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ON NORMAL APPROXIMATIONS TO U -STATISTICS

BY VIDMANTAS BENTKUS, BING-YI JING1 AND WANG ZHOU2

Vilnius Institute of Mathematics and Informatics, Hong Kong University of
Science and Technology and National University of Singapore

Let X1, . . . ,Xn be i.i.d. random observations. Let S = L + T be a U -
statistic of order k ≥ 2 where L is a linear statistic having asymptotic nor-
mal distribution, and T is a stochastically smaller statistic. We show that
the rate of convergence to normality for S can be simply expressed as the
rate of convergence to normality for the linear part L plus a correction term,
(var T) ln2(varT), under the condition ET

2 < ∞. An optimal bound without
this log factor is obtained under a lower moment assumption E|T|α < ∞ for
α < 2. Some other related results are also obtained in the paper. Our results
extend, refine and yield a number of related-known results in the literature.

1. Introduction. There has been a vast literature related to normal approxi-
mations and to the rates of convergence to normality for U -statistics of order k ≥ 2.
Undoubtedly, the case for k = 2 has been most studied and is best understood, so
we will start our discussion with this case as well. Let X,X1,X2, . . . ,Xn, n ≥ 2,
be independent and identically distributed (i.i.d.) random variables (r.v.’s). Define
a U -statistic of order 2 by

Un = 2

n(n − 1)

∑
1≤i<j≤n

h(Xi,Xj ),(1.1)

where the kernel h(x, y) is a real-valued Borel measurable function, symmetric in
its arguments with Eh(X1,X2) = θ . By the Hoeffding decomposition, we have

√
n(Un − θ)

2σg

= 1√
nσg

n∑
i=1

g(Xi) + 1√
n(n − 1)σg

∑
1≤i<j≤n

η(Xi,Xj )

(1.2)
def= L + T,

where L and T are the linear and quadratic terms, respectively, and

g(x) = E[h(x,X2)] − θ, σ 2
g = Var[g(X1)],

η(x, y) = h(x, y) − g(x) − g(y) + θ.
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Throughout the paper, it is assumed that σ 2
g ∈ (0,∞).

For any generic r.v. Y , denote its distribution function (d.f.) by FY (x) = P(Y ≤
x). Then

FL+T(x) = P

(√
n(Un − θ)

2σg

≤ x

)
.

It is well known that FL+T(x) converges to the standard normal d.f., denoted by
�(x), provided Eh2(X1,X2) < ∞ (see [11]). In fact, this moment condition can
be reduced to Eg2(X1) < ∞ and E|h(X1,X2)|4/3 < ∞ (see Remark 4.2.4 of [15],
page 131). There also has been much work on the convergence rates to normality
for U -statistics of order 2. However, the sharpest Berry–Esseen bound of order
O(n−1/2) comes from [14] and [9], who establish the following ideal bound:

‖FL+T − �‖ � 1√
n

(
E|g1|3

σ 3
g

+ E|η12|5/3

σ
5/3
g

)
,(1.3)

where the following notation has been used:

• gi = g(Xi) and ηij = η(Xi,Xj ).
• For any function f : R → R, define ‖f ‖ = supx∈R |f (x)|.
• By a � b for a, b ≥ 0 we mean a ≤ cb for some positive constant c not depend-

ing on the underlying distribution function.

Indeed, Bentkus, Götze and Zitikis [4] showed that the moment conditions in (1.3),
E|g1|3 < ∞ and E|η12|5/3 < ∞, are the weakest possible in the Berry–Esseen
bounds of order O(n−1/2) for U -statistics of order 2.

Our main purpose of this paper is to extend the optimal results on Berry–Esseen
bounds for U -statistics of order 2 to those of higher orders. In stark contrast with
studies on U -statistics of order 2, there is a very limited literature on optimal or
near-optimal error bounds for U -statistics of higher orders. In this paper, we intend
to fill in the gap. The work is of both theoretical and practical value since many
symmetric statistics may be approximated arbitrarily closely by U -statistics of suf-
ficiently high order under appropriate conditions. As an application, we will derive
a near-optimal error bound for Studentized U -statistics of order 2 in Section 3.3.

At first sight, it appears to be an easy task to extend the optimal Berry–Esseen
bounds from second-order U -statistics to higher order ones. (At least we naively
thought so in the beginning.) However, a close inspection soon leads one to be-
lieve that this is far from trivial. We note that the usual approach of dealing with
U -statistics is to first use the Hoeffding decomposition to turn the statistic of in-
terest into a sum of sequentially smaller and uncorrelated terms, and then to use
truncation techniques to each of these terms. Broadly speaking, there are two main
difficulties with this approach which we must overcome. Specifically, we have the
following goals in mind.
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(A) A direct and transparent methodology is needed.
The truncation techniques are manageable for second-order U -statistics.
However, as the order gets larger, it becomes more and more intangible and
unworkable. In order to treat U -statistics of higher order than 2, in this paper,
we may have to abandon the idea of truncation, and instead choose a more
direct and more transparent approach.

(B) A simple and unified form of error bounds is needed.
For second-order U -statistics, the Hoeffding decomposition produces a linear
statistic L plus a degenerate U -statistic T in (1.2). As a result, the two terms
involving E|g1|3 and E|η12|5/3 in (1.3) are from the linear term L and the
degenerate U -statistic term T, respectively. More generally, applying the Ho-
effding decomposition to U -statistics of order k > 2 leads to a sum of k terms.
Consequently, the resulting optimal error bound would contain k terms which
would become more complicated as k gets larger. In this paper, we strive to
provide simple and general error bounds for U -statistics of general orders.

Let us now look at (B) in more detail. Again, we will examine the case of U -
statistics of order 2 first. A closer look at the proof of (1.3), as in [14] and [9],
shows that a more refined Berry–Esseen bound can be given as follows:

‖FL+T − �‖ � 1√
n

(
E|g1|3

σ 3
g

+ E|η12|5/3

σ
5/3
g

+ E|g1g2η12|
σ 3

g

)
.(1.4)

Using some truncation arguments, it can be shown that (1.4) is equivalent to

‖FL+T − �‖ � 1√
n

E|g1|3
σ 3

g

+ 1

n

E|η12|2
σ 2

g

+ 1√
n

E|g1g2η12|
σ 3

g

.(1.5)

Note that the last term in (1.5) shows the interaction effect between L
2 and T in

(1.2). This suggests that if we take the correlation between L and T into account,
we might be able to improve the error bound. Indeed, if we let

N2(x) = �(x) + 1√
n
κ2�

′′′(x) where κ2 = Eg1g2η12/σ
3
g

be the adjusted normal approximation, Alberink and Bentkus [2, 3] show that the
following optimal error bound holds:

‖FL+T − N2‖ � 1√
n

E|g1|3
σ 3

g

+ 1

n

E|η12|2
σ 2

g

(1.6)

(see Theorem 1 of [2, 3]). We reiterate that the error bound given in (1.5) is opti-
mal, and implies the optimal bound (1.3) as a special case by a simple truncation
argument.

Finally, we can rewrite (1.5) in a very simple form

‖FL+T − N2‖ � ‖FL − �‖ + var T.(1.7)
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In other words, the error bounds in the adjusted normal approximations for U -
statistics of order 2 are simply the error bounds for the dominant linear part L plus
the variance of the remaining “error” term T.

It is somewhat surprising that the optimal error bound for U -statistics of order 2
can be written in such a simple and compact form given by (1.7). The appearance
of the variance term var T in (1.7) is appealing since the variance is the most natural
and easy-to-interpret measure to describe the effects of the error term T. Further-
more, from a computational point of view, it is easier to calculate the variance of
T than some other moments of T.

