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UPCROSSING INEQUALITIES FOR STATIONARY SEQUENCES
AND APPLICATIONS

BY MICHAEL HOCHMAN

Hebrew University of Jerusalem

For arrays (Si,j )1≤i≤j of random variables that are stationary in an ap-
propriate sense, we show that the fluctuations of the process (S1,n)∞n=1 can
be bounded in terms of a measure of the “mean subadditivity” of the process
(Si,j )1≤i≤j . We derive universal upcrossing inequalities with exponential
decay for Kingman’s subadditive ergodic theorem, the Shannon–MacMillan–
Breiman theorem and for the convergence of the Kolmogorov complexity of
a stationary sample.

1. Introduction. Let us say that a sequence (Xn)
∞
n=1 of real numbers has k

crossings (or upcrossings) of an interval [s, t] if there are indices

1 ≤ i1 < j1 < i2 < j2 < · · · < ik < jk

such that Xim < s and Xjm > t . Allowing Xn to be random, it easily follows that
limXn exists a.s. if and only if, for every interval of positive length, the probability
of infinitely many crossings of the interval is 0.

There are a number of classical limit theorems in probability that can be for-
mulated and proven in this way, the best known of which is Doob’s upcrossing
inequality for L1 martingales [6]: if (Sn)

∞
n=1 is an L1 martingale, then, for s < t ,

P
(
(Sn)

∞
n=1 has k upcrossings of [s, t])≤ supn ‖Sn‖1

k(t − s)

(see also Dubins [7]). A similar inequality was proven by Bishop for the time aver-
ages Sn = 1

n

∑n
i=1 Xn of an L1 stationary process (Xn)

∞
n=1 [1, 2]. Assuming non-

negativity of the process instead of integrability, Ivanov [8] proved the following
beautiful result: for every s < t ,

P
(
(Sn)

∞
n=1 has k upcrossings of [s, t])≤

(
s

t

)k

(1.1)

(see [4]; for related results, see Jones et al. [9], and Kalikow and Weiss [10]). A re-
markable aspect of these inequalities is that they hold universally: except for trivial
normalization, they do not depend on the process in question. Neither martingales
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nor ergodic averages admit universal rates of convergence and it is all the more
surprising that such general bounds for the fluctuations exist.

In this paper, we establish a general upcrossing inequality for certain sequences
associated with stationary processes, in terms of a certain measure of “mean sub-
additivity” of the process. We consider arrays (Si,j )1≤i≤j of random variables,
although we will usually identify the ordered pair (i, j) that indexes Si,j with the
integer interval [i; j ] = [i, j ] ∩ N, and if U = [i; j ] is such an interval, we write
SU for Si,j . We assume the process to be stationary with respect to translation of
the indexing intervals, that is, that for every m ∈ N, one has(

S[i;j ]
)
1≤i≤j = (

S[i+m,j+m]
)
1≤i≤j in distribution.

One very general way to obtain such arrays is by applying a function to samples
of stationary processes: if (Xn)

∞
n=1 is stationary and g is any function defined on

finite sequences, then Si,j = g(Xi,Xi+1, . . . ,Xj ) satisfies these assumptions.
Let I ⊆ N be an interval and δ > 0. We say that a collection I1, . . . , Ir of inter-

vals δ-fills I if all of the intervals are contained in I and |I \⋃ Ii | < δ|I |, where
| · | denotes cardinality.

THEOREM 1.1. Suppose that (Si,j )1≤i≤j is stationary in the above sense. Let
s < t and 0 < δ < 1

4 . Then, for every k,

P

(
(S1,n)

∞
n=1 has k

upcrossing of [s, t]
)

(1.2)

≤ c · ρk + P

⎛⎝ there exists n > k such that S1,n > t

and [1;n] can be δ-filled by disjoint
intervals V1, . . . , Vr satisfying SVj

< s

⎞⎠ .

The constants c and 0 < ρ < 1 depend only on δ (but not on the process or on s, t).

In applications, one optimizes over δ to get a bound for the left-hand side which
is often independent of the process. Theorem 1.1 is effective and the constants
may be computed explicitly, although they are surely not optimal. This inequality
cannot be reversed and in Section 2, we give a simple example in which the left-
hand side decays exponentially and uniformly for a certain class of processes, but
the right-hand side can decay arbitrarily slowly.

