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A TROTTER-TYPE APPROACH TO INFINITE RATE MUTUALLY
CATALYTIC BRANCHING1

BY ACHIM KLENKE AND MARIO OELER

Johannes Gutenberg-Universität Mainz

Dawson and Perkins [Ann. Probab. 26 (1988) 1088–1138] constructed a
stochastic model of an interacting two-type population indexed by a count-
able site space which locally undergoes a mutually catalytic branching mech-
anism. In Klenke and Mytnik [Preprint (2008), arXiv:0901.0623], it is shown
that as the branching rate approaches infinity, the process converges to a
process that is called the infinite rate mutually catalytic branching process
(IMUB). It is most conveniently characterized as the solution of a certain
martingale problem. While in the latter reference, a noise equation approach
is used in order to construct a solution to this martingale problem, the aim of
this paper is to provide a Trotter-type construction.

The construction presented here will be used in a forthcoming paper,
Klenke and Mytnik [Preprint (2009)], to investigate the long-time behavior
of IMUB (coexistence versus segregation of types).

This paper is partly based on the Ph.D. thesis of the second author (2008),
where the Trotter approach was first introduced.

1. Introduction and main results.

1.1. Background and motivation. In [4], Dawson and Perkins studied a sto-
chastic model of mutually catalytic (continuous-state) branching. Two populations
live on a countable site space S and the amount of population of type i = 1,2
at time t at site k ∈ S is denoted by Yi,t (k) ∈ [0,∞). The populations migrate
according to a deterministic heatflow-like dynamics that is characterized by the
(symmetric) q-matrix A of a Markov chain on S. Locally, the populations undergo
critical continuous-state branching with a rate that is proportional to the size of the
other type at the same place. Formally, this model can be described by a system of
stochastic differential equations:

Yi,t (k) = Yi,0(k) +
∫ t

0

∑
l∈S

A(k, l)Yi,s(l) ds

(1.1)

+
∫ t

0
(γ Y1,s(k)Ys,2(k))1/2 dWi,s(k), t ≥ 0, k ∈ S, i = 1,2.
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Here, (Wi(k), k ∈ S, i = 1,2) is an independent family of one-dimensional Brown-
ian motions and Y0 is chosen from a suitable subspace of ([0,∞)2)S . The para-
meter γ ≥ 0 can be thought of as being the branching rate for this model. Dawson
and Perkins showed that there is a unique weak solution of (1.1) and studied the
long-time behavior of this model. They also constructed the analogous model in
the continuous setting on R instead of S.

For the model with S = Z and A the q-matrix of symmetric nearest neighbor
random walk, the model tends to a state with spatially segregated types. In an
approach to describing the cluster growth quantitatively, a space and time rescaling
argument suggests that it is useful to first study the limit as γ → ∞. Studying this
limit requires a formal description of the limit process X, construction of the limit
process and the establishing of convergence of Y as γ → ∞.

This program is carried out for a process where S is a singleton in [9] and for
a countable site space S in [10]. Furthermore, in [11], the long-time behavior is
studied which shows a dichotomy between coexistence and segregation of types,
depending on the potential properties of the matrix A.

In [10], the process X is characterized both via a martingale problem and as the
solution of a system of stochastic differential equations of jump type. While the
construction of X was performed via the construction of approximate solutions of
the stochastic differential equations, here, the aim is to present a different approach
via a Trotter approximation scheme.

The main idea is described via the following heuristics. Denote by at the ma-
trix of time t transition probabilities of the continuous-time Markov chain with
q-matrix A. Furthermore, let Qt(y, dy′) denote the transition kernel for equa-
tion (1.1) with A = 0. It is not hard to see that Qt converges, as t → ∞, to some
kernel Q. In fact, if A = 0, then all colonies evolve independently and each colony
is a time-transformed planar Brownian motion in (0,∞)2, stopped when it hits
the boundary. Hence, Q is the product of the harmonic measures of planar Brown-
ian motions in the upper-right quadrant. Now, let ε > 0, define Xε

0 = Y0 and in-
ductively let Xε

(k+1)ε be distributed, given Xε
kε , like Q(aεX

ε
kε, dy′). This amounts

to an interlaced dynamics where deterministic heatflow and random infinite rate
branching alternate. The main result of this paper is that the processes Xε in fact
converge, as ε → 0, to the infinite rate mutually catalytic branching process X

constructed in [10]. In Sections 1.2 and 1.3, we provide a formal description of
this X.

The idea of using a Trotter-type approach for the construction of the infinite rate
mutually catalytic branching process is taken from the Ph.D. thesis [13] and parts
of the strategy of proof are based on that thesis.

While the noise equation approach of [10] relies on a duality of the processes
in order to show convergence of a sequence of approximating processes, the
Trotter approach works without this duality. This greater flexibility is exploited
in [11] for the construction of a process XK with state space ([0,K]2 \ (0,K)2)S
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that approaches X and whose coordinate processes are driven by orthogonal L2-
martingales. For this process XK that is used in order to study the long-time be-
havior of X, we do not have a duality and, thus, the noise equation approach does
not seem to be feasible.