The purpose of this paper is to derive optimal or near-optimal error bounds in
the normal approximations for U -statistics of order k ≥ 2, similar to those given
in (1.7). We emphasize that the truncation techniques are heavily used in [2, 3] for
second-order U -statistics, and will not work for U -statistics of higher orders.

The paper is arranged as follows. In Section 2, some definitions and notation
will be given. In Section 3, we establish optimal or near-optimal error bounds for
U -statistics of order k ≥ 2. In Section 4, we give some approximations to expecta-
tions of smooth functions of U -statistics and some of their applications. Possible
extensions to other statistics are discussed in Section 5. We provide the details of
the proofs in Section 6.

2. Definitions and notation. Let X,X1, . . . ,Xn be a sequence of i.i.d. r.v.’s.
Suppose that a symmetric statistic S = S(X1, . . . ,Xn) can be decomposed into

S = L + T,(2.1)

where L and T are symmetric U -statistics, L of order 1 and T of order k, respec-
tively. This means that L is of the form

L =
n∑

i=1

Li,(2.2)

and T is of the form, by way of Hoeffding decomposition,

T =
n∑

i=1

Ti +
n∑

1≤i<j≤n

Tij + · · · +
n∑

1≤i1<···<ik≤n

Ti1···ik
(2.3)

def= T1 + · · · + Tk,

where Li = l(Xi) and Ti1···ik = tk(Xi1, . . . ,Xik ) are Borel measurable functions,
and tk is invariant under permutation of variables. Without loss of generality, it is
assumed that

EL = ET = 0 and var L = 1,(2.4)

which can always be achieved after re-centering and re-scaling the relevant statis-
tics. Typically, L is the dominant term and T can then be called the error term.
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Now let us define, for α ∈ [1,2],

β = nE|L1|3, γ = var T, γ (α) =
k∑

p=1

(
n

p

)
E|T1···p|α.

Note that

E|L|3 � nE|L1|3 = β,

E|T|2 =
k∑

i=1

ET
2
i =

k∑
i=1

(
n

i

)
E|T1···i |2 = γ,(2.5)

E|T|α ≤ kα−1
k∑

i=1

E|Ti |α �
k∑

i=1

(
n

i

)
E|T1···i |α = γ (α),

where the second inequality in (2.5) follows by first applying an inequality (2.18)
from [10],

E|Ti |α ≤ C(α, i)E

∣∣∣∣ ∑
1≤j1<···<ji≤n

T 2
j1···ji

∣∣∣∣α/2

with C(α, i) a constant depending only on α and i, and then applying the following
simple inequality (noting α/2 ≤ 1):∣∣∣∣ ∑

1≤j1<···<ji≤n

T 2
j1···ji

∣∣∣∣α/2

≤ ∑
1≤j1<···<ji≤n

|Tj1···ji
|α.

Therefore, β , γ and γ (α) are closely related to E|L|3, ET
2 and E|T|α , respectively.

Furthermore, γ = γ (2).
Finally, the following convention will be adopted throughout the paper: con-

ditions appearing in a statement are implied implicitly in that statement. For in-
stance, in (3.4), the conditions β < ∞ and γ < ∞ are assumed even though (3.4)
still holds true without these moment conditions.

3. Error bounds for U -statistics. Asymptotic normality of the linear term L

and its rates of convergence are well known. For instance, the latter is described
by the Berry–Esseen bound:

‖FL − �‖ � β.(3.1)

If T → 0 in probability, we have ‖FS − �‖ → 0 as n → ∞. Following the discus-
sion in the Introduction, we are interested in the error bound for ‖FS − �‖ in the
form of

‖FS − Np‖ � ‖FL − �‖ + f (E|T|α) � β + f
(
γ (α))(3.2)
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for some function f , Np for some p ≥ 0 (to be defined below), and α ≤ 2. In
particular, when α = 2, (3.2) becomes

‖FS − Np‖ � ‖FL − �‖ + f (var T) � β + f (γ ).

In other words, we wish to investigate the question: if a linear statistic L is per-
turbed by some error term T, how do we correct the usual Berry–Berry bound for
normal approximations, using only the variance of T?

The adjusted normal approximation Np [which was mentioned in (3.2)] can be
defined as follows. Define N0(x) = �(x) and

Np(x) = �(x) + G1(x) + · · · + Gp(x), p = 1,2, . . . ,(3.3)

where, for p = 1, . . . , k,

κp = cov(Lp,T) = EL
p
T =

(
n

p

)
EL1 · · ·LpT,

Gp(x) = (−1)p+1κp�(p+1)(x).

Two questions immediately arise from the above definition:

1. Under what conditions can we guarantee the existence of κp for p ≥ 1?
By the Hölder inequality, we have

E|L1 · · ·LiT| ≤ (E|L1|3 · · ·E|Li |3)1/3(E|T|3/2)2/3.

Therefore, κp exists if E|T|3/2 < ∞ as we assume that E|Li |3 < ∞ for 1 ≤ i ≤
n. If E|T |3/2 = ∞, we will see later that we only use N0(x) = �(x).

2. How does one interpret Np?
The adjusted normal approximation Np plays a central role in this paper. For
U -statistics of order 2 which first appeared in [2], we have κ1 = 0 and κ2 =
−n−1/2

Eg1g2η12/σ
3
g , hence

N2(x) = �(x) − 1√
n

Eg1g2η12

σ 3
g

�′′′(x).

Note that N2 is different from its corresponding Edgeworth expansion,

FL+T(x) = �(x) − 1√
n

(
Eg1g2η12

2σ 3
g

+ Eg3
1

6σ 3
g

)
�′′′(x) + o(n−1/2),

which holds under the following optimal conditions: (i) the distribution of
g(X1) is nonlattice; (ii) E|g1|3 < ∞ and E|η12|5/3 < ∞ (see [12]). On the other
hand, Np’s and Edgeworth expansions are similar in the sense that both try to
improve the normal approximations by including some higher order correction
terms. We point out that Edgeworth expansions do require some smoothness
conditions while Berry–Esseen bounds do not.
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Of course, the adjusted normal approximations Np are not introduced to
compete with Edgeworth expansions. Rather, they are convenient tool for ob-
taining a neat and unified error bound in the normal approximation for U -
statistics of general order.

In the following, we will give error bounds under two different sets of condi-
tions: ET

2 < ∞, and E|T|α < ∞ for α ∈ [1,2), respectively. Since the Hoeffding
decomposition of T requires E|T| < ∞, we will not consider the case E|T|α < ∞
for α ∈ (0,1).

3.1. Error bounds under ET
2 < ∞. Here is our key result.

THEOREM 1. We have

‖FS − Nk‖ � β + γ ln2(γ ),(3.4)

where the last term γ ln2(γ ) is taken to be zero when γ = 0.

For second-order U -statistics, Alberink and Bentkus [2, 3] show

‖FS − Nk‖ � β + γ,

which is sharper than that in Theorem 1 when k = 2. We conjecture that the loga-
rithmic factor in Theorem 1 can be removed for U -statistics of order k > 2. Actu-
ally, we have derived an error bound without log factors which, for the U -statistics
of order 2, implies the result of [2, 3]. Unfortunately, for k ≥ 3, the error bound
involves certain conditional variances, and the proof of this bound is indeed very
complicated, compared to the proof of Theorem 1. We do not provide this bound
here since, in applications, this bound has only minor advantages, compared to the
simple and indeed convenient bound of Theorem 1.

Applying Theorem 1, we can derive the following optimal error bound for
‖FS − �‖ for U -statistics of order k. (A similar theorem to (3.5) is also derived
in [7], using Stein’s method.)

THEOREM 2. We have

‖FS − �‖ � β + γ 1/2.(3.5)

Furthermore, the exponent 1/2 in (3.5) is the best possible for U -statistics of order
k ≥ 2.