Theorem 1.1 can be generalized in several ways. It remains valid when one
starts with a “two-sided” stationary array (Si,j )−∞<i≤j<∞ and sets Sn = S−n,n,
and there is a version for Sn = SVn , where Vi is an arbitrary increasing sequence
with 0 ∈ V1. It can also be extended to the multidimensional setting, where the
process is indexed by cubes instead of segments. These versions require minor
modifications of the proof we give.

Our first application is to Kingman’s subadditive ergodic theorem. Let
(Xm,n)1≤m≤n be stationary, in the sense described above, and subadditive, that is,
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Xk,n ≤ Xk,m +Xm+1,n whenever k ≤ m < n. Kingman’s theorem states that under
some integrability conditions, if Xm,n is stationary and subadditive, then 1

n
X1,n

converges almost surely. As examples of this situation, consider Xm,n =∑n
i=m Yi ,

where Yi is a stationary process or Xm,n = ‖Zm, . . . ,Zn‖, where Zi is a stationary
sequence of operators.

Polynomial decay for upcrossings in Kingman’s theorem for integrable process-
es was proven by Krawczak [11]. We establish an exponential version of this, with
integrability replaced by a boundedness condition:

THEOREM 1.2. Let (Xm,n)1≤m≤n be stationary and subadditive. Suppose that
X1,1 ≤ M a.e. for a constant M . Then, for every s < t ,

P
(
(Sn)

∞
n=1 has k upcrossings of [s, t])< c · ρk

for constants 0 < ρ < 1 and c that depend only on s, t and M .

We next turn to the convergence of Shannon information of samples. Given
a finite-valued process (Xi)

∞
i=1, the information of the sample X1, . . . ,Xn is the

random variable

I (X1, . . . ,Xn) = − log P(X1, . . . ,Xn).

Here, for a fixed sequence ξ = ξ1, . . . , ξn, we write P(ξ) for the probability of
observing this sample, so P(X1, . . . ,Xn) is the probability of observing the sample
that was actually observed.

The Shannon–MacMillan–Breiman theorem [13] is one of the fundamental
theorems in information theory, asserting that 1

n
I (X1, . . . ,Xn) converges almost

surely. See, for instance, [12].

THEOREM 1.3. Suppose that (Xn)
∞
n=1 is a 0,1-valued stationary process. Let

Sn = 1
n
I (X1, . . . ,Xn). Then, for every s < t ,

P
(
(Sn)

∞
n=1 has k upcrossings of [s, t])< c · ρk

and the constants 0 < ρ < 1 and c depend on s, t .

The same result holds for processes with a finite number r of symbols, but the
constants will then also depend on r . We note that there is no universal rate of
convergence for this limit and Theorem 1.3 seems to be the first effective proof
of its convergence. It is interesting that the classical proofs of the convergence
of 1

n
I (X1, . . . ,Xn) rely on the ergodic theorem and the Martingale theorem, but

despite upcrossing inequalities being known for both of these, it is unclear how to
combine them to deduce Theorem 1.3.

Bishop’s upcrossing proof of the ergodic theorem was part of a larger program
of Bishop’s to “constructivize” mathematical analysis. As Theorem 1.1 is effective,



2138 M. HOCHMAN

it can probably be adapted to this setting, leading to constructive proofs of the
Kingman and Shannon–MacMillan–Breiman theorems.

Another closely related result involves algorithmic complexity rather than Shan-
non information. For a finite string x of 0’s and 1’s, let κ(x) denote the Kol-
mogorov complexity of x, sometimes referred to as the minimal description length
of x (see Section 4). Although κ(·) is not formally computable, it has been ex-
tensively studied as a nonstatistical measure of complexity and is closely related
to Shannon’s theory of information; see, for example, [5]. The following result
is therefore an analog of Theorem 1.3; the existence of the limit was shown by
Brudno [3].

THEOREM 1.4. Suppose that (Xn)
∞
n=1 is a stationary 0,1-valued process.

Then, writing Sn = − 1
n
κ(X1, . . . ,Xn), for every s < t , we have

P
(
(Sn)

∞
n=1 has k upcrossings of [s, t])< c · ρk

for constants c and 0 < ρ < 1 that depend only on s, t .

The rest of the paper is organized as follows. First, we use Theorem 1.1 to
derive the applications. In Section 2, we derive the result on Kingman’s theorem,
and show that the inequality in Theorem 1.1 cannot be reversed. In Section 3, we
prove the upcrossing inequality for the Shannon–McMillan–Breiman theorem and
in Section 4, we derive the inequality for Kolmogorov complexity. In Section 5, we
reduce Theorem 1.1 to a combinatorial lemma whose proof is given in Section 6.

