we show how it implies the theorem.

PROOF OF THEOREM 4.1. We only prove (i) since the proof of (ii) is similar.
We first argue that any solution of (4.1) must equal Uγ , and then show that a
solution exists. Let a solution u of (4.1) be given. Fix x0 ∈G and ε > 0. Fix α ∈ 
0

lk

such that

Uγ (x0)≤ inf
Z∈M0

l

J x0
γ (α,Z)+ ε.(4.8)

By Proposition 4.1(ii),

u(x0)≥ inf
Z∈M0

l

j γ (T ,Z),(4.9)

where we denote

jγ (T ,Z)= J γ (x0, T ,u,α[Z],Z).
For the rest of the proof, we suppress γ from the notation. Lemma 3.1 shows that
there is m1 < ∞ such that, for every T ∈ [0,∞), infZ∈M0

l
j (T ,Z) ≤ m1. Letting

M(T ) = {Z ∈ M0
l : j (T ,Z) ≤ c1}, it follows from the lower bound on h that for

some T <∞ that does not depend on Z, one has P(τ > T ) < ε for all Z ∈M(T ),
where τ = τx0(α,Z). Fix such a T . Given Z ∈M(T ), let Ẑ ∈M0

l be equal to Z on
[0, T ), and let it assume the constant value (a0,1) on [T ,∞). Clearly j (T , Ẑ) =
j (T ,Z). Also, by Lemma 3.1, denoting τ̂ = τx0(α, Ẑ), we have

E[(τ̂ − T )+|τ̂ > T ] ≤m2

for some constant m2 independent of ε and T . By (4.3), (4.8), the definition of the
payoff, and using the boundary condition u|∂G = g, we have for some m3 ∈ (0,∞)

U(x0)≤ J x0(α, Ẑ)+ ε

≤ J (x0, T ,u,α[Ẑ], Ẑ)+m3{E[(τ̂ − T )+] + P(τ̂ > T )} + ε.

Using P(τ̂ > T ) = P(τ > T ) yields U(x0) ≤ j (T , Ẑ) + m4ε = j (T ,Z) + m4ε.
Note that the infimum of j (T ,Z) over M0

l is equal to that over M(T ). Thus, using
(4.9) and sending ε → 0 proves that U(x0)≤ u(x0).

To obtain the reverse inequality, fix x0 ∈G. From Lemma 3.1, there exists m5 <

∞ and Z1 ∈M0
l such that, for every α,

J x0(α,Z1)≤m5.
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Denote N(α) = {Z :J x0(α,Z) ≤ m5}. Clearly, for each α, the infimum of
J x0(α,Z) over all Z ∈M0

l is equal to that over Z ∈N(α). Hence,

U(x0)≥ inf
Z∈N(α) J

x0(α,Z), α ∈ 
0
lk.

Using the positive lower bound on h as before, it follows that there exists a function
r : [0,∞)→ [0,∞) with limT→∞ r(T )= 0, such that for every α and Z ∈ N(α)

we have P(τ x0(α,Z) > T )≤ r(T ). Therefore, for some m6 ∈ (0,∞)

J x0(α,Z)≥ J (x0, T ,u,α[Z],Z)−m6r(T ), α ∈ 
0
lk,Z ∈N(α).

In conjunction with Proposition 4.1(i), this shows that U(x0) ≥ u(x0)−m6r(T ).
Since T is arbitrary, we obtain U(x0)≥ u(x0).

Finally, we argue existence of solutions to (4.1). Let us write (4.1)γ for (4.1)
with a specific γ . For γ ∈ (0,1), existence of solutions to (4.1)γ follows from
Theorem 1.1 of [5]. To handle the case γ = 0, we will use the fact that any uniform
limit, as γ → 0, of solutions to (4.1)γ is a solution to (4.1)0. This fact follows by
a standard argument, that we omit. Now, since for γ ∈ (0,1) we have existence,
the uniqueness statement established above shows that Uγ solves (4.1)γ . From
Theorem 3.1, we have that the family {Uγ ,γ ∈ (0,1)} is equicontinuous, and thus
a uniform limit of solutions, and in turn a solution to (4.1)0, exists. �

In the rest of this section, we prove Proposition 4.1.
Let Gn be a sequence of domains compactly contained in G and increasing

to G. Let J γn be defined as J γ of (4.3), with τγ = τγ (x0, Y,Z) replaced by τγn =
τ
γ
n (x0, Y,Z), where

τγn = inf{t :Xγ
t ∈ ∂Gn}.

LEMMA 4.1. For every n, and γ ∈ [0,1) Proposition 4.1 holds with J γ re-
placed by J γn .