Comparing Theorems 1 and 2, we see that the adjusted normal approximation
Nk(x), which takes into account of the correlations between L

k and T, does show
improvement over the standard normal distribution �(x).
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3.2. Error bounds under E|T|α < ∞ for α ∈ [1,2). Theorem 1 contains a log
factor which will be inherited when applying the result. We will provide an optimal
error bound without the log factor under a lower moment assumption E|T|α < ∞
for α ∈ [1,2).

To do this, we define N0 = � and

Np = � + G1 + · · · + Gp,

where p = p(α, k) is the largest integer such that p < (α − 1)/(2 − α) and p ≤ k.
For example, if α ≤ 3/2, then Np = �. If 3/2 < α ≤ 5/3 and k ≥ 1, then Np =
� + G1. If 5/3 < α ≤ 7/4 and k ≥ 2, then Np = � + G1 + G2.

THEOREM 3. For α ∈ [1,2), let p = p(α, k) be defined above, we have

‖FS − Np‖ � β + γ (α).

Theorem 3 would be of most interest when α is close to 2 in applications. As an
example, we will apply Theorem 3 below to obtain a near-optimal Berry–Esseen
bound for Studentized U -statistics of order 2.

3.3. An application to Studentized U -statistics of order 2. The optimal error
bound for standardized U -statistics of order 2 was given in (1.3). We conjecture
that the same optimal error bound applies to their corresponding Studentized U -
statistics defined by

Ŝ =
√

n(Un − θ)

2σ̂g

,

where σ̂ 2
g is the jackknife variance estimator,

σ̂ 2
g = n − 1

(n − 2)2

n∑
i=1

(
1

n − 1

n∑
j=1,j �=i

hij − Un

)2

.

However, we have so far only managed to prove a near-optimal result, as given in
Theorem 4 below. Although this result is the best available bound in the literature,
it falls a little short of the optimal bound (i.e., ε = 0).

THEOREM 4. For any ε > 0, we have

‖F
Ŝ
− �‖ � 1√

n

(
E|g1|3

σ 3
g

+ E|η12|5/3+ε

σ
5/3+ε
g

)
.

The proof of Theorem 4 is very involved, and hence will not be given here.
Its proof can be obtained from the authors. The proof basically involves approx-
imating Ŝ by a U -statistic of sufficiently high order and then applying nontrivial
truncation techniques. Currently we are trying to eliminate ε in Theorem 4, and
hope to be able to report on this in the near future.
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4. Error bounds for expectations of smooth functions. Here, we give some
approximations to expectations of smooth functions of U -statistics. These results
(e.g., Theorems 5 and 6) are of interest in their own right. There are also other
useful applications, for example, in approximating characteristic functions. For
instance, Corollaries 1 and 2 have been used in the proofs of Theorems 1 and 3,
respectively [see (6.6) and (6.22)].

Throughout this section, let f : R → R be a sufficiently smooth function.

THEOREM 5. We have∥∥∥∥∫
R

f (u)dP{S ≤ u} −
∫

R

f (u)dNk(u)

∥∥∥∥ � C(β + γ ),

where C
def= ‖f ′′‖ + · · · + ‖f (k+4)‖.

Choosing f (u) = exp{itu} in Theorem 5, we obtain a useful inequality for the
characteristic functions.

COROLLARY 1. We have∣∣∣∣E exp{itS} −
∫

R

exp{itu}dNk(u)

∣∣∣∣ � (|t | + |t |k+4)(β + γ ).

Theorem 5 and Corollary 1 can be extended to the case of the lower moment as-
sumption E|T|α < ∞ with α < 2. However, the technical details are more involved
in Theorem 6 than those in Theorem 5.

THEOREM 6. For α ∈ [1,2), we have∥∥∥∥∫
R

f (u)dP{S ≤ u} −
∫

R

f (u)dNp(u)

∥∥∥∥ � C
(
β + γ (α)),

where p = p(α, k) is defined in Theorem 3, and C = ‖f ′‖ + ‖f ′′′‖ for α = 1 and
C = ‖f ′‖ + · · · + ‖f (k+4)‖ for α ∈ (1,2).

Choosing f (u) = exp{itu} in Theorem 6, we get:

COROLLARY 2. For α ∈ [1,2), we have∣∣∣∣E exp{itS} −
∫

R

exp{itu}dNp(u)

∣∣∣∣ � C(t)
(
β + γ (α)),

where p = p(α, k) is defined in Theorem 3, and C(t) = |t | + |t |3 for α = 1 and
C(t) = |t | + |t |k+4 for α ∈ (1,2).
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5. Extensions. One may consider extending the work on the error bounds
from U -statistics to more general class of statistics. Consider a nonlinear statis-
tic W = W(X1, . . . ,Xn), based on a sequence of the r.v.’s X1, . . . ,Xn. Examples
include symmetric statistics, U -statistics with non-i.i.d. observations, L-statistics,
Studentized statistics, exchangeable statistics, finite population statistics, and so
on. Error bounds for symmetric statistics and nonsymmetric statistics were con-
sidered by [17] and [7]. Alberink [1] studied error bounds for U -statistics with
non-i.i.d. observations.

Suppose that we can linearize W into

W = L + �,

where L is a linear statistic and � is an error term. One way to linearize W is by
the Hoeffding decomposition. We have seen how it works for U -statistics in this
paper. For symmetric statistics, we refer to [17]. The Hoeffding decompositions
for independent observations and nonsymmetric statistics was discussed by [13].
For orthogonal decomposition of finite population statistics, see [6]. Hoeffding
decompositions for exchangeable statistics were considered by [16].

If L is asymptotically normal and � → 0 in probability, W is asymptotically
normal. Using truncation and the Chebyshev inequality, we can easily get the fol-
lowing error bound:

‖FW − �‖ ≤ ‖FL − �‖ + (1 + p)[(‖�′‖)/p]p/(1+p)(E|�|p)1/(1+p).

See (1.3) of [7]. By taking p = 2, we get

‖FW − �‖ ≤ ‖FL − �‖ + 2(var�)1/3.(5.1)

For symmetric statistics, the next example shows that the exponent 1/3 in (5.1)
is already the best possible statistic. The example is similar to an example of [7].

EXAMPLE 1. Take X,X1, . . . ,Xn to be i.i.d. N(0,1) r.v.’s. Define

L = n−1/2(X1 + · · · + Xn), � = −ε(|L|−a − E|L|−a),(5.2)

where 0 < a < 1/2 and ε > 0. Then W = L +� is a symmetric statistic with finite
variance since E�2 ≤ 2ε2

E|L|−2a < ∞. Now if we have

‖FW − �‖ ≤ c‖FL − �‖ + c(var�)ϑ(5.3)

or

‖FW − �‖ ≤ cE|X|3/√n + c(var�)ϑ,(5.4)

then the exponent ϑ must satisfy ϑ ≤ 1/3.