2. The subadditive ergodic theorem and an example. In this section, we
discuss the relation between Theorem 1.1 and ergodic theorems.

PROOF OF THEOREM 1.2. Suppose that V1, . . . , Vr are disjoint subintervals
of [1;n] such that 1

|Vi |XVi
< s. Let U = [0,1] \⋃r

i=1 Vi . By subadditivity,

1

n
X1,n ≤∑ |Vi |

n

1

|Vi |XVi
+ ∑

j∈U

Xj,j ≤
∑ |Vi |

n
s + |U |

n
M

(in the last inequality, we used stationarity to get Xj,j ≤ M). Thus, if [1;n] is
δ-filled by the Vi , then |U | ≤ δn, so

1

n
X1,n ≤ (1 − δ)s + δM

and if δ = t−s
M−s

, then it impossible that 1
n
X1,n > t . Hence, for this δ, when we apply

Theorem 1.1 with the sequence Si,j = 1
j−i+1Xi,j , the event on the right-hand side

of inequality (1.2) is empty. The theorem follows. �
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Next, we show that decay of the right-hand side in Theorem 1.1 is not necessary
in order to get fast decay on the left. Let (Xn)

∞
n=1 be a stationary process with

values in [−1,1] and let

Si,j = 1

�√j − i

i+�√j−i
−1∑

k=i

Xk,

so S1,n is obtained by repeating elements from the sequence of ergodic averages
( 1
n
(X1 + · · ·+Xn))

∞
n=1. The latter sequence obeys an upcrossing inequality which

does not depend on Xn; thus, the former sequence also does. However, the follow-
ing proposition shows that one cannot obtain this from Theorem 1.1.

PROPOSITION 2.1. Let δ > 0, and

pk = P

⎛⎝ there exists n > k such that S1,n > 1
2

and [1, n] can be δ-filled by disjoint
intervals V1, . . . , Vr satisfying SVj

< −1
2

⎞⎠ .

Then, for arbitrarily large k, there are processes for which pk ≥ 1/6 and, in par-
ticular, the convergence pk → 0 is not uniform as the process (Xn) is varied.

PROOF. Fix δ > 0. Let n > 1/δ and let (Xi)
∞
i=1 be the process whose unique

sample path, up to translation, is the sequence with period 2n in which blocks
of 1’s and −1’s of length n alternate. Set k = n2. It is easily verified that (a) the
probability that the first 2n/3 symbols of a sample are 1’s is 1/6 and S1,k , in this
case, is ≥ 1/2; and (b) if X1 = 1, then, taking j to be the first index with Xj = −1,
we have Sj,k < −1/2 and [1;k] is δ-covered by [j ;k]. Thus, for each square k,
there are processes for which pk ≥ 1/6. �

3. The Shannon–McMillan–Breiman theorem. In this section, we prove
Theorem 1.3. Fix s < t and a parameter δ > 0. Set

Si,j = 1

j − i + 1
I (Xi, . . . ,Xj ).

In order to apply Theorem 1.1, for each n ∈ N, we wish to bound the probability
of the event

Bn =
{

S1,n > t and [1, n] can be δ-filled by disjoint
intervals V1, . . . , Vr satisfying SVj

< s

}
.

Since

Si,j > t ⇐⇒ P(Xi, . . . ,Xj ) < 2−t (j−i+1),

Si,j < s ⇐⇒ P(Xi, . . . ,Xj ) > 2−s(j−i+1),
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we have the trivial bound

P(Bn) ≤ 2−tn#
(

words w ∈ {0,1}n which can be δ-filled with
disjoint words v satisfying P(v) > 2−s�(v)

)
,(3.1)

where �(v) denotes the length of v.
To estimate the right-hand side of (3.1), we note that each word w that is counted

on the right can be constructed as follows:

(1) choose a subset I ⊆ [1;n] of size ≤ δn;
(2) choose the symbol w(i) for each i ∈ I ;
(3) for each maximal interval J ⊆ [1;n] \ I , choose a word v = w|J with P(v) >

2−s�(v).

To bound the number of words produced in (1)–(3), we bound the number of
choices at each step. In step (1), we have ≤ 2nh(δ)+o(logn) choices, where h(x) =
−x logx−(1−x) log(1−x) (this is a standard consequence of Stirling’s formula).
In step (2), we have at most 2δn choices. Finally, in step (3), let J1, . . . , Jr be the
maximal intervals in [1;n] \ I . The number of distinct words v of length |Ji | and
satisfying P(v) > 2−s|Ji | is clearly bounded by 2s|Ji |, so the number of ways to
choose such words with lengths |J1|, . . . , |Jr | is at most

r∏
i=1

2s|Ji | = 2
∑r

i=1 s|Ji | ≤ 2sn.