PROOF. We follow the proof of [12], Lemma 2.3 and Theorem 2.1. Assume
without loss that G0 ⊂⊂ G1 ⊂⊂ G2 ⊂⊂ G. We will prove the lemma for n = 0.
Since the claim is trivial, if x0 /∈ G0, assume x0 ∈ G0. In this proof only, write τ
for τγ0 , the exit time of Xγ from G0. Fix γ̃ > γ , let τ̃ = τ

γ̃
1 and σ = τ ∧ τ̃ . For

ε > 0, consider the sup convolution

uε(x)= sup
ξ∈Rm

{
u(ξ)− |ξ − x|2

2ε

}
, x ∈G2,

where, in the above equation only, u is extended to R
m by setting u= 0 outside G.

It is easy to see that there exists ε0 such that the supremum is attained inside G for
all (x, ε) ∈ G2 × (0, ε0). The standard mollification uδε :G1 → R of uε :G2 → R

is well defined, provided that δ is sufficiently small. The result [12], Lemma 2.3,
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for the smooth function uδε and the argument in the proof of [12], Theorem 2.1,
show

uδε(x0)≤ sup
α∈
0

inf
Z∈M0

E
[∫ T∧σ

0
h(Xγ̃

s ) ds + uδε(X
γ̃
T∧σ )

]
+ ρ(ε, δ, γ, γ̃ ),

where limε→0 limγ̃→γ limδ→0 ρ(ε, δ, γ, γ̃ ) = 0. We remark here that Lemma 2.3
of [12] is written for the case where u is a subsolution of a PDE of the form (4.1)
on all of R

m and T ∧ σ is replaced by T , however the proof with u and T ∧ σ

as in the current setting can be carried out in exactly the same way. Since G0 is
compactly contained in G1, we have that for every θ > 0

sup
α∈
0

sup
Z∈M0

{
P
(
|T ∧ σ − T ∧ τ | + sup

0≤s≤T
|Xγ̃

s −Xγ
s |> θ

)}
converges to 0 as γ̃ → γ . Moreover, uδε → uε as δ → 0 and uε → u as ε → 0,
where in both cases, the convergence is uniform on G0 (see ibid.). Hence, the
result follows on taking δ → 0, then γ̃ → γ and finally ε → 0. �

PROOF OF PROPOSITION 4.1. The main argument is similar to that of Theo-
rem 2.1, and so we omit some of the details. We will prove only item (iv) of the
proposition, since the other items can be proved in a similar way.

Fix x and T . Let u be a supersolution of (4.2). Let n be large enough so that
dist(∂Gn, ∂G) < ρ1. Write j

γ
n (Y,β) for J γn (x, T ,u,Y,β[Y ]) and jγ (Y,β) for

J γ (x, T ,u,Y,β[Y ]). Below we will keep γ in the notation only if there is scope
for confusion. By Lemma 4.1, u(x) ≥ vn := infβ supY jn(Y,β), for every n. We
need to show u(x)≥ v := infβ supY j (Y,β).

Fix ε > 0. Let βn be such that

sup
Y

jn(Y,βn)≤ vn + ε(4.10)

and let τn1 (Y )= τ
γ
n (x,Y,βn[Y ]), Y ∈M0

l . Let β̃n be constructed from βn as in the
proof of Theorem 2.1, where in particular, βn[Y ] and β̃n[Y ] differ only on [τn1 ,∞),
by which jn(Y, β̃n)= jn(Y,βn). Choose Yn such that

v ≤ sup
Y

j (Y, β̃n)≤ j (Yn, β̃n)+ ε

and set τn2 (Y )= τγ (x,Y, β̃n[Y ]). Then

v − vn − 2ε ≤ j (Yn, β̃n)− jn(Yn, β̃n)=: δn.
Denote Xn =Xx(Yn, β̃n). Using Lemma 3.2,

0 ≤ τn2 − τn1 < ε and |Xn(τ
n
1 ∧ T )−Xn(τ

n
2 ∧ T )|< ε

with probability tending to 1 as n→ ∞. It now follows from the definition of Jn
and J [cf. (4.3)] that lim supn δn ≤ ρ(ε) for some modulus ρ. Since ε is arbitrary,
this proves the result. �
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5. Concluding remarks.