2184 V. BENTKUS, B.-Y. JING AND W. ZHOU

PROOF. Clearly, L ∼ N(0,1). So ‖FL − �‖ = supx |P{L ≤ x} − �(x)| = 0.
Thus it suffices to show that the weaker inequality (5.4) implies ϑ ≤ 1/3. Also
note that var� = c1ε

2 where c1 = var(|L|−a) is some positive constant depending
only on a. It follows that ‖FW − �‖ and var� in this example do not depend on n.
Letting n → ∞ in (5.4) yields

‖FW − �‖ ≤ c(var�)ϑ = ccϑ
1 ε2ϑ .(5.5)

On the other hand, for sufficiently small ε > 0, we have

‖FW − �‖ = sup
x

|P{W ≤ x} − �(x)|

≥ P{W ≤ εE|L|−a} − P{L ≤ εE|L|−a}
= P{L|L|a ≤ ε} − P{L ≤ εE|L|−a}(5.6)

= P{0 ≤ L
a+1 ≤ ε} − P{0 ≤ L ≤ εE|L|−a}

≥ c2ε
1/(a+1) − c3ε,

where c2 and c3 are positive constants depending only on a. The inequalities (5.5)
and (5.6) imply ccϑ

1 ε2ϑ ≥ c2ε
1/(a+1) − c3ε, that is,

ccϑ
1 ε2ϑ−1/(a+1) ≥ c2 − c3ε

a/(a+1).(5.7)

If 2ϑ − 1/(a + 1) > 0, then letting ε ↓ 0 in (5.7) would imply that 0 ≥ c2 > 0,
a contradiction. Hence we must have 2ϑ − 1/(a + 1) ≤ 0 for all 0 < a < 1/2. Let-
ting a ↑ 1/2, we have 2ϑ − 2/3 ≤ 0, i.e., ϑ ≤ 1/3. �

6. Proofs of Theorems 1–6. We first prove several useful lemmas.

LEMMA 1. We have:

(a) 1 ≤ √
nβ;

(b) nE|L1|q ≤ βq−2 for 2 ≤ q ≤ 3;
(c) |κs | ≤ √

γs ≤ √
γ for s = 1, . . . , k;

(d) |κs | ≤ βδs + γ
(α)
s ≤ βδs + γ (α) where 3/2 < α < 2, δ = (2 − α)/(α − 1), and

s is an integer such that 1 ≤ s < δ−1 ∧ k.

PROOF. We will use Hölder’s inequality: E|XY | ≤ |(E|X|a)1/a(E|Y |b)1/b

with a > 1 and 1/a + 1/b = 1. Recall that EL
2 = nEL2

1 = 1.

(a) 1 = (nn−1)3/2 = (nEL2
1)

3/2 = n3/2(EL2
1)

3/2 ≤ n3/2
E|L1|3 = √

nβ .
(b) nE|L1|q = nE|L1|2(3−q)|L1|3(q−2) ≤ n(EL2

1)
3−q(E|L1|3)q−2 = βq−2.

(c) |κs | ≤ (n
s

)
E|L1 · · ·LsT1···s | ≤ (n

s

)
(EL2

1 · · ·EL2
sET 2

1···s)1/2 = (
(n
s

)
/ns)1/2γ

1/2
s ≤

γ
1/2
s ≤ γ 1/2.
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(d) We use Hölder’s inequality with exponents a = α and b = α/(α − 1) and an-
other basic inequality x1/ay1/b ≤ x + y for x, y ≥ 0. Also note that nE|L1|q ≤
βq−2 from (b), and q − 2 = δ. We have

|κs | ≤
(

n

s

)
E|L1 · · ·LsT1···s | ≤

(
n

s

)
(E|L1|q)s/q(E|T1···s |α)1/α

≤
(

n

s

)
(E|L1|q)s +

(
n

s

)
E|T1···s |α ≤ (nE|L1|q)s + γ (α)

s

≤ β(q−2)s + γ (α)
s = βδs + γ (α)

s . �

LEMMA 2. For sufficiently smooth functions g : R → R, one has

‖g(x + h) − g(x)‖ ≤ (‖g‖ + ‖g′‖)|h|1/2.(6.1)

PROOF. The result follows from multiplying the obvious inequalities

‖g(x + h) − g(x)‖ ≤ 2‖g‖ and ‖g(x + h) − g(x)‖ ≤ ‖g′‖|h|,
and taking a square root, and then applying

√
2ab ≤ a + b. �

6.1. Proof of Theorem 1. Denote �
def= ‖FS − Nk‖. We consider two separate

cases:
Case I: max{β,γ1, . . . , γk} > ck;
Case II: max{β,γ1, . . . , γk} ≤ ck , where ck > 0 is a constant depending only on

k to be determined later.
Case I is relatively easy to prove. For case II, we take a classical approach. That

is, using the well-known Esseen’s smoothing inequality, we reduce the problem to
the estimation of some characteristic functions.

PROOF FOR CASE I. We shall prove that � � β + γ , which clearly implies
the desired � � β + γ ln2(γ ). From Lemma 1, we have κ2

p ≤ γp . Using this in-

equality, estimating P{S ≤ x} ≤ 1 and |�(p)(x)| � 1, we derive

� � 1 + |κ1| + · · · + |κk| � 1 + √
γ1 + · · · + √

γk � 1 + √
γ .(6.2)

We consider the alternative cases γ ≥ 1 and γ < 1 separately. If γ ≥ 1, then using
(6.2) we have � � √

γ ≤ γ ≤ β + γ . If γ < 1, then (6.2) implies � � 1. Using
the condition, max{β,γ1, . . . , γk} > ck , we have

� � 1 ≤ c−1
k max{β,γ1, . . . , γk} ≤ c−1

k (β + γ1 + · · · + γk) � β + γ .

PROOF FOR CASE II. We can assume that n is sufficiently large so that

n ≥ 1/ck.
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Indeed, for n ≤ 1/ck the bound of Theorem 1 holds trivially. To see this, we note
that, by (c) of Lemma 1, we have κ2

p ≤ γp . Since max{β,γ1, . . . , γk} ≤ ck by as-
sumption, we then have κ2

p ≤ γp ≤ ck ≤ n−1 ≤ 1. Hence, it follows that

|Nk(x)| � 1 + |κ1| + · · · + |κk| ≤ 1 + k � 1.

Therefore � � 1. Using 1 ≤ √
nβ (see Lemma 1), for small n ≤ 1/ck , we have

1 � β . Inequalities � � 1 and 1 � β imply � � β � β + γ which is somewhat
better than the bound of Theorem 1.

By Lemma 1, κ2
p ≤ γp which combined with the condition, max{β,γ1, . . . ,

γk} ≤ ck , implies that κ2
p � 1 for 1 ≤ p ≤ k. Thus the function Nk(x) has a

bounded derivative,

|N ′
k(x)| � 1 + |κ1| + · · · + |κk| � 1.(6.3)

Due to (6.3), to estimate � we can apply Esseen’s smoothing inequality (see,
e.g., [8], Chapter XVI, Lemma 3.2). For any a > 0 we have

� � 1

a
+

∫ a

−a
|t |−1|f (t) − g(t)|dt,(6.4)

where

f (t) = E exp{itS}, g(t) =
∫

R

exp{itx}dNk(x).(6.5)

Note that g(t) = (1 + κ1(it)
3 + · · · + κk(it)

k+1) exp{−t2/2}. We choose

a =
√

ck

β + γ
.

Since max{β,γ1, . . . , γk} ≤ ck , we have β ≤ ck and γ ≤ kck , resulting in

a ≥ √
ck/(ck + · · · + ck) = 1/

(
(1 + k)

√
ck

)
> 1,

if ck is chosen small enough, for example, ck ≤ (1 + k)−2.
Split the integral in (6.4) as

∫ a
−a = ∫

|t |<C + ∫
C<|t |<a , where C = Ck is a suffi-

ciently large positive constant depending only on k to be chosen later.
To estimate

∫
|t |<C we use Corollary 1 of Section 4,

|f (t) − g(t)| � (|t | + |t |k+4)(β + γ ).(6.6)

It follows that
∫
|t |<C � β + γ , a bound which is somewhat better than the desired

bound with γ ln2(3 + 1/γ ) in place of γ .
It remains to consider the integral

∫
C≤|t |≤a . Introduce the characteristic func-

tions ϑ = ϑ(t) and � = �(t),

ϑ = E exp{itL1}, � = exp{−t2/(2n)}.(6.7)



NORMAL APPROXIMATIONS 2187

By Lemma 3 below, we have, for 4k ≤ m ≤ n/4,

|f (t) − g(t)| � |t |k+4(|ϑ |m + �m)(β + γ ) + γ t2m/n for |t | ≥ 1.(6.8)

We shall use the well-known simple bound

|ϑ | ≤ exp{−t2/(4n)} for |t | ≤ 1/β.(6.9)

In particular, the inequality (6.9) holds for C < |t | < a.
We choose the integer number 4k ≤ m ≤ n as

m = [4(k + 5)nt−2 ln |t |], C < |t | < a,

where [x] is the integer part of x ∈ R. The number m = m(t) depends on t . If C =
Ck is sufficiently large, then m is a well defined integer such that 4k ≤ m ≤ n/4,
for sufficiently large n. Now (6.8) and (6.9) imply

|f (t) − g(t)| � |t |−1(β + γ ) + γ ln |t |, C < |t | < a.(6.10)

Integrating (6.10) over C < |t | < a we derive
∫
C≤|t |≤a � β + γ + γ ln2 a. To con-

clude the proof of the theorem, we note that 1 ≤ a ≤ 3 + 1/γ due to our choices
of constants, and therefore γ + γ ln2 a � γ ln2(γ ).