It follows that the number of words counted on the right-hand side of equation (3.1)
is

≤ 2(s+h(δ)+δ)n+o(logn),

so

P(Bn) ≤ 2−(t−s−h(δ)−δ+o(1))n.

Hence, if δ is small enough in a manner depending on s, t , then this bound is
summable and gives

P

(⋃
n>k

Bn

)
< c · ρk

for constants c and 0 < ρ < 1 depending only on s, t . Since
⋃

n>k Bn is the event
on the right-hand side of inequality (1.1) in Theorem 1.1, this completes the proof
of Theorem 1.3.

4. Kolmogorov complexity. The Kolmogorov complexity κ(x) of a 0,1-
valued string x is defined as follows. Fix a universal Turing machine U and let
x∗ be a string of minimal length such that, when U is run on input x∗, the out-
put is x. Then, κ(x) is the length of x∗. Although κ(·) depends on the universal
machine U , changing U only changes κ(·) by an additive constant.
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In this section, we prove Theorem 1.4. Note that Sm,n = 1
n
κ(xm, . . . , xn) is not

strictly subadditive, so Kingman’s theorem does not apply; nonetheless, we can
exploit the fact that it is “almost subadditive.”

PROPOSITION 4.1. Let (Xn)
∞
n=1 be a 0,1-valued stationary process and set

Sn = 1
n
κ(X1, . . . ,Xn). Then, for every s < t , there is a δ > 0 and an N such that

the event

Bk =
⎧⎨⎩

there exists n > k such that S1,n > t

and [1, n] can be δ-filled by disjoint
intervals V1, . . . , Vr satisfying SVj

< s

⎫⎬⎭
is empty for all k ≥ N .

PROOF. We reason as in the previous section. Suppose that x ∈ {0,1}n and
[1;n] can be δ-filled by a disjoint collection of intervals {V1, . . . , Vm} with

1
|Vk |κ(x|Vk

) < s. We can encode x by describing the choices of the three-step
process outlined in the previous section. In step (3), we encode the pattern x|Vm by
writing down the algorithm that produces it. Thus, the estimate from the previous
section shows that the number of bits required is

h(δ)n + n +∑
κ(x|Vi

) ≤ (
s + h(δ) + δ

)
n + o(logn).

We only require a constant-length program to extract the string x from this encod-
ing. We also require an overhead of O((h(δ) + δ)n) to encode this information in
a self-punctuating way. Thus,

κ(x) ≤ o(logn) + (
s + C′(h(δ) + δ

))
n

and if δ is small enough (in a manner depending on s, t), then this implies κ(x) < t ,
once n is large enough (how large n must be depends on C,C′, which, in turn,
depend on the Turing machine we are using, but is independent of s, t, δ and the
process). The proposition follows. �

Theorem 1.4 now follows from Theorem 1.1.

5. Reduction of Theorem 1.1 to a covering lemma. The purpose of this sec-
tion is to reduce the proof of Theorem 1.1 to a combinatorial statement about in-
tervals, related to the effective Vitali covering lemma of Kalikow and Weiss [10].
This lemma is stated below in Lemma 5.1, but its proof is rather technical and we
defer it to Section 6.

Let (Si,j )1≤i≤j be stationary, in the sense discussed in the Introduction. Fix
s < t , a parameter δ > 0 and an integer k. For i ∈ N, we define the events

Ai = {(Si,i+n)
∞
n=1 has k upcrossings of [s, t]},

Bi =
{

There is an n > k such that Si,i+n > t , and [i, i + n] can be
δ-filled by disjoint intervals V1, . . . , Vr satisfying SVj

< s

}
.
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By stationarity, P(Ai) = P(Aj ) and P(Bi) = P(Bj ) for all i, j . We abbreviate A =
A1,B = B1. Theorem 1.1 is then equivalent to

P(A) ≤ cρk + P(B)

for constants 0 < ρ < 1 and c that depend only on s, t .
The proof proceeds as follows. Fix a large N and let

AN
i = {(Si,i+n)

N
n=1 has k upcrossings of (s, t)}.

Since A =⋃
AN

1 , it suffices to show that, for each N ,

P(AN
1 ) ≤ cρk + P(B)

with c, ρ independent of N . Fix an integer R much bigger than N (we will even-
tually take R → ∞) and let I ⊆ {1, . . . ,R} be the random set of indices defined
by

I = {i ∈ [1;R] :AN
i occurs}.

