
The Annals of Probability
2009, Vol. 37, No. 6, 2431–2458
DOI: 10.1214/09-AOP468
© Institute of Mathematical Statistics, 2009

THE PACKING MEASURE OF THE RANGE OF
SUPER-BROWNIAN MOTION

BY THOMAS DUQUESNE

Université Paris 4

We prove that the total range of Super-Brownian motion with quadratic
branching mechanism has an exact packing measure with respect to the gauge
function g(r) = r4(log log 1/r)−3 in super-critical dimensions d ≥ 5. More
precisely, we prove that the total occupation measure of Super-Brownian mo-
tion is equal to the g-packing measure restricted to its range, up to a deter-
ministic multiplicative constant that only depends on space dimension d.

1. Introduction. The purpose of this paper is to provide an exact packing
gauge function for the range of Super-Brownian motion with quadratic branch-
ing mechanism in super-critical dimensions d ≥ 5. Dawson, Iscoe and Perkins [6]
have proved that h(r) = r4 log log(1/r) is the exact Hausdorff gauge function for
the range of Super-Brownian motion in dimensions d ≥ 5; Le Gall [17] showed
that h(r) = r4 log(1/r) log log log(1/r) is the correct Hausdorff gauge function in
critical dimension d = 4; by use of Brownian Snake techniques, he proves that the
total occupation measure of Super-Brownian motion is equal to the h-Hausdorff
measure restricted to its range (up to an unknown deterministic multiplicative con-
stant). Similarly, we prove in this paper that in dimensions d ≥ 5, the total occu-
pation measure of Super-Brownian motion coincides with the g-packing measure
in R

d restricted to its range, where g(r) = r4(log log 1/r)−3. This result contrasts
with known results concerning the support of Super-Brownian motion at a fixed
time: Le Gall, Perkins and Taylor [19] prove that in dimensions d ≥ 3 there is no
exact packing function for the support of Super-Brownian motion and they also
provide an optimal test in dimensions d ≥ 3 (and a partial result in the critical
dimension d = 2).

Let us mention that the results of our paper apply to the Integrated Super-
Brownian Excursion measure (ISE) that is the scaling limit of various models in
statistical mechanics in high dimensions (see Slade [24] for a survey on this topic).

Let us briefly state our main results: denote by Mf (Rd) the set of finite mea-
sures defined on the Borel sets of R

d equipped with the topology of weak conver-
gence. For any μ ∈ Mf (Rd), we denote by suppμ its topological support that is
the smallest closed subset supporting μ. Super-Brownian motion with quadratic
branching mechanism is a time-homogeneous Mf (Rd)-valued Markov process
(Zt , t ≥ 0;Pμ,μ ∈ Mf (Rd)) whose transition kernels are characterized as fol-
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lows: for every μ ∈ Mf (Rd) and for any continuous non-negative function f , we
have

Eμ[exp(−〈Zt, f 〉)] = exp(−〈μ,ut 〉),
where the function (ut (x); t ≥ 0, x ∈ R

d) is the unique non-negative solution of
the integral equation

ut(x) + 2β

∫ t

0
Kt−s(u

2
s )(x) ds = Kt(f )(x), x ∈ R

d, t ∈ [0,∞).

Here β is a positive constant determining the branching rate and (Kt , t ≥ 0) stands
for the transition semi-group of the standard d-dimensional Brownian motion. We
refer to Dynkin [9], Le Gall [18] and Perkins [20] for a general introduction on
super-processes.

Let us fix μ ∈ Mf (Rd) and let us consider Z = (Zt , t ≥ 0) under Pμ. We as-
sume that Z is cadlag. We define the total range of Z by

R = ⋃
ε>0

⋃
a≥ε

suppZa,(1)

where for any subset B in R
d , B stands for its closure. We also introduce the total

occupation measure of Z by setting

M =
∫ ∞

0
Za da,(2)

whose support is in R. Next, for any r ∈ (0,1/e), we set

g(r) = r4

(log log 1/r)3 .(3)

We denote by Pg the g-packing measure on R
d , whose definition is recalled in

Section 2.1. The following theorem is the main result of the paper.

THEOREM 1.1. Let us assume that d ≥ 5. Let g be defined by (3). Fix μ ∈
Mf (Rd). Then, there exists a positive constant κd that only depends on space
dimension d such that Pμ-a.s. for any Borel set B we have

M(B) = βκd · Pg(B ∩ R).

We shall actually derive Theorem 1.1 from a similar result concerning the oc-
cupation measure of the Brownian Snake that is a process introduced by Le Gall
in [13] to facilitate the study of super-processes. More precisely, we consider the
Brownian Snake W = (Wt , t ∈ [0, σ ]) with initial value 0 under its excursion mea-
sure denoted by N0. Here, σ stands for the total duration of the excursion. We
informally recall that W is a continuous Markov process that takes its values in
the set of stopped R

d -valued paths; namely, under N0 and for any t ∈ [0, σ ], Wt is
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an application from a random time-interval [0,Ht ] to R
d such that Wt(0) = 0; the

process H = (Ht , t ∈ [0, σ ]) is called the lifetime process of W and it is distrib-
uted under N0 in accordance with Itô’s positive excursion measure; conditionally
given H , for any 0 ≤ t1 < t2 ≤ σ , the joint law of (Wt1,Wt2) is characterized as
follows:

• Wt1 is distributed as a d-dimensional Brownian path on [0,Ht1] with initial val-
ue 0;

• Wt1(s) = Wt2(s) for any s ≤ m(t1, t2) := inf{Ht ; t1 ≤ t ≤ t2};
• (Wt2(s + m(t1, t2)) − Wt2(m(t1, t2));0 ≤ s ≤ Ht2 − m(t1, t2)) is distributed as

a Brownian path on [0,Ht2 − m(t1, t2)] with initial value 0 that is independent
from Wt1 .

For any t ∈ [0, σ ], we set Ŵt = Wt(Ht); Ŵ = (Ŵt , t ∈ [0, σ ]) is called the
endpoint process of W . Note that the range of the endpoint process Ŵ is a compact
subset of R

d under N0; we denote it by

RW = {Ŵs, s ∈ [0, σ ]}.(4)

The occupation measure of Ŵ is the random measure MW given by

〈MW,f 〉 =
∫ σ

0
f (Ŵs) ds(5)

for any positive measurable function f on R
d . To simplify notation, we simply

write R = RW and M = MW when there is no ambiguity. We prove the following
results on R and M.

THEOREM 1.2. Assume d ≥ 5. There exists a constant κd ∈ (0,∞) that only
depends on space dimension d such that

N0-a.e. for M-almost all x, lim inf
r→0+

M(B(x, r))

g(r)
= κd.(6)

THEOREM 1.3. Assume d ≥ 5. N0-a.e. for any Borel set B we have

M(B) = κd · Pg(B ∩ R).

Theorem 1.3 can be used to get a similar result for the Integrated Super-
Brownian Excursion measure (ISE). Informally, ISE is a random probability mea-
sure M(1) that is distributed as M under the probability measure N0(·|σ = 1).
More precisely, we introduce the normalized Brownian Snake W(1) = (W

(1)
t ; t ∈

[0,1]) as the path-valued process constructed as the Brownian Snake except that its
lifetime process (H

(1)
t ; t ∈ [0,1]) is distributed as a positive Brownian excursion

conditioned to have total duration 1 (see, for instance, Bertoin [2], Chapter VIII-4
for a definition). Then, we set Ŵ

(1)
t = W

(1)
t (H

(1)
t ) and〈

M(1), f
〉 = ∫ 1

0
f

(
Ŵ

(1)
t

)
dt.
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We also set R(1) = {Ŵ (1)
t ; t ∈ [0,1]}. Then supp M(1) ⊂ R(1). We easily adapt the

proof given by Le Gall ([17], page 313) to derive from Theorem 1.3 the following
result for ISE: if d ≥ 5, then a.s. for any Borel set B in R

d we have

M(1)(B) = κd · Pg

(
B ∩ R(1)).(7)

(Since the arguments are the same as in [17], we omit the proof of (7).)
The paper is organized as follows. In Section 2.1 we recall the definition of

packing measures and useful properties, such as the now standard comparison re-
sults from Taylor and Tricot [25] (stated as Theorem 2.1) as well as a more specific
density result recalled from Edgar [10], that is stated as Lemma 2.2. In Section 2.2
we recall (mostly from Le Gall [13]) the definition of Brownian Snake and several
path-decompositions that are used in the proof section. In Section 2.3 we prove
several key estimates on the Brownian Snake and the Brownian Tree. Section 3 is
devoted to the proof of the results stated in the Introduction: we first prove Theo-
rem 1.2, then we prove Theorem 1.3 from which we derive Theorem 1.1.