We now prove the following lemma, which is used in the proof above. The
lemma gives an expansion of the characteristic functions for |t | ≥ 1.

LEMMA 3. Assume that β ≤ 1 and γ ≤ 1. Then for n ≥ 4k and 4k ≤ m ≤ n/4
we have

|f (t) − g(t)| � |t |k+4(|ϑ |m + �m)(β + γ ) + γ t2m/n for |t | ≥ 1.

PROOF. The proof follows from Propositions 1–3 below. When applying
Propositions 1 and 2 one has to replace m by 2m. �

Let us introduce some notation first. Let �m = {1, . . . ,m} and let A be a sub-
set of �n = {1, . . . , n}, and use |A| to denote the number of elements in A. For
convenience, we write Ti1,...,ik or Ti1···ik instead of T{i1,...,ik}. Then we can write
T = T1 + · · · + Tk where, for 1 ≤ p ≤ k,

Tp = ∑
|A|=p

TA with TA = tp(Xj , j ∈ A).

We now split T into two parts T
(m), T

(0) so that

T = T
(m) + T

(0), T
(m) = T

(m)
1 + · · · + T

(m)
k , T

(0) = T
(0)
1 + · · · + T

(0)
k ,

where

T
(m)
s = ∑

|A|=s,A∩�m �=∅

TA and T
(0)
s = ∑

|A|=s,A∩�m=∅

TA.

We are now ready to prove Propositions 1–3.
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PROPOSITION 1. Let 1 ≤ m ≤ n. The characteristic function

f = f (t) = E exp{itS} ≡ E exp
{
it

(
L + T

(0) + T
(m))}

satisfies f = f0 + f1 + R with

f0 = E exp
{
it

(
L + T

(0))}, f1 = (it)E
(
exp

{
it

(
L + T

(0))}
T

(m))(6.11)

and a remainder term R such that |R| � γ t2m/n.

PROOF. We use τ, τ0, τ1, τ2, . . . to denote i.i.d. r.v.’s which are uniformly dis-
tributed on [0,1], and further assume that they are independent of all other r.v.’s.
Given a smooth function g, we will frequently use the Taylor expansion of the
following form

g(x + h) =
k∑

s=0

g(s)(x)hs/s! + E(1 − τ)kg(k+1)(x + τh)hk+1/k!.

For instance, we can expand f in powers of T
(m), and obtain f = f0 + f1 + R

with

R = (it)2
E(1 − τ) exp

{
it

(
L + T

(0) + τT
(m))}(

T
(m))2

.

Thus

|R| ≤ t2
E

(
T

(m))2 � t2
k∑

p=1

mnp−1
ET 2

1···p = t2 m

n

k∑
p=1

np
ET 2

1···p � m

n
t2γ.

�

PROPOSITION 2. Let 2k ≤ m ≤ n. The function f0 + f1 with f0 and f1 de-
fined by (6.11) satisfies f0 + f1 = f2 + f3 + R1 with f2 = E exp{itL}, f3 =
E(it) exp{itL}T, and the remainder term R1 satisfies |R1| � γ t2|ϑ |m/2.

PROOF. Since T = T
(0) + T

(m), it suffices to check that

f0 ∼ f2 + (it)E exp{itL}T(0), f1 ∼ (it)E exp{itL}T(m)(6.12)

with remainder terms bounded as R1.
Let us prove the first relation in (6.12). Note that

f0 = ϑm
E exp

{
it

(
L

(0) + T
(0))} where L

(0) = Lm+1 + · · · + Ln

is the part of L independent of X1, . . . ,Xm. Now we can expand in powers of T
(0).

We estimate the remainder term similar to the proof of Proposition 1. To estimate
the variance of T

(0) we use the obvious inequality var T
(0) ≤ var T.

Let us prove the second relation in (6.12). We consider only the case where m

is an even integer. It suffices to check that

E exp
{
it

(
L + T

(0))}
T

(m)
p ∼ E exp{itL}T(m)

p for p = 1, . . . , k.(6.13)
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Let us show that

E exp
{
it

(
L + T

(0))}
T

(m)
p = E exp

{
it

(
L + T

(0))}
T

∗
p(6.14)

with T
∗
p = ∑p

s=1
∑

(s) αsTA and αs = (m
s

)
/
(m/2

s

)
, where

∑
(s) is taken over all sub-

sets A ⊂ �n \ �m/2 such that |A ∩ (�m \ �m/2)| = s.

To prove (6.14), let us start with a representation of E exp{it (L + T
(0))}T(m)

p .
Sorting subsets A according to the cardinality of the intersection A ∩ {1, . . . ,m}
and using the symmetry and i.i.d. assumptions, we get

E exp
{
it

(
L + T

(0))}
T

(m)
p

= ∑
A : |A|=p,A∩�m �=∅

ETA exp
{
it

(
L + T

(0))}
(6.15)

=
p∑

s=1

∑
A : |A|=p,|A∩�m|=s

ETA exp
{
it

(
L + T

(0))}

=
p∑

s=1

(
m

s

) ∑
B : |B|=p−s,|B∩�m|=∅

ETAs∪B exp
{
it

(
L + T

(0))},
where A1, . . . ,As ⊂ {1, . . . ,m} are arbitrary fixed subsets of cardinality s.
For example, As = {1, . . . , s}. A consideration similar to (6.15), starting with
E exp{it (L + T

(0))}T∗
p instead of E exp{it (L + T

(0))}T(m)
p , shows that E exp{it ×

(L + T
(0))}T∗

p is equal to the right-hand side of (6.15), which proves the identity
(6.14).

The statistic T
∗
p is independent of X1, . . . ,Xm/2. Therefore, (6.14) implies

E exp
{
it

(
L + T

(0))}
T

(m)
p = ϑm/2

E exp
{
it

(
L

(m/2) + T
(0))}

T
∗
p.(6.16)

Now we can expand in powers of T
(0). This leads to

E exp
{
it

(
L + T

(0))}
T

(m)
p ∼ ϑm/2

E exp
{
itL(m/2)}

T
∗
p ≡ E exp{itL}T(m)

up to an error bounded by t2|ϑ |m/2
E|T(0)

T
∗
p| [this can be checked as we did for

(6.15)]. Using the Hölder inequality, we have

E
∣∣T(0)

T
∗
p

∣∣ ≤ (var Tp var T
∗
p)1/2 � var T = γ,

since var T
∗
p � var Tp ≤ var T. Combining the bounds, we get (6.13). �

PROPOSITION 3. Assume that |t | ≥ 1. Let β ≤ 1 and γ ≤ 1. Let n ≥ 4k and
1 ≤ m ≤ n/4. Then the function f4 = E exp{itL} + (it)E exp{itL}T satisfies f4 =
g + R2 with g(t) = (1 + κ1(it)

3 + · · · + κk−1(it)
k+1)�n and the remainder term

R2 such that |R2| � (β + γ )|t |k+4(�m + |ϑ |m).
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PROOF. Using the i.i.d. and symmetry assumptions, we can write f4 = ϑn +
it

∑k
p=1 ϑn−p

(n
p

)
Dp , where

Dp = ET1···p exp{itL1} · · · exp{itLp}
= (it)pEL1 · · ·LpT1···p exp{it (τ1L1 + · · · + τpLp)}.