By stationarity of Si,j , we have

P(AN
1 ) = 1

R

R∑
i=1

P(AN
i ) = 1

R
E

(
R∑

i=1

χAN
i

)
= 1

R
E|I |.

We proceed to estimate the expected size of I . We divide I into two parts:

I0 = {i ∈ I :Bi occurs} and I1 = I \ I0.

Since 1
R

E(|I0|) = P(B), it suffices to show that 1
R

|I1| ≤ cρk .
By definition, for each i ∈ I1, there is a (random) sequence of k pairs of non-

empty intervals Ui(1) ⊆ Vi(1) ⊆ · · · ⊆ Ui(k) ⊆ Vi(k) whose left endpoint is i and
with length ≤ N , and such that SUi(m) < s and SVi(m) > t for 1 ≤ m ≤ k.

We now pass to a subsequence of the Ui’s and Vi’s by performing two refine-
ments of the sequence. First, clearly, |Ui(m + 1)| > |Vi(m)| > |Ui(m)| because
SUi+1(m), SUi(m) �= SVi(m), and because of the given inclusions. Thus, |Ui(m)| >

2(m − 1). If we delete the first k0 = �k/2� + 1 pairs, then we are left with a se-
quence Ui(k0 + 1) ⊆ Vi(k0 + 1) ⊆ · · · ⊆ Ui(k) ⊆ Vi(k) of at least k′ = �k/2
 − 1
pairs of intervals, all of which are of length greater than k.

Second, notice that if |Vi(m)|/|Ui(m)| ≤ 1 + δ, then i ∈ I0 since Ui(m) would
δ-fill Vi(m). Thus, for i ∈ I1, we also have |Vi(m)|/|Ui(m)| > 1 + δ. Choose q so
that

(1 + δ)q−1 ≥ 72/δ2,

that is, q = �log(72/δ2)/ log(1+δ)�+1. By deleting the intervals Ui(j),Vi(j +1)

when j �= 0 (modq) and renumbering the remaining ones, we are left with a se-
quence of k′′ ≥ �(k′ − 1)/q
 pairs of intervals Ũi(1) ⊆ Ṽi(1) ⊆ · · · ⊆ Ũi(k

′′) ⊆
Ṽi(k

′′), all having length > k and satisfying SŨi(m) < s, SṼi(m) > t , and which,
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additionally, satisfy the growth condition |Vi(m)| ≥ 72
δ2 |Ui(m)| for every 1 ≤

m ≤ k′′.
We now apply a combinatorial result whose proof we defer to Section 6.

LEMMA 5.1. Let ε < 1/4. Suppose that J ⊆ N is finite and that for each
j ∈ J , we are given a sequence of intervals Ũj (1) ⊆ Ṽj (1) ⊆ · · · ⊆ Ũj (L) ⊆ Ṽj (L)

with left endpoint j and satisfying |Ṽj (n)| ≥ 2
ε2 |Ũj (n)|. Suppose that none of the

Ṽj (n)’s can be 6ε-filled by a disjoint collection of Ũi(m)’s. Then,

|J | ≤
(

1 + ε

6

)−(L−1)/(log 1/ε)

·
∣∣∣∣⋃
j∈J

Ṽj (L)

∣∣∣∣.
We apply the lemma to our situation with J = I1, L = k′′ and ε = δ/6. The

hypothesis is satisfied by definition of I1. It follows that there are constants c > 0
and 0 < ρ < 1 depending only on δ (hence on s, t), such that

|I1| ≤ c · ρ−k ·
∣∣∣∣⋃
i∈I1

Vi(k
′′)
∣∣∣∣

≤ c · ρ−k(N + R)

and the last inequality holds because
⋃

i∈I1
Vi(k

′′) ⊆ [1;N + R]. We thus have

P(A) = 1

R
E|I | = 1

R
E|I0| + 1

R
E|I1| ≤ P(B) + c · ρ−k

(
1 + N

R

)
and the proof of Theorem 1.1 is complete by taking R → ∞.

6. Proof of Lemma 5.1. The remainder of this paper is devoted to the proof
of Lemma 5.1. Some of the statements below are standard; we supply proofs for
completeness. Others parts of the argument are related to the effective Vitali cov-
ering lemma from [10]. See [12, 14] for other examples of covering lemmas in
probability and ergodic theory.