Furthermore, we hope that the Trotter-type approach could serve as a key tool
for the construction of infinite rate symbiotic branching processes. Symbiotic
branching processes with index � ∈ [−1,1] are solutions of (1.1), but with W1(k)

and W2(k) being correlated Brownian motions with correlation �. These were in-
troduced in [6]. Clearly, � = 0 is the branching case considered here, � = −1 is
the case of interacting Wright–Fisher diffusions and � = 1 is the parabolic An-
derson model. The voter model can be considered as the infinite rate interacting
Wright–Fisher diffusion model and can be obtained rather simply from this model
via the Trotter approach. The other cases of � are open. For symbiotic branching
processes, there is a moment dual, but it is of limited use in many cases. Hence,
the Trotter-type approach might also prove useful here to construct infinite rate
versions of these processes.

1.2. The infinite rate branching process. We start with a definition of the state
spaces of our processes. Define E := [0,∞)2 \ (0,∞)2. Let S be a countable set.
For u, v ∈ [0,∞)S , define

〈u, v〉 = ∑
k∈S

u(k)v(k) ∈ [0,∞].

Similarly, for x ∈ ([0,∞)2)S and ζ ∈ [0,∞)S , define

〈x, ζ 〉 = ∑
k∈S

x(k)ζ(k) ∈ [0,∞]2.

We can weaken the requirement that A be a q-matrix: let A = (A(k, l))k,l∈S be
a matrix indexed by the countable set S satisfying

A(k, l) ≥ 0 for k 	= l(1.2)

and

‖A‖ := sup
k∈S

∑
l∈S

|A(k, l)| + |A(l, k)| < ∞.(1.3)

By Lemma IX.1.6 of [12], there exists a β ∈ (0,∞)S and an M ≥ 1 such that∑
k∈S β(k) < ∞, and

∑
l∈S

β(l)
(|A(k, l)| + |A(l, k)|) ≤ Mβ(k) for all k ∈ S.(1.4)

We fix this β for the rest of the paper.
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Define the spaces

L
β = {u ∈ [0,∞)S : 〈u,β〉 < ∞},

L
β,2 = {x ∈ ([0,∞)2)S : 〈x,β〉 ∈ [0,∞)2},

L
f,2 = {y ∈ ([0,∞)2)S :y(k) 	= 0 for only finitely many k ∈ S},

as well as

L
β,E = L

β,2 ∩ ES and L
f,E = L

f,2 ∩ ES.

Finally, define the spaces

L
β∞ = {f ∈ [0,∞)S : 〈f,g〉 < ∞ for all g ∈ L

β}
(1.5)

=
{
f ∈ L

β : sup
k∈S

f (k)/β(k) < ∞
}

and

L
β,E∞ = {η = (η1, η2) ∈ ES :η1, η2 ∈ L

β∞}.
Let Af (k) = ∑

l∈S A(k, l)f (l) if the sum is well defined. Let An denote the
nth matrix power of A [note that this is well defined and finite by (1.3)] and define

at (k, l) := et A(k, l) :=
∞∑

n=0

tnAn(k, l)

n! .

Let S denote the (not necessarily Markov) semigroup generated by A, that is,

St f (k) = ∑
l∈S

at (k, l)f (l) for t ≥ 0.

We will also use the notation Af , St f and so on for [0,∞)2-valued functions f

with the obvious coordinate-wise meaning.
For u ∈ R

S , define

‖u‖β = ∑
k∈S

|u(k)|β(k).(1.6)

Note that for f ∈ L
β , the expressions Af and St f are well defined and that [recall

M from (1.4)]

‖Af ‖β ≤ M‖f ‖β and ‖St f ‖β ≤ eMt‖f ‖β.(1.7)

That is, the spaces L
β and L

β,2 are preserved under the dynamics of (St ).
Let D([0,∞);L

β,E) be the Skorohod space of càdlàg L
β,E-valued functions.

We will employ a martingale problem in order to characterize the infinite
rate mutually catalytic branching process X ∈ D([0,∞);L

β,E). In order to for-
mulate this martingale problem for X conveniently, for x = (x1, x2) ∈ R

2 and
y = (y1, y2) ∈ R

2, we introduce the lozenge product

x 
 y := −(x1 + x2)(y1 + y2) + i(x1 − x2)(y1 − y2)(1.8)
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(with i = √−1) and define

F(x, y) = exp(x 
 y).(1.9)

Note that x 
 y = y 
 x, hence F is symmetric. For x, y ∈ (R2)S , we write

〈〈x, y〉〉 = ∑
k∈S

x(k) 
 y(k)(1.10)

whenever the infinite sum is well defined and let

H(x,y) = exp(〈〈x, y〉〉).(1.11)

Note that the function H(x,y) is well defined if either x ∈ (R2)S and y ∈ L
f,E

or x ∈ L
β,E and y ∈ L

β,E∞ .
It is shown in [9], Corollary 2.4, that the vector space of finite linear combi-

nations
∑n

i=1 αiF (·, yi), n ∈ N, αi ∈ C, yi ∈ E, is dense in the space Cl(E;C) of
bounded continuous complex-valued functions on E with a limit at infinity. Hence,
the family H(·, y), y ∈ L

f,E , is measure-determining for probability measures on
L

β,E (but not on L
β,2).

In [10], the following theorem was established.

THEOREM 0. (a) For all x ∈ L
β,E , there exists a unique solution X ∈

D([0,∞);L
β,E) of the following martingale problem: for each y ∈ L

f,E , the
process Mx,y defined by

M
x,y
t := H(Xt, y) − H(x,y) −

∫ t

0
〈〈AXs, y〉〉H(Xs, y) ds(MP)

is a martingale with M
x,y
0 = 0.

(b) For any x ∈ L
β,E and y ∈ L

β,E∞ , the process Mx,y is well defined and is a
martingale.