In view of the inequalities | exp{itu} − 1| � √|u| and
√

u1 + · · · + up � √
u1 +

· · ·+√
up for us ≥ 0, and

√|t | ≤ |t | for |t | ≥ 1, and the assumptions nE|L1|3 = β

and EL2
1 = 1/n, we have∣∣∣∣( n

p

)
Dp − (it)pκp

∣∣∣∣ ≤ |t |p
(

n

p

)
E|L1 · · ·LpT1···p|

∣∣∣∣∣exp

{
it

( p∑
j=1

τjLj

)}
− 1

∣∣∣∣∣
�

(
n

p

)
|t |p+1/2

E|L1 · · ·LpT1···p|
( p∑

j=1

√
|Lj |

)

= p

(
n

p

)
|t |p+1/2

E|L1|3/2|L2 · · ·LpT1···p|

� |t |k+1√
βn−p/2

(
n

p

)
(ET 2

1···p)1/2

� |t |k+1√
β
√

γ

≤ |t |k+1(β + γ ).

This in turn leads to f4 = f5 + R3 with f5 = ϑn + ∑k
p=1(it)

p+1κpϑn−p and the

remainder term R3 such that |R3| � |t |k+2|ϑ |m(β + γ ).
Recall 1 ≤ √

nβ . By a simple Taylor expansion, we have β ≤ 1, and |ϑp −1| �
t2

EL2
1 = t2/n ≤ t2β2 ≤ t2β . Hence |ϑn−p − ϑn| � t2β|ϑ |m. Therefore, using

κp ≤ √
γ ≤ 1, we can write f5 = f6 + R4 with

f6 = ϑn

(
1 +

k∑
p=1

(it)p+1κp

)

and a remainder term R4 such that |R4| � |t |k+3|ϑ |m(β + γ ). A very standard
calculation shows that

|ϑn − �n| � |t |3(|ϑ |m + �m)β.(6.17)

Thus using again κp ≤ √
γ ≤ 1, it follows that f6 = g(t) + R5 with |R5| �

|t |k+4(|ϑ |m + �m)β . Collecting all the inequalities, we complete the proof. �

6.2. Proof of Theorem 3. The proof is similar to that of Theorem 1. Recall that
γ

(α)
s = (n

s

)
E|T1···s |α . Without loss of generality we assume that

β ≤ ck and γ (α)
s ≤ ck for s = 1, . . . , k;(6.18)
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and

n ≥ 1/ck,(6.19)

where ck is a sufficiently small positive constant. A reduction leading to (6.18) and
(6.19) is based on applications of |κs | ≤ βδs + γ

(α)
s ≤ βδs + γ (α) (see Lemma 1)

instead of κ2
p ≤ γp used in the proof of Theorem 1. Using (6.18), (6.19) and (d) of

Lemma 1, it is easy to check that the function Np has a bounded derivative. Thus
we can apply Esseen’s smoothing inequality. For any a > 0,

‖FS − Np‖ � 1

a
+

∫ a

−a
|t |−1∣∣f (t) − g(α)(t)

∣∣dt(6.20)

with f defined by (6.5) and

g(α)(t) =
∫

R

exp{itx}dNp(x).(6.21)

We choose a = √
ck/(β + γ (α)). Split the integral in (6.20) as

∫ a
−a = ∫

|t |<C +∫
C<|t |<a , where C = Ck is a sufficiently large positive constant depending only on

k and α to be chosen later.
To estimate

∫
|t |<C we use Corollary 2 of Section 4. Estimating |t | ≤ C, the

corollary implies ∣∣f (t) − g(α)(t)
∣∣ � |t |α(

β + γ (α)).(6.22)

It follows that
∫
|t |<C � β + γ (α). Note that the presence of the factor |t |α guar-

anties the convergence of the integral in a neighborhood of t = 0.
It remains to consider the integral

∫
C≤|t |≤a . By Lemma 4 below, we have∣∣f (t) − g(α)(t)

∣∣ � |t |k+4(|ϑ |m + �m)
(
β + γ (α)) + γ (α)|t |αm/n

for |t | ≥ 1 and 4k ≤ m ≤ n/4. We integrate this bound as in the proof of The-
orem 1. A small difference arises since now instead of γ |t |2m/n we have the
summand γ (α)|t |αm/n. The choice of m ∼ nt−2 ln |t | leads to γ (α)|t |αm/n ∼
γ (α)|t |α−2 ln |t | which is an integrable function with respect to the measure dt/|t |
at |t | = ∞ since we assume that α < 2. As a consequence, we now no longer have
any log factors.

We now prove the following lemma, which is used in the proof above. This
lemma extends Lemma 3 to the case of lower moment assumption.

LEMMA 4. Let 1 ≤ α ≤ 2. Assume β ≤ 1 and γ ≤ 1. Then for n ≥ 4k and
4k ≤ m ≤ n/4, we have∣∣f (t) − g(α)(t)

∣∣ � |t |k+4(|ϑ |m + �m)
(
β + γ (α)) + γ (α)|t |αm/n for |t | ≥ 1,

where ϑ , �, f and g(α) are given by (6.7), (6.5) and (6.21), respectively.
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PROOF. We consider the cases α = 1 and 1 < α ≤ 2 separately. First consider
the case α = 1. Using exp{itx} = 1 + O(|tx|α), the expansion of Proposition 1 is
replaced by f = f0 + R with a remainder R such that |R| � γ (α)|t |αm/n. The
function f0 can be represented as

f0 ≡ E exp
{
it

(
L + T

(0))} = ϑm
E exp

{
it

(
L

(0) + T
(0))}.

Thus by an expansion in powers of T
(0) we can replace it by E exp{itL} = ϑn. We

conclude the proof replacing ϑn by �n ≡ g ≡ g(α) [see (6.17)].
Next consider the case 1 < α ≤ 2. Using exp{itx} = 1 + itx + O(|tx|α) and re-

peating arguments used in the proof of Proposition 1, we have f = f0 + f1 + R

with a remainder term R such that |R| � γ (α)|t |αm/n. The functions f0, f1 are
the same as in Proposition 1. A repetition of the proof of Proposition 2 leads to
f0 + f1 = f2 + f3 + R1 with |R1| � t2γ (α)|ϑ |m/2. A small difference in the proof
is that now we have to use Taylor expansions and Hölder’s inequalities adjusted to
our lower moment assumption.

To conclude the proof we have to show that f2 + f3 = g(α) + R2 with a remain-
der term R2 such that |R2| � (β + γ (α))tk+4(�m + |ϑ |m). The proof is similar to
that of Proposition 3 provided that some adjustments related to the lower moment
assumption are made. The flavor of the adjustments is like that used in the proof
of Theorem 6. We omit formal exposition of indeed lengthy and technical details.

�

6.3. Proof of Theorem 2. We prove the first half now. If γ ≥ 1, then we esti-
mate ‖FS − �‖ ≤ 2, and it follows that ‖FS − �‖ � β + γ . In the case of γ ≤ 1,
we use the bound of Theorem 1. Since |Gs | � |κs | and κ2

s ≤ γ from Lemma 1, we
have

‖FS − �‖ ≤ ‖FS − Nk‖ +
k∑

s=1

|Gs | � β + γ ln2(γ ) + √
γ � β + √

γ .