We say that a collection of segments is disjoint if its members are pairwise
disjoint. The following is a version of the classical Vitali covering lemma:

LEMMA 6.1. If V is a collection of intervals, then there is a disjoint subcol-
lection V ′ ⊆ V with |⋃V ′| ≥ |⋃V|/2.

PROOF. Let V ′ ⊆ V be a minimal collection satisfying
⋃V ′ = ⋃V . Order

the intervals in V ′ by their left endpoints, say V ′ = {V1,V2, . . . , Vm}. Then, the
subsequence consisting of intervals with even indices is disjoint, similarly for the
subsequence with odd indices. One of these must cover at least half of V . �
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For ε > 0 and an interval U = [a;b], the ε-blowup of U is

Uε = [a − ε|U |, b + ε|U |] ∩ Z.

Note that U ⊆ Uε and |Uε| ≤ (1+2ε)|U |. For a collection U of intervals, we write
U ε = {Uε :U ∈ U }.

LEMMA 6.2. If U is a collection of intervals, then |⋃U ε| ≤ (1 + 2ε)|⋃U |.

PROOF. Let A = ⋃U and decompose A into disjoint maximal intervals
V1, . . . , Vk , so |⋃U | =∑ |Vi |. For each Vi , one clearly has⋃

U∈U :U⊆Vi

Uε ⊆ V ε
i ,

thus ∣∣∣⋃U ε
∣∣∣≤ k∑

i=1

∣∣∣∣ ⋃
U∈U : U⊆Vi

Uε

∣∣∣∣≤ k∑
i=1

(1 + 2ε)|Vi | = (1 + 2ε)
∣∣∣⋃U

∣∣∣.
�

A tower of height M over a finite set I ⊆ N is a collection U = {Ui(k) : i ∈ I,

1 ≤ k ≤ M} of intervals such that i is the left endpoint of Ui(k) [we shall actually
only use the fact that i ∈ Ui(k)] and for each i ∈ I , the sequence Ui(1) ⊆ Ui(2) ⊆
· · · ⊆ Ui(M) is strictly increasing. The kth level of U is the collection

U (k) = {Ui(k) : i ∈ I }.
Note that the intervals in U (k) are not necessarily of the same size and, although
|Ui(k)| < |Ui(k + 1)|, it need not be true that |Ui(k)| ≤ |Uj(k + 1)| if i �= j .

Let U = {Ui(k)} be a tower of height M over a set I . The ε-crust of U is the set
of V ∈ U whose ε-blowup is strictly maximal with respect to inclusion, that is,

V = {V ∈ U (M) : if V ε � Wε for some W ∈ U , then V = W }.
It is clear that

⋃U ⊆⋃V ε .

LEMMA 6.3. Let 0 < ε < 1. Suppose that U = {Ui(k)} is a tower over I of
height 2 satisfying

|Ui(2)| ≥ 2

ε2 |Ui(1)| for all i ∈ I

and V ⊆ U (2) is the ε-crust of U . Then:

(1) for each U ∈ U (1) and V ∈ V , if U ∩ V �= ∅ then U ⊆ V ε;
(2) there exists Û ⊆ U (1) and a disjoint V̂ ⊆ V such that |⋃ Û | ≤ 1

2 |⋃U |,
(
⋃ Û ) ∩ (

⋃ V̂ ) = ∅ and
⋃U ⊆ (

⋃ V̂ ε) ∪ (
⋃ Û ).
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PROOF. Let U ∈ U (1) and V ∈ V with U ∩ V �= ∅. In order to show that
U ⊆ V ε , it suffices to show that ε|V | ≥ |U |. Let i ∈ I be such that U = Ui(1) and
write W = Ui(2), the interval “above” U in U . Since V is in the ε-crust, we cannot
have V ε � Wε . Since V ∩ W �= ∅, this implies that

(1 + ε)|V | ≥ |W | ≥ 2

ε2 |U |,
which gives the desired conclusion.

To establish (2), apply the Vitali lemma to V to obtain a disjoint family V̂ ⊆ V
with |⋃ V̂| ≥ 1

2 |⋃V|. Let

Û =
{
U ∈ U (1) :U ∩

(⋃
V̂
)

= ∅
}
.

The conclusion now follows from (1). �

We want to replace the constant 1/2 in the Vitali lemma with a constant close
to 1. This can be achieved using the standard trick of applying the Vitali lemma to
several layers of covers and iteratively disjointifying each level in turn.

Henceforth, all logarithms are taken to base 2.