(c) Denote by Px the distribution of X with X0 = x. Then (Px)x∈Lβ,E is a strong
Markov family.

Note that for the uniqueness, it is crucial that the single coordinates take values
in E. If we required only values in [0,∞)2, then the finite rate mutually catalytic
branching process Y is also a solution of the martingale problem for any γ ≥ 0. In
Proposition 1.1, we will see that our approximate process Xε is also a solution to
(MP) with the larger state space L

β,2.
In [11], Theorem 1.3, it was shown that the processes Y defined in (1.1) con-

verge to X as γ → ∞ in the Meyer–Zheng topology. Hence, the name infinite rate
mutually catalytic branching process for X is justified.
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1.3. The main result. We now define the approximating process Xε in detail.
In order to do so, we introduce the harmonic measure Q of planar Brownian mo-
tion B on (0,∞)2. That is, if B = (B1,B2) is a Brownian motion in R

2 started at
x ∈ [0,∞)2 and τ = inf{t > 0 :Bt /∈ (0,∞)2}, then we define

Qx = Px[Bτ ∈ ·].(1.12)

Now, for fixed ε > 0, consider the stochastic process Xε with values in L
β,2

with the following dynamics:

(i) Within each time interval [nε, (n + 1)ε), n ∈ N0, Xε is the solution of (1.1)
with γ = 0; that is, for k ∈ S,

dXε
i,t (k) = (AXε

i,t )(k) dt for t ∈ [
nε, (n + 1)ε

)
.

Clearly, the explicit solution is

Xε
i,t (k) = (St−nεX

ε
i,nε)(k) for t ∈ [

nε, (n + 1)ε
)
.

(ii) At time nε, Xε has a discontinuity. Independently, each coordinate
Xε

nε−(k) = SεX
ε
(n−1)ε(k) is replaced by a random element of E drawn accord-

ing to the distribution QXε
nε−(k).

If, for x ∈ ES , we denote by Q(x, ·) = ⊗
k∈S Qx(k) the Markov kernel of inde-

pendent displacements, then (Xε
nε)n∈N0 is a Markov chain on L

β,E with transition
kernel Qε(x, ·) := Q(Sεx, ·). Note that Xε is a càdlàg process with values in L

β,2

(but not in L
β,E!) and that, for any y ∈ L

f,E ,

H(Xε
t ) −

∫ t

nε
〈〈AXε

s , y〉〉H(Xε
s , y) ds, t ∈ [

nε, (n + 1)ε
)
,

is a martingale. Furthermore, as we will show in Lemma 2.2, we have
∫

H(x′, y)×
Q(x, dx′) = H(x,y) for all y ∈ L

f,E and x ∈ L
β,2. As an immediate consequence,

we get the following proposition.

PROPOSITION 1.1. For all x ∈ L
β,E and y ∈ L

f,E , and for Xε defined as
above with X0 = x, we have that

M
ε,x,y
t := H(Xε

t , y) − H(Xε
0, y)

(1.13)

−
∫ t

0
〈〈AXε

s , y〉〉H(Xε
s , y) ds, t ≥ 0, is a martingale.

We will show that Xε converges to a process that takes values in L
β,E while

preserving this martingale property.
The main theorem of this paper is the following.

THEOREM 1. For any x ∈ L
β,E , as ε → 0, the processes Xε converge in dis-

tribution in the Skorohod spaces D([0,∞);L
β,2) to the unique solution X of the

martingale problem (MP).
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With a small effort, this construction can be interpreted as a Trotter product
approach. Recall that (under suitable assumptions on the spaces and cores of the
operators involved), the Trotter product formula states the following (see, e.g., [7],
Corollary 6.7): if (St )t≥0, (Tt )t≥0 and (Ut )t≥0 are strongly continuous contraction
semigroups with generators A, B and C = A + B , respectively, then

lim
ε↓0

(TεSε)
�t/ε� = Ut pointwise.

In our setting, Tt = Q for all t > 0 and T0 = id, hence (Tt ) is by no means strongly
continuous. Nevertheless, Theorem 1 shows that the limit exists.

A nice by-product of this construction is the following statement concerning the
distribution of Xt for fixed t .

THEOREM 2. For all t ≥ 0, x ∈ L
β,E and y ∈ L

β∞, we have Ex[Q〈Xt ,y〉] =
Q〈St x,y〉. In particular, for all k ∈ S, we have

Px[Xt(k) ∈ ·] = QSt x(k).

As an application of Theorem 2, we consider the interface problem in dimension
d = 1. Assume that S = Z and that Af (k) = 1

2f (k + 1)+ 1
2f (k − 1)−f (k) is the

q-matrix of symmetric simple random walk on Z. Hence, at is the time t transition
kernel of continuous-time rate 1 symmetric simple random walk. Let u, v > 0 and
assume that x(k) = (u,0) for k < 0 and x(k) = (0, v) for k ≥ 0. Let X be the
infinite rate mutually catalytic branching process on Z with X0 = x. Define

bt,1 := sup{k ∈ Z :X1,t (k − 1) > 0}
and

bt,2 := inf{k ∈ Z :X2,t (k) > 0}.
We conjecture that bt,1 = bt,2 almost surely. In this case, the position bt := bt,1
could be considered as the interface between the type 1 population (left) and the
type 2 population (right). It is a challenging task to determine the dynamics of
(bt )t≥0. By work on the finite branching rate process of [2] and [3], we should
have that lim supt→∞ bt = ∞ and lim inft→∞ bt = −∞. That is, at any given site,
the type changes over and over again at arbitrarily late times.