Next, we will show the second half of the theorem with an example. Let
X,X1, . . . ,Xn be i.i.d. N(0,1) r.v.’s, and define S = L + T, where

L = 1√
n

n∑
i=1

Xi, T = 2ε

(n − 1)
√

n

∑
1≤i<j≤n

XiXj

with ε > 0. Now we can show that if we have

‖FS − �‖ � β + γ ϑ,(6.23)

then we must have ϑ ≤ 1/2.
We prove the above claim by contradiction. Namely, assume that the contrary

holds, that is, that (6.23) holds with some ϑ > 1/2. Clearly, β = E|X1|3/√n �
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n−1/2, γ = var T = O(n−1), κ1 = 0, κ2 = εn−1/2, G1(x) = 0, and G1(x) =
εn−1/2�′′′(x). In view of Theorem 1 and the assumption (6.23), we have

|G2(x)| = ‖G2‖ ≤ ‖FS − �‖ + ‖FS − � − G2‖ � β + γ ϑ + γ ln2(γ ).

Multiplying
√

n on both sides, we get

|ε�′′′(x)| � 1 + √
nγ ϑ + √

nγ ln2(γ ).

Letting n → ∞, and in view of γ = O(n−1) and ϑ > 1/2, we get ε|�′′(x)| � 1
which contradicts the assumption that ε > 0 is an arbitrary positive number. Thus
we must have ϑ ≤ 1/2.

6.4. Proof of Theorem 5. Let η be a r.v. from N(0,1). Note that the left-hand
side of the inequality in Theorem 5 can be written as

Ef (S) =
∫

R

f (u)dP{S ≤ u},

Ef (η) + κ1Ef ′′(η) + · · · + κkEf (k+1)(η) =
∫

R

f (u)dNk(u).

Expanding f (S) = f (L + T) in powers of T, we get

Ef (S) = Ef (L) + Ef ′(L)T + ϑ, ϑ
def= E(1 − τ)f ′′(L + τT)T2,

where τ is uniformly distributed on [0,1], and is independent of all other r.v.’s. To
prove the theorem it suffices to check that

‖Ef (L) − Ef (η)‖ � ‖f ′′′‖β,(6.24)

‖ETf ′(L) − I‖ � C(β + γ ),(6.25)

‖ϑ‖ ≤ ‖f ′′‖γ,(6.26)

where

I = κ1Ef ′′(η) + · · · + κkEf (k+1)(η)
def= I1 + · · · + Ik.(6.27)

The estimate (6.24) is well known since L = L1 + · · · + Ln is a sum of i.i.d.
r.v.’s (see, e.g., [5]).

The bound (6.26) is obvious. Indeed, we have ‖ϑ‖ ≤ ‖f ′′‖ET
2 = ‖f ′′‖γ .

It remains to prove (6.25). Using T = T1 + · · · + Tk , the linear structure of Ts ,
and the i.i.d. assumption, we can write

ETf ′(L) = J1 + · · · + Jk, Js
def=

(
n

s

)
ET1···sf ′(L).(6.28)

In view of (6.27) and (6.28), the proof of (6.25) reduces to checking that

‖Is − Js‖ � C(β + γ ).(6.29)
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Let us split L = W + R, where W = L1 + · · · + Ls and R = Ls+1 + · · · + Ln.
Writing Ks = κsEf (s+1)(R), instead of (6.29), it suffices to prove that

‖Is − Ks‖ � C(β + γ )(6.30)

and

‖Ks − Js‖ � C(β + γ ).(6.31)

PROOF OF (6.30). Note that Is − Ks = κs(Ef (s+1)(η) − Ef (s+1)(R)). Since
L = R + W , to prove (6.30) it suffices to show that

|κs |
∥∥Ef (s+1)(η) − Ef (s+1)(L)

∥∥ � C(β + γ )(6.32)

and

|κs |
∥∥Ef (s+1)(R + W) − Ef (s+1)(R)

∥∥ � C(β + γ ).(6.33)

Let us prove (6.32). We consider the cases β ≥ 1 and β < 1 separately. Using
κ2
s ≤ γ (see Lemma 1), in the case β ≥ 1 we have

|κs |
∥∥Ef (s+1)(η) − Ef (s+1)(L)

∥∥ ≤ 2
∥∥f (s+1)

∥∥√γ � C
√

γβ ≤ C(γ + β).

In the case β ≤ 1 we use the bound (6.24) replacing f by f (s+1). Since κ2
s ≤ γ ,

we get

|κs |
∥∥Ef (s+1)(η) − Ef (s+1)(L)

∥∥ � ∥∥f (s+4)
∥∥√γβ ≤ C

√
γβ ≤ C(γ + β).

Let us prove (6.33). We apply (6.1) replacing g by f (s+1), the variable x by R,
and h by W , respectively. Since κ2

s ≤ γ , we have

|κs |
∥∥Ef (s+1)(R + W) − Ef (s+1)(R)

∥∥
(6.34)

� (∥∥f (s+1)
∥∥ + ∥∥f (s+2)

∥∥)
γ 1/2

E|W |1/2.

Using |W |1/2 ≤ |L1|1/2 + · · · + |Ls |1/2 and EL2
m = 1/n, we derive E|W |1/2 �

n−1/4 ≤ β1/2. In view of (6.34), an application of
√

γβ ≤ γ + β yields (6.33).

PROOF OF (6.31). Using short Taylor expansions, we can represent Js as

Js =
(

n

s

)
EL1 · · ·LsT1···sf (s+1)(V + R)(6.35)

with V = τ1L1 + · · · + τsLs . Representation (6.35) can be proven in s steps. Let
us consider details related only to the first step. The degeneracy property of the
kernels implies that

ET1···sf ′(L2 + · · · + Ln) = 0(6.36)

since the conditional expectation E(T1···s |X2, . . . ,Xs+1) = 0, and L2 +· · ·+Ln is
independent of X1. Using (6.36), expanding in powers of L1 we get

Js =
(

n

s

)
EL1T1···sf ′′(τ1L1 + L2 + · · · + Ln).
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Proceeding in a similar way with L2, . . . ,Ls in place of L1, we arrive at (6.35).
Using the definition of κs , and the expression (6.35) for Js , we can write Ks −

Js = (n
s

)
EL1 · · ·LsT1···s(f (s+1)(R) − f (s+1)(V + R)). By an application of (6.1)

with g = f (s+1), x = R and h = V , it follows that

‖Ks − Js‖ ≤ C

(
n

s

)
E|L1 · · ·LsT1···s ||V |1/2.(6.37)

Using the inequality |V |1/2 ≤ |L1|1/2 + · · · + |Ls |1/2, the Hölder inequality, the
assumption E|L1|3 = β/n and EL2

1 = 1/n, we get

E|L1 · · ·LsT1···s ||V |1/2 ≤ sE|L1|3/2|L2 · · ·LsT1···s |
� (E|L1|3L2

2 · · ·L2
sET 2

1···s)1/2(6.38)

= n−s/2(βET 2
1···s)1/2.

Using ET 2
1···s = ET

2
s /

(n
s

) ≤ γ /
(n
s

)
, relations (6.37) and (6.38) yield ‖Ks − Js‖ �

C
√

α
√

βγ , α = (n
s

)
/ns . Noting that α ≤ 1 and

√
βγ ≤ β + γ , we derive

‖Ks − Js‖ � C(β + γ ) which concludes the proof of (6.31).

6.5. Proof of Theorem 6. Let η be a r.v. from N(0,1). Note that the left-hand
side of the inequality in Theorem 6 can be written as

Ef (S) =
∫

R

f (u)dP{S ≤ u},

Ef (η) + κ1Ef ′′(η) + · · · + κpEf (p+1)(η)

=
∫

R

f (u)dNp(u).