2. Notation, definitions and preliminary results.

2.1. Packing measures. In this section we gather results concerning packing
measures. We first briefly recall the definition of packing measures on the Euclid-
ian space R

d . Let g be defined by (3). Let B be any subset of R
d and let ε ∈ (0,∞);

a closed ε-packing of B is a finite collection of pairwise disjoint closed ball
(B(xm, rm),1 ≤ m ≤ n) whose centers xm belong to B and whose radii rm are
not greater than ε; we set

P (ε)
g (B) = sup

{
n∑

m=1

g(rm); (
B(xm, rm),1 ≤ m ≤ n

)
ε-packing of B

}
(8)

and

P ∗
g (B) = lim

ε→0+ P (ε)
g (B) ∈ [0,∞],(9)

that is the g-packing pre-measure of B . The g-packing outer measure of B is then
given by

Pg(B) = inf
{∑

n≥0

P ∗
g (Bn);B ⊂ ⋃

n≥0

Bn

}
.

REMARK 2.1. The definition of P (ε)
g that we adopt here is slightly differ-

ent from the definition given by Taylor and Tricot [25] who take the infimum of∑n
m=1 g(2rm) over ε-packings with open balls. However, since g is a continuous

regularly varying function, the resulting packing pre-measure P ∗
g given by (9) is

1/16 times the g-packing pre-measure resulting from Taylor and Tricot’s definition
and the difference is irrelevant for our purpose.
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We next recall several properties of Pg from [25] (see Lemma 5.1 [25]): first,
Pg is a metric outer measure, all Borel sets are Pg-measurable and Pg is Borel-
regular; second, it is obvious from the definition that, for any subset B ⊂ R

d , we
have

Pg(B) ≤ P ∗
g (B);(10)

moreover, if B is a Pg-measurable such that 0 < Pg(B) < ∞, then for any ε > 0,
there exists a closed subset Fε ⊂ B such that

Pg(B) ≤ Pg(Fε) + ε.(11)

We also recall here Theorem 5.4 [25] that is a standard comparison result for pack-
ing measures.

THEOREM 2.1 (Theorem 5.4 [25]). Let μ be a finite Borel measure on R
d .

Let B be a Borel subset of R
d . There exists a constant C > 1 that only depends on

space dimension d , such that the following holds true:

(i) If lim infr→0
μ(B(x,r))

g(r)
≤ 1 for any x ∈ B , then Pg(B) ≥ C−1μ(B).

(ii) If lim infr→0
μ(B(x,r))

g(r)
≥ 1 for any x ∈ B , then Pg(B) ≤ Cμ(B).

We shall actually need the following more specific density result which is due
to Edgar (see Corollary 5.10 [10]).

LEMMA 2.2 (Corollary 5.10 [10]). Let μ be a finite Borel measure on R
d . Let

κ ∈ (0,∞) and let B be a Borel subset of R
d such that

∀x ∈ B, lim inf
r→0+

μ(B(x, r))

g(r)
= κ.

Then μ(B) = κ · Pg(B).

REMARK 2.2. Let us make a brief comment on this result: the main purpose
of Edgar’s paper [10] is to deal with fractal measures in metric spaces with respect
to possibly irregular gauge functions. Corollary 5.10 [10] (stated as Lemma 2.2)
holds true in this general setting if μ satisfies the Strong Vitali Property (see [10],
page 43 for a definition and a discussion of this topic). Since Besicovitch [3] has
proved that any finite measure on R

d enjoys the Strong Vitali Property, Lemma 2.2
is an immediate consequence of Edgar’s Corollary 5.10 [10].

2.2. The Brownian Snake. In this section we recall the definition of the Brown-
ian Snake and the Brownian Tree. We also recall useful properties that are needed
in the proof sections. We refer to Le Gall [13] or [18] for more details. Let us
first mention that although we often work on the canonical space for the Brown-
ian Snake, we shall sometimes need to introduce an auxiliary measurable space
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that we denote by (�, G) and that is assumed to be sufficiently large to carry a
d-dimensional Brownian motion denoted by (ξt , t ≥ 0;Py, y ∈ R

d), as well as the
other additional independent random variables we may need.

Brownian Snake. We denote by W the set of stopped R
d -valued paths.

A stopped path w in W is a continuous application w : [0, ζ ] → R
d and the non-

negative number ζ = ζw is called the lifetime of w. The endpoint of w is the
terminal value w(ζw) that is denoted by ŵ. We equip W with the metric δ given
by

δ(w1,w2) = sup
t≥0

‖w1(t ∧ ζw1) − w2(t ∧ ζw2)‖ + |ζw1 − ζw1 |.

Then (W, δ) is a separable metric space. Let us fix x ∈ R
d . We denote by Wx the

set of stopped paths w such that w(0) = x. We identify the trivial path w ∈ Wx

such that ζw = 0 with the point x in R
d .

The Brownian Snake with initial value x is the strong Wx-valued continuous
Markov process W = (Ws, s ≥ 0) that is characterized by the following properties:

• Snake(1): the lifetime process ζWs := Hs , s ∈ [0,∞) is a reflecting Brownian
motion.

• Snake(2): conditionally given the lifetime process (Hs, s ≥ 0), the snake W

is distributed as an inhomogeneous Markov process whose transitions are de-
scribed by the following properties: let us fix s1 < s2 and let us set m(s1, s2) :=
infu∈[s1,s2] Hu; then,
– (a) for any 0 ≤ t ≤ m(s1, s2), we have Ws1(t) = Ws2(t);
– (b) the process (Ws2(t +m(s1, s2))−Ws2(m(s1, s2));0 ≤ t ≤ Hs2 −m(s1, s2))

is a standard d-dimensional Brownian motion that is independent of Ws1 .

By convenience, we work on the canonical space of continuous applications
from [0,∞) to W that is denoted by C([0,∞), W ) and W stands for the canonical
process. We denote by Px the distribution of the Brownian Snake with initial value
x, and for any w ∈ W , we denote by Pw the distribution of the snake with initial
value w. We also denote by P

∗
w the law under Pw of (Ws∧σ , s ≥ 0) where σ =

inf{s > 0 :Hs = 0}.
Observe that the trivial path x is regular for the Brownian Snake. We denote by

Nx the excursion measure of W out of state x whose normalization is specified by

Nx

(
sup

t∈[0,σ ]
Ht > a

)
= 1

2a
, a ∈ (0,∞).(12)

We now recall from [13] the connection between the Brownian Snake and
Super-Brownian motion: recall notation RW and MW from (4) and (5); let
μ ∈ Mf (Rd) and let

Q(dx dW) = ∑
j∈J

δ(xj ,Wj )
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be a Poisson point process on R
d × C([0,∞), W ) with intensity μ(dx)Nx(dW).

Results due to Le Gall [13] entail that there exists a Super-Brownian motion Z =
(Zt , t ≥ 0) with branching parameter β = 1 and initial value Z0 = μ such that

R ∪ {xj , j ∈ J } = ⋃
j∈J

RWj and M = ∑
j∈J

MWj ,(13)

where R and M are deduced from Z by (1) and (2) (with an obvious notation for
the RWj ’s and the MWj ’s). This implies that for any x ∈ R

d and for any non-
negative Borel function f ,

Nx

(
1 − e−〈M,f 〉) = − log(Eδx [exp(−〈M, f 〉)]).

Recall that (ξt , t ≥ 0;Py, y ∈ R
d) stands for a d-dimensional Brownian motion

defined on the auxiliary measurable space (�, G). If we denote by uf (x) = Nx(1−
e−〈M,f 〉), standard results on the Super-Brownian motion entail

uf (x) + 2
∫ ∞

0
dt Ex[uf (ξt )

2] =
∫ ∞

0
dt Ex[f (ξt )](14)

(we refer to [18] for a proof). Then, an easy argument implies

Nx

(∫ σ

0
ds f (Ŵs)

)
= Nx(〈M, f 〉) =

∫ ∞
0

dt Ex[f (ξt )].(15)

Brownian Tree. The lifetime process H = (Hs,0 ≤ s ≤ σ) under Nx is distrib-
uted as the excursion of the reflecting Brownian motion in [0,∞). Namely, the
“law” of H under Nx is Itô’s positive excursion measure of the Brownian motion
whose normalization is given by (12); we denote Itô’s positive excursion measure
by N and we slightly abuse notation by denoting the canonical excursion process
under N by H .