Theorem 2 provides an indication as to what the distribution of bt is for fixed t .

COROLLARY 1.2. If bt,1 = bt,2 almost surely, then

P[bt ≤ k] = 1

2
+ 1

π
arctan

(
vt (k)2 − ut(k)2

2ut (k)vt (k)

)
,(1.14)

where

ut(k) := u

∞∑
l=k+1

at (0, l) and vt (k) := v

∞∑
l=−k

at (0, l).
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In particular, median(bt ) ∼ α
√

t as t → ∞, where α = �−1( u
u+v

) and � is the
distribution function of the standard normal distribution, and limt→∞ P[bt ≤ 0] =
1
2 + 1

π
arctan((v2 − u2)/2uv).

PROOF. By Theorem 2, we have P[bt ≤ k] = P[X2,t (k) > 0] = QSt x(k)({0} ×
(0,∞)). By an explicit calculation using the density of Q (see Lemma 2.1),
we get (1.14). The other two statements follow from the central limit theorem
for at . �

1.4. Outline. The rest of the paper is organized as follows. In Section 2, we
collect some basic facts about the harmonic measure Q and prove Proposition 1.1.
In Section 3, we derive a submartingale related to Xε and show that the two types
of Xε are nonpositively correlated. In Section 4, we show relative compactness of
the family (Xε, ε > 0). Finally, in Section 5, we complete the proofs of Theorems 1
and 2.

2. The harmonic measure Q.

2.1. Harmonic measure and duality. Recall that Qx is the harmonic measure
for planar Brownian motion in the upper-right quadrant started at x ∈ [0,∞)2 and
stopped upon leaving (0,∞)2. If x = (u, v) ∈ (0,∞)2, then the harmonic measure
Qx has a one-dimensional Lebesgue density on E that can be computed explicitly:

Q(u,v)(d(ū, v̄)) =

⎧⎪⎪⎨
⎪⎪⎩

4

π

uvū

4u2v2 + (ū2 + v2 − u2)2 dū, if v̄ = 0,

4

π

uvv̄

4u2v2 + (v̄2 + u2 − v2)2 dv̄, if ū = 0.

(2.1)

Furthermore, trivially, we have Qx = δx if x ∈ E. Clearly,

x �→ Qx is continuous.(2.2)

LEMMA 2.1. For all u, v > 0 and c ≥ 0, we have

Q(u,v)

({0} × [c,∞)
) = 1

2
+ 1

π
arctan

(
v2 − u2 − c2

2uv

)
.

PROOF. This follows from explicitly computing the integral
∫ ∞
c Q(u,v)(d(0,

v̄)) in (2.1). �

Recall F from (1.9). Explicitly computing the Laplacian with respect to the first
coordinate gives

(
∂2

(∂x1)2 + ∂2

(∂x2)2

)
F(x, y) = 8y1y2F(x, y).
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Hence, for y ∈ E, the function F(·, y) is harmonic for planar Brownian motion B

and hence (F (Bt , y))t≥0 is a bounded martingale. If τ denotes the first exit time
of B from (0,∞)2, then we infer for x ∈ [0,∞)2 and y ∈ E that∫

F(z, y)Qx(dz) = Ex[F(Bτ , y)] = Ex[F(B0, y)] = F(x, y)(2.3)

and, similarly (see [9], Corollary 2.3),∫
F(z, y)Qx(dz) =

∫
F(x, z)Qy(dz) for x, y ∈ [0,∞)2.(2.4)

Similarly, since linear functions are harmonic for Brownian motion and using
the fact that pth moments of (Bt )t≤τ are bounded for p < 2 (see Lemma 2.4), we
can derive ∫

ziQx(dz) = xi for all x ∈ [0,∞)2, i = 1,2.(2.5)

Note that (2.5) could also be computed explicitly using Lemma 2.3.
Recall that Q(x, ·) = ⊗

k∈S Qx(k) for x ∈ ([0,∞)2)S . From (2.3), we immedi-
ately get the following lemma.

LEMMA 2.2. For all x ∈ L
β,E and y ∈ L

f,E , we have∫
H(z, y)Q(x, dz) = H(x,y).(2.6)

PROOF. Proof of Proposition 1.1 Note that, due to the definition of Xε and the
chain rule of calculus, we have

M
ε,x,y
t − Mε,x,y

s = 0 for s, t ∈ [
nε, (n + 1)ε

)
, n ∈ N0.

Hence, the statement of Proposition 1.1 is an immediate consequence of
Lemma 2.2. �

2.2. Moments of the harmonic measure. Since the harmonic measure Q does
not possess a second moment, our proofs will rely on pth moment estimates for
p ∈ (1,2). Here, we collect some of these estimates. Define arctan† as the inverse
of the tangent function tan : [0, π] → R̄. That is,

arctan†(x) = arctan(x) + π1{x<0}.
Note that R \ {0} → [0, π], x �→ arctan†(1/x) can be extended continuously to
x = 0 with the convention that arctan†(1/0) = arctan†(−1/0) = π/2.