We consider the cases α = 1 and 1 < α < 2, separately.
First consider the case α = 1. In this case I (α) = 0. Similar to (6.1), one can

check that

f (S) = f (L) + ϑ with ‖ϑ‖ � ‖f ‖1−α‖f ′‖α|T|α.(6.39)

It is easy to show that

E|Tp|α � γ (α)
p =

(
n

p

)
E|T1···p|α,

(6.40)
E|T|α � γ (α) = γ

(α)
1 + · · · + γ

(α)
k .

Then the proof follows from (6.24), (6.39) and (6.40).
Now consider the case 1 < α < 2. Similar to (6.1), we have

f (S) = f (L) + f ′(L)T + ϑ with ‖ϑ‖ � (‖f ′‖ + ‖f ′′‖)|T|α.
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From (6.40), we get E|T|α � γ (α). Also from (6.24) it follows easily that
‖Ef (L) − Ef (η)‖ � ‖f ′′′‖β . It remains to show that∥∥ETf ′(L) − I (α)

∥∥ � C
(
β + γ (α)),(6.41)

where I (α) = κ1Ef ′′(η) + · · · + κpEf (p+1)(η). We have

ETf ′(L) = J1 + · · · + Jk, Js
def=

(
n

s

)
ET1···sf ′(L).(6.42)

In view of (6.41) and (6.42), the proof of the theorem reduces to checking

‖Is − Js‖ � C
(
β + γ (α)) for 1 ≤ s ≤ p,(6.43)

with Is = κsEf (s+1)(η), and

‖Js‖ � C
(
β + γ (α)) for p < s ≤ k,(6.44)

where p is an integer satisfying the condition of the theorem.
Estimation of Js for s > p. We have to prove (6.44). Consider the difference

operator δm such that δmf (x) = f (x + Lm) − f (x). Arguments similar to those
used to derive (6.35) allow us to write

Js =
(

n

s

)
ET1···sδ1 · · · δsf

′(R)(6.45)

with R = Ls+1 + · · · + Ln. Similar to (6.1), we have

‖δ1 · · · δsf
′(R)‖ � ‖f ′‖ + ∥∥f (s+1)

∥∥|L1|ε · · · |Ls |ε, 0 ≤ ε ≤ 1.

From this and the Hölder inequality with exponents q = α/(α − 1) and α, so that
1/q + 1/α = 1, we have

‖Js‖ � C

(
n

s

)
E|L1|ε · · · |Ls |ε|T1···s |

� C

(
n

s

)
(E|L1|εq · · · |Ls |εq)1/q(E|T1···s |α)1/α

= C

((
n

s

)
(E|L1|εq)s

)1/q (
γ (α))1/α

� C

(
n

s

)
(E|L1|εq)s + Cγ (α).

To complete the proof of (6.44) we need to prove
(n
s

)
(E|L1|εq)s � β . Choose

ε = (2 + 1/s)/q . The condition s > p guaranties that ε ≤ 1. Using nE|L1|2+1/s ≤
β1/s [see (b) of Lemma 1], we have

(n
s

)
(E|L1|εq)s ≤ (nE|L1|2+1/s)s ≤ β , which

completes the proof for s > p.
Estimation of Js for 1 ≤ s ≤ p. We have to prove (6.43). There is something to

prove only if 3/2 < α < 2. Indeed, in the case 1 < α ≤ 3/2, the integer p from the
condition of the theorem satisfies p ≤ 0, and we have no Js to estimate.



NORMAL APPROXIMATIONS 2197

Let us split L = W + R where W = L1 + · · · + Ls and R = Ls+1 + · · · + Ln.
Writing Ks = κsEf (s+1)(R) instead of (6.43) it suffices to prove that ‖Is − Ks‖
and ‖Ks − Js‖ are bounded from above like ‖Is − Js‖ in (6.43).

Estimation of ‖Is − Ks‖. Note that Is − Ks = κsE(f (s+1)(η) − f (s+1)(R)).
Since L = R + W , it suffices to show that

|κs |
∥∥f (s+1)(η) − f (s+1)(L)

∥∥ � C
(
β + γ (α))(6.46)

and

|κs |
∥∥Ef (s+1)(R + W) − Ef (s+1)(R)

∥∥ � C
(
β + γ (α)).(6.47)

Let us prove (6.46). We consider the cases β ≥ 1 and β ≤ 1 separately. Using
|κs | � βδs + γ (α) and δs ≤ 1 [see (d) of Lemma 1], in the case of β ≥ 1, we have

|κs |
∥∥Ef (s+1)(η) − Ef (s+1)(L)

∥∥ ≤ 2
∥∥f (s+1)

∥∥(
βδs + γ (α)) � C

(
β + γ (α)).

In the case of β ≤ 1, we combine (d) of Lemma 1 with the bound (6.24) replacing
f by f (s+1). We get

|κs |
∥∥Ef (s+1)(η) − Ef (s+1)(L)

∥∥ � ∥∥f (s+4)
∥∥(

βδs + γ (α))β ≤ C
(
β + γ (α)).

Let us now prove (6.47). Again we consider the cases of β ≥ 1 and β ≤ 1 sep-
arately. We omit details in the case of β ≥ 1 since they are very similar to those
in the proof of (6.46). In the case of β ≤ 1, we use (d) of Lemma 1 and apply
‖f (s+1)(R + W) − Ef (s+1)(R)‖ ≤ C‖W‖ to get

|κs |
∥∥Ef (s+1)(R + W) − Ef (s+1)(R)

∥∥ � C
(
βδs + γ (α))

E|W |.(6.48)

Using |W | ≤ |L1| + · · · + |Ls | and EL2
m = 1/n, we derive E|W | � n−1/2 ≤ β . In

view of our assumption β ≤ 1, the inequality (6.48) yields (6.47).
Estimation of ‖Ks − Js‖. By (6.35) we have

Js =
(

n

s

)
EL1 · · ·LsT1···sf (s+1)(V + R)

with V = τ1L1 + · · ·+ τsLs . This representation, combined with the definition κs ,
allows one to write

Ks − Js =
(

n

s

)
EL1 · · ·LsT1···s

(
f (s+1)(R) − f (s+1)(V + R)

)
.

Again we consider the cases of β ≥ 1 and β ≤ 1 separately. We omit details in the
case of β ≥ 1 since they are very similar to those in the proof of (6.46). In the case
of β ≤ 1, we apply∥∥Ef (s+1)(R) − f (s+1)(R + V )

∥∥ ≤ C‖V ‖ε, 0 ≤ ε ≤ 1.
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From the inequality |V |ε � |L1|ε + · · · + |Ls |ε , the i.i.d. assumption, the Hölder
inequality with exponents q = α/(α − 1) and α, and also

(n
s

) ≤ ns , we have

‖Ks − Js‖ � C

(
n

s

)
E|L1 · · ·LsT1···s ||V |ε

≤ CnssE|L1|1+ε|L2 · · ·LsT1···s |
� Cns(

E|L1|(1+ε)q(E|L1|q)s−1)1/q
(E|T1···s |α)1/α

� Cns
E|L1|(1+ε)q(E|L1|q)s−1 + Cns

E|T1···s |α
= Cns

E|L1|(1+ε)q(E|L1|q)s−1 + Cγ (α).

We choose ε so that (1 + ε)q = 3. In view of 3/2 < α < 2, the number ε satisfies
0 < ε < 1. Since nE|L1|3 = β , to conclude the estimation of ‖Ks − Js‖ it suffices
to verify the inequality nE|L1|q ≤ 1. Recalling that β ≤ 1 and applying Lemma 1,
we have nE|L1|q ≤ βq−2 ≤ 1, which completes the estimation of ‖Ks − Js‖.

Acknowledgments. The authors would like to thank the Editor, Associate Ed-
itor and referees for their comments and criticisms, which led to this much im-
proved version.
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