5.1. Identity (1.4). Recall from (2.1) that

�(a,b, c, d;p,S)= −1
2(a − b)′S(a − b)− (c+ d)(a + b) · p(5.1)

and denote

�+(p,S)= sup
|b|=1,0≤d<∞

inf|a|=1,0≤c<∞�(a,b, c, d;p,S),(5.2)

�−(p,S)= inf|a|=1,0≤c<∞ sup
|b|=1,0≤d<∞

�(a,b, c, d;p,S)(5.3)

[compare with (2.2) and (2.3)]. The following proposition establishes identity (1.4)
that, as discussed in the introduction, allows one to view the infinity-Laplacian
equation as a Bellman–Issacs type equation. The result states that for the SDG of
Section 1.2, the associated Isaacs condition, �+ =�−, holds. Although we do not
make use of it in our proofs, such a condition is often invoked in showing that the
game has value (cf. [7, 12]).

PROPOSITION 5.1. For p ∈ R
m, p �= 0 and S ∈ S(m), �+(p,S) = �(p,S)

and �−(p,S)=�(p,S). In particular, identity (1.4) holds.

PROOF. We will only show �− = � (the proof of �+ = � being similar).
Fix p, S, and omit them from the notation. Write Hk for {(a, c) ∈ H : c ≤ k} and
φ(y, z) for �(a,b, c, d), where y = (a, c), z = (b, d). Given δ > 0 let k be such
that �− ≥ infy∈Hk

supz∈H φ(y, z)− δ. Then

�− ≥ inf
y∈Hk

sup
z∈Hl

φ(y, z)− δ =�−
kl − δ.

Thus, by Lemma 2.1, �− ≥�.
Next, let φ(y) = supz∈H φ(y, z). Fix δ ∈ (0,∞), let yδ = (p, δ−1), where p =

p/|p|, and let zδ = (bδ, dδ) ∈ H be such that φ(yδ)≤ φ(yδ, zδ)+ δ. Then

�− ≤ φ(yδ)≤ −1
2(p− bδ)

′S(p− bδ)− (δ−1 + dδ)(p+ bδ) · p+ δ

≤ −1
2(p− bδ)

′S(p− bδ)+ δ.

Note that bδ must converge to −p or else the middle inequality above will say
�− = −∞, contradicting the bound �− ≥ �. Letting δ → 0, we now have from
the third inequality that �− ≤�. The result follows. �

5.2. Limit trajectory under a nearly optimal play. In [10], the authors raise
questions about the form of the limit trajectory under optimal play of the Tug-of-
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War game, as the step size approaches zero (see Section 7 therein). It is natural
to ask, similarly, whether one can characterize (near) optimal trajectories for the
SDG studied in the current paper. Let V be as given in (1.10). Let x ∈G and δ > 0
be given. We say that a policy β ∈ 
 is δ-optimal for the lower game and initial
condition x if supY∈M Jx(Y,β) ≤ V (x)+ δ. When a strategy β ∈ 
 is given, we
say that a control Y ∈ M is δ-optimal for play against β with initial condition x,
if J x(Y,β) ≥ supY ′∈M Jx(Y ′, β)− δ. A pair (Y,β) is said to be a δ-optimal play
for the lower game with initial condition x, if β is δ-optimal for the lower game
and Y is δ-optimal for play against β (both considered with initial condition x).
One may ask whether the law of the process Xδ , under an arbitrary δ-optimal play
(βδ, Y δ), converges to a limit law as δ → 0; whether this limit law is the same for
any choice of such (βδ, Y δ) pairs; and finally, whether an explicit characterization
of this limit law can be provided. A somewhat less ambitious goal, that is the
subject of a forthcoming work [3] is the characterization of the limit law of Xδ

under some choice of a δ-optimal play. The result from [3] states the following.

THEOREM 5.1. Suppose that V is a C2(G) function and DV �= 0 on G. As-
sume there exist uniformly continuous bounded extensions, p and q of Du

|Du| and
1

|Du|2 (D
2uDu−�∞uDu), respectively, to R

m such that, for every x ∈ R
m, weak

uniqueness holds for the SDE

dXt = 2p(Xt) dWt + 2q(Xt) dt, X0 = x.

Fix x ∈ G and let X and τ denote such a solution and, respectively, the corre-
sponding exit time from G. Then, given any sequence {δn}n≥1, δn ↓ 0, there exists
a sequence of strategy-control pairs (βn,Y n) ∈M × 
, n≥ 1, with the following
properties:

(i) For every n, the pair (βn,Y n) forms a δn-optimal play for the lower game
with initial condition x.

(ii) Denoting Xn =X(x,Y n,βn) and τn = τ(x,Y n,βn), one has that (Xn(· ∧
τn), τn) converges in distribution to (X(· ∧ τ), τ ), as a sequence of random vari-
ables with values in C([0,∞) :G)× [0,∞].
An analogous result holds for the upper game.

A sufficient condition for the uniqueness to hold is that D2u is Lipschitz on G,
since then both p and q are Lipschitz, and thus admit bounded Lipschitz extensions
to R

m.
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