LEMMA 2.3. For all u, v > 0, we have
∫
E x2

1Q(u,v)(dx) = ∞ and for p ∈
(0,2),

∫
E

x
p
1 Q(u,v)(dx) = (u2 + v2)p/2 sin((p/2) arctan†((2uv/v2 − u2)))

sin((π/2)p)
.
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PROOF. This follows from explicitly computing the integral using (2.1). �

LEMMA 2.4. Let B = (B1,B2) be a planar Brownian motion started in B0 =
(u, v) ∈ [0,∞)2 and let

τ = inf{t > 0 :Bt /∈ (0,∞)2}.
Then, for any p ∈ (0,2), we have

E[τp/2] ≤ 8

(2 − p)(2π)p/2 (uv)p/2 < ∞.(2.7)

Furthermore, for any p ∈ (1,2), we have

E[τp/2] ≤ 4

(2π)p/2

p

(p − 1)(2 − p)
min(up−1v,uvp−1).(2.8)

PROOF. By the reflection principle and independence of B1 and B2, we get

P[τ > t] = 4N0,t (0, u)N0,t (0, v),

where N0,t (a, b) = (2πt)−1/2 ∫ b
a e−r2/2t dr is the centred normal distribution with

variance t . Hence, for any p ∈ (0,2),

E[τp/2] =
∫ ∞

0
P[τ > t2/p]dt

(2.9)
≤ 4

∫ ∞
0

(
1 ∧ u(2π)−1/2t−1/p)(

1 ∧ v(2π)−1/2t−1/p)
dt.

We can continue this inequality as

≤ 4

(2π)p/2 (uv)p/2 + 2uv

π

∫ ∞
(uv/2π)p/2

t−2/p dt = 8

(2 − p)(2π)p/2 (uv)p/2.

This gives (2.7). For p ∈ (1,2), we can continue (2.9) as

≤ 4u(2π)−1/2
∫ vp/(2π)p/2

0
t−1/p dt + 2uv

π

∫ ∞
vp/(2π)p/2

t−2/p dt

(2.10)

= 4

(2π)p/2

p

(p − 1)(2 − p)
uvp−1.

Interchanging the roles of u and v in (2.10) gives (2.8). �

LEMMA 2.5. For p ∈ (1,2), there exists a constant Cp < ∞ such that for
every x ∈ [0,∞)2 and i = 1,2, we have∫

E
y

p
i Qx(dy) ≥ x

p
i(2.11)

and ∫
E

|yi − xi |pQx(dy) ≤ Cp min(x
p−1
1 x2, x1x

p−1
2 ) ≤ Cp(x1x2)

p/2.(2.12)
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PROOF. By the Burkholder–Davis–Gundy inequality (see, e.g., [5], Theo-
rem VII.92) and Lemma 2.4, (Bi,t )t≤τ is a uniformly integrable martingale. Hence,
by Jensen’s inequality,

x
p
i = Ex[Bi,t ]p ≤ Ex[Bp

i,t ] =
∫
E

y
p
i Qx(dy).

The claim (2.12) could be checked either by a direct computation using
Lemma 2.3 or by proceeding as follows. Let B and τ be as in Lemma 2.4. Us-
ing the Burkholder–Davis–Gundy inequality and then Lemma 2.4, we get∫

E
|yi − xi |pQx(dy) = Ex[|Bi,τ − xi |p] ≤ (4p)pEx[τp/2]

≤ (4p)p+1

(p − 1)(2 − p)(2π)p/2 min(x
p−1
1 x2, x1x

p−1
2 ). �

3. The approximating process Xε .

3.1. Martingale property of Xε .

PROPOSITION 3.1. Let x ∈ L
β,E and k ∈ S. Define the process Nε,x for i =

1,2, k ∈ S and t ≥ 0 by

N
ε,x
i,t (k) := Xε

i,t (k) − Xε
i,0(k) −

∫ t

0
(AXε

i,s)(k) ds.

(i) For each i = 1,2 and k ∈ S, the process (N
ε,x
i,t (k))t≥0 is a martingale with

respect to the natural filtration. In particular,

Ex[Xε
i,t (k)] = (St xi)(k) for all t ≥ 0, k ∈ S, i = 1,2.(3.1)

(ii) Define λ := supk∈S(−A(k, k)) and note that |λ| < ∞ by assumption (1.3).
Define

Zε
i,t (k) := e−A(k,k)tXε

i,t (k)

and

Z̄ε
i,t := eλt‖Xε

i,t‖β.

Zε
i (k) and Z̄ε

i are then nonnegative submartingales.

PROOF. (i) This is an immediate consequence of the definition of Xε and (2.5).
(ii) Since A(k, l) ≥ 0 for all k 	= l, we have

d

dt
Zε

i,t (k) = ∑
l 	=k

A(k, l)Zε
i,t (l) ≥ 0 for t ∈ (

nε, (n + 1)ε
)
.

Together with (2.5), this shows that Zε
i is a submartingale. As a sum of submartin-

gales, Z̄ε
i is also a submartingale. �
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COROLLARY 3.2. For every K,T > 0 and any set G ⊂ S, we have

Px

[
sup

t∈[0,T ]
‖(Xε

1,t + Xε
2,t )1G‖β ≥ K

]
≤ K−1eλT

∥∥(
ST (x1 + x2)

)
1G

∥∥
β.(3.2)

In particular,

Px

[
sup

t∈[0,T ]
‖(Xε

1,t + Xε
2,t )‖β ≥ K

]
≤ K−1e(λ+M)T ‖x1 + x2‖β.(3.3)

PROOF. This is an immediate consequence of Proposition 3.1 and Doob’s in-
equality. �

3.2. One-dimensional distributions.

LEMMA 3.3. Let a(1), a(2), . . . be nonnegative numbers and let x(1), x(2),

. . . ∈ [0,∞)2 be such that

x̄ := 〈a, x〉 =
∞∑

k=1

a(k)x(k) ∈ [0,∞)2.