The endpoint process of the Brownian Snake Ŵ = (Ŵs,0 ≤ s ≤ σ) can be
viewed as a specific coding of the spatial positions of a population combining a
branching phenomenon with spatial motion; the lifetime process H is then the
contour process of the genealogical tree of the population; this tree is actually dis-
tributed as the Brownian Tree, whose definition in [14] (or in [1], in a slightly
different context) is given as follows: for any s, t ∈ [0, σ ], we set

m(s, t) = inf
u∈[s∧t,s∨t]Hu and dH (s, t) = Ht + Hs − 2m(s, t).(16)

The quantity dH (s, t) represents the distance between the points corresponding to s

and t in the Brownian Tree. Therefore, two real numbers t, s ∈ [0, σ ] correspond to
the same point in the Brownian Tree iff dH (s, t) = 0, which is denoted by s ∼H t .
Observe that ∼H is an equivalence relation. The Brownian Tree is given by the
quotient set T = [0, σ ]/ ∼H ; dH induces a true (quotient) metric on T that we
keep denoting dH and (T , dH ) is a random compact metric space that is taken as
the definition of the Brownian Tree (more specifically, it is a R-tree; see [8] for
more details).
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The endpoint process Ŵ can be viewed as a Gaussian process indexed by the
Brownian Tree. More precisely, we recall that there exists a regular version of the
conditional distribution of W under Nx given the lifetime process H . This regular
version is a random probability measure on C([0,∞), W ) denoted by QH

x and we
have

Nx(dW) =
∫

N(dH)QH
x (dW).

In view of Property Snake(2), Ŵ = (Ŵs,0 ≤ s ≤ σ) under QH
x is distributed as a

Gaussian process whose covariance is characterized by the following:

QH
x (Ŵ0 = x) = 1, QH

x (‖Ŵt − Ŵs‖2) = dH (s, t), s, t ∈ [0, σ ].(17)

We refer to [8] for a more intrinsic point of view on spatial trees, namely, R-trees
embedded in R

d .
Markov property and path-decompositions of W . Markov property for W also

applies under Nx as follows: denote by (Ft , t ≥ 0) the canonical filtration on
C([0,∞), W). Let T be a (Ft , t ≥ 0)-stopping time. Then the law of (WT +s, s ≥
0) is P

∗
WT

. Namely, for any 
 ∈ FT + and for any non-negative measurable func-
tional F , we have

Nx

(
1{T <σ }∩
F(WT +s,0 ≤ s ≤ σ − T )

) = Nx

(
1{T <σ }∩
E

∗
WT

[F ]).(18)

We refer to Le Gall [16] for more details.
We shall use (18) in combination with the following Poissonnian decomposi-

tion: let us fix w ∈ Wx ; recall notation m(s, t) = inf{Hu; s ∧ t ≤ u ≤ s ∨ t}. To
avoid trivialities, we assume that ζw > 0. Observe that P

∗
w-almost surely, for any

s ∈ [0, σ ), Ws(t) = w(t) = W0(t) for any t ∈ [0,m(0, s)]. We keep using notation
Hs = ζWs for the lifetime process. Let us denote by (li, ri), i ∈ J , the excursion
intervals of the process (Hs − m(0, s), s ∈ [0, σ ]) above 0. For any i ∈ J , and for
any s ≥ 0, we set

Hi
s = H(li+s)∧ri − Hli and Wi

s (t) = W(li+s)∧ri (Hli + t), t ∈ [0,H i
s ].

Then, we recall from Le Gall [16] the following property: under P
∗
w , the point

measure

N (dt dW) = ∑
i∈J

δ(Hli
,Wi)(19)

is a Poisson point measure with intensity 2 · 1[0,ζw](t) dt Nw(t)(dW). This de-
composition combined with Markov property under Nx implies that, for any
(Ft , t ≥ 0)-stopping time T , any non-negative Borel measurable function f and
any non-negative measurable functional F , we have

Nx

(
1{T <σ }F(W·∧T ) exp

(
−

∫ σ

T
ds f (Ŵs)

))
(20)

= Nx

(
1{T <σ }F(W·∧T ) exp

(
−2

∫ HT

0
dt N

W
T

(t)

(
1 − e−〈M,f 〉)))

.
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We shall apply (20) at deterministic times and at hitting times such as the fol-
lowing ones: for any x ∈ R

d and for any r > 0, we denote by B(x, r) the open ball
with center x and radius r and we write B(x, r) for the corresponding closed ball.
For any w ∈ W , we set

τx,r (w) = inf{t ∈ [0, ζw] :w(t) ∈ B(x, r)},(21)

with the convention inf ∅ = ∞. Then, τx,r (Ŵ ) is a (Ft , t ≥ 0)-stopping-time and
observe that τx,r (Ŵ ) < ∞ iff R ∩ B(x, r) �= ∅.

We next set

ux,r (y) = Ny

(
R ∩ B(x, r) �= ∅

)
.(22)

We need to recall several important properties of ux,r whose proofs can be found
in Le Gall [18]: first of all, ux,r is twice continuously differentiable in R

d\B(x, r)

and it satisfies

�ux,r(y) = 4u2
x,r (y), y ∈ R

d\B(x, r).(23)

Next, ux,r(y) → ∞ when ‖y − x‖ goes to r ; since R is compact, we also have
ux,r (y) → 0 when ‖y‖ goes to ∞. Moreover, ux,r is the maximal non-negative
solution of (23).

Let us briefly discuss further (simple) properties of ux,r that are needed in the
proofs section: a symmetry argument first implies that

ux,r(y) = u0,r (y − x), y ∈ R
d\B(x, r).(24)

Next, observe that u0,r is radial. Namely, there exists a twice continuously differ-
entiable application vr : (r,∞) → (0,∞) such that u0,r (y) = vr(‖y‖); moreover,
by (23), vr is the unique solution of the following ordinary differential equation:

v′′
r (t) + d − 1

t
v′
r (t) = 4v2

r (t),

(25)
t ∈ (r,∞) with limt↓r vr(t) = ∞, limt↑∞ vr(t) = 0.

To simplify notation, we set u := u0,1 and v := v0,1. Namely,

v(‖y‖) = u(y) = u0,1(y) = Ny

(
R ∩ B(0,1) �= ∅

)
, y ∈ R

d\B(0,1).(26)

Ordinary differential equation (25) implies vr(t) = r−2v(r−1t). Therefore, we get

ux,r (y) = r−2u
(
r−1(y − x)

)
, y ∈ R

d\B(x, r).(27)

Finally, the maximum principle easily entails that v(t) ≤ v(2)2d−2t2−d , for any
t ≥ 2. Thus, by (27), we get

ux,r(y) ≤ v(2)2d−2rd−4‖y − x‖2−d, y ∈ R
d\B(x,2r).(28)

This upper bound shall be often used in the proofs.
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We next describe the distribution of the snake when it hits for the first time a
closed ball. Recall notation (�, G) and (ξt , t ≥ 0;Py, y ∈ R

d). Let us fix x, y ∈ R
d

and R > r > 0 such that ‖y − x‖ > R. To simplify notation, we set

τx,r (Ŵ ) = τ.

A result due to Le Gall [15] (see also [7], Chapter 4) asserts that Wτ under the
probability measure Ny(·|R ∩ B(x, r) �= ∅) is distributed as the solution of the
stochastic equation

dXt = dξt + ∇ux,r

ux,r

(Xt ) dt, X0 = y,

where we recall that ξ stands for a d-dimensional Brownian motion. By applying
Girsanov’s theorem, we can prove that for any non-negative measurable functional
F on W , we have

Ny

(
1{R∩B(x,r)�=∅}F

(
Wτ(t);0 ≤ t ≤ τx,R(Wτ )

))
(29)

= Ey

[
ux,r

(
ξτx,R(ξ)

)
F

(
ξt ;0 ≤ t ≤ τx,R(ξ)

)
e−2

∫ τx,R(ξ)

0 ux,r (ξs)
]
.