LEMMA 6.4. Let 0 < ε < 1. Suppose that U = {Uj(k)} is a tower of height
M ≥ 1 + log(1/ε) over a set J and

|Uj(k + 1)| > 2

ε2 |Uj(k)|.
There is then a disjoint subcollection V ⊆ U such that |⋃V| ≥ (1 − 3ε)|⋃U |.

PROOF. Set U0 = U and V0 = ∅. For 1 ≤ n < M , we inductively define sub-
collections Vn, Un ⊆ U (M − n) satisfying:

(1) Vn, Un ⊆ Un−1;
(2)

⋃Un−1 ⊆ (
⋃Un) ∪ (

⋃V ε
n);

(3) (
⋃Vn) ∩ (

⋃Un) = ∅;
(4) |⋃Un| ≤ 1

2 |⋃Un−1|.
To produce Un, Vn, we apply part (2) of Lemma 6.3 to the top two layers of Un−1.
Clearly, the collection V =⋃

1≤k<M Vk is disjoint and
⋃U ⊆ (

⋃V ε)∪ (
⋃UM−1).

By property (4), we have∣∣∣⋃UM−1

∣∣∣≤ (
1

2

)M−1∣∣∣⋃U
∣∣∣≤ ε

∣∣∣⋃U
∣∣∣,

so ∣∣∣⋃V ε
∣∣∣≥ ∣∣∣⋃U

∣∣∣− ∣∣∣⋃UM−1

∣∣∣≥ (1 − ε)
∣∣∣⋃U

∣∣∣.



2146 M. HOCHMAN

Using the inequality |⋃V| ≥ 1
1+2ε

|⋃V ε| from Lemma 6.2, we have∣∣∣⋃V
∣∣∣≥ 1 − ε

1 + 2ε

∣∣∣⋃U
∣∣∣≥ (1 − 3ε)

∣∣∣⋃U
∣∣∣,

as desired. �

For the remainder of this section, we adopt the following notation. Fix an
integer L and 0 < ε < 1, a finite set I ⊆ Z and two towers U = {Ui(k)} and
V = {Vi(k)} of height L + 1 over I satisfying

Ui(0) ⊆ Vi(0) ⊆ Ui(1) ⊆ Vi(1) ⊆ · · · ⊆ Ui(L) ⊆ Vi(L)

(for convenience, we start from level 0) and

|Vi(k)| ≥ 2

ε2 |Ui(k)|.
Note that this ensures a similar growth rate for the substack U .

LEMMA 6.5. Let L ≥ 1 + log(1/ε). Then, either there is a V ∈ V(L) which
can be 6ε-filled by a disjoint subcollection of U , or else |⋃V(L)| ≥ (1 +
ε
6)|⋃U (0)|.

PROOF. Select a maximal disjoint subset W of the ε-crust of V . By the Vitali
lemma and Lemma 6.3, we have∑

W∈W
|W | =

∣∣∣⋃W
∣∣∣≥ 1

2(1 + 2ε)

∣∣∣⋃V(L)
∣∣∣≥ 1

2(1 + 2ε)

∣∣∣⋃U (0)
∣∣∣.

We distinguish between two cases. First, if every W ∈ W satisfies |W \⋃U (L −
1)| > ε|W |, then, since W is disjoint, we would have∣∣∣⋃V

∣∣∣ ≥ ∣∣∣⋃U (0)
∣∣∣+ ∣∣∣⋃W

∖⋃
U (L − 1)

∣∣∣
=
∣∣∣⋃U (0)

∣∣∣+ ∑
W∈W

∣∣∣W∖⋃
U (L − 1)

∣∣∣
≥
∣∣∣⋃U (0)

∣∣∣+ ∑
W∈W

ε|W |

≥
(

1 + ε

2(1 + 2ε)

)∣∣∣⋃U (0)
∣∣∣,

which gives the desired bound.
Otherwise, let W ∈ W be such that |W \⋃U (L − 1)| < ε|W |. Let

Y = {Ui(k) : 0 ≤ k ≤ L − 1 and Ui(L − 1) ∩ W �= ∅},
Z = {Ui(k) : 0 ≤ k ≤ L − 1 and Ui(L − 1) ⊆ W }.
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By assumption, we know that∣∣∣W ∩
(⋃

Y
)∣∣∣≥ (1 − ε)|W |.(6.1)

We claim that then ∣∣∣W ∩
(⋃

Z
)∣∣∣≥ (1 − 3ε)|W |.(6.2)