Let ξ(1), ξ(2), . . . be independent random variables with P[ξ(k) ∈ ·] = Qx(k).
Define ξ̄ := 〈a, ξ〉 = ∑∞

k=1 a(k)ξ(k) and assume that X is an E-valued ran-
dom variable such that P[X ∈ ·| ξ̄ ] = Qξ̄ . Then P[X ∈ ·] = Qx̄ . In other words,
E[Qξ̄ ] = Qx̄ .

PROOF. First, note that E[ξi(k)] = xi(k) and, hence, ξ̄ ∈ [0,∞)2 almost
surely. Recall F from (1.9). By (2.3), for all y ∈ E, we have

E[F(X,y)] = E[F(ξ̄ , y)] =
∞∏

k=1

E[F(ξ(k), a(k)y)] =
∞∏

k=1

F(x(k), a(k)y)

= F(x̄, y) =
∫
E

F(z, y)Qx̄(dz).

Since F(·, y), y ∈ E, is measure-determining (see [9], Corollary 2.4), this yields
the claim. �

COROLLARY 3.4. For any ε > 0, n ∈ N0 and k ∈ S, we have

P[Xε
nε(k) ∈ ·] = QSnεx(k).

PROOF. Fix n ∈ N. We show by induction on m that

P[Xε
nε(k) ∈ ·|Xε

mε] = Q(S(n−m)εX
ε
mε)(k) for all m = 0, . . . , n.
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For the induction base m = n, this is true by the definition of Xε . Now, assume
that we have shown the statement for some m ≥ 1. Using the induction hypothesis
in the first line and Lemma 3.3 in the second line, we get

P
[
Xε

nε(k) ∈ ·|Xε
(m−1)ε

] = E
[
Q(S(n−m)εX

ε
mε)(k)|Xε

(m−1)ε

]
= E

[
Q(S(n−m)εX

ε
mε−)(k)|Xε

(m−1)ε

]
= Q(S(n−(m−1))εX

ε
(m−1)ε)(k).

Note that we have used the fact that Xε
mε− = SεX

ε
(m−1)ε in the last line. �

COROLLARY 3.5. Let y ∈ L
β∞. Then Ex[Q〈Xε

t ,y〉] = Q〈St x(k),y〉.

PROOF. The proof is similar to the proof of Corollary 3.4. (Note that 〈Xε
t , y〉 ∈

[0,∞)2 almost surely since Xε
t ∈ L

β,2 almost surely.) �

3.3. Correlations.

LEMMA 3.6. Let Y and Z be nonpositively correlated nonnegative random
variables and assume that h : [0,∞) → [0,∞) is concave and monotone increas-
ing. Then E[Yh(Z)] ≤ E[Y ]h(E[Z]).

PROOF. If E[Z] = 0, then we even have equality. Now, assume that E[Z] > 0.
By concavity of h, there exists a b ∈ R such that for all z ≥ 0,

h(z) ≤ h(E[Z]) + (z − E[Z])b.

Since h is nondecreasing, we have b ≥ 0 and thus

E[Yh(Z)] ≤ E
[
Y

(
h(E[Z]) + (Z − E[Z])b)] ≤ E[Y ]h(E[Z]). �

LEMMA 3.7. For any ε > 0, n ∈ N0 and k ∈ S, the random variables Xε
1,nε(k)

and Xε
2,nε(k) are nonpositively correlated, in the sense that

Ex[Xε
1,nε(k)Xε

2,nε(k)] ≤ Ex[Xε
1,nε(k)]Ex[Xε

2,nε(k)]
(3.4)

= (Snεx1(k))(Snεx2(k)).

PROOF. Let t ≥ 0. Recall that F is the natural filtration of Xε . Then

Ex

[
StX

ε
1,nε(k)StX

ε
2,nε(k)|F(n−1)ε

]

= ∑
l1 	=l2

at (k, l1)at (k, l2)Ex

[
Xε

1,nε(l1)X
ε
2,nε(l2)|F(n−1)ε

]

= ∑
l1 	=l2

at (k, l1)at (k, l2)
(

SεX
ε
1,(n−1)ε

)
(l1)

(
SεX

ε
2,(n−1)ε

)
(l2)
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≤ ∑
l1,l2

at (k, l1)
(

SεX
ε
1,(n−1)ε

)
(l1)at (k, l2)

(
SεX

ε
2,(n−1)ε

)
(l2)

= St+εX
ε
1,(n−1)ε(k)St+εX

ε
2,(n−1)ε(k).

Inductively, we get

Ex[StX
ε
1,nε(k)StX

ε
2,nε(k)] ≤ St+nεx1(k)St+nεx2(k).

Applying this with t = 0 yields the claim. �

4. Tightness. The goal of this section is to show the following proposition.

PROPOSITION 4.1. The family of processes (Xε)ε>0 is relatively compact in
the Skorohod spaces of càdlàg functions D([0,∞);L

β,2).

By Prohorov’s theorem, in order to show relative compactness of (Xε), it is
enough to show tightness of (Xε).

The strategy of proof is to check the compact containment condition for Xε

(Lemma 4.4) and then use Aldous’s tightness criterion for functions h(Xε
t ), where

h : Lβ,2 → R is Lipschitz continuous and depends on only finitely many coordi-
nates.