We refer to [7], Chapter 4, pages 131–132, for a proof of this specific result which
is only used in Lemma 2.5.

Palm decomposition of the Brownian Snake occupation measure. The proof of
Theorem 1.2 heavily relies on the following Palm decomposition of M whose
proof can be found in Le Gall [16]: recall that (ξt , t ≥ 0;Py, y ∈ R

d) stands for a d-
dimensional Brownian motion defined on the auxiliary measurable space (�, G).
To simplify notation, we assume that it is possible to define on (�, G) a point
measure on [0,∞) × C([0,∞), W ) denoted by

N ∗(dt dW) = ∑
j∈J ∗

δ(tj ,Wj )(30)

whose distribution, conditionally given ξ under P0, is the distribution of a Poisson
point measure with intensity 4dt Nξ(t)(dW). For any j ∈ J ∗, we denote by Mj

the occupation measure of the endpoint process Ŵ j and for any a ∈ (0,∞), we
set

M∗
a = ∑

j∈J ∗
1[0,a](tj )Mj .(31)

Then, for any x ∈ R
d and for any non-negative measure functional F, we have

Nx

(∫
M(dy)F

(
M(B(y, r)); r ≥ 0

))
(32)

=
∫ ∞

0
da E0

[
F

(
M∗

a(B(0, r)); r ≥ 0
)]

.
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2.3. Estimates. In this section we prove key estimates used in the proof sec-
tions. We first state a result concerning the Brownian Tree: recall that N stands for
Itô’s excursion measure of Brownian motion and recall that H = (Ht ,0 ≤ t ≤ σ)

denote the generic excursion. We assume that the normalization of N is given
by (12). Recall notation dH from (16). We denote the Lebesgue measure on the
real line by 
. For any r ∈ (0,1/e), we set

k(r) = r2

log log 1/r
.(33)

We first prove the following lemma.

LEMMA 2.3. N -almost everywhere, for 
-almost all t ∈ [0, σ ], we have

lim inf
r→0+

1

k(r)

∫ σ

0
1{dH (s,t)≤r} ds ≥ 1

4
.(34)

PROOF. For any t ∈ [0, σ ] and any r > 0, we set

a(t, r) =
∫ σ

0
1{dH (s,t)≤r} ds.

We prove (34) thanks to Bismut’s decomposition of Brownian excursion: suppose
that (Bt , t ≥ 0) and (B ′

t , t ≥ 0) are two R-valued processes defined on (�, G) and
assume that � is a probability measure under which B and B ′ are distributed as
two independent linear Brownian motions with initial value 0; for any a > 0, we
set

Ta = inf{t ≥ 0 :Bt = −a}, T ′
a = inf{t ≥ 0 :B ′

t = −a}.
Then for any non-negative measurable functional F on C([0,∞),R)2, we have

N

(∫ σ

0
F

(
H(t−·)+;H(t+·)∧σ

)) =
∫ ∞

0
da �[F(a + B·∧Ta ;a + B ′·∧T ′

a
)].(35)

This identity is known as Bismut’s decomposition of the Brownian excursion (see
[4] or see Lemma 1 [12] for a simple proof). For any r, a > 0, we also set

b(r, a) =
∫ Ta

0
1{Bt−2It≤r} dt and b′(a, r) =

∫ T ′
a

0
1{B ′

t−2I ′
t ≤r} dt,

where It and I ′
t stand respectively for infs∈[0,t] Bs and infs∈[0,t] B ′

s . Then, (35)
implies that for any functional F on C([0,∞),R),

N

(∫ σ

0
dt F

(
a(t, r); r > 0

)) =
∫ ∞

0
da �

[
F

(
b(r, a) + b′(r, a); r > 0

)]
.(36)

Now observe that if r < a, then b(r, a) and b′(r, a) do not depend on a. So we
simply denote them by b(r) and b′(r). Therefore, we only need to prove that

�-a.s. lim inf
r→0

b(r) + b′(r)
k(r)

≥ 1

4
.(37)



2442 T. DUQUESNE

By a famous result due to Pitman, the process (Bt − 2It , t ≥ 0) is distributed un-
der � as the three-dimensional Bessel process. Therefore, if a > r , then b(r) is
distributed as the three-dimensional Brownian occupation measure of the ball with
center 0 and radius r . A result due to Ciesielski and Taylor [5] asserts that b(r) is
distributed as the first exit time of B from the interval [−r, r]:

θr = inf{t ≥ 0 : |Bt | = r}
(see also [22], Chapter XI). A standard martingale argument allows to explicitly
compute the Laplace transform of θr : for any λ > 0, we have

�[exp(−λθr)] = (
cosh

(
r
√

2λ
))−1

.(38)

Thus, we get

�
[
e−λ(b(r)+b′(r))] = (

cosh
(
r
√

2λ
))−2 ≤ 4e−r

√
8λ.

Therefore, for any λ > 0, Markov inequality entails

�[b(r) + b′(r) ≤ k(r)] ≤ 4 exp(ϕ(λ)),

where we have set ϕ(λ) = λ(log log 1/r)−1 −√
8λ; ϕ reaches its minimal value at

λ0 = 2(log log 1/r)2 and ϕ(λ0) = −2 log log 1/r . Consequently,∑
n≥0

�[b(2−n) + b′(2−n) ≤ k(2−n)] < ∞,

which easily entails (37) and which completes the proof of the lemma. �

We next provide an estimate on the tail distribution at 0+ of M(B(0, r)) under
N0 (Lemma 2.5). To that end, we state the following preparatory lemma that is
only used in the proof of Lemma 2.5.

LEMMA 2.4. There exists a constant C1 ∈ (0,∞) that only depends on space
dimension d , such that for any r > 0, and for any λ > 1, the following inequality
holds true:

N0
(
1 − e−r−4λM(B(0,r))) ≥ C1r

−2
√

λ.

PROOF. To simplify notation, we set q(λ, r) = N0(1 − e−λM(B(0,r))). First
observe that (20), combined with elementary arguments, implies

q(λ, r) = N0
(
1 − e

−λ
∫ σ

0 ds 1{‖Ŵs‖≤r})
= λ

∫ ∞
0

dt N0
(
1{t≤σ ;‖Ŵt‖≤r}e

−λ
∫ σ
t ds 1{‖Ŵs‖≤r})

= λ

∫ ∞
0

dt N0
(
1{t≤σ ;‖Ŵt‖≤r}e− ∫ Ht

0 ds NWt (s)(1−e−λM(B(0,r)))).
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Now recall that M(B(0, r)) ≤ 〈M,1〉 = σ . Thus, for any y ∈ R
d , we have

Ny

(
1 − e−λM(B(0,r))) ≤ N(1 − e−λσ ).

Then, a standard argument in fluctuation theory asserts that N(1− e−λσ ) = √
λ/2.

Thus, the latter inequality, combined with (15), implies

q(λ, r) ≥ λ

∫ ∞
0

dt N0
(
1{t≤σ ;‖Ŵt‖≤r} exp

(−Ht

√
λ/2

))
≥ λ

∫ ∞
0

dt P0(‖ξt‖ ≤ r)e−t
√

λ/2

≥ √
2λ

∫ ∞
0

dt P0(‖ξt‖ ≤ 2−1/4λ1/4r)e−t .

By replacing λ by r−4λ in the previous inequality, the desired result holds true
with C1 = √

2
∫ ∞

0 dt e−tP0(‖ξt‖ ≤ 2−1/4). �

Recall notation g from (3) and notation v from (26). From Lemma 2.4, we
derive the following estimate that is used in the proof of Theorem 1.3.

LEMMA 2.5. There exist C2,C3, κ0, r0 ∈ (0,∞) that only depend on space
dimension d , and such that for any r ∈ (0, r0), for any κ ∈ (0, κ0), and for any
x ∈ R

d\B(0,2r), the following inequality holds true:

N0
(

R ∩ B(x, r) �= ∅; M(B(x,2r)) ≤ κg(r)
)

≤ C2r
d−4‖x‖2−d(log 1/r)−(κ/C3)

−1/3
.

PROOF. Recall notation τx,r from (21). To simplify notation, we set τ =
τx,r (Ŵ ). First note that on the event R ∩ B(x, r) �= ∅, we have∫ σ

τ
1{‖Ŵs−x‖<2r} ds ≤ M(B(x,2r)).