Suppose that this were not the case. There is then a subset A ⊆ W of size > ε|W |,
not covered by Z and all of whose points are at a distance of at least ε|W | from
Z \ W . By inequality (6.1), there is some Ui(L − 1) ∈ Y \ Z that intersects A at a
point r . Since Ui(L−1) /∈ Z , it must intersect Z\W at a point r ′. Since Ui(L−1)

contains the interval with endpoints r, r ′, we have

|Ui(L − 1)| ≥ |r − r ′| ≥ ε|W |,
so

|Vi(L − 1)| ≥ 2

ε2 |Ui(L − 1)| > 2|W |.
On the other hand, Ui(L−1)∩W �= ∅ [because Ui(L−1) ∈ Y ] and since Ui(L−
1) ⊆ Vi(L − 1), we also have Vi(L − 1) ∩ W �= ∅. Since W is in the ε-crust of V ,
Lemma 6.3 implies that Vi(L − 1) ⊆ Wε , contradicting the size bound we got for
Vi(L − 1).

To complete the proof, we apply Lemma 6.4 to the tower Z . We obtain a disjoint
subcollection of Z (and hence of U ) whose members are contained in W and have
total size at least (1−3ε)|∪ Z|, which, by inequality (6.2), is at least (1−6ε)|W |,
as required. �

We can now prove Lemma 5.1, which we rephrase as follows (notice that our
tower is now numbered starting at 0 and that we have removed the tildes from the
notation).

LEMMA 6.6. With the above notation, suppose that no interval V ∈ V can be
6ε-filled by disjoint elements of U . Then,∣∣∣⋃U (0)

∣∣∣≤ (
1 + ε

6

)−�L/ log(1/ε)
∣∣∣⋃V(L)
∣∣∣.

PROOF. Set M = log(1/ε). It suffices to prove∣∣∣⋃U
∣∣∣≥ (

1 + ε

6

)−�L/M
∣∣∣⋃U (0)
∣∣∣

and it is enough to prove this when L is an integer multiple of M ; write L = kM .
We proceed by induction on k. The base of the induction is the previous lemma.
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Now, given that it is true for k and given L = (k+1)M , we can apply the induction
hypothesis to the restrictions of U , V to levels 0,1, . . . , kM . This tells us that∣∣∣⋃U (kM)

∣∣∣≥ (
1 + ε

6

)k∣∣∣⋃U (0)
∣∣∣.

Now, consider the restriction of the towers to levels kM,kM + 1, . . . , (k + 1)M .
Applying the base case, we get∣∣∣⋃U

(
(k + 1)M

)∣∣∣≥ (
1 + ε

6

)∣∣∣⋃U (kM)
∣∣∣.

Putting these together completes the proof. �

As mentioned in the Introduction, everything above can be carried out for sym-
metric intervals and for cubes in Zd ; the proofs generalize easily to that case, al-
though the constants change. We note that the Vitali lemma (Lemma 6.1) requires
a different proof in higher dimensions, but this is classical.

For completeness, we provide the proof of the higher-dimensional analog of
Lemma 6.2. Consider the case of squares in Z2. The ε-blowup of a square U × V

is Uε × V ε , which can be written as a disjoint union,

Uε × V ε = (U × U) ∪ B1 ∪ B2 ∪ B3 ∪ B4,

where B1 = Uε × V \ U × V are two vertical strips of width ε, B2 = U × V ε \
U × V are two horizontal strips of height ε, B3 is the union of two ε × ε squares
outside the upper-left and lower-right corners of U ×V and B4 is the union of two
ε × ε squares outside the upper-right and lower-left corners of U × V . To obtain
an analog of Lemma 6.2, we must show that if {Ui × Vi} is a collection of squares
and Uε

i × V ε
i = (Ui × Vi) ∪⋃

t=1,2,3,4 Bi,t as above, then, for each t = 1,2,3,4,∣∣∣∣⋃
i

Bi,t

∣∣∣∣≤ 2ε

∣∣∣∣⋃
i

Ui × Vi

∣∣∣∣.
This follows from the one-dimensional case by decomposing

⋃
i (Ui × Vi ∪ Bi,t )

into the union of the intersection of this set with parallel translates of lines. For
instance, for t = 1, the intersection of

⋃
i (Ui ×Vi ∪Bi,t ) with each horizontal line

is the ε-blowup (in the one-dimensional sense) of the intersection of
⋃

i Ui × Vi

with that line and so the one-dimensional lemma can be applied. Now, sum over
all lines.

The proof for cubes in Zd is proved by induction on the dimension using a
similar strategy.
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