We start by collecting some basic facts about compact sets and separating func-
tion spaces. The proofs of the following statements are standard and are therefore
omitted here.

LEMMA 4.2. A set C ⊂ L
β,2 is relatively compact if and only if the following

hold:

(i) BC := supx∈C ‖x1 + x2‖β < ∞;
(ii) for any η > 0, there exists a finite subset Sη ⊂ S such that supx∈C ‖(x1 +

x2)1S\Sη‖β < η.

LEMMA 4.3. Let Cb(L
β,2;R) be the space of real-valued bounded contin-

uous functions L
β,2 → R with the topology of uniform convergence on compact

sets. Denote by Lipf (Lβ,2;R) the space of Lipschitz continuous bounded functions

L
β,2 → R that depend on only finitely many coordinates. Then Lipf (Lβ,2;R) ⊂

Cb(L
β,2;R) is dense.

LEMMA 4.4 (Compact containment condition). Fix x ∈ L
β,2. For any η > 0

and T > 0, there exists a compact set � ⊂ L
β,2 such that

Px

[
Xε

t ∈ � for all t ∈ [0, T ]] ≥ 1 − η for all ε > 0.(4.1)
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PROOF. Let T > 0 and η > 0. Recall M from (1.4) and λ from Proposi-
tion 3.1(ii). Choose a K > 2

η
e(λ+M)T ‖x1 + x2‖β and let AK := {y ∈ L

β,2 :‖y1 +
y2‖β < K}. According to Corollary 3.2, we have

Px

[
Xε

t ∈ AK for all t ∈ [0, T ]] ≥ 1 − η

2
.

Now, for any n ∈ N, choose a finite Sn ⊂ S such that

neλT ‖ST (x1 + x2)1S\Sn‖β < 2−n−1η

and define

Bn := {y ∈ L
β,2 :‖(y1 + y2)1S\Sn‖β < 1/n}.

According to Corollary 3.2, we have

Px

[
Xε

t ∈ Bn for all t ∈ [0, T ]] ≥ 1 − 2−n−1η.

Now, let � by the closure of AK ∩ ⋂∞
n=1 Bn. Then

Px

[
Xε

t ∈ � for all t ∈ [0, T ]] ≥ 1 − η

and, by Lemma 4.2, � is compact. �

LEMMA 4.5. Fix h ∈ Lipf (Lβ,2;R). For ε > 0, define the process Y ε by

Y ε
t := h(Xε

t ), t ≥ 0.

(Y ε)ε>0 is then tight in the Skorohod space D([0,∞);R) of càdlàg functions
[0,∞) → R.

PROOF. The idea is to use Aldous’s criterion for tightness in D([0,∞);R).
As h is bounded, (Y ε

t )ε>0 is tight for each t ≥ 0. Hence, by Aldous’s criterion (see,
e.g., [1], equation (13), or [8], Section VI.4a), we need to show the following: for
any η > 0 and T > 0, there exist δ > 0 and ε0 > 0 such that, for any stopping time
τ ≤ T , we have

sup
δ′∈[0,δ]

sup
ε∈(0,ε0]

Px[|Y ε
τ+δ′ − Y ε

τ | > η] ≤ η.(4.2)

Since h is Lipschitz continuous and depends on only finitely many coordinates, it
is enough to consider the case where h(x) = xi(k) for some k ∈ S and i = 1,2.
Using Markov’s inequality, it is enough to show that for any η > 0 and T > 0,
there exist δ > 0 and ε0 > 0 such that for any stopping time τ ≤ T , we have

sup
δ′∈[0,δ]

sup
ε∈(0,ε0]

Ex[|Xε
i,τ+δ′(k) − Xε

i,τ (k)|] ≤ η.(4.3)

Define

N := �τ/ε� and N ′ := �(τ + δ′)/ε�.
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Then

Ex[|Xε
i,τ+δ′(k) − Xε

i,τ (k)|] ≤ E1 + E2 + E3 + E4,

where

E1 := Ex[|Xε
i,τ (k) − Xε

i,Nε(k)|],
E2 := Ex[|Xε

i,τ+δ′(k) − Xε
i,N ′ε(k)|],

E3 := Ex[|Xε
i,N ′ε(k) − Xε

i,Nε(k)|].
Now, by (1.7), we get

E1 = Ex[|Sτ−NεX
ε
i,Nε(k) − Xε

i,Nε(k)|]

≤ Ex

[∫ τ−Nε

0
|A SsXi,Nε(k)|ds

]

≤ MeδMδ

β(k)
Ex[‖Xε

i,Nε‖β] ≤ Me(T +2δ)M

β(k)
‖xi‖βδ.

Similarly, we get

E2 ≤ Me(T +2δ)M

β(k)
‖xi‖βδ.

Note that N ′ − N takes only the values �δ′/ε� and �δ′/ε�. Hence, E3 ≤ E′
3 + E′′

3 ,
where

E′
3 := Ex

[∣∣Xε
i,(N+�δ′/ε�)ε(k) − Xε

i,Nε(k)
∣∣]

and

E′′
3 := Ex

[∣∣Xε
i,(N+�δ′/ε�)ε(k) − Xε

i,Nε(k)
∣∣].

Define

Ē′′
3 := Ex

[∣∣Xε
i,(N+�δ′/ε�)ε(k) − S�δ′/ε�εXε

i,Nε(k)
∣∣].