Let us fix λ > 0. The previous inequality, combined with (20), implies

N0
(
1{R∩B(x,r)�=∅}e

−λM(B(x,2r)))
(39)

≤ N0

(
1{R∩B(x,r)�=∅} exp

(
−2

∫ Hτ

0
dt N

Wτ (t)

(
1 − e−λM(B(x,2r)))))

.

We want to modify the second member in (39) in order to get an upper bound
thanks to (29). To that end, we introduce two times T1 and T2 that are defined as
follows: for any w ∈ W0, we set T1(w) = τx,(3/2)r (w). If T1(w) = ∞, then we set
T2(w) = ∞; if T1(w) < ∞, then we set

T2(w) = inf
{
s ∈ [0, ζw − T1(w)] :

∥∥w(
s + T1(w)

) − w(T1(w))
∥∥ > r/4

}
,(40)
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with the usual convention inf ∅ = ∞. To simplify notation, we also set

T3(w) = τx,(5/4)r (w).

Observe that T1(w)+T2(w) ≤ T3(w). Since x ∈ R
d\B(0,2r), N0-a.e. on the event

{R ∩B(x, r) �= ∅}, we have T1(Wτ )+T2(Wτ ) ≤ T3(Wτ ) < τ < ∞. Moreover, for
any t ∈ [T1(Wτ ), T1(Wτ ) + T2(Wτ )], the following inequality holds true:

N
Wτ (t)

(
1 − e−λM(B(x,2r))) ≥ N

Wτ (t)

(
1 − e−λM(B(Wτ (t),r/4)))

= N0
(
1 − e−λM(B(0,r/4))).

Inequality (39) and Lemma 2.4 then entail for any λ > 1,

N0
(
1{R∩B(x,r)�=∅}e

−r−4λM(B(x,2r)))
(41)

≤ N0
(
1{R∩B(x,r)�=∅}e

−2C1r
−2

√
λT2(Wτ )).

Then, we set μ = 2C1r
−2

√
λ and a = N0(1{R∩B(x,r)�=∅}e−μT2(Wτ )). We apply (29)

with y = 0, R = 5r/4 and F(w) = exp(−μT2(w)), and we get the following:

a = E0
[
1{T3(ξ)<∞}ux,r

(
ξT3(ξ)

)
e−μT2(ξ)−2

∫ T3(ξ)

0 ux,r (ξs) ds]
≤ E0

[
1{T1(ξ)<∞}ux,r

(
ξT1(ξ)

)
e−2

∫ T1(ξ)

0 ux,r (ξs) ds

· 1{T3(ξ)<∞}
ux,r (ξT3(ξ))

ux,r (ξT1(ξ))
e−μT2(ξ)

]
.

Recall notation v from (26). Now observe that (24) and (27) imply

P0-a.s. on {T3(ξ) < ∞}, ux,r (ξT3(ξ))

ux,r (ξT1(ξ))
= v0,r (5r/4)

v0,r (3r/2)
= v(5/4)

v(3/2)
:= C4.

Note that C4 only depends on space dimension d . Then, we get

a ≤ C4E0
[
1{T1(ξ)<∞}ux,r

(
ξT1(ξ)

)
e−2

∫ T1(ξ)

0 ux,r (ξs) ds · e−μT2(ξ)].(42)

We next apply the Markov property at T1(ξ) in the right member of the previous
inequality: the very definition (40) of T2(ξ), combined with an elementary argu-
ment, entails the following:

E0
[
1{T1(ξ)<∞}ux,r

(
ξT1(ξ)

)
e−2

∫ T1(ξ)

0 ux,r (ξs) ds · e−μT2(ξ)]
= E0

[
1{T1(ξ)<∞}ux,r

(
ξT1(ξ)

)
e−2

∫ T1(ξ)

0 ux,r (ξs) ds]E0
[
e−μχr(ξ)],

where we have set χr(ξ) := inf{t ≥ 0 :‖ξt‖ ≥ r/4}. If we now apply (29) with
y = 0, R = 3r/2 and F = 1, then we get

E0
[
1{T1(ξ)<∞}ux,r

(
ξT1(ξ)

)
e−2

∫ T1(ξ)

0 ux,r (ξs) ds] = N0
(

R ∩ B(x, r) �= ∅
) = ux,r(0).
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Then (28) and (42) imply that for any λ > 1, any r > 0, and any x ∈ R
d\B(0,2r),

we have

a ≤ C5r
d−4‖x‖2−dE0

[
e−μχr(ξ)],(43)

with C5 := C4v(2)2d−2, that only depends on space dimension d .
We now provide an upper bound for E0[e−μχr(ξ)]: for any j ∈ {1, . . . , d}, we

denote by ξ (j) = (ξ
(j)
t , t ≥ 0) the j th component of ξ in the canonical basis of R

d .
Then, observe that P0-a.s.

χr(ξ) ≥ min
1≤j≤d

inf
{
t ≥ 0 :

√
d
∣∣ξ (j)

t

∣∣ > r/4
}
.

An easy argument based on (38) implies

E0
[
e−μχr(ξ)] ≤ 2d · e−(r/

√
8d)

√
μ.

We now set C2 = 2dC5 and C6 = √
C1/4d . Then (41) and (43) imply that for any

λ > 1, any r > 0 and any x ∈ R
d\B(0,2r),

N0
(
1{R∩B(x,r)�=∅}e

−r−4λM(B(x,2r))) ≤ C2r
d−4‖x‖2−d · e−C6λ

1/4
.(44)

To simplify notation, we set φ(r) = log log 1/r . Thus, g(r) = r4φ(r)−3. We also
set

b(x, r, κ) = N0
(

R ∩ B(x, r) �= ∅; M(B(x,2r)) ≤ κg(r)
)
.

The Markov inequality and (44) imply that the following inequalities hold true for
any λ > 1, any r > 0 and any x ∈ R

d\B(0,2r):

b(x, r, κ) = N0
(

R ∩ B(x, r) �= ∅; r−4λM(B(x,2r)) ≤ κλφ(r)−3)
≤ eκλφ(r)−3

N0
(
1{R∩B(x,r)�=∅}e

−r−4λM(B(x,2r)))(45)

≤ C2r
d−4‖x‖2−d · eψ(λ),

where ψ(λ) = κλφ(r)−3 −C6λ
1/4; ψ reaches its minimal value on [0,∞) at λ0 =

(C6/4κ)4/3φ(r)4 and ψ(λ0) = −(κ/C3)
−1/3φ(r), where C3 = 3−3(4/C6)

4. If we
take r0 = e−e and κ0 = C6/4, then for any r < r0 and any κ < κ0, we have λ0 > 1
and (45) applies with λ = λ0, which completes the proof of the lemma. �

We shall need the following bound in the proof of Theorem 1.2. Recall nota-
tion u0,r and recall that ξ under P0 is a standard d-dimensional Brownian motion
starting at 0.

LEMMA 2.6. Assume that d ≥ 5. Let b and r be positive real numbers such
that b ≥ 2r . There exists C7 ∈ (0,∞) that only depends on space dimension d such
that the following inequality holds true:

E0

[∫ ∞
0

1{‖ξt‖≥b}u0,r (ξt ) dt

]
≤ C7

(
r

b

)d−4
.
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PROOF. By (28), by the scaling property of Brownian motion and thanks to a
spherical change of variable, we get the following inequalities:

E0

[∫ ∞
0

1{‖ξt‖≥b}u0,r (ξt ) dt

]
≤ v(2)2d−2rd−4

∫ ∞
0

E0
[
1{‖ξt‖≥b}‖ξt‖2−d]

dt

(46)
≤ C8r

d−4
∫ ∞
b

dρ ρ

∫ ∞
0

dt t−d/2e−ρ2/(2t),

where C8 ∈ (0,∞) only depends on space dimension d . We next use the change of
variable s := ρ2/(2t): then, there exists C9 ∈ (0,∞) that only depends on d such
that ∫ ∞

b
dρ ρ

∫ ∞
0

dt t−d/2e−ρ2/(2t) = C9

∫ ∞
b

dρ ρ3−d
∫ ∞

0
ds sd/2−2e−s

= C9�(d/2 − 1)

d − 4
b4−d .

This inequality, combined with (46), entails the desired results with C7 =
C8C9�(d/2−1)

d−4 . �

3. Proof of the results.

3.1. Proof of Theorem 1.2. Recall notation N ∗(dt dW) from (30). N ∗(dt dW)

defines a collection of random points {(tj ,Wj ); j ∈ J ∗} in [0,∞) × W . Recall
that MWj is the total occupation measure of Ŵ j and that RWj is the range of Ŵ j :

RWj = {Ŵ j
t ; t ∈ [0, σj ]} and 〈MWj , f 〉 =

∫ σj

0
f (Ŵ

j
t ) dt,(47)

where σj stands for the total duration of Ŵ j . Recall the definition of M∗
a from

(31). To simplify notation, we have assumed that these random variables are de-
fined on an auxiliary probability space (�, G,P0) and we also recall that under P0,
ξ = (ξt , t ≥ 0) is distributed as a d-dimensional Brownian motion starting at the
origin. We first prove the following lemma.

LEMMA 3.1. There exists κd ∈ [0,∞] that only relies on space dimension d

such that for any a > 0,

P0-a.s. lim inf
r→0+

M∗
a(B(0, r))

g(r)
= κd.

PROOF. We first need to set some notation. For any j ∈ {1, . . . , d}, ξ (j) stands
for the j th component process in the canonical basis of R

d ; thus, under P0, the
ξ (j)’s are d independent linear Brownian motions. For any R ∈ [0,∞), we set

γ (R) = sup
{
t ≥ 0 :

√(
ξ

(1)

t

)2 + (
ξ

(2)

t

)2 + (
ξ

(3)

t

)2 ≤ R
}
.(48)
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The process γ = (γ (R),R ≥ 0) is distributed as the three-dimensional Brownian
escape process. Then, by a result due to Pitman [21], γ is a subordinator whose
Laplace exponent is

√
2λ. Moreover, it enjoys the following independence prop-

erty: for any R1 < R2, under the probability measure P0,

γ (R1), γ (R2) − γ (R1) and
(
ξγ (R2)+t , t ≥ 0

)
are independent.(49)

Let us fix s > 0 and r ∈ (0,1). We define the following event:

A(s, r) = ⋂
j∈J ∗
tj>s

{RWj ∩ B(0, r) = ∅}.

We first claim that

∀s ∈ (0,∞), lim
r→0

P0(A(s, r)) = 1.(50)

Indeed, recall notation u0,r from (22); the definition of N ∗ easily entails the fol-
lowing:

P0(A(s, r)) ≥ P0
(
A(s, r) ∩ {

s > γ
(√

r
)})

≥ E0
[
1{s>γ (

√
r)}e−4

∫ ∞
s u0,r (ξt ) dt ](51)

≥ E0
[
1{s>γ (

√
r)}e

−4
∫ ∞
γ (

√
r)

u0,r (ξt ) dt ]
.

Next, we use (49) to get

E0
[
1{s>γ (

√
r)}e

−4
∫ ∞
γ (

√
r)

u0,r (ξt ) dt ] = P0
(
s > γ

(√
r
))

E0
[
e
−4

∫ ∞
γ (

√
r)

u0,r (ξt ) dt ]
.

Then, the Jensen inequality, combined with Lemma 2.6 with b = r1/2, entails the
following inequalities for any r ∈ (0,1/4):

E0
[
e
−4

∫ ∞
γ (

√
r)

u0,r (ξt ) dt ] ≥ E0
[
e
−4

∫ ∞
0 1{‖ξt ‖≥√

r}u0,r (ξt ) dt ]
≥ exp

(
−4E0

[∫ ∞
0

1{‖ξt‖≥√
r}u0,r (ξt ) dt

])
≥ exp

(−4C7r
(d−4)/2)

.

Therefore, (51) implies

P0(A(s, r)) ≥ P0
(
s > γ

(√
r
)) · exp

(−4C7r
(d−4)/2)

,

which easily entails claim (50).
Next, observe that A(s, r) ⊂ A(s, r ′) if r ′ < r . Therefore, (50) and the Borel–

Cantelli lemma imply that, for any fixed s ∈ (0,∞), P0-a.s. the event A(s, r) is
realized for all sufficiently small r . By definition of A(s, r), it entails that, for any
a > s > 0,

P0-a.s. lim inf
r→0

M∗
a(B(0, r))

g(r)
= lim inf

r→0

M∗
s (B(0, r))

g(r)
.(52)
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Let us introduce the filtration (Gs, s ≥ 0), where Gs is the sigma field generated
by 1[0,s](t)N ∗(dt dW) and completed with the P0-negligible sets. Standard ar-
guments on Poisson point measures combined with Blumenthal zero–one law for
ξ entail that the sigma field G0+ = ⋂

s>0 Gs is trivial. This combined with (52)
show there exists κd ∈ [0,∞] (that only relies on space dimension) such that,
for any a > 0, P0-a.s. κp = lim infr→0 g(r)−1M∗

a(B(0, r)), which is the desired
result. �

By (32), the previous lemma entails that

N0-a.e. for M-almost all x, lim inf
r→0+

M(B(x, r))

g(r)
= κd ∈ [0,∞].(53)

Then to complete the proof of Theorem 1.2, we only need to prove that 0 <

κd < ∞, which is done in two steps.

LEMMA 3.2. For any d ≥ 5, κd ≤ 27/2.

PROOF. By Lemma 3.1, we only need to prove that, for any a > 0,

P0

(
lim inf
r→0+ g(r)−1M∗

a(B(0, r)) ≤ 27/2
)

> 0.(54)

To that end, we need to introduce the following notation: we recall the definition
of γ from (48) and we first set for any r ∈ (0,∞),

Sr = ∑
j∈J ∗

1[0,γ (2r)](tj )σj ,

where σj stands for the duration of Wj . Recall from (47) notation MWj and RWj .
We next define the following event:

Er = ⋂
j∈J ∗

tj>γ (2r)

{RWj ∩ B(0, r) = ∅}.(55)

Recall that, for any j ∈ J ∗, MWj (B(0, r)) ≤ σj . Consequently,

P0-a.s. on Er, M∗
a(B(0, r)) ≤ Sr .(56)

If we set for any n ≥ 2,

rn = (1/ logn)n and Vn = 1{Srn≤(27/2)g(rn)}∩Ern
,

then (54) is a consequence of the following:

P0

(∑
n≥2

Vn = ∞
)

> 0.(57)

Therefore, we only need to prove (57). We proceed in three steps:
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Step I: we first claim there exists C10 ∈ (0,∞) that only relies on space dimen-
sion d such that, for any r > 0,

P0(Er) ≥ C10.(58)

Indeed, from the definition of N ∗, we get

P0(Er) = E0
[
e
−4

∫ ∞
γ (2r) u0,r (ξt ) dt ]

.

An easy argument combined with the Jensen inequality entail the following:

P0(Er) ≥ E0
[
e−4

∫ ∞
0 1{‖ξt ‖≥2r}u0,r (ξt ) dt ]

≥ exp
(
−4E0

[∫ ∞
0

1{‖ξt‖≥2r}u0,r (ξt ) dt

])
.

Then, we apply Lemma 2.6 with b = 2r to get P0(Er) ≥ exp(−4C72d−4) := C10,
which proves (58).

Step II: we set Ln = V2 + · · · + Vn and we claim that

lim
n→∞ E0[Ln] = ∞.(59)

To that end, we explicitly compute the distribution of the process r �→ Sr : since
conditionally given ξ , N ∗ is distributed as a Poisson point measure with intensity
4dt Nξ(t)(dW) and since Sr only relies on ξ via γ (2r), (49) easily implies that

SR1, SR2 − SR1 and 1ER2
are independent.(60)

Next, recall that, for any x ∈ R
d and any λ ≥ 0, we have

Nx(1 − e−λσ ) = N(1 − e−λσ ) =
√

λ/2.

Thus, the exponential formula for Poisson point measures entails

E0
[
e−λ(SR2−SR1 )] = E0

[
e−√

8λ(γ (2R2)−γ (2R1))
] = e−(R2−R1)(512λ)1/4

.