Using the triangle inequality and proceeding as for E1, we get

E′′
3 ≤ Ē′′

3 + Ex

[∣∣Xε
i,Nε(k) − S�δ′/ε�εXε

i,Nε(k)
∣∣] ≤ Ē3 + Me(T +2δ)M

β(k)
‖xi‖βδ.

Fix a p ∈ (1,2). Using the Markov property of Xε and conditioning on Xε
Nε , by

Corollary 3.4 and Jensen’s inequality, we get

Ē′′
3 = Ex

[∫
E

|yi − Xε
i,Nε(k)|QS�δ′/ε�εXε

Nε(k)(dy)

]

≤
(

Ex

[∫
E

|yi − Xε
i,Nε(k)|pQS�δ′/ε�εXε

Nε(k)(dy)

])1/p

.
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Applying Lemma 2.5, there exists a constant C = Cp < ∞ such that

(Ē′′
3 )p ≤ CEx

[(
S�δ′/ε�εXε

1,Nε(k)
)p−1S�δ′/ε�εXε

2,Nε(k)1{Xε
2,Nε(k)=0}

]

+ CEx

[(
S�δ′/ε�εXε

2,Nε(k)
)p−1S�δ′/ε�εXε

1,Nε(k)1{Xε
1,Nε(k)=0}

]
.

By symmetry, it is enough to consider the first summand. Since the first and the
second type are nonpositively correlated (Lemma 3.7), by Lemma 3.6 [with h(z) =
zp−1], the first summand can be estimated by

Ex

[(
S�δ′/ε�εXε

1,Nε(k)
)p−1

MδeMδβ(k)−1‖Xε
N,ε,2‖β

]

≤ Ex

[(
S�δ′/ε�εXε

1,Nε(k)
)p−1]

MeMδδβ(k)−1Ex[‖Xε
N,ε,2‖β ]

≤ (
eM(T +δ+ε0)‖x1‖β

)p−1
Mδβ(k)−1eM(T +2δ)‖x2‖β.

The estimate for E′
3 is analogous. Summing up, by choosing δ sufficiently small

(independently of ε ≤ ε0), we can get Ej < η/3, j = 1,2,3 and hence (4.3). �

PROOF OF PROPOSITION 4.1. The space L
β,2 is Polish and hence so is the

Skorohod space D([0,∞);L
β,2) of càdlàg paths [0,∞) → L

β,2 (see [7], Chap-
ter III.5). Hence, by Prohorov’s theorem, it is enough to show tightness of (Xε)ε>0
in D([0,∞);L

β,2). By [7], Theorem III.9.1, it is enough to check two conditions:

(i) the compact containment condition—this is done in Lemma 4.4;
(ii) there is a dense (in the topology of uniform convergence on compacts)

space H ⊂ Cb(L
β,2;R) such that for every h ∈ H , the family h(Xε), ε > 0, is tight

in D([0,∞);R)—we have checked this for H = Lipf (Lβ,2;R) in Lemmas 4.3
and 4.5. �

5. The martingale problem. In this section, we complete the proofs of The-
orems 1 and 2.

5.1. Proof of Theorem 1. From Proposition 4.1 we know that Xε , ε > 0, is
weakly relatively compact. From Theorem 0, we know that the martingale problem
(MP) has a unique solution. Hence, it remains to show that any weak limit point
of Xε , ε > 0, is a solution of (MP).

Let x ∈ L
β,E . Fix a sequence εn ↓ 0 such that Xεn converges and denote the

limit by X. Without loss of generality, we may assume that the processes are de-
fined on one probability space such that Xεn

n→∞−→ X almost surely. Let y ∈ L
f,E

and define Mx,y as in (MP) and Mε,x,y as in (1.13). We know from Proposition 1.1
that Mεn,x,y is a martingale. Hence, it is enough to show that

M
εn,x,y
t

n→∞−→ M
x,y
t in L1 for all t ≥ 0.(5.1)

Note that the integrand in (1.13) converges pointwise to the integrand in (MP).
Since H is bounded, in order to show (5.1), it is enough to show that 〈〈AX

εn
s , y〉〉
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is uniformly integrable (with respect to Lebesgue measure on [0, t] and Px). Let
p ∈ (1,2). Since y(k) 	= 0 for only finitely many k ∈ S, it is enough to show that
for i = 1,2 and t > 0, we have

sup
ε>0

sup
s∈[0,t]

E[|AXε
i,s(k)|p] < ∞.(5.2)

Recall that |AXε
i,s(k)| ≤ M‖Xε

i,s‖β/β(k). Let Z be an E-valued random variable
such that P[Z ∈ ·|Xε] = Q‖Xε

s ‖β . Then E[Zp
i ] ≥ Ex[‖Xε

i,s‖p
β ], by Lemma 2.5.

However, by Corollary 3.5, we have Px[Z ∈ ·] = Q‖Ssx‖β . Hence, again by
Lemma 2.5 and using (1.7), we get

E[‖Xε
i,s‖p

β ] ≤ E[Zp
i ] ≤ 2p−1(E[|Zi − ‖Ssxi‖β |p] + ‖Ssxi‖p

β)

≤ Cp

(
(‖Ssx1‖β‖Ssx2‖β)p/2 + ‖Ssxi‖p

β

)

≤ CpepMs((‖x1‖β‖x2‖β)p/2 + ‖xi‖p
β

)
.

This shows (5.2) and completes the proof of Theorem 1.

5.2. Proof of Theorem 2. Theorem 2 is a direct consequence of Theorem 1,
Corollary 3.5 and (2.2).
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