This, combined with the independence property (60), entails that (Sr , r ≥ 0) is a
stable subordinator with exponent 1/4 and speed 512. To prove (59), we use the
following estimate of the tail at 0+ of S1 that is due to Shorokhod [23] (see also
Example 4.1 in Jain and Pruitt [11]):

P0(S1 ≤ x) ∼x→0+ C11x
1/6 exp

(−(x/C12)
−1/3)

,(61)

where, to simplify notation, we have set C11 = (6π)−1/227/6 and C12 = 27/2.
Next, by (60), the scaling property for S and (58), we get

E0[Vn] = P0
(
Srn ≤ C12g(rn)

) · P0(Ern)
(62)

≥ C10P0
(
S1 ≤ C12(log log 1/rn)

−3)
.
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Now by (61), we get

P0
(
S1 ≤ C12(log log 1/rn)

−3) ∼n→∞
C11C

1/6
12

n
√

logn log logn
,(63)

which easily implies (59).
Step III: we finally claim that there exists C13 ∈ (0,∞) that only depends on

space dimension d , such that,

∀2 ≤ k < 
, E0[VkV
] ≤ C13 · E0[Vk]E0[V
].(64)

Indeed, by (58), (60), (62) and the scaling property of S, the following inequalities
hold true:

E0[VkV
] ≤ P0
(
Sr
 ≤ C12g(r
);Srk − Sr
 ≤ C12g(rk)

)
≤ P0

(
Sr
 ≤ C12g(r
)

) · P0
(
Srk − Sr
 ≤ C12g(rk)

)
(65)

≤ 1

C10
E0[V
] · P0

(
S1 ≤ C12(1 − rk+1/rk)

−4(log log 1/rk)
−3)

.

An easy computation entails that

P0
(
S1 ≤ C12(1 − rk+1/rk)

−4(log log 1/rk)
−3) ∼k→∞

e4/3C11C
1/6
12

k
√

logk log log k
.

Then by (63) and (62), there exist C14 ∈ (0,∞) that only depends on space dimen-
sion d , such that, for any k ≥ 2,

P0
(
S1 ≤ C12(1 − rk+1/rk)

−4(log log 1/rk)
−3) ≤ C14E0[Vk],

which entails (64) by (65) with C13 = C14/C10.
Claim (59) and claim (64) entail

lim sup
n→∞

E0[L2
n

E0[Ln]2 ≤ C13,

and (57) follows by Kochen–Stone’s lemma, which completes the proof of the
lemma. �

The following lemma completes the proof of Theorem 1.2.

LEMMA 3.3. For any d ≥ 5, κd ≥ 2−10.

PROOF. We directly work with W under N0. Then, it is sufficient to prove
that,

N0-a.e. for M-almost all x, lim inf
r→0+

M(B(x, r))

g(r)
≥ 2−10.(66)
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The proof of (66) consists in lifting to Ŵ estimates from Lemma 2.3 by using the
fact that, conditionally given H , Ŵ is a Gaussian process. Recall notation dH . For
any r,R > 0 and for any t ∈ [0, σ ], we set

a(t, r) =
∫ σ

0
1{dH (s,t)≤r} ds and b(t, r,R) =

∫ σ

0
1{dH (s,t)≤r}∩{‖Ŵs−Ŵt‖≥R} ds.

Then for any t ∈ [0, σ ], we first notice the following:

a(t, r) ≤ b(t, r,R) + M(B(Ŵt ,R)).(67)

Recall that Ŵ , conditionally given H , is distributed as a centered Gaussian process
whose covariance is specified by (17). Consequently,

N(dH)-a.e. ∀t ∈ [0, σ ],
(68)

QH
0 [b(t, r,R)] ≤ a(t, r)

∫
Rd\B(0,R/

√
r)

(2π)−d/2e−‖x‖2/2 dx.

Next, for any integer n ≥ 2, we set Rn = 2−n and rn = 1
4R2

n(log log 1/Rn)
−1. An

elementary argument implies that, for any n ≥ 2,∫
Rd\B(0,Rn/

√
rn)

(2π)−d/2e−‖x‖2/2 dx ≤ C16n
−3/2,

where C16 is a positive number that only depends on space dimension d (note that
the power 3/2 in the previous inequality is not optimal). Therefore, we get

N(dH)-a.e. ∀t ∈ [0, σ ], QH
0

[∑
n≥2

b(t, rn,Rn)

a(t, rn)

]
< ∞.

Then, by Fubini,

N(dH)-a.e. QH
0

[∫ σ

0
1{lim supn→∞ b(t,rn,Rn)/a(t,rn)>0} dt

]
= 0,

which implies that

N0-a.e. for 
-almost all t ∈ [0, σ ], lim
n→∞

b(t, rn,Rn)

a(t, rn)
= 0(69)

(
 stands here for the Lebesgue measure on the real line). Recall notation k(r)

from (33); (69) combined with (67) entails

N0-a.e. for 
-almost all t ∈ [0, σ ],

lim inf
n→∞

a(t, rn)

k(rn)
≤ lim inf

n→∞
M(B(Ŵt ,Rn))

k(rn)
.

Since k(rn) ∼n→∞ 2−4g(Rn), Lemma 2.3 entails that

N0-a.e. for 
-almost all t ∈ [0, σ ], lim inf
n→∞

M(B(Ŵt ,2−n))

g(2−n)
≥ 2−6,

and an easy argument completes the proof of the lemma. �
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3.2. Proof of Theorem 1.3. We first introduce a specific decomposition of R
d

into dyadic cubes. We adopt the following notation: we denote by �·� the integer
part application and we write log2 for the logarithm in base 2; we fix d ≥ 5 and we
set

p := ⌊
log2

(
4
√

d
)⌋

,

so that 2p > 2
√

d . To simplify notation, we set Dn = 2−n−p
Z

d , for any n ≥ 0. For
any y = (y1, . . . , yd) in Dn, we also set

Dn(y) =
d∏

j=1

[
yj − 1

2
2−n;yj + 1

2
2−n

)
and

D•
n(y) =

d∏
j=1

[
yj − 1

2
2−n−p;yj + 1

2
2−n−p

)
.

It is easy to check the following properties:

• Prop(1). If y, y′ are distinct points in Dn, then D•
n(y) ∩ D•

n(y
′) = ∅.

• Prop(2). Let y ∈ Dn. Then, we have

D•
n(y) ⊂ B

(
y,

1
2 2−n−p

√
d
) ⊂ B

(
y,2−n−p

√
d
) ⊂ Dn(y).

For any r < (2d)−1, we set n(r) = �log2(r
−1(1+2−p)

√
d)�, so that the following

inequalities hold:

1
2 (1 + 2−p)

√
d · 2−n(r) < r ≤ (1 + 2−p)

√
d · 2−n(r).(70)

Next, for any x = (x1, . . . , xd) ∈ R
d and for j ∈ {1, . . . , d}, we set

yj = 2−n(r)−p⌊
xj 2n(r)+p + 1

2

⌋
.

Therefore, y = (y1, . . . , yd) ∈ Dn(r) and we easily check the following:

• Prop(3). The point x belongs to D•
n(r)(y) and Dn(r)(y) ⊂ B(x, r).

Recall that we work under N0 and recall C3 and κ0 from Lemma 2.5. We set
κ1 = min(κ0/2,C3/8) and we choose κ2 > 0 such that

∀n ≥ 7: κ2g(2−n) ≤ κ1g
(1

2 2−n−p
√

d
)
.(71)

We then fix A > 100 and for any n such that 2−n ≤ 1/(2A), we set

Un(A) = ∑
y∈Dn

1/A≤‖y‖≤A

g
(√

d(1 + 2−p)2−n)
1{M(Dn(y))≤κ2g(2−n)}∩{R∩D•

n(y) �=∅}.

We first prove the following lemma.
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LEMMA 3.4. For any A > 100, N0-a.e.

lim
N→∞

∑
n≥N

Un(A) = 0.(72)

PROOF. We fix n such that 2−n ≤ 1/(2A) and we fix y ∈ Dn such that 1/A ≤
‖y‖ ≤ A. By Prop(2), we get

N0
(

M(Dn(y)) ≤ κ2g(2−n); R ∩ D•
n(y) �= ∅

)
≤ N0

(
M

(
B

(
y,2−n−p

√
d
)) ≤ κ1g

(1
2 2−n−p

√
d
);

R ∩ B
(
y,

1
2 2−n−p

√
d
) �= ∅

)
.

We next apply Lemma 2.5 with x = y and r = 1
22−n−p

√
d to prove there exists

C17 ∈ (0,∞), that only depends on space dimension d , such that

N0
(

M(Dn(y)) ≤ κ1g(2−n); R ∩ D•
n(y) �= ∅

) ≤ C17(2
−n−p)d−4‖y‖2−dn−2.

Then, note there exists C18 ∈ (0,∞), that only depends on space dimension d ,
such that, for all sufficiently large n,

g
(√

d(1 + 2−p)2−n) ≤ C18(2
−n−p)4,

which entails the following:

g
(√

d(1 + 2−p)2−n) · N0
(

M(Dn(y)) ≤ κ1g(2−n); R ∩ D•
n(y) �= ∅

)
≤ C19(2

−n−p)d‖y‖2−dn−2,

where C19 = C17C18. Elementary arguments entail the following inequalities:

N0(Un(A)) ≤ C19n
−2

∑
y∈Dn

1/A≤‖y‖≤A

(2−n−p)d‖y‖2−d

≤ C20n
−2

∫
1{1/A≤‖x‖≤A}‖x‖2−d dx

≤ C21n
−2

∫ A

1/A
ρ dρ

≤ C21A
2n−2,

where C20,C21 ∈ (0,∞) only depends on d . Therefore, N0(
∑

n≥N Un(A)) < ∞,
which easily completes the proof of the lemma. �

We next prove the following lemma.
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LEMMA 3.5. Assume that d ≥ 5. Then, N0-a.e. we have

Pg

({
x ∈ R : lim inf

r→∞ g(r)−1M(B(x, r)) �= κd

})
= 0.(73)

PROOF. We fix A > 100. By Theorem 1.2 and Lemma 3.4, there exists a Borel
subset WA of W such that N0(W\WA) = 0 and such that on WA, (6) and (72) hold
true. We argue for a fixed W ∈ WA.

Let B be any Borel subset of R ∩ {x ∈ R
d : 1/A ≤ ‖x‖ ≤ A}. Let ε > 0 and let

B(x1, r1), . . . ,B(xk, rk) be any closed ε-packing of B ∩ R. Let C22 be a positive
real number to be specified later. First observe that

k∑
i=1

g(ri) =
k∑

i=1

g(ri)1{M(B(xi ,ri )>C22g(ri)} +
k∑

i=1

g(ri)1{M(B(xi ,ri )≤C22g(ri)}
(74)

≤ C−1
22 M

(
B(ε)) +

k∑
i=1

g(ri)1{M(B(xi ,ri )≤C22g(ri)},

where for any bounded subset B of R
d we have set B(ε) = {x ∈ R

d : dist(x,

B) ≤ ε}.
Next, fix 1 ≤ j ≤ k; recall notation n(ri) from (70) and denote by yi the point

of Dn(ri ) corresponding to xi such that Prop(3) holds true. Therefore, by (70), we
have

M(B(xi, ri)) ≤ C22g(ri) and xi ∈ B ∩ R
�⇒ M

(
Dn(ri)(yi)

) ≤ C22g
(
(1 + 2−p)

√
d2−n(ri )

)
and

R ∩ D•
n(ri )

(yi) �= ∅.

We now choose C22 in order to have C22g((1 + 2−p)
√

d2−n(r)) ≤ κ2g(2−n(r)) for
all sufficiently small r ∈ (0,1). Thus, we get

k∑
i=1

g(ri)1{M(B(xi ,ri )≤C22g(ri)} ≤ ∑
n:2−n≤C23ε

Un(A),

where C23 = 2((1 + 2−p)
√

d)−1. Since W belongs to WA where (72) holds, this
inequality, combined with (74), implies the following:

Pg(B ∩ R) ≤ P ∗
g (B ∩ R) ≤ C−1

22 M
(⋂

ε>0

B(ε)

)
.(75)

We next applies (75) with B = BA given by

BA =
{
x ∈ R : 1/A ≤ ‖x‖ ≤ A and lim inf

r→0
g(r)−1M(B(x, r)) �= κd

}
.

This shows that Pg(BA) < ∞. Suppose now that P(BA) > 0, then by (11), there
exists a compact subset K of BA such that Pg(K) > 0. Since K is compact, then
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K = ⋂
ε>0 K(ε); now, since K is a subset of BA and since W ∈ WA where (6) holds

true, we then get M(K) = 0; by applying (75) with B = K , we obtain Pg(K) = 0,
which rises a contradiction. Thus, we have proved that N0-a.e. Pg(BA) = 0, which
easily entails the lemma by letting A go to ∞, since Pg({0}) = 0. �

We now complete the proof of Theorem 1.3: by Theorem 1.2 and Lemma 3.5,
there exists a Borel subset W ∗ of W such that N0(W\W ∗) = 0 and such that (6)
and (73) hold true on W ∗. We fix W ∈ W ∗ and we set

Good =
{
x ∈ R : lim inf

r→0
g(r)−1M(B(x, r)) = κd

}
and Bad = R\Good.

Let B be any Borel subset of R
d . By (6) and (73), we have

M(B ∩ Bad) = Pg(B ∩ R ∩ Bad) = 0.

Then, we apply Lemma 2.2 to Good ∩ B and we get

M(B ∩ Good) = κd · Pg(B ∩ R ∩ Good).

Therefore, M(B) = κd · Pg(B ∩ R), which completes the proof of Theorem 1.3.

4. Proof of Theorem 1.1. We derive Theorem 1.1 from Theorem 1.3. To that
end, we first need an upper bound of the upper box-counting dimension of R under
Nx . Let us briefly recall the definition of the upper box-counting dimension: let K

be a compact subset of R
d ; for any ε > 0, we denote by N (K, ε) the minimal

number of balls with radius less than ε that are necessary to cover K . The upper-
box counting dimension of K is then given by

dimBox(K) = lim sup
ε→0

log N (K, ε)

log(1/ε)
.

Let us fix x ∈ R
d . It is easy to prove for any q ∈ (0,1/4), Nx-a.e. the endpoint

process (Ŵs, s ∈ [0, ζ ]) is q-Hölder continuous (see Le Gall [18] for a simple
proof). This implies that

Nx-a.e. dimBox(R) ≤ 4.(76)

(Actually, the Hausdorff, packing, upper and lower box-counting dimensions of R
are equal to 4.) We prove the following lemma.

LEMMA 4.1. Let d ≥ 5 and let x ∈ R
d . For any compact set K such that

dimBox(K) ≤ 4, we Nx-a.e. have M(K) = 0.

PROOF. Let us first assume that x /∈ K and set k = infy∈K ‖x − y‖ > 0.
For any ε ∈ (0, k/2), there exists nε := N (K, ε) balls denoted by B(xε

1, ε), . . . ,
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B(xε
nε

, ε) that cover K . Then, (14) combined with standard estimates of the d-
dimensional Green function entail the following inequalities:

Nx(M(K)) ≤
nε∑
i=1

Nx(M(B(xε
i , ε)))

≤
nε∑
i=1

∫ ∞
0

Px[ξt ∈ B(xε
i , ε)]dt

≤ C24

nε∑
i=1

∫
B(xε

i ,ε)
‖x − y‖2−d dy

≤ C25k
2−d · εdnε,

where C24,C25 ∈ (0,∞) only depend on d . Since we assume that d > 4 ≥
dimBox(K), the previous inequality implies that Nx(M(K)) = 0.

Let us now consider the general case: for any r > 0, the previous case applies
to the compact set K ′ = K\B(x, r) and we get Nx-a.e.

M(K) = M
(
K ∩ B(x, r)

) + M
(
K\B(x, r)

) ≤ M(B(x, r)),

and the proof of the claim is completed by letting r go to 0, since M is
diffuse. �

The end of the proof of Theorem 1.1 is a simple adaptation of Le Gall’s argu-
ment in [17] (see pages 312–313) to the packing measure: first observe that we
only need to consider the β = 1 case, for if we replace Z by c · Z, then M is
replaced by c · M but R is unchanged.

Let us consider the β = 1 case. Theorem 1.3 and Lemma 4.1 imply that for any
compact set K such that dimBox(K) ≤ 4, and for any x ∈ R

d , we Nx-a.e. have

Pg(K ∩ R) = 0.(77)

Recall the connection (13) between R, M and the excursions Wj , j ∈ J , of the
Brownian Snake. An easy argument on Poisson point processes combined with
(76) and (77) implies that almost surely Pg(RWj ∩ RWi ) = 0 for any i �= j in J .
Then, (13) entails

Pg(· ∩ R) = ∑
j∈J

Pg(· ∩ RWj ).

Theorem 1.3 and (13) thus imply

κd · Pg(· ∩ R) = ∑
j∈J

κd · Pg(· ∩ RWj ) = ∑
j∈J

MWj = M,

which is the desired result.
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